

 The Saylor Foundation 1

Memory Management Simulation Interactive Lab Answer Key

Experiments

1. Keep memory.conf as is. Modify the commands file by entering the following

sequence of commands:

// Enter READ/WRITE commands into this file

// READ <OPTIONAL number type: bin/hex/oct> <virtual memory address or

random>

// WRITE <OPTIONAL number type: bin/hex/oct> <virtual memory address or

random>

READ bin 110

READ bin 111

WRITE hex CB33

WRITE hex FB12

WRITE hex B4A2B

READ bin 100000100100000

READ bin 110000010000110

WRITE bin 110011100000000

WRITE random

Now, try running the simulator (type java MemoryManagement commands

memory.conf from a command prompt). Press the reset button and then the run

button. Take a look at the log file. The log file is shown below (Figure 1). Are

there any page faults? Yes.

If so, where do these occur, and why? The fifth line (WRITE b4a2b) is virtual

page 45, which is not mapped to a physical page. You can tell this by taking a

look at the configuration file, where you can see that the last virtual page mapped

is 31. The last operation is a random write, which may or may not cause a page

fault.

READ 6 ... okay

READ 7 ... okay

WRITE cb33 ... okay

WRITE fb12 ... okay

WRITE b4a2b ... page fault

READ 4120 ... okay

READ 6086 ... okay

WRITE 6700 ... okay

 Figure 1

 The Saylor Foundation 2

2. Modify the commands file again by entering the following sequence of

commands:

READ bin 100

READ bin 010

READ bin 111

WRITE hex cc12

WRITE hex bc35

WRITE random

READ bin 111110100000

WRITE 6001

WRITE hex 7563e

Now, try running the simulator (type java MemoryManagement commands

memory.conf from a command prompt). Press the reset button and then the run

button. Take a look at the log file. Are there any page faults? Yes.

If so, where do these occur, and why?

Your results may vary slightly. As long as the write random causes a page fault,

then there will be one page fault there. Figure 2 shows the simulator after the

page fault. Notice how physical page 0 has now been mapped to virtual page

35. When we try to read virtual page 0 in the next command, notice how there is

no longer an associated physical page (see Figure 3). Your log file should look

similar to Figure 4. If there was no page fault caused by the random write, then

the next read (READ bin 111110100000) should not have a page fault.

 The Saylor Foundation 3

 Figure 2

 The Saylor Foundation 4

 Figure 3

READ 4 ... okay

READ 2 ... okay

READ 7 ... okay

WRITE cc12 ... okay

WRITE bc35 ... okay

WRITE 8d799 ... page fault

READ fa0 ... page fault

WRITE 1771 ... okay

WRITE 7563e ... okay

 Figure 4

 The Saylor Foundation 5

3. Consider a virtual memory system with a page size of 1024. There are eight

virtual pages and four physical frames. The page table is shown below:

Virtual Page Number Page Frame Number

0 3

1 1

2 --

3 --

4 2

5 --

6 0

7 --

Keep a copy of the original memory.config file. Modify the memory.config file to

reflect the page table above. Compare your file to the answer key. Please see

Figure 5 below.

 The Saylor Foundation 6

// memset virt page # physical page # R (read from) M (modified) inMemTime

(ns) lastTouchTime (ns)

memset 0 3 0 0 0 0

memset 1 1 0 0 0 0

memset 2 -1 0 0 0 0

memset 3 -1 0 0 0 0

memset 4 2 0 0 0 0

memset 5 -1 0 0 0 0

memset 6 0 0 0 0 0

memset 7 -1 0 0 0 0

// enable_logging 'true' or 'false'

// When true specify a log_file or leave blank for stdout

enable_logging true

// log_file <FILENAME>

// Where <FILENAME> is the name of the file you want output

// to be print to.

log_file tracefile

// page size, defaults to 2^14 and cannot be greater than 2^26

// pagesize <single page size (base 10)> or <'power' num (base 2)>

pagesize 1024

// addressradix sets the radix in which numerical values are displayed

// 2 is the default value

// addressradix <radix>

addressradix 16

// numpages sets the number of pages (physical and virtual)

// 64 is the default value

// numpages must be at least 2 and no more than 64

// numpages <num>

numpages 9

 Figure 5

Modify the commands file to test the following operations:

READ 750

 The Saylor Foundation 7

WRITE 1301

READ 2560

READ 4018

WRITE 4495

READ 5180

READ 6437

READ 7263

Which of these virtual addresses cause page fault? Why?

