
Applied Computer Science: CSI 3104

OBJECT ORIENTED
ANALYSIS AND
DESIGN
Dr Ellen Ambakisye Kalinga

Foreword

The African Virtual University (AVU) is proud to participate in increasing access to education in

African countries through the production of quality learning materials. We are also proud to

contribute to global knowledge as our Open Educational Resources are mostly accessed from

outside the African continent.

This module was developed as part of a diploma and degree program in Applied Computer

Science, in collaboration with 18 African partner institutions from 16 countries. A total of

156 modules were developed or translated to ensure availability in English, French and

Portuguese. These modules have also been made available as open education resources

(OER) on oer.avu.org.

On behalf of the African Virtual University and our patron, our partner institutions, the African

Development Bank, I invite you to use this module in your institution, for your own education,

to share it as widely as possible and to participate actively in the AVU communities of practice

of your interest. We are committed to be on the frontline of developing and sharing Open

Educational Resources.

The African Virtual University (AVU) is a Pan African Intergovernmental Organization

established by charter with the mandate of significantly increasing access to quality

higher education and training through the innovative use of information communication

technologies. A Charter, establishing the AVU as an Intergovernmental Organization, has

been signed so far by nineteen (19) African Governments - Kenya, Senegal, Mauritania, Mali,

Cote d’Ivoire, Tanzania, Mozambique, Democratic Republic of Congo, Benin, Ghana, Republic

of Guinea, Burkina Faso, Niger, South Sudan, Sudan, The Gambia, Guinea-Bissau, Ethiopia

and Cape Verde.

The following institutions participated in the Applied Computer Science Program: (1)

Université d’Abomey Calavi in Benin; (2) Université de Ougagadougou in Burkina Faso;

(3) Université Lumière de Bujumbura in Burundi; (4) Université de Douala in Cameroon; (5)

Université de Nouakchott in Mauritania; (6) Université Gaston Berger in Senegal; (7) Université

des Sciences, des Techniques et Technologies de Bamako in Mali (8) Ghana Institute of

Management and Public Administration; (9) Kwame Nkrumah University of Science and

Technology in Ghana; (10) Kenyatta University in Kenya; (11) Egerton University in Kenya; (12)

Addis Ababa University in Ethiopia (13) University of Rwanda; (14) University of Dar es Salaam

in Tanzania; (15) Universite Abdou Moumouni de Niamey in Niger; (16) Université Cheikh Anta

Diop in Senegal; (17) Universidade Pedagógica in Mozambique; and (18) The University of the

Gambia in The Gambia.

Bakary Diallo

The Rector

African Virtual University

Object Oriented Analysis and Design

22

Production Credits

Author
Dr. Ellen Ambakisye Kalinga

Peer Reviewer
Victor Odumuyiwa

AVU - Academic Coordination
Dr. Marilena Cabral

Overall Coordinator Applied Computer Science Program
Prof Tim Mwololo Waema

Module Coordinator
Jules Degila

Instructional Designers
Elizabeth Mbasu

Diana Tuel

Benta Ochola

Media Team
Sidney McGregor Michal Abigael Koyier

Barry Savala Mercy Tabi Ojwang

Edwin Kiprono Josiah Mutsogu

Kelvin Muriithi Kefa Murimi

Victor Oluoch Otieno Gerisson Mulongo

3

Production Credits

3

Copyright Notice

This document is published under the conditions of the Creative Commons

http://en.wikipedia.org/wiki/Creative_Commons

Attribution http://creativecommons.org/licenses/by/2.5/

Module Template is copyright African Virtual University licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License. CC-BY, SA

Supported By

AVU Multinational Project II funded by the African Development Bank.

Object Oriented Analysis and Design

44

5

Table of Contents

5

Table of Contents
Foreword 2

Production Credits 3

Copyright Notice 4

Supported By 4

Course Overview 10

Welcome to Object-oriented Analysis and Design 10

Prerequisites . 10

Materials . 10

Course Goals . 10

Units . 11

Unit 0: Basic Knowledge 11

Unit 1: Principles of Object Oriented 11

Unit 2: Fundamentals of UML 11

Unit 3: Object-Oriented Analysis 11

Unit 4: Object-Oriented Design 12

Unit 5: Implementing/Translating Object-Oriented Designs into Programming

Languages 12

Assessment . 12

Readings and Other Resources . 14

Unit 0 . 14

Unit 1 . 14

Unit 2 . 15

Unit 3 . 15

Unit 4 . 16

Unit 5 . 16

Unit 0 – Basic Knowledge 17

Unit Introduction . 17

Unit Objectives . 17

 17

Object Oriented Analysis and Design

66

Software Development . 17

Software Design 21

Implementation/Coding and Unit Testing 22

Conclusion . 22

 Activity Assessment . 23

Unit Assessment . 23

Instructions . 23

Answers . 24

Requirement Definition Document (RDD) 25

Software Requirement Specification 25

Software analysis 26

Software design 26

Architectural (or logical) design 26

Detailed (or Physical) Design 27

Unit Readings and Other Resources . 27

Unit 1 – Principles of Object Oriented 28

Unit Introduction . 28

Unit Objectives . 28

Learning Activities . 29

Activity 1 - Case Studies 29

Activity 2 – Software development 32

Activity Assessment . 32

Systems Development Methodologies – Object Oriented Approach 35

Conclusion . 37

Activity 3 –Principles and Concepts of Object Oriented 37

Principles of Object Oriented 37

Activity Assessment . 37

Object Oriented Concepts 39

Conclusion . 43

 Activity Assessment . 43

7

Table of Contents

7

Activity 4 – Associations and Links 44

 Activity Assessment . 49

 Unit Assessment . 50

Unit Readings and Other Resources . 53

Unit II: Fundamentals of UML 54

Unit Introduction . 54

Unit Objectives . 54

Activity 1 – UML as a Modelling Tool 55

Conclusion . 59

Activity 2 - UML Diagrams 60

 Activity Assessment . 60

Basic Use Case Notation 63

Using the <<uses>> Relationship 63

Using the <<extends>> relationship 64

Activity Assessment . 73

 Unit Assessment . 75

Instructions . 75

Unit III: Object-Oriented analysis 82

Unit Introduction . 82

Unit Objectives . 82

Activity 1 – What are Requirements 83

Requirement Specification 83

An Overview of the Project 84

Conclusion . 89

Activity 2 – Use Case 89

Conclusion 98

Activity Assessment . 98

Activity 3 – Conceptual Modelling 99

Conclusion . 106

Activity Assessment . 106

Object Oriented Analysis and Design

88

Activity 4 – System Behaviour: System Sequence Diagrams and Operations

107

A System Sequence Diagram . 109

Conclusion 114

Activity Assessment . 115

 Unit Assessment . 116

Unit Readings and Other Resources . 120

Unit IV: Object-Oriented Design 121

Unit Introduction .121

Unit Objectives .121

Activity 1 – Interactive Diagrams – Collaboration Diagram 122

Conclusion 127

 Activity Assessment . 128

Activity 1 – Overview of Design Phase 128

Conclusion . 135

Activity 2 – Application of Patterns in Design 135

 Activity Assessment . 135

Activity Assessment . 140

Conclusion . 140

Activity 3 - Design Class Diagram 140

Conclusion 142

 Activity Assessment . 143

 Unit Assessment . 144

Unit Readings and Other Resources . 146

Unit V- Implementing Object-Oriented Designs into Programming
Languages 147

Unit Introduction .147

Unit Objectives .147

Activity 1 - Notation for Class Interface Details 148

Conclusion . 149

9

Table of Contents

9

Activity 2 - Mapping a Design to Code 149

 Activity Assessment . 149

Container/Collection Classes in Code 154

 Activity Assessment . 156

 Unit Assessment . 156

Conclusion . 156

Unit Readings and Other Resources .157

 Course Assessment . 158

ii.Explain what categories of information are included in “post-condition” field of the
158

 iv. Briefly describe five GRASP Patterns. Whenever possible provide an example . 159

Course References .161

Course Overview
Welcome to Object-oriented Analysis and Design
Object-Oriented Analysis and Design module teaches students on how to effectively use

object-oriented technologies and software modeling as applied to software development

process with the help of Unified Modeling Language (UML). UML is the standard language

for object-oriented analysis and design. UML is used throughout the software development

life cycle to capture and communicate analysis and design artifacts. In this course you will use

graphical modeling language, to communicate concepts, decisions, understand the problem,

propose the solution and manage complexity of artifacts. Finally, the module teaches

students to use patterns and frameworks when building reusable software components.

Prerequisites

• HJ08: Object Oriented Programming Module

• PJ16: Software Engineering

Materials
The materials required to complete this course are:

• Text/Reading books

• Lecture notes

• Modelling tools such as Visio studio, ArgoUML, Smart Drawer

• Computer

• Internet Connection

Course Goals
Upon completion of this course the learner should be able to:

i. Design quality blueprints for enterprise-level systems that
incorporate architectural and design patterns

ii. Develop the supporting documentation for the requirement,
analysis, and design phases of a software development project
using an Object-Oriented Analysis and Design (OOAD) method in
conjunction with the Unified Modelling Language (UML)

iii. Creating collaboration diagrams and assigning responsibilities to
objects with the use of GRASP - Patterns of General Principles in
Assigning Responsibilities

Object Oriented Analysis and Design

1010

Course Overview

iv. Map a design to Code,

v. Demonstrate the analysis and design techniques in the development
of enterprise-level software systems.

Units

Unit 0: Basic Knowledge

The unit reviews the basic knowledge in software engineering. The unit starts by reviewing

software development life cycles (SDLC) or software development process. Software

development methodologies, categorized as structured approach and object-oriented

approach are differentiated. The unit emphasizes the importance of learning-by-doing so as

to grasp the Object-oriented approach to software development through a number of case

projects; two for a class and others for group of students.

Unit 1: Principles of Object Oriented

The unit presents the object oriented principles: Abstraction, Hierarchy, Modularity, and

Encapsulation and fundamental concepts of Object Orientation: Objects, Classes, Inheritance

and Polymorphism. This unit explains associations and links: Association, Composition,

Inheritance or Generalization, Aggregation. It explains Super Class, Sub Class, and Multiplicity.

Unit 2: Fundamentals of UML

This unit gives an overview of the Unified Modeling Language (UML). UML has become

the universally-accepted language for software design blueprints. It has emerged as the

standard notation for modeling. UML is the visual language used to convey design ideas,

which emphasizes how developers really apply frequently used UML elements, in software

development process.

Unit 3: Object-Oriented Analysis

This unit explains how requirement specifications can be obtained by involving use cases,

identified classes and considering system operations and operation contracts which are

obtained from system sequence model.

1111

Unit 4: Object-Oriented Design

After identifying requirements and creating a domain model, then methods are added to the

software classes, and messaging between the objects to fulfill the requirements are defined.

Deciding what methods belong where, and how the objects should interact, is terribly

important. This is the heart of what it means to develop an object-oriented system, apart from

drawing domain model diagrams.

Unit 5: Implementing/Translating Object-Oriented Designs into Programming
Languages

The UML artifacts created during the design phase: the interaction diagrams and Design

Class Diagram (DCDs) will be used as input to the code generation process. Implementation

consists of artifacts such as the source code, database definitions, JSP/XML/HTML pages

etc. Code created is part of the implementation model. Java object oriented programming

language has been used to demonstrate the mapping of the design to code.

Assessment
Formative assessments, used to check learner progress, are included in each unit. This part

will include the assessment of the individual/group case project to be submitted at the end of

the module

Summative assessments, such as final tests and assignments, are provided at the end of each

module and cover knowledge and skills from the entire module.

Summative assessments are administered at the discretion of the institution offering the

course. The suggested assessment plan is as follows:

1 Consultation of materials and

resources

20 marks

1 Individual/group (Hands-on)

case projects

40 marks

3 Formative and summative

assessments

40 marks

Object Oriented Analysis and Design

1212

Course Overview

Unit Activities Estimated time

Unit 0 Basic Knowledge: 1 Week (2 Hrs)

Activity 0.1 – Software

Development

Unit I Principles of object modelling: 2 Weeks (16 Hrs)

Activity 1.1 – Case Studies

Activity 1.2 – Software

development

Activity 1.3 –Principles and

Concepts of Object Oriented

Activity 1.4 – Associations and

Links

Unit II Fundamentals of UML: 2 Weeks (24 Hrs)

Activity 2.1 – UML as a Modelling

Tool

Activity 2.2: UML Diagrams

Unit III Object-oriented analysis: 4 Weeks (32 Hrs)

Activity 3.1 – What are

Requirements

Activity 3.2 – Use Case

Activity 3.3 – Conceptual

Modelling

Activity 3.4 – System Behaviour:

System Sequence Diagrams and

Operations

1313

Unit IV Object-oriented design: 4 Weeks (24 Hrs)

Activity 4.1 – Interactive Diagrams

– Collaboration Diagram

Activity 4.2 – Overview of Design

Phase

Activity 4.3 – Application of

Patterns in Design

Activity 4.4 - Design Class Diagram

Unit V Implementing/translating

object-oriented designs into

programming languages

3 Weeks (24 Hrs)

Activity 5.1 - Notation for Class

Interface Details

Activity 5.2 - Mapping a Design to

Code

Readings and Other Resources
The readings and other resources in this course are:

Unit 0
Required readings and other resources:

• Bjork R. C., (2004). ATM Simulation. ATM Online, URL: http://www.math-cs.
gordon.edu/courses/cps211/ATMExample/

• Liu, Z. (2001). Object-Oriented Software Development Using UML”, March, The
United University – International Institute for Software Technology (UNU/IIST),
Report No. 229.

• Nellen, T. and Mayo, L. (2000), “We Learn by Doing”, URL: http://english.ttu.edu/
kairos/5.1/coverweb/nellenmayo/doing.html.

Unit 1
 Required readings and other resources:

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

Object Oriented Analysis and Design

1414

Course Overview

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez E., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

Unit 2
 Required readings and other resources:

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez E., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute fo

• Software Technology, e-Macao Report 19, Version 1.0, October.

• Booch G., Rumbaugh J. and Jacobson I. (1998), “ Unified Modeling Language
User Guide”, Addison Wesley , First Edition October 20, 1998 , ISBN: 0-201-
57168-4, 512 pages

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

Unit 3
Required readings and other resources:

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for

1515

Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

Unit 4
Required readings and other resources:

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

Unit 5
Required readings and other resources:

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

Object Oriented Analysis and Design

1616

Unit 0 – Basic Knowledge

Unit 0 – Basic Knowledge
Unit Introduction
The unit reviews software development life cycles (SDLC) or software development process.

The unit is highlighting more on the phases to be used in this module. At the end, the unit is

providing a number of assessments for student to answer.

Unit Objectives
Upon completion of this unit you should be able to:

1. Describe the software development process term

2. Explain a set of activities in software development process

KEY TERMS

Software process:

A software process is a set of activities and associated results. When those

activities are performed in specific sequence in accordance with ordering

constraints, the desired results are produced.

Software development process:

A software development process is often described in terms of a set of

activities needed to transform a user’s requirements into a software system.

SDLC:

System development life cycle (SDLC) means combination of various activities.

