
Figure 11.1. A comparison between the conformational heat capacity obtained from NMR [15] and
calorimetric CP data in the water–lysozyme system [14].
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The thermal evolution of the longitudinal NMR relaxation time T1 [19].



Figure 11.4. Data analysis method used to obtain 〈X2
H2O〉 of RNA hydration water. (a) The so-called

elastic scan. (b) The logarithm of intensity versus Q2 at three temperatures. (c) The extracted MSD of the
hydration water as a function of temperature.



Figure 11.5. The FH(Q, t) extracted from the quasi-elastic neutron spectra by using the RCM at Q0 in
RNA hydration water at different T .
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Figure 11.6. (a) The RCM 〈τT〉 versus T . A dynamic crossover is observed at TL = 220K. The dashed
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Figure 11.7. The MSDs measured for the protein (left) and its hydration water (right). The protein MSD
is taken from the D2O hydrated sample.



Figure 11.8. The slope of the MSD versus T curve used as a measure of biomaterial softness. Above the
crossover temperature, RNA becomes 15 times softer than its glassy state and hydration water becomes
20 times softer [26].



Figure 11.9. Reduced plot of pressure dependence of MSD of protein and its hydration water [29].



Figure 11.10. (a) The 〈τT〉 versus 1/T of water in hydrophobic nanotubes (DWNT). The solid and dashed
lines represent the VFT and the Arrhenius law fits, respectively. (b) The MSD versus T averaged over all
the extracted hydrogen atoms, 〈X2〉 [31].



Figure 11.11. (a) The NMR 1/D (left) and the QENS relaxation time 〈τT〉 (right), versus 1/T . The
FSC are at TL,NMR = 226 ± 2K and TL,QENS = 225 ± 2K. (b) The scaled SER, logDS versus log〈τT〉.
Two scaling behaviors above and below TL are observed: in the super-Arrhenius region ξ ≈ 1, and in the
Arrhenius region ξ ≈ 0.82.
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Figure 11.13. The hydrogen MSD,
〈
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〉
, measured by elastic neutron scattering, that is, (a) protein
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and (d) protein hydrogen atoms [51].
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Figure 11.19. The relaxation times (τ vs. 1000/T ) of different protein hydration water, surface water of
MCM-41, and bulk water. The dashed line indicates TL.
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Figure 11.22. (a) Experimental CP of a water–lysozyme solution [14] Inset: S(T ) versus T calculated
from integration of the experimental CP . (b) Arrhenius plot of D0/D versus 1000/T obtained according
to the Adam–Gibbs equation [74].
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Figure 11.24. The backbone RMSD as a function of t at different T . No remarkable change is detected
until 340K when the protein increases its flexibility [74].



Figure 11.25. Arrhenius plot of the 1/D for lysozyme hydration water, calculated from MD simulations.
The curve shows an high-T dynamic crossover similar to the one observed by QENS (Fig. 24) [74].



Figure 11.26. The 1H NMR spectra (obtained from the FID, cycle A) of hydrated lysozyme (h = 0.3)
upon the warming (a) and cooling (b) phases.
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Figure 11.27. The evolution of the 1H NMR chemical shift δ(T ) in several thermal cycles of the lysozyme
water. The pure bulk water chemical shift are also reported.
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