2560 needs to access virtual page 2, which does not have a physical page.

Figure 6 shows the simulator after the page fault. Now, virtual page 2 maps to

physical page 3. Virtual page 0 maps to no physical page.

 Figure 6

 The Saylor Foundation 8

4018 needs to access virtual page 3, which has no physical page assigned to it.

This causes a page fault. Figure 7 shows that virtual page 3 no has physical

page 1 assigned to it.

 Figure 7

5180 is on virtual page 5, and there is no physical page assigned to it. After the

page fault, physical page 2 is assigned to virtual page 5.

7263 is on virtual page 7, which has no physical page assigned. After the page

fault, physical page 0 is assigned to this virtual page.

When running the simulation, the thing to keep in mind is that a page fault will

change the original mapping. You need to pay attention to the simulator screen

to keep track of this.

 The Saylor Foundation 9

4. Modify a copy of the original memory.config file to map any 8 pages of

physical memory to the first 8 pages of virtual memory. Modify a copy of the

original commands file to read from one virtual memory address on each of the

64 virtual pages. Run the simulator in single step mode. Which virtual memory

addresses caused page faults? Compare your answers to the answer key.

Your results will vary; however, what I am showing here is a representative

sample. Figure 8 shows my memory.config file:

 The Saylor Foundation 10

// memset virt page # physical page # R (read from) M (modified) inMemTime

(ns) lastTouchTime (ns)

memset 0 12 0 0 0 0

memset 1 1 0 0 0 0

memset 2 23 0 0 0 0

memset 3 11 0 0 0 0

memset 4 15 0 0 0 0

memset 5 5 0 0 0 0

memset 6 3 0 0 0 0

memset 7 9 0 0 0 0

// enable_logging 'true' or 'false'

// When true specify a log_file or leave blank for stdout

enable_logging true

// log_file <FILENAME>

// Where <FILENAME> is the name of the file you want output

// to be print to.

log_file tracefile

// page size, defaults to 2^14 and cannot be greater than 2^26

// pagesize <single page size (base 10)> or <'power' num (base 2)>

pagesize 16384

// addressradix sets the radix in which numerical values are displayed

// 2 is the default value

// addressradix <radix>

addressradix 16

// numpages sets the number of pages (physical and virtual)

// 64 is the default value

// numpages must be at least 2 and no more than 64

// numpages <num>

numpages 64

 Figure 8

 The Saylor Foundation 11

I used the following commands file:

READ 11386

READ 22383

READ 37141

READ 59601

READ 78117

READ 85765

READ 99924

READ 119460

READ 133556

READ 154951

READ 174278

READ 185627

READ 212108

READ 213915

READ 235100

READ 259602

READ 266951

READ 285726

READ 295471

READ 313990

READ 334896

READ 358839

READ 371307

READ 379050

READ 407997

READ 419199

READ 436136

READ 455435

READ 464743

READ 484808

READ 495559

READ 520154

READ 527247

READ 544486

READ 571445

READ 574648

 The Saylor Foundation 12

READ 601959

READ 608242

READ 634464

READ 650334

READ 665303

READ 680123

READ 700084

READ 718045

READ 736765

READ 752113

READ 764461

READ 772474

READ 797201

READ 811811

READ 823332

READ 851304

READ 865084

READ 873704

READ 898206

READ 915878

READ 927862

READ 936529

READ 951949

READ 978808

READ 990300

READ 1008584

READ 1022333

When the simulator runs, the mapping will be done as specified. The simulator also

maps out the remaining virtual pages up to 31. Any memory request to a virtual page

over 31 will cause a page fault.

Question

1. Based on what you have seen with the experiments, what page replacement

algorithm is being used by the MOSS memory management simulator?

First-in First-out, which services each request sequentially.