In other words we can say that various activities put together are referred as

system development life cycle

Software Development
Introduction

The software-development process or sometimes known as software development life-cycle

(SDLC) is used to facilitate the development of a large software product in a systematic, well-

defined, and cost-effective way. An information system goes through a series of phases.

This activity presents the review on software development process.

1717

Software development Process

The software industry considers software development as a process. According to Liu, 2001,

“A process defines who is doing what, when and how to reach a certain goal”. Software

engineering is a field, which combines processes, methods, and tools for the development

of software. The concept of process is the main step in the software engineering approach,

thus, a software process is a set of activities and associated results. When those activities are

performed in specific sequence in accordance with ordering constraints, the desired results

are produced.

There are four fundamental process activities which are common to all software processes:

a. Software specifications: The functionality of the software and constraints on its
operation must be defined.

b. Software development: Software that meets the specifications must be produced.

c. Software validation: The software must be validated (confirmed) to ensure that it
does what the customer wants.

d. Software evolution: The software must evolve to meet changing customer needs.

A process to build a software product or to enhance an existing one is called a software

development process. A software development process as depicted in Figure 0.1 is thus

often described in terms of a set of activities needed to transform a user’s requirements into

a software system. The client’s requirements define the goal of the software development.

They are prepared by the client (sometime with the help of a software engineer) to set out the

services that the system is expected to provide, i.e. functional requirements.

Figure 0.1: A View of the Software Development Process (Source: Liu, 2001)

The functional requirements should state what the system should do rather than how it is

done.

Object Oriented Analysis and Design

1818

Unit 0 – Basic Knowledge

 Apart from functional requirements, a client may also have non-functional constraints that

s/he would like to place on the system, such as the required response time or the use of a

specific language standard.

We must bear in mind about the following facts which make the requirement capture and

analysis very difficult:

a. The requirements are often incomplete.

b. The client’s requirements are usually described in terms of concepts, objects and
terminology that may not be directly understandable to software engineers.

c. The client’s requirements are usually unstructured and they are not rigorous
(exact), with repetitions, redundancy, vagueness, and inconsistency.

d. The requirements may not be feasible.

Therefore, any development process must start with the activities of capturing and analyzing

the client’s requirements.

Software Development Life Cycle

Software development life cycle (SDLC) has various activities. When various activities are put

together, are referred to as system development life cycle or software development process.

The phases in the software development life cycle can be identified by different names and

there are rules regarding what are to be included. Each activity has its own output. Activities

or phases to be adopted in object oriented analysis and design course include:

1. Requirement Capture and Analysis

2. Software Design

3. Implementation/Coding and Unit Testing

Requirement Capture and Analysis

Requirement Elicitation/Gathering is a communication process between the parties involved

and affected in the problem situation. The tools in elicitation are meetings, interviews, video

conferencing, e-mails, and existing documents study and facts findings. The sources are:

Customer (Initiator), End Users, Primary Users, Secondary Users, Stakeholders.

1919

Requirement analysis is a very important and essential activity after elicitation. In this phase,

each requirement is analyzed from the point-of-view of validity, consistency, and feasibility for

firm consideration in the Requirement Definition Document (RDD) and then in the Software

Requirements Specification (SRS). Analysis emphasizes an investigation of the problem and

requirements, rather than a solution

This requirements definition document describes what the customer would like to see,

including:

1. Outline of the general purpose of the system

2. Describe the background and objectives of system development. For
example, if a system is to replace an existing approach, we explain why the
existing system is unsatisfactory

3. Outline a description of the approach. Note that the purpose of the
requirements document is to discuss the problem, not the solution; the
focus should be on how the system is to meet the customer’s needs.

4. Describe the detailed characteristics of the proposed system. Define the
system boundaries and interfaces across it. The system functions are also
explained.

5. Discuss the environment in which the system will operate. Include
requirements for support, security, and privacy and any special hardware or
software constraints should be addressed.

This portion of the analysis confirms the place of the requirements in RDD on its own and

along with others. The SRS is a specification for a particular software product, program, or set

of programs that perform certain functions in a specific environment. The second portion of

analysis attempts to find for each requirement; its functionality, features, and facilities and the

need for these under different conditions and constraints. The purpose of the requirement

capture and analysis is to aim the development toward the right system. Its goal is to produce

a document called requirement specification. The whole scope of requirement capture and

analysis forms the so-called requirement engineering. The process activities include:

1. Domain understanding: this is to understand the application domain. The
concept is explored and the client’s requirements are elicited.

2. Requirements capture or collection: This is the process of interacting with
stakeholders in the system to discover their requirements. More domain
understanding develops further during this activity.

3. Classification: This activity takes the unstructured collection of requirements
captured in the earlier phase and organizes them into coherent clusters,
and then prioritizes the requirements according to their importance to the
clients and the users.

Object Oriented Analysis and Design

2020

Unit 0 – Basic Knowledge

4. Validation: This is to check if the requirements are consistent and complete,
and to resolve conflicts between requirements.

5. Feasibility study: This is to estimate whether the identified requirements may
be satisfied using the software and hardware technologies, and to decide if
the proposed system will be cost-effective.

Software Design

Design is a meaningful representation of something that is to be built. According to Agarwal

et al (2010), the term design describes the final system and process by which it is developed.

Software design involves taking a software requirement specification obtained in requirement

capture and analysis and adding details needed for actual implementation in a computer.

Input includes an understanding of the following: Requirements, Environmental constraints

and Design criteria. After the specification is produced through requirement analysis, the

requirement specification undergoes two consecutive design processes.

Architectural (or logical) design

The requirements are partitioned into components. Large systems are always decomposed

into subsystems that provide some related set of services. The initial design process of

identifying these subsystems and establishing a framework for subsystem control and

communication is called architectural design. Architectural design represents the structure of

data and program components that are required to build a computer-based system.

Software design results in an architectural design document which describes what each

component must do and how they interact with each other to provide the overall required

services.

Detailed (or Physical) Design

Then each component in turn is designed; this process is termed detailed (or physical design).

The detailed design document describes how each component does what it is required to do

and thus how the whole system does what it is required to do.

The design process translates requirements into a representation of the software that can

be assessed for quality before coding begins. Like requirements, the design is documented

and becomes part of the software configuration. The activities of the design process and the

associated results are depicted in Figure 0.2.

2121

Figure 0.2: A view of the design process

Implementation/Coding and Unit Testing

During this stage, each of the components from the design is realized as a program unit.

Each unit then must be either verified or tested against its specification obtained in the

design stage. The goal of the coding phase is to translate the design of the system into

code in a given programming language. In this phase the aim is to implement the design in

the best possible manner. Testing is the major quality-control measure used during software

development. Its basic function is to detect errors in the software. Thus, the goal of testing is

to uncover requirement, design, and coding errors in the program. This process is depicted in

Figure 0.3.

Figure 0.3: A View of the Implementation and Unit Testing Process

Conclusion
Software systems are built successfully by applying a certain adaptable process. This process

leads to a high-quality product that meets the users’ requirements, who are the ones who will

use the product. This is software engineering approach to be applied in a discipline manner.

Object Oriented Analysis and Design

2222

Unit 0 – Basic Knowledge

 Activity Assessment

a. Define the following terms as applied to software development process:

i. SDLC

ii. System design

b. Explain the basic phases in the software-development life-cycle.

c. List and describe four fundamental process activities which are common to
all software processes

d. Explain why do we need a software development process?

e. Find more about software development process, especially the requirements
that a good software development process must be met.

 UNIT SUMMARY

For many years, the term object oriented (OO) was used to denote a software development

approach that used one of a number of object-oriented programming languages (e.g., Java,

C++). Today, the OO paradigm encompasses a complete view of software engineering;

hence object-oriented approach has to be systematic, disciplined in following the software

development process or software development life cycle.

Unit Assessment

Instructions

Answer the following questions.

i. Describe the following terms: (Answer: section 0.1.2)

(a) Process

2323

(b) Software Development Process

(c) Software validation

(d) Software implementation (Answer: section 0.1.3.3)

ii. List four facts which indicate that the requirement capture and analysis process to

be very difficulty(Answer: section 0.1.2)

iii. List and Describe four fundamental process activities which are common to all

software development processes (Answer: Section 0.1.3.1)

iv. Differentiate between Requirement Definition Document and Software

Requirement Specification (Answer: section 0.1.3.1)

v. List information needed to be included in requirement Definition Document

(Answer: section 0.1.3.1)

vi. Differentiate between the following terms:

(a) Software analysis and software design (Answer: section 0.1.3.1 and 0.1.3.2)

(b) Logical design and physical design (Answer: section 0.1.3.2)

vii. Define the term “classification” as applied in requirement analysis (Answer: section

0.1.3.1)

Answers
i. Describe the following terms: (3 marks)

(a) Software Development Process

A software development process is a set of activities and associated results. When those

activities are performed in specific sequence in accordance with ordering constraints, the

desired results are produced.

(b) Software validation

If the process of confirming or ensuring if the software developed does what the customer

wants.

(c) Software implementation

Software implementation is a coding phase aiming to translate the design of the system into

code in a given programming language. In this phase the aim is to implement the design in

the best possible manner.

Object Oriented Analysis and Design

2424

Unit 0 – Basic Knowledge

ii. List four facts which indicate that the requirement capture and analysis process to be very

difficult. (4 marks)

(a) The requirements are often incomplete.

(b) The client’s requirements are usually described in terms of concepts, objects and

terminology that may not be directly understandable to software engineers.

(c) The client’s requirements are usually unstructured and they are not rigorous (exact), with

repetitions, redundancy, vagueness, and inconsistency.

(d) The requirements may not be feasible.

iii. List and Describe process four fundamental process activities which are common to all

software processes (6 marks)

(a) Software specifications: The functionality of the software and constraints on its operation

must be defined.

(b) Software development: Software that meets the specifications must be produced.

(c) Software validation: The software must be validated (confirmed) to ensure that it does what

the customer wants.

(d) Software evolution: The software must evolve to meet changing customer needs.

iv. Differentiate between Requirement Definition Document and Software Requirement

Specification (4 marks)

Requirement Definition Document (RDD)

RDD is the document which describes what the customer would like to see. The information is

provided by the customer, however developer can assist with the help of meetings, interviews,

video conferencing, e-mails, and existing documents study and facts findings.

Software Requirement Specification

The SRS is a specification for a particular software product, program, or set of programs that

perform certain functions in a specific environment. The analysis attempts to find for each

requirement; its functionality, features, and facilities and the need for these under different

conditions and constraints.

v. List information needed to be included in requirement Definition Document (5 marks)

Information includes:

(a) Outline of the general purpose of the system

(b) Describe the background and objectives of system development.

2525

(c) Outline a description of the approach..

(d) Describe the detailed characteristics of the proposed system. Define the system

boundaries and interfaces across it. The system functions are also explained.

(e) Discuss the environment in which the system will operate. Include requirements for

support, security, and privacy and any special hardware or software constraints should be

addressed.

vi. Differentiate between the following terms:

(a) Software analysis and software design (4 marks)

Software analysis

Software analysis is the process of analyzing requirement analysis. In this phase, each

requirement is analyzed from the point-of-view of validity, consistency, and feasibility for

firm consideration in the Requirement Definition Document (RDD) and then in the Software

Requirements Specification (SRS). Analysis emphasizes an investigation of the problem and

requirements, rather than a solution

Software design

Design is a meaningful representation of something that is to be built. The term design

describes the final system and process by which it is developed. Software design involves

taking a software requirement specification obtained in requirement capture and analysis and

adding details needed for actual implementation in a computer. The design process translates

requirements into a representation of the software that can be assessed for quality before

coding begins

(b) Logical design and physical design (Answer: section 0.1.3.2)

Architectural (or logical) design

The requirements are partitioned into components. Large systems are always decomposed

into subsystems that provide some related set of services. The initial design process of

identifying these subsystems and establishing a framework for subsystem control and

communication is called architectural design. Architectural design represents the structure of

data and program components that are required to build a computer-based system.

Software design results in an architectural design document which describes what each

component must do and how they interact with each other to provide the overall required

services.

Object Oriented Analysis and Design

2626

Unit 0 – Basic Knowledge

Detailed (or Physical) Design

Then each component in turn is designed; this process is termed detailed (or physical design).

The detailed design document describes how each component does what it is required to do

and thus how the whole system does what it is required to do.

vii. Define the term “classification” as applied in requirement analysis (Answer: section

0.1.3.1)

Classification is an activity of taking the unstructured collection of requirements captured

in the earlier phase and organize them into coherent clusters, and then prioritize the

requirements according to their importance to the clients and the users.

Unit Readings and Other Resources

• Liu, Z. (2001), “Object-Oriented Software Development Using UML”, March, The
United University – International Institute for Software Technology (UNU/IIST),
Report No. 229.

• Nellen, T. and Mayo, L. (2000), “We Learn by Doing”, URL: http://english.ttu.edu/
kairos/5.1/coverweb/nellenmayo/doing.html.

• Bjork R. C., (2004), “ATM Simulation”, ATM Online”, URL: http://www.math-cs.
gordon.edu/courses/cps211/ATMExample/

2727

Unit 1 – Principles of Object
Oriented
Unit Introduction
The unit starts by emphasizes the importance of learning-by-doing so as to grasp the Object-

oriented approach to software development. In this, a number of case projects have been

given; two for a whole class and others for group of student.

The unit also compares software development methodologies, mainly structured and object-

oriented approaches. The object oriented principles: Abstraction, Hierarchy, Modularity, and

Encapsulation: and fundamental concepts of Object Orientation: Objects, Classes, Inheritance

and Polymorphism are presented. This unit explains associations and links: Association,

Composition, Inheritance or Generalization, Aggregation. It explains Super Class, Sub Class,

and Multiplicity.

Unit Objectives
Upon completion of this unit you should be able to:

1. Describe the overview of the case projects to be used in practicing the
object-oriented approach

2. Differentiate between structured approach and object-oriented approach

3. Explain the basic principles of object-oriented

4. Describe fundamental concepts of Object Orientation

5. Demonstrate the use of associations and links

KEY TERMS

Structured Software Development Approach:

Structured approach is to look at the problem, and then design a collection of

functions that can carry out the required tasks. If these functions are too large,

then the functions are broken down until they are small enough to handle and

understand.

Object-Oriented Software Development Approach:

The strategy in the OO software development is to view the world as a set of

objects. They interact with and collaborate with each other to provide some

higher level behaviour.

Object Oriented Analysis and Design

2828

Unit 1 – Principles of Object Oriented

Class:

A class is a 00 concept that encapsulates the data and procedural

abstractions required to describe the content and behavior of some real-

world entity.

Object:

An object is the basic run-time entity in an object-oriented system. On

object can represent a person, a location, an account, a table of data or any

item that the program must handle. A programming problem is analyzed in

terms of objects and the nature of communication between them.

Learning Activities

Activity 1 - Case Studies

Introduction

The course will have one general case study namely: Point-of-Sale terminal” by Liu (2001)

which will be used to demonstrate object oriented approach in software development.

The course will again use a Bank Automatic Teller Machine (ATM) system to strengthen

explanation in other perspective whenever needed. Students are advised to have their own

case study projects to do the same so that they can grasp easily the approach by doing.

The stated case study problems (POST and ATM) have been chosen because they are familiar

to many people, yet rich with complexity and interesting design problems. That allows us

to concentrate on learning fundamental OOA/D, requirements analysis, UML and patterns,

rather than explaining the problems.

