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5.4 PROPERTIES OF THE DEFINITE INTEGRAL 

 

Definite integrals are defined as limits of Riemann sums, and they can be interpreted as "areas" of geometric 

regions.  These two views of the definite integral can help us understand and use integrals, and together they are 

very powerful.  This section continues to emphasize this dual view of definite integrals and presents several 

properties of definite integrals.  These properties are justified using the properties of summations and the definition 

of a definite integral as a Riemann sum, but they also have natural interpretations as properties of areas of regions.  

These properties are used in this section to help understand functions that are defined by integrals.  They will be 

used in future sections to help calculate the values of definite integrals. 

 

Properties of the Definite Integral 
 

As you read each statement about definite integrals, examine the associated Figure and interpret the property as a 

statement about areas. 

 

  

 1. 

a

a

 f(x) dx   = 0      (a definition)  

 

 2. 

b

a

 f(x) dx   = – 

a

b

 f(x) dx    (a definition) 

 

 3. 

a

b

 k dx   = k.(b – a) (Fig. 1) 

 

 4. 

a

b

 k.f(x) dx   = k. 

a

b

 f(x) dx    

 

 5. 

a

b

 f(x) dx   + 

b

c

 f(x) dx   = 

a

c

 f(x) dx    (Fig. 2) 
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Justification of Property 3: Using area: If  k > 0  (Fig. 1), then  

a

b

 k dx   represents the area of the rectangle with  base 

= b–a  and  height = k, so  

a

b

 k dx   = (height).(base) = k.(b – a). 

 Using Riemann Sums:  For every partition   

 P =  { x0 = a, x1, x2, x3, . . . ,  xn–1, xn = b} of the interval  [a, b], and every  

 choice of ck,  the Riemann sum is   
k=1

n

 f(ck).∆xk  =  
k=1

n

 k.∆xk  = k 
k=1

n
∆xk   

  = k  
k=1

n
( xk – xk–1)  = k {( x1–x0 ) + ( x2–x1 ) +( x3–x2 ) +  . . . + ( xn–1 –xn )} 

  = k.( xn – x0 ) =  k.( b – a ) 

 so the limit of the Riemann sums, as the mesh approaches zero, is  k.( b – a ).   

a

b

 k dx   = k.(b – a). 

 

Justification of Property 4:  



a

b

 k.f(x) dx   = lim

mesh0
 
 ( 

k=1

n
 k

.f(ck)∆xk )  = k. lim

mesh0
 
 ( 

k=1

n
 f(ck)∆xk )  = k.



a

b

 f(x) dx  . 

 

Property 5  can be justified using Riemann sums, but Fig. 2  graphically 

illustrates why it is true. 
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Properties of Definite Integrals of Combinations of Functions 
 

 

Properties 6 and 7 relate the values of integrals of sums and differences of functions to the sums and differences of 

integrals of the individual functions.  These two properties will be very useful when we need the integral of a 

function which is the sum or difference of several terms:  we can integrate each term and then add or subtract the 

individual results to get the integral we want.  Both of these new properties have natural interpretations as statements 

about areas of regions. 

 

 

 6. 

a

b

 f(x) + g(x) dx   = 

a

b

 f(x) dx   + 

a

b

 g(x) dx    (Fig. 3) 

 

 7. 

a

b

 f(x) – g(x) dx   = 

a

b

 f(x) dx   – 

a

b

 g(x) dx     

   

 

Justification of Property 6:  

a

b

 f(x) + g(x) dx    

 =  
0 1

lim ( ( ) ( ))
n

k k k
mesh

k

f c g c x




 
  

 
  

  

 

 =  

0 1 1

lim ( ) ( )
n n

k k k k
mesh

k k

f c x g c x


 

 
   

 
   

 = 
0 01 1

lim ( )   lim ( )
n n

k k k k
mesh mesh

k k

f c x g c x
 

 

   
     

   
    =  

a

b

 f(x) dx   + 

a

b

 g(x) dx  . 

 

Practice 1: 

1

4

 f(x) dx  = 7, and 

1

4

 g(x) dx  = 3.  Evaluate 

1

4

 f(x)–g(x) dx . 

