Banker's Algorithm Problem Set

Solutions

Exercise 1

Assume that there are 5 processes, P_0 through P_4 , and 4 types of resources. At T_0 we have the following system state:

	Alloca	ation			Max				Availa	ble		
	A	В	С	D	A	В	С	D	A	В	С	D
P ₀	0	1	1	0	0	2	1	0	1	5	2	0
P ₁	1	2	3	1	1	6	5	2				
P ₂	1	3	6	5	2	3	6	6				
P ₃	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				

1. Create the need matrix (max-allocation)

	A	В	С	D
P ₀	0	1	0	0
P ₁	0	4	2	1
P ₂	1	0	0	1
P ₃	0	0	2	0
P ₄	0	6	4	2

2. Use the safety algorithm to test if the system is in a safe state. We will first define work and finish:

Work vector	Finish matrix		
1	P ₀	False	
5	P ₁	False	
2	P ₂	False	
0	P ₃	False	
	P ₄	False	

Check to see if need₀ (0,1,0,0) is less than or equal to work. It is, so let's set finish to true for that process and also update work by adding the allocated resources (0,1,1,0) for that process to work.

Work vector	Finish matrix	
1	Po	True
6	P ₁	False
3	P ₂	False
0	P ₃	False
	P ₄	False

Now, let's check to see if need₁ $(0,4,2,1) \le$ work. Remember that we have to check each element of the vector need₁ against the corresponding element in work. Because 1 is not less than 0 (the fourth element), we need to move on to P₂.

Need₂ (1,0,0,1) is not less than work, so must move on to P₃.

Need₃ (0,0,2,0) is less than work, so we can update work and finish.

Work vector	Finish matrix	
1	P ₀	True
12	P ₁	False
6	P ₂	False
2	P ₃	True
	P ₄	False

Work vector	Finish matrix	
1	P ₀	True
12	P ₁	False
7	P ₂	False
6	P ₃	True
	P ₄	True

Next, let's look at P_4 . Need₄ (0,6,4,2) is less than work, so we can update work and finish as follows:

Now we can go back up to P_1 . Need₁ (0,4,2,1) is less than work, so let's update work and finish.

Work vector	Finish matrix	
2	P ₀	True
14	P ₁	True
10	P ₂	False
7	P ₃	True
	P ₄	True

Finally, let's look at P_2 . Need₂ (1,0,0,1) is less than work, so we can then say that the system is in a safe state and the processes will be executed in the following order:

 P_0, P_3, P_4, P_1, P_2

- 3. If the system is in a safe state, can the following requests be granted, why or why not? Please also run the safety algorithm on each request as necessary.
 - a. P1 requests (2,1,1,0)

We cannot grant this request, because we do not have enough available instances of resource A.

b. P1 requests (0,2,1,0)

There are enough available instances of the requested resources, so first let's pretend to accommodate the request and see what the system looks like:

	Alloca	ition			Max				Availa	ble		
	A	В	С	D	A	В	С	D	A	В	С	D
P ₀	0	1	1	0	0	2	1	0	1	3	1	0
P ₁	1	4	4	1	1	6	5	2				
P ₂	1	3	6	5	2	3	6	6				
P ₃	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				

Need matrix

	А	В	С	D
P ₀	0	1	0	0
P ₁	0	2	1	1
P ₂	1	0	0	1
P ₃	0	0	2	0
P ₄	0	6	4	2

Now we need to run the safety algorithm:

Work vector	Finish matrix	
1	Po	False
3	P ₁	False
1	P ₂	False
0	P ₃	False
	P ₄	False

Let's first look at P_0 . Need₀ (0,1,0,0) is less than work, so we change the work vector and finish matrix as follows:

Work vector	Finish matrix	
1	P ₀	True
4	P ₁	False
2	P ₂	False
0	P ₃	False
	P ₄	False

Need₁ (0,2,1,1) is not less than work, so we need to move on to P₂.

Need₂ (1,0,0,1) is not less than work, so we need to move on to P₃.

Need₃ (0,0,2,0) is less than or equal to work. Let's update work and finish:

Work vector	Finish matrix	
1	P ₀	True
10	P ₁	False
5	P ₂	False
2	P ₃	True
	P ₄	False

Let's take a look at Need₄ (0,6,4,2). This is less than work, so we can update work and finish:

Work vector	Finish matrix	
1	Po	True
10	P ₁	False
6	P ₂	False
6	P ₃	True
	P ₄	True

We can now go back to P_1 . Need₁ (0,2,1,1) is less than work, so work and finish can be updated:

Work vector	Finish matrix	
1	P ₀	True
14	P ₁	True
10	P ₂	False
7	P ₃	True
	P ₄	True

Finally, Need₂ (1,0,0,1) is less than work, so we can also accommodate this. Thus, the system is in a safe state when the processes are run in the following order: P_0 , P_3 , P_4 , P_1 , P_2 . We therefore can grant the resource request.

Exercise 2

Assume that there are three resources, A, B, and C. There are 4 processes P_0 to P_3 . At T_0 we have the following snapshot of the system:

	Allocat	tion		Max			Available		
	A	В	С	A	В	С	A	В	С
P ₀	1	0	1	2	1	1	2	1	1
P ₁	2	1	2	5	4	4			
P ₂	3	0	0	3	1	1			
P ₃	1	0	1	1	1	1			

1. Create the need matrix.

	Need			
	A	В	С	
P ₀	1	1	0	
P ₁	3	3	2	
P ₂	0	1	1	
P ₃	0	1	0	

Is the system in a safe state? Why or why not?
In order to check this, we should run the safety algorithm. Let's create the work vector and finish matrix:

Work vector	Finish matrix	
2	P ₀	False
1	P ₁	False
1	P ₂	False
	P ₃	False

Work vector	Finish matrix	
3	P ₀	True
1	P ₁	False
2	P ₂	False
	P ₃	False

Need₀ (1,1,0) is less than work, so let's go ahead and update work and finish:

Need₁ (3,3,2) is not less than work, so we have to move on to P_2 .

Need₂ (0,1,1) is less than work, let's update work and finish:

Work vector	Finish matrix	
6	Po	True
1	P ₁	False
2	P ₂	True
	P ₃	False

Need₃ (0,1,0) is less than work, we can update work and finish:

Work vector	Finish matrix	
7	Po	True
1	P ₁	False
3	P ₂	True
	P ₃	True

We now need to go back to P_1 . Need₁ (3,3,2) is not less than work, so we cannot continue. Thus, the system is not in a safe state.