Course Case Study One: Point-of-Sale Terminal (POST)

The first case study is the NextGen point-of-sale (POS) system. In this apparently straight

forward problem domain, we shall see that there are interesting requirement and design

problems to solve. In addition, it’s a real problem—groups really do develop POS systems

with object technologies. The course will use a “Point-of-Sale Terminal” case study as being

used by Liu (2001) as follows:

 A point-of-sale terminal (POST) is a computerized system used to record sales and handle

payments; it is typically used in a retail store. It includes hardware components such as

a computer and a bar code scanner, and software to run the system (See Figure 0.4). It

interfaces to various service applications, such as a third-party tax calculator and inventory

control.

2929

These systems must be relatively fault-tolerant; that is, even if remote services are temporarily

unavailable (such as the inventory system), they must still be capable of capturing sales and

handling at least cash payments (so that the business is not crippled).

Figure 1.1: Point-of-Sale Terminal

A POST system increasingly must support multiple and varied client-side terminals and

interfaces. These include a thin-client Web browser terminal, a regular personal computer

with something like a Java Swing graphical user interface, touch screen input and wireless

PDAs.

Furthermore, we are creating a commercial POST system that we will sell to different clients

with disparate needs in terms of business rule processing. Each client will desire a unique

set of logic to execute at certain predictable points in scenarios of using the system, such

as when a new sale is initiated or when a new line item is added. Therefore, we will need a

mechanism to provide this flexibility and customization.

Assume that we have been requested to create the software to run a point-of-sale terminal.

Using an object-oriented development strategy, we are going to proceed through the

requirement, object-oriented analysis, design, and implementation.

Case Study Two: Bank Automatic Teller Machine (ATM)

To support the POST case study, the course will also reference on the commonly used Bank

Automatic Teller Machine (ATM) by Bjork R. C., (2004). The aim is to strengthen understanding

of the OO approach in different scenarios.

Object Oriented Analysis and Design

3030

Unit 1 – Principles of Object Oriented

Though ATM are being modified daily to accommodate functionalities required by customers,

the scenario to be followed will be as follows:

The ATM will service one customer at a time. A customer will be required to insert an ATM

card and enter a personal identification number (PIN) - both of which will be sent to the bank

for validation as part of each transaction. The customer will then be able to perform one or

more transactions. The card will be retained in the machine until the customer indicates that

he/she desires no further transactions, at which point it will be returned.

This case study will be used to show examples for the different models created during the

development phases. In each model we present a particular aspect of this case study.

Students’ Case Projects

A group of three up to five students may use one of the following projects to practice the

use of object oriented approach in software development. Students are not bound to use the

listed projects below; instead, they can find their own simple projects of interest to do the

same under the supervision of their supervisors. This is important as per the learn-by-doing

advocates. All students’ case studies should use Object-Oriented system analysis and design

approach. These projects are going to be referenced in exercise activities given as a guide on

what to do in each phase of software development process.

Project 1:

Design and implement a Web-based system to record student registration and grade

information for courses at a university.

Project 2:

Design and implement a system that permits recording of course performance information

specifically, the marks given to each student in each assignment or exam of a course, and

computation of a (weighted) sum of marks to get the total course marks. The number of

assignments/exams should not be predefined; that is, more assignments/exams can be added

at any time. The system should also support grading, permitting cutoffs to be specified for

various grades.

You may also wish to integrate it with the student registration system of Project 0.1 (perhaps

being implemented by another project team).

Project 3:

Design and implement a Web-based system for booking classrooms at your university.

Periodic booking (fixed days/times each week for a whole semester) must be supported.

Cancellation of specific lectures in a periodic booking should also be supported.

3131

You may also wish to integrate it with the student registration system of Project 0.1 (perhaps

being implemented by another project team) so that classrooms can be booked for courses,

and cancellations of a lecture or extra lectures can be noted at a single interface, and will be

reflected in the classroom booking and communicated to students via e-mail.

Conclusion
The easiest way to learn a new area, especially software development, is by employing

the “learn-by-doing” technique. Nellen and Mayo (2000) emphasize this by saying that if

knowledge is power, then we gain that knowledge by doing. In order to understand the

object-oriented approach in software development, it is very important to practice the

development through case studies.

Activity Assessment
Select one project out of students’ case projects given in sub section 1.1.3 or come

up with your own project title of interest and explain an overview of it in a form of an

abstract.

Activity 2 – Software development

Introduction

There are several software development methodologies employed. The two most commonly

applied approaches are: structured approach and object-oriented approach. Before

discussing these two approaches it is important to have an understanding of the similar

terminologies as refereed to computer programming.

Procedural-Oriented Programming

Procedural-oriented programmings are conversional programming using high-level languages

such as C, FORTRAN, Pascal, etc. In procedural-oriented approach, the problem is reviewed

as a sequence of things to be done. Each statement in the language tells the computer to do

something: get some input, add these numbers, multiply, display the output, etc.

A program in a procedural-oriented language is a list of instructions. In procedural oriented

languages the primary focus is on functions, we write a list of instructions for computer to

follow, and organize these instructions into groups known as functions. A number of functions

are written to accomplish different tasks. In functions, very little attention is given to the data

that are being used by various functions. In this case, global data is more vulnerable to an

inadvertent (unintentional) change by a function. In large programs,

Object Oriented Analysis and Design

3232

Unit 1 – Principles of Object Oriented

it is very difficult to identify what data is used by which function and in case we need to check

a data structure, we need to check all functions that access that data and this provides a

chance for bugs to creep in. Few characteristics of procedural languages are:

• Emphasis is on doing tasks

• Large programs are broken down into smaller programs known as functions

• Most of the time, functions share global data

• Data move openly around the system from function to function

• It employs top-down approach in program design

Object-Oriented Programming

The main feature of object-oriented programming (OOP), like C++, Java, is that its main

emphasis is on data rather than functions or procedures. In object-oriented programming

data is treated as a critical element in the program and does not allow it to flow freely

around the system. It ties data to the functions that work on it and protects it from accidental

modifications from outside functions. In procedural-oriented programming languages the

problem is broken into functions but OOP allows decomposing a problem into a number

of entities called objects and then building data and functions around these objects. The

data of an object can be accessed only by the function associated with that object. However,

functions of one object can access the functions of other objects. Few characteristics of

object-oriented languages are:

• Emphasis is on data rather than functions

• Programs are divided into objects

• Data structures are designed such that they characterize the objects

• Data is hidden and cannot be accessed by external functions

• Objects can communicate with one another through functions

• OOP follows bottom-up approach in program design

Software Development Methodologies – Structured Approach

Structured approach is the most widely used software development methodology. Techniques

which are invariably present, such as entity relationship diagrams, dataflow diagrams and data

dictionaries are also clearly mentioned.

Structured Systems Analysis and Design as described by Ariadne Training (2001), prescribe

analyzing and designing software systems through functional decomposition – i.e. examining

an information system in terms of the functions it performs and the data it uses and maintains.

Like procedure-oriented programming, the analyst identifies the major functions or processes

of a system, then breaks or decomposes each function down into its smaller composite steps.

As an example for a college management system, the system holds the details of every

student and tutor in the college.

3333

It can store information about courses and track which student is following which course. A

possible functional design would be:

• “add_student”,

• “enter_for_exam”,

• “check_exam_marks”,

• “issue_certificate”,

• “expel_student“

Structured approach is generally called the structured or procedural or traditional systems

development. As emphasized by Liu, 2001, structured or sometimes called “Functional –

Oriented” method, until the middle of the 1990s, most of software engineers were used to

the top-down functional design methods, whose defining aspects include:

• It is strongly influenced by the programming languages such as ALGOL, Pascal
and C, all of which offer routines as their highest-level abstractions.

• The functions of a software system are considered as the primary criterion for its
decomposition.

• It separates the functions and data, where functions, in principle, are active and
have behaviour, and data is a passive holder of information, which is affected by
functions.

The top-down decomposition typically breaks the system down into functions, whereas

data is sent between those functions. The functions are broken down further and eventually

converted into source code as shown in Figure 1.1.

Figure 1.2: Functional, Top-Down Decomposition (Source Liu, 2001)

Object Oriented Analysis and Design

3434

Unit 1 – Principles of Object Oriented

The software developers found the following problems with the functional technology (Liu,

2001):

• Products developed with this approach were difficult to maintain. This was mainly
because that all functions share a large amount of data, and they must know how
the data are stored. To change a data structure, there was a need to modify all
the functions relating to the structure.

• The development process was not stable as changes in the requirements will be
mainly reflected in its functionality. Therefore, it was difficult to retain the original
design structure when the system evolves.

• The development process gets into the “how” business too soon, as when
decomposing a function into sub functions, it cannot avoid from talking about
first do this and then do that, and so on.

• This approach only captures the “part-of” abstraction.

• Obviously, this approach does not support programming in object-oriented
languages, such as Smalltalk, Eiffel, C++, and Java.

Systems Development Methodologies – Object Oriented Approach

Object-oriented (OO) approach has been identified as the new paradigm for system

development. In contrast to structured approach and in similar to object-oriented

programming, the object oriented system development decomposes the system down into a

set of objects – i.e. it examines the system in terms of the things in the system and how these

things act and interrelate with each other to provide some higher level behaviour. In object-

oriented approach:

• The analyst first identifies the objects that comprise the system, then

• They create an object model which groups the objects into classes, and describes
each class in terms of its attributes (or data), methods (or functions), and
relationships to other classes.

Object-oriented technology

Object Orientation is about viewing and modeling the world/system as a set of interacting

and interrelated objects. Objects have the following characteristics (see Figure 1.2):

• An object is simply a tangible entity in the real world (at the requirement analysis
phase) or represents a system entity (at the design stage).

• Objects are responsible for managing their own private state, and offering
services to other objects when is it requested. Thus, data and functions are
encapsulated within an object.

3535

• The system’s functionality is observed by looking at how services are requested
and provided among the objects, without the need to get into the internal state
changes of the objects.

• Objects are classified into classes, and objects belonging to the same class have
common properties, such as attributes and operations.

OO approach reflects the “is a” abstraction as well as the “part of” abstraction better

compared to structured approach which is more for “part of” abstraction.

Figure 1.3: A Canonical Form of a Complex System (Source Liu, 2001)

Structured Approach versus OO Approach

Although both paradigms decompose a system:

• The traditional structured approach focuses on what a system does i.e. its major
functions; or the verbs that describe the system; Object oriented systems analysis
and design (OOA&D) focuses on what the system is composed of, i.e. its major
players or objects, or the nouns that describe the system

• In structured analysis, the analyst is concerned with the functions performed on
the data; in OOA&D, the analyst is concerned with objects performing functions.

• Both are concerned with objects and data, but the structural analyst separates
them into functions performed by objects on the data, while the OO analyst
combines them into an object which performs functions on the data.

For many years, the term object oriented (OO) was used to denote a software development

approach that used one of a number of object-oriented programming languages (e.g., Java,

C++). Today, the OO paradigm encompasses a complete view of software engineering. This

course will give attention to software engineering using OO approach.

Object Oriented Analysis and Design

3636

Unit 1 – Principles of Object Oriented

Conclusion
Object oriented approach differs to structured approach since it combines data and behaviour

into a class. Programs create instances of the class known as objects. Objects can collaborate

with each other by calling each other’s methods. The data in an object is encapsulated and

only the object itself can modify the data.

Activity Assessment
i. List two basic differences between traditional systems analysis and object-

oriented analysis.

ii. Object-oriented development methods are rapidly replacing older structured

development methods. Has structured development failed and why should object

oriented development prove to be any better?

Activity 3 –Principles and Concepts of Object Oriented

Introduction

Object-oriented programming is based on a number of independent self-contained objects

working together to perform a function. This kind of approach to developing code can give a

number of benefits, such as easier code maintenance and enhanced re-usability. This activity

introduces the principles used in object-oriented. These include: abstraction, encapsulation,

modularity and Hierarchy. It also presents the fundamental concepts used in object-oriented.

These include: objects, classes, inheritance, and polymorphism

Principles of Object Oriented

Principle 1 - Abstraction

Abstraction is a model that includes most important aspects of a given system while ignoring

less important details. The skill of abstraction is important to capture the essences and ignore

the non-essences. Object oriented is a better abstraction of the Real World, this means that

if the problem changes (i.e. the requirements change, as they always do), the solution should

be easier to modify, as the mapping between the problem and solution is easier.

3737

Ojo and Estevez, (2015) state that abstraction is the process allowing to focus on most

important aspects while ignoring less important details. It allows management of complexity

by concentrating on essential characteristics that makes an entity different from others. Figure

1.3 shows an example of an order processing abstraction.

Principle 2 - Encapsulation

In encapsulation, only the instance that owns an item of data is allowed to modify or read

it. The object chair (and all objects in general) encapsulates data (the attribute values that

define the chair), operations (the actions that are applied to change the attributes of chair),

other objects (composite objects can be defined), constants (set values), and other related

information. Encapsulation means that all of this information is packaged under one name

and can be reused as one specification or program component. In other words, encapsulation

separates implementation from users or clients (Ojo and Estevez, 2015). Encapsulation

requirements include:

• To expose the purpose of an object

• To expose the interfaces of an object

• To hide the implementation that provides behaviour through interfaces

• To hide the data within an object that defines its structure and supports its
behaviour

• To hide the data within an object that tracks its state

Advantages of encapsulation include:

• Facilitate separation of an interface from implementation, so that one interface
may have multiple implementations

• Data held within one object cannot be corrupted by other objects

Principle 3 - Modularity

Modularity deals with the process of breaking up complex systems into small, self contained

pieces that can be managed easily. Modularity can be done by:

• Decomposing the problem into smaller sub-problems

• Trying to solve each sub-problem separately Each solution is a separate
component that includes

• Interface: types and operations visible to the outside

• Specification: intended behavior and property of interface

• Implementation: data structures and functions hidden from outside

Object Oriented Analysis and Design

3838

Unit 1 – Principles of Object Oriented

See order processing system in Figure 1.5 as an example of modularity.

Figure 1.6: Order Processing System

Principle 4 - Hierarchy

Hierarchy is an ordering of abstractions into a tree like structure. Complexity takes the form of a

hierarchy, whereby a complex system is composed of interrelated subsystems that have in turn

their own subsystems, and so on, until some lowest level of elementary components is reached.

Figure 1.6 shows an example of the Hierarchy object oriented principle.

Figure 1.7: Example of Hierarchy

Object Oriented Concepts

OO Concept 1 - Objects

Any discussion of object-oriented software engineering must begin by addressing the term

object-oriented. What is an object-oriented viewpoint? Why is a method considered to be

object-oriented? What is an object? As defined by Ojo and Estevez (2015), Object Orientation

is about viewing and modeling the world/system as a set of interacting and interrelated objects.

Features of the OO approach:

a. The universe consists of interacting objects

b. Describes and builds systems consisting of objects.

3939

Objects are the basic run-time entities in an object-oriented system. They may represent a

person, a location, an account, a table of data or any item that the program must handle. They

may also represent user-defined data such as vectors, time and lists. A programming problem is

analyzed in terms of objects and the nature of communication between them. Program objects

should be chosen such that they match closely with the real-world objects.