 

Property 8 says that if one function is larger than another function on an interval, then the definite integral of a larger 

function on that interval is bigger than the definite integral of the smaller function.  This property then leads to 

Property 9 which provides a quick method for determining bounds on how large and small a particular integral can 

be. 
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 8. If   f(x) ≤ g(x)  for all  x  in  [a,b],  then  

a

b

 f(x) dx   ≤ 

a

b

 g(x) dx .  (Fig. 4) 

 

 9. (b–a).(min of  f on [a,b] ) ≤ 

a

b

 f(x) dx  ≤ (b–a).(max of  f on [a,b] ) . (Fig. 5) 

   

 

 

 

 

Justification of Property 8:   

 Fig. 4 illustrates that if  f and  g  are 

both positive and  f(x) ≤ g(x)  for all  x  in  [a,b],  then the area of region  F  is smaller than the area of region  G 

and    

a

b

 f(x) dx   ≤ 

a

b

 g(x) dx  . 

 Similar sketches for the situations when  f  or  g  are sometimes or always negative illustrate that Property 9 is 

always true, but we can avoid all of the different cases by using Riemann sums. 

 

 Using Riemann Sums:  If the same partition and sampling points  ck  are used to get Riemann sums for  f  and  g, 

then  f(ck) ≤ g(ck)  for each  k  and  

  
k=1

n
  f(ck)∆xk ≤  

k=1

n
  g(ck)∆xk  so  

0 01 1

lim ( ) lim ( )
n n

k k k k
mesh mesh

k k

f c x g c x
 

 

   
     

   
  . 

 

Justification of Property 9: Property 9 follows easily from Property 8.   

 Let  g(x) = M = (max of  f on [a,b] ).  Then  f(x) ≤ M = g(x)  for all  x  in  [a,b]  so 

 

  

a

b

 f(x) dx  ≤ 

a

b

 g(x) dx  =   

a

b

 M dx   =  (b–a).M . 
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Example 1: Determine lower and upper bounds for the value of   

1

5

 f(x) dx   in  Fig. 

6. 

Solution: If  1 ≤ x ≤ 5,  then  2 ≤ f(x) ≤ 9  so  a lower bound is   

 (b–a).(min of  f on [a,b] ) = (4)(2) = 8. 

 An upper bound is   

 (b–a).(max of  f on [a,b] ) = (4)(9) = 36:   8 ≤  

1

5

 f(x) dx  ≤ 36.  This 

range, from 8 to 36 is rather wide.  Property 9  is not useful for finding the exact value of the integral, 

but it is very easy to use and it can help us avoid an unreasonable value for an integral. 

Practice 2: Determine a lower bound and an upper bound for the value of   

3

5

 f(x) dx   in  Fig. 6. 

 

Functions Defined by Integrals 
 

If one of the endpoints  a  or  b  of the interval  [a, b]  changes, then the value of the integral   

a

b

 f(t) dt   typically 

changes.  A definite integral of the form  

a

x

 f(t) dt     defines a function of  x , and functions  

defined by definite integrals in this way have interesting and useful properties.  The next examples illustrate one of 

them:  the derivative of a function defined by an integral is closely related to the integrand, the function "inside" the 

integral. 

 

Example 2:  For the function  f(t) = 2, define  A(x) to be the area of the region 

bounded by   f, the t–axis, and vertical lines at  t = 1  and  t = x  (Fig. 7). 

 (a) Evaluate  A(1), A(2), A(3), A(4). 

 (b) Find an algebraic  formula for  A(x)  for   x ≥ 1.  

 (c) Calculate  
d

dx
  A(x).  

 (d) Describe  A(x)  as a definite integral. 

 

Solution : (a) A(1) = 0, A(2) = 2, A(3) = 4, A(4) = 6 . 

 (b) A(x) = area of a rectangle = (base).(height) = (x – 1).( 2 ) = 2x – 2. 

 (c) 
d

dx
  A(x) = 

d

dx
 ( 2x – 2 )  = 2 . (d) A(x) =  

1

x

 2 dt   . 
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Practice 3: Answer the questions in the previous Example for  f(x) = 3 . 

 

Example 3:  For the function  f(t) = 1+t, define  B(x) to be the area of the region bounded 

by the graph of  f, the t–axis, and vertical lines at  t = 0  and  t = x  (Fig. 8).    

 (a) Evaluate  B(0), B(1), B(2), B(3). 

 (b) Find an algebraic  formula for  B(x) for   x ≥ 0.  

 (c) Calculate  
d

dx
  B(x).  

 (d) Describe  B(x)  as a definite integral. 

 

Solution: (a) B(0) = 0, B(1) = 1.5, B(2) = 4, B(3) = 7.5 

 (b) B(x) = area of trapezoid = (base).(average height) = (x).( 
1+(1+x)

2
  ) = x + 

x
2

2
   . 

