

Figure 10.1. Examples of water's thermodynamic anomalies. Dependence on temperature of (**a**) the isothermal compressibility K_T , (**b**) the isobaric specific heat C_p , and (**c**) the coefficient of thermal expansion α_p . The behavior of water is indicated by the solid line; that of a typical liquid by the dashed line. Data from Ref. [5]. Bottom: Schematic illustration of different temperature domains, at atmospheric pressure, of H₂O. Only one domain is stable; the others are metastable.

Figure 10.3. Molecular dynamics snapshots of LDL and HDL, coexisting and separating in liquid water [3].

Figure 10.6. (a) The ¹H NMR spectra of water in MCM samples with $\phi = 24$ and 14 Å, upon cooling. (b) The normalized NMR intensities, $I_{\text{Nor}}^{\text{max}}$ versus 1/T, for $\phi = 14$, 18, and 24 Å samples [75].

Figure 10.7. Temperature dependence of $\beta\gamma$, which is the exponent expressing the *Q*-dependence of the translational ISF for the MCM sample. Note that the figure shows a sharp break at ≈ 225 K. The inset reports the *T*-dependence of the exponent β [98].

Figure 10.9. The ambient pressure values of the $\langle \tau_T \rangle$ (a—QENS) and of the 1/*D* (b—NMR) as a function of 1/*T* in fully hydrated MCM-41-S.

Figure 10.11. (a) The HOH bending and (b) the O–H stretching vibrational spectra of MCM confined water at the different temperatures [88]. (c) Examples of the spectral fitting results.

Figure 10.12. The FWHM values of the OH stretching spectral component I (3120 cm⁻¹) versus T, measured in confined water and in the LDA phase [88,105] (inset). T-dependence of the fractioned relative populations of the LDL, W_{LDL} (diamonds), and of the HDL, W_{HDL} (triangles and circles) water phases [106].

Figure 10.14. The density derivative $(\partial \rho / \partial T)_p$. The arrow indicates the Widom temperature T_W . $(\partial \rho / \partial T)_p$, related with the cross-correlation between the entropy and volume fluctuations, is proportional to the thermal expansion coefficient [106].

Figure 10.24. The temperature behavior of the water proton chemical shift δ . Our data (squares) and data from the literature (circles) [133].

Figure 10.25. The temperature derivative of the measured fractional chemical shift $-T\partial \ln \delta(T)/\partial T$ (blue circles, left-hand side), the specific heat at constant pressure, C_p (right-hand side), measured in bulk water in the supercooled regime (red line, Ref. [124]), and C_p calculated for the TIP5P model of water (red squares, Ref. [143]).