When a program is executed, the objects interact by sending messages to one another. For

example, if “student” and “teacher” are two objects in a program, then the student object may

send a message to the teacher object requesting for his marks scores in a test. Each object

contains data and code to manipulate the data. Objects can interact without having knowing-

details of one another’s data or code.

Consider an example of a real world object. Chair is a member (the term instance is also used) of

a much larger class of objects that we call furniture. A set of generic attributes can be associated

with every object in the class furniture (For example, all furniture has a cost, dimensions, weight,

location, and color, among many possible attributes). These apply whether we are talking about

a table or a chair, or a sofa. Because chair is a member of furniture, chair inherits all attributes

defined for the class as shown in Figure 1.8. Once the class has been defined, the attributes can

be reused when new instances (objects) of the class are created.

Figure 1.9: Chair and Table are Objects of Furniture

Objects in the real world can be characterized by two things: state and Operations. Each real

world object has data and behavior. The data for an object are generally called the Attributes

of the object. The different behaviours of an object are called the Methods (or operations) of

the object

State is the collection of information held (i.e., stored) by the object. It can change over time. It

changes as the result of an operation performed on the object. It cannot change spontaneously.

The state is encapsulated within the object is not directly visible.

Object Oriented Analysis and Design

4040

Unit 1 – Principles of Object Oriented

The various components of the state are sometimes called the attributes of the object. Operation

is a procedure that takes the state of the object and zero or more arguments and changes the

state and/or returns one or more values. Objects permit certain operations and not others.

OO Concept 2 - Classes

The term Class is simply a template for an object. A class is a description of a set of related

objects that share the same attributes, operations. A class describes what attributes and

methods will exist for all instances of the class. A class is just a description; it doesn’t really exist

as such until you declare an instance of the class relationships, and semantics.

Objects contain data and code to manipulate that data. The entire set of data and code of

an object can be made a user-defined data type with the help of a class. In fact, objects are

variables of type class. Once a class has been defined, we can create any number of objects

belonging to that class. Objects are created using class definitions as templates. Each object

is associated with the data of type class with which they are created. A class is thus a collection

of objects of similar type. Graphically, a class is rendered as a rectangle. This is an important

concept to grasp - the class you create can’t do anything until you use it.

A Class Name must be unique within its enclosing package. Every class must have a name that

distinguishes it from other classes. A name is a textual string. That name alone is known as a

simple name; a path name is the class name prefixed by the name of the package in which that

class lives. A class may be drawn showing only its name as shown in Figure 1.9 as examples.

Figure 1.10: Examples of Class Names (Source: Ojo and Estevez, 2005)

An attribute is a named property of a class that describes a range of values that instances of

the property may hold. A class may have any number of attributes or no attributes at all. An

attribute represents some property of the thing you are modeling that is shared by all objects

of that class. An attribute name may be text. In practice, an attribute name is a short noun or

noun phrase that represents so.me property of its enclosing class. Typically, you capitalize the

first letter of every word in an attribute name except the first letter, as in name or loadBearing..

4141

An operation is the implementation of a service that can be requested from any object of the

class to affect behavior. In other words, an operation is an abstraction of something you can

do to an object and that is shared by all objects of that class. A class may have any number of

operations or no operations at all. An operation name may be text. In practice, an operation

name is a short verb or verb phrase that represents some behavior of its enclosing class. Typically,

you capitalize the first letter of every word in an operation name except the first letter, as in

move or isEmpty.

An attribute is a named property of a class that describes a range of values that instances of

the property may hold. A class may have any number of attributes or no attributes at all. An

attribute represents some property of the thing you are modeling that is shared by all objects

of that class. An attribute name may be text. In practice, an attribute name is a short noun or

noun phrase that represents so.me property of its enclosing class. Typically, you capitalize the

first letter of every word in an attribute name except the first letter, as in name or loadBearing..

An operation is the implementation of a service that can be requested from any object of the

class to affect behavior. In other words, an operation is an abstraction of something you can

do to an object and that is shared by all objects of that class. A class may have any number of

operations or no operations at all. An operation name may be text. In practice, an operation

name is a short verb or verb phrase that represents some behavior of its enclosing class.

Typically, you capitalize the first letter of every word in an operation name except the first

letter, as in move or isEmpty.

OO Concepts 3 – Inheritance

Inheritance is one of the key differentiators between conventional (structured) and OO

systems. A subclass Y inherits all of the attributes and operations associated with its

superclass, X. This means that all data structures and algorithms originally designed and

implemented for X are immediately available for Y—no further work need be done. Reuse

has been accomplished directly. Any change to the data or operations contained within a

superclass is immediately inherited by all subclasses that have inherited from the superclass.

Therefore, the class hierarchy becomes a mechanism through which changes (at high levels)

can be immediately propagated through a system.

Inheritance is the process by which objects of one class acquire the properties of objects of

another class. It supports the concept of hierarchical classification.

For example, the grandchild is a part of the class parent which is again a part of the class

grandparent. In OOP, the concept of inheritance provides the idea of reusability. This means

that we can add additional features to an existing class without modifying it. This is possible

by deriving a new class from the existing one. In C++, the original class is called a base class

and the class which acquired the features of base class is called derived class. The new class

will have the combined features of both the classes. The real and power of the inheritance

mechanism is that it allows the programmer to reuse a class. That is inheritance encourages

sharing and reuse of both design information and program code.

Object Oriented Analysis and Design

4242

Unit 1 – Principles of Object Oriented

OO Concept 4 - Polymorphism

Polymorphism is another important OOP concept. Polymorphism means the ability to take

more than one form. For example, an operation may exhibit different behaviour in different

instances. The behaviour depends upon the types of data used in operation. For example,

consider the operation of addition.

• For two numbers, the operation will generate a sum

• If the operands are strings, then the operation would produce a third string by
concatenation

This means that a single function name can be used to handle different number and different

types of arguments. This is something similar to a particular word having several different

meanings depending on the context.

Derived classes can redefine the implementation of a method. Example 1:

• Consider a class “Transport”

• One method contained in transport must be move(), because all transport must
be able to move

• If we wanted to create a Boat and a Car class, we would certainly want to inherit
from the transport class, as all Boats can move and all Car can move, however in
different ways

Conclusion
In software engineering, the models for software development process and their associated

principles and techniques have provided much better understanding of the activities in the

process. All the concepts and principles highlighted above are going to be applied while

developing software using object-oriented approach. basic understanding of the generic

concepts and principles that apply object-oriented approach.

 Activity Assessment
i. Define the following terms:

(a) Polymorphism

(b) Modularity

ii. Describe the structure of any agency or organization as a hierarchy. Include at least

three levels.

iii. What are the four basic principles of object orientation? Provide a brief description

of each

4343

iv. What are the four basic concepts of object orientation? Provide a brief description

of each

v. Which of the following statements are true? For those that are false, explain why.

(a) Trainee is an example of a class.

(b) DoraCheong is an example of a class.

(c) “createJob” is an example of an object.

(d) “deleteFile” is an example of an operation

(e) “name” is an attribute

vi. Suppose we wish to model an application for issuing business registration licenses.

Identify:

(a) Three classes for the model

(b) At least three attributes for each class

Activity 4 – Associations and Links

Introduction

A class by itself is not very useful. A large software system may have thousands of classes.

Objects in different classes must relate to each other, interact and collaborate to carry out

processes. Relationships between object classes (known as associations) are shown as

lines linking objects. Association expresses relationships between classes and defines links

instances of classes (objects). Link expresses relationships between objects. There are four

kinds of relations between classes:

a. Association

b. Aggregation

c. Composition

d. Generalization

Association

This is the simplest form of relation between classes. It is a peer-to-peer relationship. It is a

structural relationship describing a set of links. Links are connections between objects.

Object Oriented Analysis and Design

4444

Unit 1 – Principles of Object Oriented

One object is aware of the existence of another object. It is being implemented in objects

as references. Association is a relationship between two or more classifiers that involves

connection among instances. Associations between classes A and B can be (Ojo and Estevez,

2005):

• A is a physical or logical part of B

• A is a kind of B

• A is contained in B

• A is a description of B

• A is a member of B

• A is an organization subunit of B

• A uses or manages B

• A communicates with B

• A follows B

• A is owned by B

Figure 1.12 shows an example of association where a Person works for the Company

Figure 1.12: Example of a Simple Association

Aggregation

Aggregation is a restrictive form of “whole-part” or “part-of” association. Objects are assembled

to create a more complex object. Assembly may be physical or logical. Aggregation defines

a single point of control for participating objects. The aggregate object coordinates its parts.

Aggregation is represented as a hollow diamond, pointing at the class which is used. Figure

1.13 shows examples of aggregation relationship.

Example:

• A CPU is part of a computer.

4545

• CPU, devices, monitor and keyboard are assembled to create a computer

• An engine is a part of a car

Composition

Composition is a stricter form of aggregation. The lifespan of individual objects depend

on the lifespan of the aggregate object. A part cannot exist on its own. A composite class

is built of other classes. The class needs one or more other classes to exist. Composition is

represented as a solid diamond. Figure 1.14 shows examples of composition relationship.

Example:

• A word cannot exist if it is not part of a line.

• If a paragraph is removed, all lines of the paragraph are removed, and all words
belonging to that line are removed.

Figure 1.14: Example of Composition Relationship (Source: Ojo and Estevez, 2005)

Inheritance or Generalization

Generalization is also called “inheritance” relationship. A generalization is the relationship

between a general class and one or more specialized classes. In a generalization relationship,

the specializations are known as subclass and the generalized class is known as the superclass.

A generalization allows the inheritance of the attributes and operations of a superclass by its

subclasses. It is equivalent to a “kind-of” or “type-of” relationship

Inheritance or generalization is described as a parent/child relationship, where a child

class inherits all the data members and methods of a class, and adds its own to create new

behaviour. Inheritance is represented as a hollow triangular arrow, with the point attached to

the parent class. Figure 1.15 shows an example of a inheritance relationship

Object Oriented Analysis and Design

4646

Unit 1 – Principles of Object Oriented

Example

• Common features are defined in User.

• FrontOfficeEmployee and BackOfficeEmployee inherit them.

Figure 1.15: Example of Generalization Relationship (Source: Ojo and Estevez, 2005)

Super Class Versus Sub Class

Super Class is a class that contains the features common to two or more classes. A super-class

is similar to a superset, e.g. agency-staff. Sub-Class is a class that contains at least the features

of its super-class(es). A class may be a sub-class and a super-class at the same time.

Multiplicity

Multiplicity shows how many objects of one class can be associated with one object of

another class. Example as shown in Figure 1.17: A citizen can apply for one or more licenses,

and a license is required by one citizen.

Figure 1.17: Example of the Use of MultiplicityExample of multiplicity is as shown in Figure 1.18:

4747

Figure 1.18: Multiplicity Values and Description

Conclusion

As stated by Liu,(2001), the purpose of an association and a link between two objects may have

many sorts of relationship, and thus classes (or concepts) may have all sorts of associations in

a problem domain. Whether an association is useful or not depends on whether it fulfills the

following purpose:

• An association between two classes is to provide physical or conceptual
connections between objects of the classes.

• Only objects that are associated with each other can collaborate with each other
through the links.

Booch describes the role of a link between objects as follows:

“A link denotes the specific association through which one object (the client) applies the services

of another object (the supplier), or through which one object may navigate to another”.

Object Oriented Analysis and Design

4848

Unit 1 – Principles of Object Oriented

 Activity Assessment
i. Identify which of the following statements are true. For those that are false, explain

why.

(a) There is an association between Trainee and Course

(b) There is a composition between Course and Professor

(c) There is an aggregation between Course and Venue

ii. Suppose we wish to model an e-service application for a government agency. Does

this diagram reasonably model the relationship between the entities User, Employee,

FrontOffice, Employee, Back-Office Employee and Applicant? If not, provide a more

appropriate model

iii. Consider the generalization hierarchy provided in assessment 1.4.5 above.

(a) Introduce an operation for the super-class which could be implemented in different

ways by its sub-classes.

(b) Provide an example of polymorphism. Explain.

iv. List and describe four basic UML relationships

 UNIT SUMMARY

This unit has presented principles of Object Orientation: abstraction, encapsulation, modularity

and hierarchy and fundamental concepts of Object Orientation: objects, classes, inheritance

and Polymorphism. Object is any abstraction that models a single thing in a universe with some

properties and behaviour. A class is any uniquely identified abstraction of a set of logically

related objects that share similar characteristics. Classes may be related by the following types

of relationships: association, aggregation, composite and inheritance or generalization.

4949

 Unit Assessment
 Instructions

Answer the following questions.

i. Describe an overview of the project you are going to use while practicing

 object-oriented in software development (Answer: section 1.1.1)

ii. With an example differentiate between the following terms:

(a) Structured approach and object-oriented approach
(Answer: section 1.2.4 and 1.2.5)

(b) Aggregation and composition

 (Answer: sections 1.4.3 and 1.4.4)

iii. Clearly explain the modularity term in object-oriented approach

 (Answer: section 1.3.2.3)

iv. Define the following terms. Provide an example in each.

(a) Abstraction (Answer: section 1.3.2.1)

(b) Polymorphism (Answer: section 1.3.3.4)

(c) Encapsulation (Answer: section 1.3.2.2)

(d) Inheritance (Answer: sections 1.3.3.3 and 1.4.5)

v. Define the term “multiplicity” and list two commonly used multiplicity values.

 (Answer: section 1.4.7)

Answers

i.Describe an overview of the project you are going to use while practicing object-oriented in

 software development Overview will differ from one project to another project from students’

 case projects

ii. With an example differentiate between the following terms:

(a) Structured approach and object-oriented approach (4 marks)

Object Oriented Analysis and Design

5050

Unit 1 – Principles of Object Oriented

Structured Approach

• The approach is analyzing and designing software systems through functional
decomposition – i.e. examining an information system in terms of the functions it
performs and the data it uses and maintains.

• Analyst identifies the major functions or processes of a system, then breaks or
decomposes each function down into its smaller composite steps

• Object-oriented (OO) approach

• The approach decomposes the system down into a set of objects – i.e. it
examines the system in terms of the things in the system and how these things
act and interrelate with each other to provide some higher level behaviour. In
object-oriented approach:

• The analyst first identifies the objects that comprise the system, then They create
an object model which groups the objects into classes, and describes each class
in terms of its attributes (or data), methods (or functions), and relationships to
other classes.

Aggregation and composition

Aggregation

Aggregation is a restrictive form of “whole-part” or “part-of” association. Objects are assembled

to create a more complex object. Assembly may be physical or logical. Aggregation defines a

single point of control for participating objects. E.g. a CPU is part of a computer.

Composition

Composition is a stricter form of aggregation. The lifespan of individual objects depend on the

lifespan of the aggregate object. A part cannot exist on its own. E.G. Paragraph cannot exist if

there a no lines of words

iii. Clearly explain the modularity term in object-oriented approach (3 marks)

Modularity deals with the process of breaking up complex systems into small, self contained

pieces that can be managed easily. Modularity can be done by:

• Decomposing the problem into smaller sub-problems

• Trying to solve each sub-problem separately Each solution is a separate
component that includes

• Interface: types and operations visible to the outside

• Specification: intended behavior and property of interface

• Implementation: data structures and functions hidden from outside

5151

iv. Define the following terms. Provide an example in each.