 (c) 
d

dx
  B(x) = 

d

dx
 (  x + 

x
2

2
   )  = 1 + x . (d) B(x) =  

0

x

 1+t dt    

 

Practice 4: Answer the questions in the previous Example for  f(t) = 2t . 

 

A curious "coincidence" appeared in each of these Examples and Practice problems:  the derivative of the function 

defined by the integral was the same as the integrand, the function "inside" the integral.  Stated another way,  the function 

defined by the integral was an "antiderivative" of the function "inside" the integral.  In section 4.4 we will see that this 

"coincidence" is a property of functions defined by the integral.  And it is such an important property that it is called The 

Fundamental Theorem of Calculus, part I.  Before we go on to the Fundamental Theorem of Calculus, however, there is 

an "existence" question to consider:  Which functions can be integrated? 

 

Which Functions Are Integrable? 
 

This important question was finally answered in the 1850s by Georg Riemann, a name that should be familiar by now.  

Riemann proved that a function must be badly discontinuous to not be integrable. 

 

 

 Every continuous  function is integrable.   
 

 If  f  is continuous on the interval  [a,b], 

 

 then  
0 1

lim ( )
n

k k
mesh

k

f c x




 
 

 
    is always the same finite number ,   

a

b

 f(x) dx  , 

 

  so  f  is integrable on  [a,b] . 
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In fact, a function can even have any finite number of breaks and still be integrable. 

 

 

 Every bounded, piecewise continuous function is integrable. 
 

 If   f  is defined and  bounded  (–M ≤ f(x) ≤ M  for some  M)  for all  x  in  [a,b] 

  and continuous except at a finite number of points in  [a,b] , 

 

 then  .
0 1

lim ( )
n

k k
mesh

k

f c x




 
 

 


.

    is always the same finite number,  

a

b

 f(x) dx  , 

 

  so  f  is integrable on  [a,b] . 

   

    

 

The function  f  in Fig. 9  is always between  –3 and 3  (in 

fact, always between  –1  and  3)  so it is bounded , and it is 

continuous except at  2 and 3.  As long as the values of  f(2)  

and  f(3)  are finite numbers, their actual values will not 

effect the value of the definite integral, and 

 

 

0

5

 f(x) dx  = 0 + 3 + 2 = 5.   

 

Practice 5: Evaluate  

1.5

3.2

 INT(x) dx  .  (Fig. 10) 

 

Fig. 11  summarizes the relationships among differentiable, continuous, and integrable functions: 

 

• Every differentiable function is continuous, but there are 

continuous functions which are not differentiable. 

(example:  | x  |  is continuous but not differentiable 

at x = 0.) 

• Every continuous function is integrable, but there are 

integrable functions which are not continuous.  

(example:  the function in Fig. 9 is integrable on  [0, 

5]  but is not continuous at  2  and  3.) 

• Finally, as shown in the optional part of this section, there are functions which are not integrable. 
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A Nonintegrable Function  

 

If  f  is continuous or piecewise continuous on [a,b], then f is integrable on [a,b] .  Fortunately,  the functions we will 

use in the rest of this book are all integrable as are the functions you are likely to need for applications.  However, 

there are functions for which the limit of the Riemann sums does 

not exist, and those functions are not integrable.   

 

A nonintegrable function:  
  

The function f(x) =  

 

 

is not integrable on [0,3]. 

 

Proof:  For any partition  P, suppose that you, a very rational person, always select values of  ck  which are rational 

numbers.  (Every subinterval contains rational numbers and irrational numbers, so you can always pick  ck  to 

be a rational number.)   

 Then  f(ck) = 1,  and  your Riemann sum, YS,  is always  

  

  YSP = 
k=1

n
  f(ck )∆xk  =  

k=1

n
  1∆xk  = 3.   

 

 Suppose your friend, however, always selects values of  ck  which are irrational numbers.  Then  f(ck) = 2, and 

your friend's Riemann sum, FS,  is always   

 

  FSP = 
k=1

n
  f(ck)∆xk  =  

k=1

n
  2∆xk  =  2 

k=1

n
  ∆xk  = 6. 

 

 Then    YSP  =  3  and    FSP  = 6   so     

 

 does not exist,  and  this  f  is not integrable on [0,3]  or on any other interval either. 
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PROBLEMS: 

 

 

Problems  1 – 20  refer to the graph of  f  in Fig. 13.  Use the graph 

to determine the values of the definite integrals.  (The bold numbers 

represent the area of each region.) 

 

 

1. 

0

3

 f(x) dx    2. 

3

5

 f(x) dx    3. 

