

Figure 9.2. Yoshida-Kamakura potential (expressed in ϵ units), for different values of the softness parameter: $a=5$ (black solid line), 3 (blue dashed line), 2 (green dotted line), 1 (red dash-dotted), and 0.5 (magenta dash-double-dotted line). The interparticle distance r is in σ units.

Figure 9.3. Yoshida-Kamakura potential $u(r)$ (solid line, expressed in ϵ units), two-body force $f(r)=$ $-u^{\prime}(r)$ (blue dashed line, ϵ / σ units), product $r f(r)$ (green dotted line, ϵ units), and second derivative of the potential $u^{\prime \prime}(r)$ (red dash-dotted line, ϵ / σ^{2} units) for $a=2.1$ (a) and $a=3.3$ (b). The interparticle distance r is in σ units.

Figure 9.4. Phase diagram of the Yoshida-Kamakura interaction model for $a=2.1$. Pressure P and temperature T are in units of ϵ / σ^{3} and $\epsilon / k_{\mathrm{B}}$, respectively, k_{B} being Boltzmann's constant. Full symbols are two-phase coexistence points. The data points lying on the $T=0$ axis are exact solid-solid boundaries. The dashed line connecting crosses is the locus of density maxima in the fluid phase. Curves A and B connect points of maximum and minimum values of $-s_{2}$, respectively. The open region between A and B is the structurally anomalous region. Data are from Ref. [77].

Figure 9.5. Phase diagram of the Yoshida-Kamakura potential for $a=3.3$. P and T are in reduced units. Full dots are two-phase coexistence points. Open dots are points of density maximum in the fluid phase. Diamonds and triangles denote points of $-s_{2}$ maxima and D minima, respectively (D being the self-diffusion coefficient), giving the left boundary of the regions of structural and diffusion anomaly (the right boundaries, which are defined by $-s_{2}$ minima and D maxima, are out of the P range shown). Data are from Ref. [88].

Figure 9.8. Position r_{NN} of the NN peak of $g(r)$ in units of σ as a function of P at constant T for: $u_{\mathrm{YK}}(r)$, $a=2.1$, and $T=0.07$ (blue solid line and triangles); $u_{\mathrm{YK}}(r), a=3.3$, and $T=0.06$ (red dash-dotted line and full dots); $u_{\mathrm{IP}}(r)$ and $T=0.06$ (dotted line, stopping near the melting point); $u_{\mathrm{IP}}(r)$ and $T=1$ (dashed line). The gray scale is proportional to the height of the $g(r)$ peak. The blue line without symbols represents a weighted average of the two r_{NN} branches with weights proportional to the respective $g(r)$ peak heights, for the case $u_{\mathrm{YK}}(r)$, with $a=2.1$. Data are from Ref. [88].