(a) Abstraction (2 marks)

Abstraction is a model that includes most important aspects of a given system while ignoring

less important details. The skill of abstraction is important to capture the essences and ignore

the non-essences. It is the process of allowing to focus on most important aspects while ignoring

less important details. It allows management of complexity by concentrating on essential

characteristics that makes an entity different from others.

Example can be a mobile phone whereby users are just seeing an interface

(b) Polymorphism (2 marks)

Polymorphism means the ability to take more than one form. For example, an operation may

exhibit different behaviour in different instances. The behaviour depends upon the types of data

used in operation.

For example: Consider the operation of addition.

• For two numbers, the operation will generate a sum

• If the operands are strings, then the operation would produce a third string by
concatenation

(c) Encapsulation (2 marks)

In encapsulation, only the instance that owns an item of data is allowed to modify or read

it. Encapsulation means that all of this information is packaged under one name and can be

reused as one specification or program component. In other words, encapsulation separates

implementation from users or clients

Example:

The object chair (and all objects in general) encapsulates data (the attribute values that define

the chair), operations (the actions that are applied to change the attributes of chair), other

objects (composite objects can be defined), constants (set values), and other related information.

(d) Inheritance (2 marks)

Inheritance is the process by which objects of one class acquire the properties of objects of

another class. It supports the concept of hierarchical classification.

For example:

The grandchild is a part of the class parent which is again a part of the class grandparent.

Object Oriented Analysis and Design

5252

Unit 1 – Principles of Object Oriented

v. Define the term “multiplicity” and list two commonly used multiplicity values. (2 marks)

Multiplicity shows how many objects of one class can be associated with one object of another

class.

Examples are:

• 0…1 – zero to one

• 1…* - One or more

Unit Readings and Other Resources

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez E., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

5353

Unit II: Fundamentals of UML
Unit Introduction
The Unified Modeling Language (UML) has become the universally-accepted language for

software design blueprints. It has emerged as the standard notation for modeling. UML is the

visual language used to convey design ideas, which emphasizes how developers really apply

frequently used UML elements, in software development process.

Unit Objectives
Upon completion of this unit you should be able to:

1. Define unified Modelling Language

2. Describe the purpose of UML

3. Differentiate between static and dynamic UML diagrams

4. Categorize UML diagrams into SDLC phases

KEY TERMS

UML

Unified Modelling Language (UML) is a graphical modelling language that

provides syntax for describing the major elements (called artifacts in UML) of

software systems.

Modelling

Modelling is the designing of software applications before coding

(implementation in a particular programming language). A model is a

representation or simplification of reality.

Diagram

A diagram is the graphical presentation of a set of elements, most often

rendered as a connected graph of vertices (things) and arcs (relationships). You

draw diagrams to visualize a system from different perspectives, so a diagram

is a projection into a system.

Object Oriented Analysis and Design

5454

Unit II: Fundamentals of UML

Activity 1 – UML as a Modelling Tool

Introduction

The norm for engineering field is to model first before implementation. Modeling can be

mathematically or graphically, This unit presents a Unified Modeling Language as a language

to model object-oriented artifacts.

Engineering Norm

For many years, the term object oriented (OO) was used to denote a software development

approach that used one of a number of object-oriented programming languages (e.g., Java,

C++). Today, the OO paradigm encompasses a complete view of software engineering.

The norm for engineering analysis and design systems emphasizes modelling of the system

first before implementation. Modelling is a proven and well-accepted engineering technique.

Modelling can be done mathematically or by any other common notation understood by many

engineers of the same field worldwide.

Software Engineering had lacked such a notation. Between 1989 and 1994, more than 50

software modelling languages were in common use – each of them carrying their own notations.

Each language contained syntax peculiar to itself, whilst at the same time, each language had

elements which bore striking similarities to the other languages, and bad enough neither of

these languages were complete (Ariadne Training, 2001).

UML Background

In the mid 1990’s, three methods emerged as the strongest. Ariadne Training (2001) state that

these three methods had begun to converge, with each containing elements of the other two.

Each method had its own particular strengths:

• Booch was excellent for design and implementation. Grady Booch had been a
major player in the development of Object Oriented techniques for the language.

• Object Modelling Technique (OMT) was best for analysis and data-intensive
information systems.

• Object Oriented Software Engineering (OOSE) featured a model known as Use
Cases. Use Cases are a powerful technique for understanding the behavior of an
entire system (an area where OO has traditionally been weak).

5555

So, the Unified Modelling Language (UML) is largely the product of three well known software

engineers, - Grady Booch, Ivar Jacobson and James Rumbaugh. In 1994, James Rumbaugh,

the creator of OMT joined Grady Booch at Rational Corp. The aim of the partnership was to

merge their ideas into a single, unified method. By 1995, the creator of OOSE, Ivar Jacobson,

had also joined Rational, and his ideas (particularly the concept of “Use Cases”) were fed into

the new Unified Method – now called the Unified Modeling Language (Ariadne Training, 2001).

The Unified Modelling Language or the UML as a graphical modelling language aimed at

providing syntax for describing the major elements of software systems (called artifacts in

the UML). The UML represents a collection of best engineering practices that have proven

successful in the modelling of large and complex systems. In this course we need to explore the

main aspects of the UML, and describe how the UML can be applied to software development

process.

What is UML?

Booch et al, (2005) defines the Unified Modelling Language (UML) to be a language for:

Specifying, Visualizing, Constructing and Documenting the artifacts of a software-intensive

system. It is a standard language for writing software blueprints. It is a graphical language

for capturing the artifacts of software development. UML is the de-facto standard for Object

Oriented modelling.

 a) The UML as a Language for Visualizing:

For many programmers, the distance between thinking of an implementation and then pounding

it out in code is close to zero. You think it, you code it. In fact, some things are best cast directly

in code. Text is a wonderfully minimal and direct way to write expressions and algorithms

b) The UML as a Language for Specifying:

Specifying means of building models that are precise, unambiguous, and complete. In particular,

the UML addresses the specification of all the important analysis, design, and implementation

decisions that must be made in developing and deploying a software-intensive system.

c) The UML as a Language for Constructing:

The UML is not a visual programming language, but its models can be directly connected to a

variety of programming languages. This means that it is possible to map from a model in the

UML to a programming language such as Java, C++, Visual Basic or PHP, or even to tables in a

relational database or the persistent store of an object-oriented database.

Object Oriented Analysis and Design

5656

Unit II: Fundamentals of UML

Things that are best expressed graphically are done so graphically in the UML, whereas things

that are best expressed textually are done so in the programming language. This mapping

permits forward engineering: The generation of code from a UML model into a programming

language.

d) The UML as a Language for Documenting:

A healthy software organization produces all sorts of artifacts in addition to raw executable code.

These artifact include (but are not limited to): Requirements, Architecture, Design, Source code,

Project plans, Tests, Prototypes, Releases.

Depending on the development culture, some of these artifacts are treated more or less formally

than others. Such artifacts are not only the deliverables of a project, they are also critical in

controlling, measuring, and communicating about a system during its development and after

its deployment.

The UML addresses the documentation of a system’s architecture and all of its details. The UML

also provides a language for expressing requirements and for tests. Finally, the UML provides a

language for modelling the activities of project planning and release management.

The UML can also be a Language for Communication. That is communication with customers has

proven to be equally problematic. Graphical modelling can make people (technical and non-

technical) understand the artifacts of the software system expected. In software development,

some of the things that require communication include requirements, design, implementation,

and deployment. UML is a language designed to communicate these things.

As with any language, the UML has its own notation and syntax. It does not tell you how to

develop software. It can be applied in any software development processes; waterfall model,

spiral model, iterative, incremental frameworks. Its notation comprises a set of specialized shapes

for constructing different kinds of software diagrams. Each shape has a particular meaning.

UML is a generic, broad language enabling the key aspects of a software development to be

captured on paper

Goals of UML by Ojo and Estevez, (2005) are to:

• Provide modelers with an expressive, visual modelling language to develop and
exchange meaningful models

• Provide extensibility and specialization mechanisms to extend core concepts

• Support specifications that are independent of particular programming languages
and development processes

• Provide a basis for understanding specification languages

• Encourage the growth of the object tools market

• Supports higher level of development with concepts such as components
frameworks or patterns

5757

UML with Modelling

Modelling is the designing of software applications before coding (implementation in a particular

programming language). A model is a representation or simplification of reality. It provides a

blueprint of a system. A model does not dictate or show how the implementation will actually

be done. It just shows what, who, which, where, when etc. Model-driven analysis and design

emphasizes the drawing of pictorial system models to document and validate both existing and/

or proposed systems. Ultimately, the system model becomes the blueprint for designing and

constructing an improved system (Booch et al, 2005).

Modelling is a central part of all the activities that lead up to the deployment of good software.

We build models to (Booch et al, 2005):

• Communicate the desired structure and behavior of our system.

• Visualize and control the system’s architecture.

• Better understand the system we are building, often exposing opportunities for
simplification and reuse.

• Manage risk.

• Modelling manages Complexity

• Modelling Promotes Reuse

Modelling ensures that:

• Business functionality is complete and correct,

• End-user needs are met, and

• Program design meets requirements for scalability, robustness, security,
extensibility, and other characteristics, all these must be ensured before
implementation in code

There are many elements that contribute to a successful software organization; one common

thread is the use of modeling. Modeling is a proven and well-accepted engineering technique.

There are three basic building blocks: Elements which are main “citizens” of the model,

relationships i.e. relationships that tie elements together and Diagrams which are mechanisms

to group interesting collections of elements and relationships. These elements are used to

represent complex structures.

Object Oriented Analysis and Design

5858

Unit II: Fundamentals of UML

Principles of Modelling

The use of modeling has a rich history in all the engineering disciplines. That experience

suggests four basic principles of modeling (Booch et al, 2005):.

(a) The choice of what models to create has a profound influence on how a problem is attacked

and how a solution is shaped. In other words, choose your models well. The right models will

brilliantly illuminate the most wicked development problems, offering insight that you simply

could not gain otherwise; the wrong models will mislead you, causing you to focus on irrelevant

issues.

(b) Every model may be expressed at different levels of precision.

The best kinds of models are those that let you choose your degree of detail, depending on who

is doing the viewing and why they need to view it. An analyst or an end user will want to focus

on issues of what; a developer will want to focus on issues of how. Both of these stakeholders

will want to visualize a system at different levels of detail at different times.

(c) The best models are connected to reality.

In structured analysis techniques there is a basic disconnect between its analysis model and the

system’s design model. Failing to bridge this break causes the system as conceived and the

system as built to diverge over time. In object oriented systems, it is possible to connect all the

nearly independent views of a system into one semantic whole.

(d) No single model is sufficient.

Every nontrivial system is best approached through a small set of nearly independent models. To

understand the architecture of object-oriented software system, you need several complementary

and interlocking views: a use case view (exposing the requirements of the system), a design

view (capturing the vocabulary of the problem space and the solution space), a process view

(modeling the distribution of the system’s processes and threads), an implementation view

(addressing the physical realization of the system), and a deployment view (focusing on system

engineering issues). Each of these views may have structural, as well as behavioral, aspects.

Together, these views represent the blueprints of software.

Conclusion
The purpose of the Unified Modeling Language is to visualize, specify, construct, document and

communicate object-oriented systems and it is gaining adoption as a standard language. The

language provides the notations to produce models.

5959

 Activity Assessment
i. Explain why UML is being used in software engineering

ii. List three main software engineers who made contributions to the creation of UML

 and describe their potential contributions

iii. Explain why modelling is being emphasized in software engineering

iv. Write three goals of a UML

Activity 2 - UML Diagrams

Introduction

A diagram is the graphical presentation of a set of elements, most often rendered as a connected

graph of vertices (things) and arcs (relationships). You draw diagrams to visualize a system from

different perspectives, so a diagram is a projection into a system. UML has a lot of different

diagrams (models). The reason for this is that it is possible to look at a system from different

viewpoints. UML being a graphical language includes nine such diagrams (models):

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. Statechart diagram

7. Activity diagram

8. Component diagram

9. Deployment diagram

Object Oriented Analysis and Design

6060

Unit II: Fundamentals of UML

UML nine diagrams can be divided into two categories

(a) Four diagram types represent static application structure:

• Class Diagram

• Object Diagram

• Component Diagram

• Deployment Diagram

(b) Five represent different aspects of dynamic behaviour

• Use Case Diagram

• Sequence Diagram

• Activity Diagram

• Collaboration Diagram

• Statechart Diagram

A Class Diagram

In Object Oriented design and development terms, a class has a name, a set of methods (also

known as operations) and related data members (also known as attributes) as shown in Figure

2.1. Class by itself is not very useful. A large software system may have thousands of classes,

Modelling the relationships (association, inheritance, composition or aggregation) between

them really defines systems behaviour.

Class diagrams shows a set of classes, interfaces, and collaborations and their relationships.

Class diagrams are the most common diagrams found in modelling object-oriented systems. It

is an essential aspect of any Object Oriented Design method.

Class diagrams address the static design view of a system. They are used at the analysis stage

as well as design. Class diagrams that include active classes address the static process view of a

system. Class Diagram syntax are being used to draw a plan of the major concepts for anyone

to understand. This is called the Conceptual Model. Together with use cases, a conceptual

diagram is a powerful technique in requirements analysis. Figure 2.2 shows an example of a

class diagram

6161

.

Figure 2.2: An Example of a Class Diagram2.2.3

Object Diagram

Object Diagrams show a set of objects and their relationships. They are static snapshots of

element instances found in class diagrams. Figure 2.3 shows an example of an object diagram.

Figure 2.3: Example of a UML Object Diagram

A Use Case Diagram

Use cases are versatile and valuable techniques for describing user requirements. A use case is

a high-level description of a major user requirement. It represents the functionality of the system.

It is a description of the system’s behaviour from a user’s viewpoint and constitutes a complete

interaction with the system initiated by a user or another system.

Use case diagrams address the static use case view of a system. The different types of people

and/or devices (called actors) that interact with the system are identified along with the functions

that they perform or initiate. A Use Case diagram shows a set of use cases and actors (a special

kind of class) and their relationships.

Object Oriented Analysis and Design

6262

Unit II: Fundamentals of UML

These diagrams are especially important in organizing and modelling the behaviors of a

system. They are valuable aid during analysis, since developing Use Cases helps to understand

requirements. Use Cases and a Conceptual Model are the powerful techniques in requirement

analysis. Notations used when representing use case diagrams include:

Basic Use Case Notation

The Actor represents a user of the system, or any external system that interacts with the system.

The Usecase represents a piece of functionality that is important to the user. Mostly we see the

actor as a human user, but it can also represent a system or other nonhuman artifact. Figure 2.4

shows the basic notation of a use case diagram.

Figure 2.4: Basic Notation of a Use Case Diagram

Using the <<uses>> Relationship

This feature encourages re-use. If a use-case needs the functionality of another use-case in

order to perform its task, it “uses” the 2nd use case. The relationship is drawn as a line with

arrowhead pointing to the use case that is being “used” as shown in Figure 2.5.

Figure 2.5: A <<uses>> Relationship in a Use Case Diagram

6363

Using the <<extends>> relationship

The “extends” notation extends the functionality of a use case to deal with errors or exceptions.