2

2

 f(x) dx    4. 

6

7

 f(w) dw    5. 

0

5

 f(x) dx     

 

6. 

0

7

 f(x) dx    7. 

3

6

 f(t) dt    8. 

5

7

 f(x) dx    9. 

3

0

 f(x) dx    10. 

5

3

 f(x) dx     

 

11. 

6

0

 f(x) dx    12. 

0

3

 2f(x) dx    13. 

4

4

  f
2

(s) ds   14. 

0

3

 1+f(x) dx    15. 

0

3

 x+f(x) dx     

16. 

3

5

 3+f(x) dx    17. 

0

5

 2+f(x) dx    18. 

3

5

 | f(x) | dx    19. 

0

5

 | f(x) | dx    20. 

7

3

 1+| f(x) | dx   

 

Problems  21 – 30  refer to the graph of  g  in Fig. 14.  Use the graph to evaluate the integrals. 

 

21. 

0

2

 g(x) dx    22. 

1

3

 g(t) dt    23. 

0

5

 g(x) dx    24.

 

4

2

 g(x) dx    

 

25. 

0

8

 g(s) ds  26. 

1

4

 | g(x) | dx   27. 

0

3

 2g(t) dt    28.

 

5

8

 1+g(x) dx   

 

29. 

6

3

 g(u) du    30. 

0

8

 t+g(t) dt  
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For problems 31 – 34 , use the constant functions  f(x) = 4  and  g(x) = 3  on the interval  [0,2].  Calculate each 

integral and verify that the value obtained in part (a)  is not equal to the value in part (b). 

 

31.(a) 

0

2

 f(x)dx . 

0

2

 g(x)dx   (b) 

0

2

 f(x).g(x) dx   32.(a) 

0

2

 f(x)dx   /
0

2

 g(x)dx  (b) 

0

2

 f(x)/g(x) dx   

 

33.(a) 

0

2

 f
2

(x)dx   (b) (
0

2

 f(x)dx  )2  
34.(a) 

0

2

 f(x) dx   (b) 

0

2

 f(x) dx  
 

 

 

For problems 35 – 42 , sketch the graph of the integrand function and use it to help evaluate the integral. 

 

35 

0

4

 | x | dx    36. 

0

4

 1 + | t | dt    37. 

–1

2

 | x | dx    38. 

0

2

 | x | – 1 dx    

 

39. 

1

3

 INT(u ) du    40. 

1

3.5

 INT(x ) dx    41. 

1

3

 2 + INT(t ) dt    42. 

3

1

  INT(x ) dx   

For problems 43 –  46, (a)  Sketch the graph of  y = A(x) = 

0

x

  f(t )  dt  and  (b)  sketch the graph of  y = A'(x). 

43. f(x) = x  . 44. f(x) = x  – 2 . 45. f  in Fig. 15. 46. f  in Fig. 16. 

 

For problems  47 – 50, state whether the function is   

 (a) continuous on  [1,4],   (b) differentiable on  [1,4] , and    (c)  integrable on  [1,4]. 

 

47. f  in Fig. 15, 48. f  in Fig. 16. 49. f  in Fig. 17. 50. f  in Fig. 18. 
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51. Write the total distance traveled by the car in Fig. 19 between  1 pm 

 and 4 pm as a definite integral and estimate the value of the integral. 

 

52. Write the total distance traveled by the car in Fig. 19 between 3 pm  

 and 6 pm as a definite integral and estimate the value of the integral. 

 

Section 5.4 PRACTICE  Answers 

Practice 1:  

1

4

 f(x)–g(x) dx  = 7 – 3 = 4 .  

Practice 2: (2)(min. of f on [3,5]) = 4 ≤ 

3

5

 f(x) dx   ≤ 2(max. of f on [3,5]) = 12 . 

Practice 3: (a) A(1) = 0, A(2) = 3, A(3) = 6, A(4) = 9 (b) A(x) = (x – 1)(3) = 3x – 3 

  (c)  
d

dx
  A(x) = 3 (d) A(x) =  

1

x

 3 dx    

Practice 4: (a) B(0) = 0, B(1) = 1, B(2) = 4, B(3) = 9 (b) B(x) = 
1

2
 (base)(height)  = 

1

2
 (x)(2x)  = x

2
 .

 (c) 
d

dx
  B(x) = 

d

dx
  x

2
 = 2x (d) B(x) =  

0

x

 2t dt    

Practice 5: The integral = the shaded area in Fig. 10 = (0.5)(1) + (1)(2) + (0.2)(3) = 3.1 . 
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