“extends” relationship as shown in Figure 2.6 is being used when there is one use case that

is similar to another but does a bit more. The relationship is drawn as a line with arrowhead

pointing to the major use case.

The following is the essence of the “extends” relationship:

• Capture the normal simple case first

• For every step in that use case, ask “What could go wrong here” and “How might
this work out differently?”

• Plot all variations as extensions of the given use case.

Figure 2.6: An <<extends>> Relationship in a Use Case Diagram

Using the << include >> relationship

“include” relationship as shown in Figure 2.7 can be used for making up a big use case from

simpler ones.

Figure 2.7: An <<includes>> Relationship in a Use Case Diagram

Object Oriented Analysis and Design

6464

Unit II: Fundamentals of UML

Use Case diagrams serve a number of purposes. Use case diagrams provide:

• A graphical overview of system functionality.

• A bridge between developers and client/user. The notation is sufficiently simple
to enable a non-user to understand and comment.

• A starting point for developing detailed requirements.

• A basis for developing design.

• Integration test cases.

Use Case Scenario

A scenario is a description of a use case as a story. It is a story of one user’s interaction with the

system. It can be described in terms of:

• The actors involved, and

• The steps to be taken in order to achieve the functionality described in the use-
case title. (Use cases are about functionality, so make sure the title reflects some
functionality.)

The steps involved usually take the form of the normal flow of events, followed by alternate

flows and/or exception flows.

Example:

In an ATM banking system, a use case would be “Validate User”. The steps involved in

authenticating a user are described in scenarios. There will be a number of different scenarios

for “Validate User”, describing different situations that can arise.

Main (primary) flow of events for “validate user” use case could be:

1. System prompts user for PIN number

2. User enters PIN number via keypad.

3. User commits PIN by pressing the Enter key.

4. System then checks PIN to see if it is valid.

5. If the PIN is valid, system acknowledges the entry.

6. End of Use Case

6565

Exception Flow of events

1. System prompts user for PIN number

2. User enters PIN number via keypad.

3. User presses Cancel button to cancel transaction

4. End of Use case. No changes made to user account.

By using scenarios, you are able to discover the objects that must collaborate to produce the

results needed.

Sequence and Collaboration Diagrams

When developing Object-Oriented software, anything our software needs to do is going to be

achieved by objects collaborating. We can draw a collaboration diagram to describe how we

want the objects we built to collaborate.

Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams.

• They both describe the flow of messages between objects.

• They are very useful for describing the procedural flow through many objects.

• Interaction diagrams consisting of a set of objects and their relationships,
including the messages that may be dispatched among them

• Both are interaction diagrams which address the dynamic view of a system

• They are models that describes how a group of objects collaborate in some
behaviour, typically a single use case

Sequence Diagrams

A sequence diagram is an interaction diagram that emphasizes the time-ordering of messages.

Sequence diagrams focus on the order in which the messages are sent. They provide a

sequential map of message passing between objects over time. The Sequence Diagrams are

driven by the Use Cases which are the system requirements. In this form objects are shown as

vertical lines with the messages as horizontal lines between them. The sequence of messages

is indicated by reading down the page (read left to right and descending). Sequence Diagrams

are about deciding and modelling “how” the system will achieve “what” we described in the

Use Case model.

Object Oriented Analysis and Design

6666

Unit II: Fundamentals of UML

Although there is no fixed recipe for developing Sequence Diagrams, we can follow an approach

that will result in a logical sequence diagram. This is as follows:

• Take the Use Case description and turn it into simple pseudo code running down
the right hand side of the State Diagram.

• Guess which classes you think might be involved - based on the content of the
Use Case description. Simple noun analysis is as good a way to start as any.

• For each of the steps in you pseudo code decides which of the classes should
have the responsibility for doing that task.

• For each of those tasks you may want to go back and decide to break them down
into a number of simpler tasks.

• Add in probes that correspond to the “uses (includes)” and “extends”
relationships in the Use Case diagram.

• Consider any important errors you might have to handle that perhaps weren’t
covered in the Use Case model.

• Consider whether anything you have discovered needs to be fed-backed into the
Use Case model.

An analysis of the Sequence Diagrams shows the following (Showmn in Figure 2.8):

i. A Class (Figure 2.8(a))

• Participates in a sequence by sending and/or receiving messages

• Is placed at the top of the diagram and is shown using a rectangle with a
descriptive name.

ii. A Lifeline (Figure 2.8(b))

• Denotes the life of an object during a sequence

• Is a dotted vertical line below each class.

iii. A focus of control (Figure 2.8(c))

• Is a long, narrow rectangle placed atop a lifeline

• Denotes when an object is sending or receiving messages

iv. A message (Figure 2.8(d))

• Conveys information from one object to another object

• Is depicted using a horizontal arrow labeled with the message description and

 applicable parameters.

6767

Example of a “Make a Cup of Tea” sequence diagram generated from its corresponding use

case description is as shown in Figure 2.9.

Figure 2.9: A Sequence Diagram for “Make a Cup of Tea” Use Case

Collaboration Diagram

A collaboration diagram is an interaction diagram that emphasizes the structural organization of

the objects that send and receive messages. Collaboration diagrams express both the context of

a group of objects and the interaction between these objects. It focuses upon the relationships

between the objects. They are very useful for visualizing the way several objects collaborate

to get a job done and for comparing a dynamic model with a static model. When creating

collaboration diagrams, patterns are used to justify relationships. Patterns are best principles for

assigning responsibilities to objects. Figure 2.10 shows an example of a collaboration diagram.

Figure 2.10: Example of a Collaboration Diagram

Object Oriented Analysis and Design

6868

Unit II: Fundamentals of UML

Note for Sequence and Collaboration Diagrams

• Interaction diagrams require use cases, system operation contracts, and domain
(class or conceptual) model to already exist

• Sequence diagrams and collaboration diagrams are isomorphic, meaning that
you can take one and transform it into the other.

• Collaboration and sequence diagrams describe the same information, and can be
transformed into one another without difficulty.

• The choice between the two depends upon what the designer wants to make
visually apparent.

Statechart Diagrams

Statechart is a diagram that shows all possible object states. Some objects can at any particular

time be in a certain state. A Statechart or simply a state diagram shows a state machine,

consisting of states, transitions, events, and activities. Statechart diagrams address the dynamic

view of a system. UML State charts are not normally needed. They are needed when an object

has a different reaction dependent on its state an example of a Statechart diagram is shown in

Figure 2.11.

Figure 2.11: Example of a Statechart Diagram Activity Diagrams

An activity diagram is a special kind of a statechart diagram that shows the flow from activity

to activity within a system. They are used to show how different work flows or processes in a

system are constructed, how they start, the many decision paths that can be taken from start

to finish and where parallel processing may occur during execution.

6969

Activity diagrams address the dynamic view of a system. They are especially important

in modelling the function of a system and emphasize the flow of control among objects.

An Activity diagram as shown in Figure 2.12 generally does not model the exact internal

behaviour of a software system (like a Sequence diagram does) but rather it shows the

general processes and pathways at a high level

Figure 2.12: Example of Activity Diagram

Package Diagrams

Any non-trial system need to be divided up in smaller, easier to understand “chunks”. A

package is basically a logical container into which related elements can be placed, “like

a folder or directory in an operating system”. We can display groups of packages and

relationships between then on the UML package diagram.

Packages does not show actually what is inside the package, it provides a very “high-level”

view of the system. Some case tools allow the user to double-click on the package icon in

order to open-up the package and explore the contents. The common use of a package is to

group related classes together, sometimes group related use cases.

Object Oriented Analysis and Design

7070

Unit II: Fundamentals of UML

Packages can be used to:

• Group large systems into easier to manage subsystems

• Allow parallel iterative development

Package diagram in Figure 2.13 shows three UML packages representing a “three-tier model”

Figure 2.13: Example of a Package Diagram

Component Diagrams

A component diagram is similar to the package diagram. It works in the same way as the

package diagram, showing the organizations and dependencies among a set of components.

Component diagrams address the static implementation view of a system. Component diagrams

emphasize the physical software entity e.g. files headers, executables, link-libraries etc, rather

than the logical partitioning of the package diagram. It is based heavily on the package diagram,

but has added “.dll” to handle I/O, and has added a test harness executable. Not heavily used,

but can be helpful in mapping the physical, real life software code and dependencies between

them. Figure 2.14 shows a symbol used for a software component.

Figure 2.14: A Symbol for a Software Component

7171

Deployment Diagrams

Deployment diagram shows the configuration of run-time processing nodes and the

components that live on them. Deployment diagrams address the static deployment view of an

architecture. They are related to component diagrams in that a node typically encloses one or

more components. Figure 2.15 shows a node symbol used in deployment diagram.

Figure 2.15: A Node Symbol for a Deployment Diagram

Design Class Diagrams

We built a class (conceptual or Domain) diagram made using concepts having properties of these

concepts. No behaviour was allocated to any of these concepts. After creating collaboration

diagrams, we can progress the conceptual model, and build it into a true “Design Class

Diagram (DCD)”. DCDs are based on the collaboration diagram. Attribute visibility is shown for

permanent connections. DCD is a diagram which we can base our final program code upon. We

can say that a DCD is a modification of a class diagram

Object Oriented Analysis and Design

7272

Unit II: Fundamentals of UML

Summary on UML Diagrams

In this activity, you have learnt about UML diagrams and their use context. Each diagram in

UML provides a certain view of the software under development. When creating a diagram, the

following can be a guide question for each:

• Use Cases – How will our system interact with the outside world?

• Class Diagram – What objects do we need? How will they be related?

• Collaboration Diagram – How will the objects interact?

• Sequence Diagram – How will the objects interact?

• Statechart (or state) Diagram – What states should our objects be in?

• Component Diagram – How will our software components be related?

• Deployment Diagram – How will the software be deployed

Activity Assessment
i. Consider a software process consisting of the following activities: requirement

gathering, object oriented analysis, object design, implementation and deployment.

(a) List the diagrams that are essential for each of these activities.

(b) Provide justifications for your choice of diagrams.

ii. Select the best answer:

1. The class diagram:

(a) is the first model created in the project

(b) is created after the other models

(c) is used to specify objects and generate code

(d) is used to create the sequence and the collaboration diagrams.

7373

2. The sequence diagram models:

(a) the sequence of activities to implement the model

(b) the way that objects communicate

(c) the relationships among objects

(d) the order in which the class diagram is constructed

3. The collaboration diagram:

(a) is a unique view of object behaviour

(b) models the connections between different views

(c) models the relationships between software and hardware components

(d) models the way objects communicate

iii. What is the role of State transition and interaction diagrams in system development?

 UNIT SUMMARY

The UML is a graphical language to support modeling of software documents in object-oriented

approach. The language provides us with the notations to produce models. Different diagrams

are drawn to visualize a system from different perspectives, so a diagram is a projection into

a system. The language is very rich, and carries with it many aspects of Software Engineering

best practice.

Object Oriented Analysis and Design

7474

Unit II: Fundamentals of UML

 Unit Assessment

Instructions

Answer the following questions.

vi. Define the following terms as applied to Unified Modeling Language:

(a) UML as a language for communication (Answer: section 2.1.4)

(b) Modeling (Answer: section 2.1.5)

vii. Describe four aspects of UML as a language (Answer: section 2.1.4)

viii. List four advantages of modeling (Answer: section 2.1.5)

ix. Describe the four principles of modeling (Answer: section 2.1.6)

x. List UML diagrams and show those which are static diagrams from the list (Answer:

section 2.2.1)

xi. Differentiate between the following terms:

(a) sequence diagram and collaboration diagram (Answer: section 2.2.5)

(b) Use case diagram and use case description (Answer: section 2.2.4)

(c) Extent and include use case relationships (Answer: section 2.2.4)

xii. Clearly explain why is it necessary to have a variety of diagrams in a model of a

system? (Answer: section 2.2.1)

xiii. With the aid of a diagram explain four notations used with a use case diagram

(Answer: section 2.2.4)

Answers

i. Definition of the following terms as applied to Unified Modeling Language:

(a) UML as a language for communication (2 marks)

Since communicating technical issues with customers has proven to be equally problematic,

graphical modelling can make people (technical and non-technical) understand the artifacts

of the software system expected. In software development, some of the things that require

communication include requirements, design, implementation, and deployment. UML is a

language designed to communicate these things

7575

(b) Modeling (2 marks)

Modelling is the designing of software applications before coding (implementation in a particular

programming language). A model is a representation or simplification of reality. It provides a

blueprint of a system.

ii. Describe four aspects of UML as a language (@ 2 marks)

(a) The UML as a Language for Visualizing:

For many programmers, the distance between thinking of an implementation and then pounding

it out in code is close to zero. You think it, you code it. In fact, some things are best cast directly

in code. Text is a wonderfully minimal and direct way to write expressions and algorithms

(b) The UML as a Language for Specifying:

Specifying means of building models that are precise, unambiguous, and complete. In particular,

the UML addresses the specification of all the important analysis, design, and implementation

decisions that must be made in developing and deploying a software-intensive system.

(c) The UML as a Language for Constructing:

The UML is not a visual programming language, but its models can be directly connected to a

variety of programming languages. This means that it is possible to map from a model in the

UML to a programming language such as Java, C++, Visual Basic or PHP, or even to tables in a

relational database or the persistent store of an object-oriented database.

(d) The UML as a Language for Documenting:

A healthy software organization produces all sorts of artifacts in addition to raw executable code.

These artifacts include (but are not limited to): Requirements, Architecture, Design, Source

code, Project plans, Tests, Prototypes, and Releases. The UML addresses the documentation of

a system’s architecture and all of its details. The UML also provides a language for expressing

requirements and for tests.

Object Oriented Analysis and Design

7676

Unit II: Fundamentals of UML

 Finally, the UML provides a language for modelling the activities of project planning and release

management.

iii. Four advantages of modeling (2 marks, @ 0.5 marks)

• To facilitate communication the desired structure and behavior of our system.

• To create visualization and control of the system’s architecture.

• Enables better understanding of the system we are building, often exposing
opportunities for simplification and reuse.

• Modelling Manages risk.

• Modelling manages Complexity

• Modelling Promotes Reuse

• Ensures business functionality is complete and correct,

• Ensures end-user needs are met, and

• Ensures program design meets requirements for scalability, robustness, security,
extensibility, and other characteristics.

iv. List four principles of modeling (@ 1 mark)

(a) The choice of what models to create has a profound influence on how a problem is

 attacked and how a solution is shaped.

(b) Every model may be expressed at different levels of precision.

(c) The best models are connected to reality.

(d) No single model is sufficient. Every nontrivial system is best approached through a small

 set of nearly independent models.

v. List UML diagrams and show those which are static diagrams from the list (6 marks)

UML Diagrams:

• Class diagram

• Object diagram

• Use case diagram

• Sequence diagram

• Collaboration diagram

• Statechart diagram

• Activity diagram

• Component diagram

7777

i. Deployment diagram

Static diagrams are:

• Class Diagram

• Object Diagram

• Component Diagram

• Deployment Diagram

vi. Differentiate between the following terms:

(d) sequence diagram and collaboration diagram (3 marks)

Sequence diagram

A sequence diagram is an interaction diagram that emphasizes the time-ordering of messages.

Sequence diagrams focus on the order in which the messages are sent. They provide a sequential

map of message passing between objects over time

Collaboration diagram

A collaboration diagram is an interaction diagram that emphasizes the structural organization of

the objects that send and receive messages. Collaboration diagrams express both the context of

a group of objects and the interaction between these objects. It focuses upon the relationships

between the objects.

(e) Use case diagram and use case description (3 marks)

Use case diagram

Use case diagrams address the static use case view of a system. The different types of people

and/or devices (called actors) that interact with the system are identified along with the functions

that they perform or initiate. A Use Case diagram shows a set of use cases and actors (a special

kind of class) and their relationships. These diagrams are especially important in organizing and

modelling the behaviors of a system

Use case description

A scenario is a description of a use case as a story. It is a story of one user’s interaction with the

system. It can be described in terms of:

• The actors involved, and

• The steps to be taken in order to achieve the functionality described in the use-
case title. (Use cases are about functionality, so make sure the title reflects some
functionality.)

Object Oriented Analysis and Design

7878

Unit II: Fundamentals of UML

(f) Extends and includes use case relationships (3 marks)

“Extends” use case relationship

The “extends” notation extends the functionality of a use case to deal with errors or exceptions.

“extends” relationship is being used when there is one use case that is similar to another but

does a bit more.

“includes” use case relationships

“include” relationship can be used for making up a big use case from simpler ones.

vii. Clearly explain why is it necessary to have a variety of diagrams in a model of a system? (2

marks)

UML has a lot of different diagrams (models), the reason for this is that it is possible to look at

a system from different viewpoints.

viii. With the aid of a diagram explain four notations used with a use case diagram (8 marks)

Four notations used with use case diagram are:

(a) Basic Use Case Notation

The Actor represents a user of the system, or any external system that interacts with the system.

The Usecase represents a piece of functionality that is important to the user. Mostly we see the

actor as a human user, but it can also represent a system or other nonhuman artifact.

Figure 2.4 shows the basic notation of a use case diagram.

7979

(b) Using the <<uses>> Relationship

This feature encourages re-use. If a use-case needs the functionality of another use-case in order

to perform its task, it “uses” the 2nd use case. The relationship is drawn as a line with arrowhead

pointing to the use case that is being “used” as shown in Figure 2.5

(c) Using the <<extends>> relationship

The “extends” notation extends the functionality of a use case to deal with errors or exceptions.

“extends” relationship as shown in Figure 2.6 is being used when there is one use case that

is similar to another but does a bit more. The relationship is drawn as a line with arrowhead

pointing to the major use case.

(d) Using the << include >> relationship

“include” relationship as shown in Figure 2.7 can be used for making up a big use case from

simpler ones.

Object Oriented Analysis and Design

8080

Unit II: Fundamentals of UML

Readings and Other Resources

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

• Booch G., Rumbaugh J., and Jacobson I., (2005), “The Unified Modeling
Language User Guide 2nd Edition, ISBN: 0-201-57168-4, 512

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Oriented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez E., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

8181

Unit III: Object-Oriented analysis
Unit Introduction
This unit explains how requirement specifications can be obtained by involving use cases,

identified classes and considering system operations and operation contracts which are

obtained from system sequence model.

Unit Objectives
Upon completion of this unit you should be able to:

1. Produce functional specification, and non-functional attributes of systems

2. Model use cases, use case diagrams, and use-case model for describing the
functional requirements

3. Explain use-case diagrams and their use for describing a use-case model

 KEY TERMS

Analysis

Analysis emphasizes an investigation and understanding the problem domain

and requirements, rather than a solution. For example, if a new computerized

library information system is desired, how will it be used? “Analysis” is a

broad term, best qualified, as in requirements analysis (an investigation of the

requirements) or with reference to object-oriented approach as object analysis

(an investigation of the domain objects).

Design

Design emphasizes a conceptual solution that fulfills the requirements, rather

than its implementation. For example, a description of a database schema and

software objects. Ultimately, designs can be implemented. As with analysis,

design term is best qualified as in object design or database design. Analysis

and design have been summarized in the phrase do the right thing (analysis),

and do the thing right (design).

Use Case

A use case specifies a sequence of actions that the system can perform and

that yield an observable result of value to a particular actor.

Object Oriented Analysis and Design

8282

Unit III: Object-Oriented analysis

Activity 1 – What are Requirements

Introduction

Requirements as defined by Liu (2001) are a description or statement of a function, feature or

condition that a user seeks to have implemented in a system. A requirement is:

1. A function that a system must perform

2. A feature of the system or a description of something the system is capable
of doing in order to fulfil the system’s purpose.

3. A statement about the proposed system that all stakeholders agree that
must be true in order for the customer’s problem to be adequately solved.

The creation of correct and thorough requirements specification is essential to a successful

project. We use a case study (Point-of-Sale) to illustrate the following three problems.

1. What should be produced in the requirements capture and analysis?

2. How to identify the elements of these artifacts?

3. How are artefacts expressed?

Requirement Specification

Requirements documentation is a very important activity, which is written after the requirements

elicitation/gathering and analysis, i.e. requirement capture and analysis phase of the software

development process. This is the way to represent requirements in a consistent format. The

requirements document is called the Software Requirements Specification (SRS). The SRS is a

specification for a particular software product, program, or set of programs that perform certain

functions in a specific environment.

The requirements specification is a description of needs or desires for a product. It is the official

statement of what is required of the system developer. The requirements must be described

unambiguously and in a form that clearly communicates to the client and to the development

team members.

It is not a design document and it must state what to be done rather than how it is done. It

must be in a form which can be taken as the starting point for the software development. A

specification language is often used. Graphical notations are often also used to describe the

requirement specification.

It is recommended that the requirements specification at least include the following information

(Liu, 2001):

8383

i. An overview of the project

ii. Goals/purpose

iii. Glossary – definition all relevant terms

iv. System functions

• System functional requirements, these are functional requirements

• System attributes (non-functional requirements)

v. Use cases – narrative descriptions of the domain processes

vi. Conceptual model – a model of important concepts and their relationships in the

 application domain.

These are typically produced through gathering and digesting

i. Documented information such as the client’s statements about their needs, preliminary

 investigation report, and electronic documents,

ii. interview results,

iii. requirements definition meetings, and so on

An Overview of the Project

This is a sentence which gives the purpose of the project. This should describe the need for the

system. e.g.

The project intends to create a standalone system for ……………….

Goals

The purpose of this project is to create a point-of-sale terminal system to be used in retail sales.

This is to describe how the system fits into the overall business or strategic objectives of the

organization commissioning the software.

The goals of the POST system can be stated as (Liu, 2001):

In general the goal is increased checkout automation, to support faster, better and cheaper

services and business processes. More specifically, these include:

• Quick checkout for the customer,

• Fast and accurate sales analysis,

• Automatic inventory control.

Object Oriented Analysis and Design

8484

Unit III: Object-Oriented analysis

Note: The overview and the goals can be combined into an introduction section in the

document.

Glossary

Glossary is the definition of all relevant terms and concepts. It provides the clarification of

ambiguous terms and concepts, explanations of jargons, as well as the description of business

events or description of software actions. There is no specific format for glossaries and they can

be included when needed.

System Functions

Requirements are the capabilities to which the system has to conform. Requirements are

captured in terms of the system functions; hence system functions are requirements the system

is supposed to do. There are two broad categories of requirements:

• Functional Requirements

Are those that relate directly to the functioning of the system.

These are the aspects of the system the client is most likely to
recognize.

• Non-functional requirements:

They are constraints/restrictions imposed on the system

Functional requirements

Functional requirements describe interaction between a system and its environment. Describe

how a system should behave under certain stimuli. Liu, (2001) argue that to verify that some X

is indeed a system function, it should make sense in the following sentence:

“The system should do < XX>”

The system’s function should be categorized in order to prioritize them or to avoid from missing

them. Categories include (Liu, 2001):

1. Evident functions whereby the requirement will be performed and
recognized by the user.

8585

2. Hidden functions whereby the requirement will be performed by the
system, but not visible to users. Examples of hidden functions can be “save
information in a persistent storage mechanism”. It has been noticed that
hidden functions are often forgotten hence missed during the requirements
gathering process.

System functions can be presented as shown in template given in Table 3.1. They should be

divided into logical cohesive (interrelated/organized) groups. Each function should be given a

reference number that can be used in other documents of the development. A function should

be category in either “evident” or “hidden”.

Table 3.1: Template for Presenting Functional Requirements

Ref # Function Category

Tables 3.2 and 3.3 show functional requirements for the POST system (Liu, 2001).

Table 3.2: Basic functions of the POST system

Ref # Function Category

R1.1 Record the underway (current) sale - the items

purchased

evident

R1.2 Calculate current sale total evident

R1.3 Capture purchase item information from a bar code

using a bar code scanner or manual entry of a

product code such as a universal product code (UPC)

evident

R1.4 Reduce inventory quantities when a sale is

committed

hidden

R1.5 Log completed sales hidden

R1.6 Cashier must log in with an ID and password in order

to use the system

evident

R1.7 Provide a persistent storage mechanism hidden

R1.8 Provide inter-process and inter-system

communication mechanisms

hidden

R1.9 Display description and price of item recorded evident

Object Oriented Analysis and Design

8686

Unit III: Object-Oriented analysis

Table 3.3: Payment functions of the POST System

Ref # Function Category

R2.1 Handle cash payments, capturing

amount tendered and calculating

balance due.

evident

R2.2 Handle credit payments, capturing

credit information from a card reader

or by manual entry, and authorizing

payment with the store’s (external)

credit authorization service via a

modem connection.

evident

R2.3 Handle cheque payments, capturing

driver’s license by manual entry, and

authorizing payment with the store’s

(external) cheque authorization

service via a modem connection.

evident

R2.4 Log credit payments to the accounts

receivable system, since the credit

authorization services owes the store

the payment amount.

 hidden

Requirements are expected to have the following characteristics:

(a) Verifiable:

A requirements document often becomes part of the contract between a client and a system

developer. It describes what the developer will deliver and be paid for. Requirements should be

verified against requirements, i.e. to check if the software meets the requirements.

(b) Complete

The requirements should be complete, and not leave out any areas. This can be very hard

to achieve, especially in large systems. Current trends are to break the development up into

smaller modules and implement each of them.

(c) Unambiguous

A requirement is ambiguous if it has more than one possible meaning. May be ambiguous due

to poor choice of words and/or differing definitions of a word or phrase.

8787

(d) Consistent

All parts of the requirements document should be consistent with each other. They should not

contradict each other (the following do: “If you delete a task all of its subtasks should be deleted

automatically” “You should always be prompted to confirm the deletion of a task and any of

it’s subtasks”).

(e) Modifiable

The requirements should be structured so that it is possible to change it at little to no cost.

Requires it be structured carefully, e.g. separating functional from non functional requirements,

supplying a glossary (a table of definitions)

(f) Traceable

The requirements should be structured so that it is possible to uniquely identify each requirement

• Each one should have a unique number

• This allows it to be referred to in final testing of the delivered software, and in
discussions with a client.

(b) Non-Functional Requirements

System non-functional requirements of system, also known as system attributes, are constraints

imposed on the services or functions offered by the system. System attributes define how

a system is supposed to behave and they are often called qualities of the system. They are

being applied to the system as a whole. Examples are; usability, cost, reliability, response time,

performance, ease of use, security, compatibility, fault-tolerance, and so on

You can’t write a specific line of code to implement non-functional requirements; rather they are

“emergent” properties that arise from the entire solution.

Table 3.4 shows examples of non-functional requirements for the POST system.

Attribute Constraints

response time When recording a sold item, the description and

price will appear within 5 seconds

interface

metaphor

Forms-metaphor windows and dialog boxes

fault-tolerance Must log authorized credit payments to accounts

receivable within 24 hours, even if power or device

fails

operating system

platform

Microsoft Window 95 and NT

Object Oriented Analysis and Design

8888

Unit III: Object-Oriented analysis

Non-functional can be classified into (Sommerville, 2000)::

(a) Product requirements

Requirements which specify that the delivered product must behave in a particular way e.g.

execution speed, reliability, etc.

(b) Organisational requirements

Requirements which are a consequence of organisational policies and procedures e.g. process

standards used, implementation requirements, etc.

(c) External requirements

Requirements which arise from factors which are external to the system and its development

process e.g. interoperability requirements, legislative requirements, etc.

Conclusion
Functional requirements are requirements in which users seek for them to be implemented.

However, there are also requirements done by the system, but not directly recognized by users,

these requirements should be considered when documenting requirements. These are the once

referred to hidden functionalities.

Activity Assessment

With respect to students’ case projects, clearly do the followings:

• Provide an overview and goals of your system you wish to develop

• List the core functional requirements of the system you wish to develop. For each
requirement listed, provide the requirement identifier, description, and cross
references

• List five nonfunctional requirements of the system using the format specified

Activity 2 – Use Case

Introduction

This activity explains one of the powerful components in capturing system functions. This is a

use case, whereby, apart from having use cases, we still need to represent them in view of being

interacted from the external environment; this is a use case diagram. A use case being a system

function, need to be described for the purpose of understanding how the function is going to

be performed. In this activity you are going to identify use cases, draw a use case diagram and

describe use cases.

8989

Use case concepts

A use case is a very powerful UML tool. A use case describes and captures functional requirements,

so uses cases are requirements or are functional requirements that indicate what the system will

do. They also describe a set of interactions between a user and the system. A set of use case

can be a description of the entire system to be implemented.

For example, to carry out the process of buying things at a store when a POST case study is

used (Liu, 2001)

• two actors must be involved: Customer and Cashier,

• the following sequence of events must be performed:

√ The Customer arrives at a checkout with items to purchase.

√ The Cashier records the purchase items and collects

 payment.

√ On completion, the Customer leaves with the items

To a user, a use case is a way of using the system. When a user is interacting with a system, system

provides a service to the actors. Each use case then captures a piece of functional requirements

for some users. All the use cases together describe the overall functional requirements of the

system. The first step in requirement capture is to capture requirements as use cases. UML

provides a simple notation to represent a use case as follows:

Actors

A Use case cannot initiate actions on its own. An actor is someone who can initiate a Use

Case. An actor is representing a certain role, instead of representing a particular individual.

An actor can be users or external systems that the system interacts with.

With Liu, (2001) an actor:

• Stimulates the system with input events, or receives something from the system.

• Communicate with the system by sending messages to and receiving messages
from the system as it performs use cases.

• May model anything that needs to interact with the system to exchange
information. Actors can be human users, computer systems, electrical or
mechanical devices such as timers.

If there is more than one actor in a use case, the one who generates the starting stimulus is

called the initiator actor and the other participating actors. The actors that directly interacts

the system are primary/direct actors, the others are called secondary actors.

Object Oriented Analysis and Design

9090

Unit III: Object-Oriented analysis

Example:

An auto bank machine system (ATM system) (Case Study 2 under unit 0) interacts with a type

of users who will use the system to withdraw money from accounts, to deposit money to

accounts, and to transfer money between accounts. This set of users is represented by the

Bank Customer actor. Therefore a use-case model can be used to represent the three use

cases WithDraw Money, Deposit Money, and Transfer Money that has association to the Bank

Customer actor as shown in Figure 3.2 (Liu, 2001).

Figure 3.2: The Relationship of an Actor and a Use Case

Thus, actors represent parties outside the system that collaborate with the system. Once we

have identified all the actors of a system, we have identified the external environment of the

system.

For most systems, a single actor can interact with many use cases, and a single use case can

be initiated by many different actors. Taking an example from the POST case study, Figure 3.3

shows a complete system described using actors and use cases.

Figure 3.3: Use Case Interacted by two Actors

9191

Use Case Granularity

Ariadne (2001) elaborate clearly that it can be difficult to decide upon the granularity of use

cases in particular scenario, should each user-system interaction be a use case, or should the

use case encapsulate all of the interactions? Taking an example of the ATM system in Figure 3.3

to allow a user to withdraw money, we may have the following interactions:

• Enter card

• Enter pin number

• Select amount required

• Confirm amount required

• Remove card

• Take receipt

Should each of these steps e.g. “enter pin number” be a use case?

This is a classic mistake in construction of use cases. Here we have generated a large number

of small, almost inconsequential use cases. In any non-trivial system, we would end up with a

huge number of use cases, and the complexity would become overwhelming (Ariadne, 2001).

Figure 3.4: A Not Useful Use Case Diagram

To handle the complexity of even very large system, we need to keep the use cases at a fairly

“high level”. The best way is to keep the following rule-of-thumb in mind. (Ariadne, 2001).

“A Use Case should satisfy a goal for the actor”

If we apply this simple rule to our example above, we can notice than none of the presented use

cases in Figure 3.4 is qualifying to be a use case, since they do not describe the goal of the use

case. The goal of use cases could be withdraw money, deposit money etc as shown in figure 3.5.

Figure 3.5: A More Focused Use Case Diagram

Object Oriented Analysis and Design

9292

Unit III: Object-Oriented analysis

Use Cases Identification

Use cases can be identified in two methods: actor-based and event based. Functional

requirements document is the main source of information needed. Interviews with potential

users of the system can also be one source of getting use cases. In some cases Joint Requirement

Planning Workshops (JRP) can be used where all people interested in system being developed

come together to give their view of what the system needs to do. Liu, (2001 state that identifying

use cases involves reviewing existing documents of requirements specification:

i. Use case identification on actor-based: method

(a) Find and specify all the actors by looking at which users will use the system and which other

systems must interact with it.

(b) For each actor, identifying the processes they initiate or participate in by looking at how the

actor communicate/interact with (or use) the system to do his work.

ii. Use case identification on event-based method

(a) Identify the external events that a system must respond to.

(b) Relate the events to actors and use cases.

For the POST application the following potential use actors and use cases as in Table 3.5 can be

identified (Liu, 2001) and the two can be presented in a use case diagram as shown in Figure 3.6:

Table 3.5: Actors and Use Cases of POST System

Actor Processes to Initiate

Cashier Log In, Log Out, Cash

Out

Customer Buy Items, Refund

Items

Manager Start Up, Shut Down

System Administrator Add New User

9393

Figure 3.6: Partial Use Case Diagram for POST SystemUse Case descriptions

Each Use Case contains a full set of textual details about the interactions and scenarios

contained within it. Use cases are described in order to understand more on its functionality.

Table 3.6 shows the template for a Use Case description:

Table 3.6: A Template for a Use Case Description

Use Case: Use Case name

Actors: Role names of people or external entities

initiating and participating in the use case

Short Description: A brief description of the Use Case

Pre-Conditions: A description of the conditions that must be

satisfied before the use case is invoked, i.e.

what must always be true before beginning a

use case scenario.

Post-Conditions: A description of what has happened at the

end of the use case, i.e. what must be true

on successful completion of a use case.

Main Flow: A list of the system interactions that take

place under the most common scenario. For

example for “withdraw money”, this would

be “enter card, enter pin, etc”

Object Oriented Analysis and Design

9494

Unit III: Object-Oriented analysis

Alternate Flow)s): A description of possible alternative

interactions

Exception Flow(s): A description of possible scenarios where

unexpected or unpredicted events have

taken place

In some cases, a high-level use case can be needed to obtain some understanding of the overall
process, and then expand it by adding to it with more details. A high-level use case describes a
process very briefly, usually in two or three sentences.

Table 3.7: A Template for High-Level Use Case

Use case: Name of use case (use a phrase

starting with a verb).

Actors: List of actors (external agents),

indicating who initiates the use

case.

Purpose: Intention of the use case.

Overview: A brief description of the process.

Cross References: Related use cases and system

functions.

With reference to a POST case study, the following as shown in Table 3.8 can be a description of
a “Pay by Cash” use case

Table 3.8: A “Pay by Cash” Use Case Description

Use Case: Pay by Cash

Actors: Customer, Cashier

Short Description: A Use Case allows a cashier to record the cash

tendered by the customer

Pre-Conditions: Items to be purchased listed and the total

amount already displayed

9595

Post-Conditions: A customer will be presented with a printed

receipt and the items purchased

Main Flow: 1. The Customer presents cash payment

to the cashier.

 2. The Cashier records the cash tendered

to the POST system.

 3. The system shows the balance due

back to the Customer if any.

 4. The Cashier deposits the cash received

and extracts the balance due.

 5. The Cashier gives the balance due and

the printed receipt to the Customer.

Alternate Flow)s): Item 4: Insufficient cash in drawer to pay

balance. Ask for cash from supervisor.

Exception Flow(s): Item 3. If cash amount tendered is not enough,

exception handling

Having been identified and described use cases, a use case model can be created which
describes how use cases relate to each other and to the actor. A use case diagram describes part
of the use-case model and illustrates a set of use cases for a system, the actors, and the relation
between the actors and use cases

Use cases relationships such as include, uses and extend can be used to reduce the complexity
of the model.

Use cases within a development process

Activities in the use case analysis can be summarized as follows:

1. After system functions have been listed, then identify actors and use cases.

2. Draw a use case diagram for the system.

3. Relate use cases and illustrate relationships in the use case diagram.

4. Write the most critical, influential and risky use cases in the use case
high-level

5. Describe the uses cases using a use case description template

Object Oriented Analysis and Design

9696

Unit III: Object-Oriented analysis

Identified Actors and Their Related Use Cases for the POST system

Applying the techniques used to identify use cases, we can have a sample list (not an exhaustive)
of relevant actors and use cases as shown in Table 3.9:

Table 3.9: Actors and Use Cases for POST System

Actor Use Case

Cashier Log In / Logout

Cash Out

Customer Buy Items: uses

• By cash

• By credit

Refund Items

Manager Start Up

Shut Down

System

Administrator

Add New Users

Why use cases?

The reasons why use cases are good for requirement capture include:

1. They answer what the system should do for each user or actor question.

2. Use Cases define the scope of the system. They enable to visualize size and scope of the

 entire development.

3. They facilitate communication means between the customer and developers (use case

 diagram is so simple, anyone can understand it)

4. They represent system functions and the relationship among the system functions in a

 narrative way.

5. They extent the identification of concepts and objects involved in the application domain.

6. Use Cases are very similar to requirements, but whilst requirement tend to be vague,

 confusing, ambiguous and poorly written, the tighter structure of Use Case tend to make

 them far more focused

9797

7. The “sum” of the use cases is the whole system. Anything not covered by a use case is

 outside the boundary of the system to be developed. So the Use Case diagram is complete

 with no holes

8.Use Cases guide the development teams through the development process. They give

 the summary of what is needed to be done by the system

9.Use Cases provide a method for planning development work, and allow to estimate how

 long the development will take

10. Use Cases provide the basis for creating system tests

11. Use cases help with the creation of user guides

12. Use cases can be a source of information during validation and verification of a software

Conclusion

Use cases are a powerful way of modelling what the system needs to do. A use case is full end-to-
end story about the use of the system to carry out a task, not an arbitrary combination of a number
of steps of computation. Use cases are excellent way of describing the system’s scope. We need
to be careful on the granularity of the Use Cases to control complexity.

Activity Assessment
i. With reference to use case relationship, when would you use the followings and why?

(a) <<extends>>

(b) <<uses>>

ii. Explain why the task of the requirements capture and analysis is difficult and complex

iii. How do system functions and use cases relate?

iv. Differentiate between system functions and use cases

v. Use the following given library system to answer questions.

Assume that a member of the library is allowed to borrow up to six items (e.g. a copy of a
book, a journals, etc). The system supports to carry out the tasks of borrowing a copy of a
book, extending a loan, and checking for reservation.

(a) Identify the use cases that represent these tasks,

(b) Draw a use-case diagram to represent relationships among these uses cases.

Object Oriented Analysis and Design

9898

Unit III: Object-Oriented analysis

vi. Using individual/group case projects, construct the use cases by doing the following:

(a) Identify the use cases for your system

(b) Identify the actors related to each of the use cases identified in (a)

(c) Select only four key use cases (in task (a) which reflect the main tasks of your project for

 demonstration and write use case descriptions for these use cases.

(d) Draw a use case model to show the relationships between actors and all use cases for

 your system

Note: Keep in mind that the four key selected use cases will be used in the following stage of
software development process.

Activity 3 – Conceptual Modelling

Introduction

A central distinction between OOA and structured analysis is decomposition by concepts (objects)
rather than decomposition by functions. The key point in this decomposition is to find what can
behave, and then to decide later on in the design and implementation how they behave to realize
the system functionality. Object-oriented requirement analysis is more concerned in identifying
concepts related to the requirements and to create a conceptual model of the problem domain
or the application area we are working with. This activity is will guide you on how to identifying
objects or concepts and make them relate to each other and finally create a conceptual or domain
diagram.

Concepts and Classes in Conceptual Modelling

Conceptual Modelling (sometimes called Domain Modelling) is the activity of finding out which
concepts are important to system. This process helps us to understand the problem further, and
develop a better awareness of our customer’s business. A concept is an idea, thing, or object.
More formally, a concept may be considered in terms of its symbol, intension, and extension (Liu,
2001):

• Symbol – words or images representing a concept. It can be referred to when we
talk about the concept.

• Intension – the definition of a concept.

• Extension – the set of examples or instances to which the concept applies.

9999

For an example, the symbol Module as applied in some Universities can have:

• The intension to “represent a course offered as part of a degree in that
university”; and

• The extension of all other modules offered by that university.

Note that the terms class and type are used more by UML and not concept. As long as we are in
requirement analysis stage, the two terms class and concept may be used interchangeably.. Each
instance of a class is called an object of the class. For example a class called “Student”. JahnSmith
and JaneBrown are instances of a class Student. Therefore, a class defines a set of objects.

The notions of class and object are interlinked as one cannot exist without the other, and any
object belongs to a class. The differences are:

• An object is a concrete entity – exists in space and time (persistence property of
objects);

• A class is an abstraction of a set of objects.

The UML defines the term class as “a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics”.

Identifying Concepts

The requirement document which is up to now including: the overview, goal, functional
requirements, use cases, use case diagram and use case descriptions is the good source of
information in identifying concepts. Two activities that are fundamental to the useful application
of object oriented in OOA are:

• To identify as many candidate objects from the problem domain, and

• Later select those candidate objects that are significant to develop and be
specified in an object model (conceptual model)

Liu (2001) suggests the following candidate concepts from the requirement document as shown
in Table 3.10.

Table 3.10: Guide to Identify Concepts

Concept Category Examples

physical or tangible objects (or

things)

POST (i.e. Point-of-Sale Unit), House, Car,

Sheep, People, Airplane

places Store, Office, Airport, PoliceSation

Object Oriented Analysis and Design

100100

Unit III: Object-Oriented analysis

documents, specifications,

designs, or descriptions of things

ProductSpecification, ModuleDescription,

FlightDescription

transactions Sale, Payment, Reservation

roles of people Cashier, Student, Doctor, Pilot

containers of other things Store, Bin, Library, Airplane

things in a container Item, Book, Passenger

other computers or electro-

mechanical systems external to

our system

CreditCardAuthorizationSystem,

Air-TrafficControl

abstract noun concepts Hunger, Acrophobia

organizations SalesDepartment, Club, ObjectAirline

historic events, incidents Sale, Robbery, Meeting, Flight, Crash,

Landing

Processes (often not represented

as a concept, but may be)

SellingAProduct, BookingASeat

rules and policies RefundPolicy, CancellationPolicy

catalogs ProductCatalog, PartsCatalog

records of finance, work,

contracts, legal matters

Receipt, Ledger, EmploymentContract,

MaintenanceLog

financial instruments and services LineOfCredit, Stock

manuals, books EmployeeManual, RepairManual

Another useful and simple technique for the identification of concepts is to identify or extract

noun and noun phrases from the requirement document and consider them as candidate

concepts or attributes.

Warning:

Care must be applied when these methods are used; mechanical noun-to-concept mapping

is not possible, words in natural languages are ambiguous, and concept categories may

include concepts which are about either attributes, events or operations which should not be

modeled as classes. We should concentrate on the objects/classes involved in the realization

of the use cases (Liu, 2001).

101101

Consider the POST system, from the use case Buy Items with Cash. We can identify some

noun phrases as shown in Figure 3.8. Some of the noun phrases in the use case are candidate

concepts; some may be attributes of concepts (Liu, 2001)

Figure 3.8: Selected Possible Concepts for the POST System

The following guidelines are useful when identifying concepts (Liu, 2001):

• It is better to over specify a conceptual model with lots of fine-grained concepts,
than to under specify it.

• Do not exclude a concept simply because the requirements do not indicate an
obvious need to remember information about it.

• It is common to miss concepts during the initial identification phase, and to
discover them later during the consideration of attributes or associations, or
during the design phase. When found, they are added to the conceptual model.

• Put a concept down as a candidate in the conceptual model when you are not
sure it must not be included.

Adding Associations in a Conceptual Model

A conceptual model with totally independent concepts only is obviously useless, as objects in

different classes must be related to each other so that they can interact and collaborate with

each other to carry out processes. In UML, an association is a relationship between two classes

that specifies how instances of the classes can be linked together to work together.

In the same sense that instances of a class are objects, instances of an association are links

between objects of the two classes – this is what we meant that objects in the same class “share

the same relationships”.

With respect to an association between classes, an important information is about how many

objects of one class (say “A”) can be associated with one object of another (say “B”)n , at a

particular moment in time. We use multiplicity to represent this information. An example in

Figure 3.9 shows the multiplicity expressions and their meanings.

Object Oriented Analysis and Design

102102

Unit III: Object-Oriented analysis

Figure 3.9: An Example on Multiplicity Use

Some high priority associations useful to include in a conceptual model are (Liu, 2001):

• A is a physical or logical part of B.

• A is physically or logically contained in/on B.

• A is recorded in B.

From the list of concepts identified, one can start thinking on the possible associations concepts

have to each other. This can accelerate the creation of a conceptual diagram. In this way relevant

associations will not be forgottern. Figure 3.10 shows possible aggregation relationships of

concepts in a POST system.

Figure 3.10: Aggregation Association in POST ApplicationAs an example, a conceptual model,

or sometimes known as a class diagram for a POST system domain is as shown in Figure 3.11.

This has also considered concepts’ association: inheritance, aggregation and composition as

discussed earlier.

103103

Figure. 3.11: A Conceptual/Class model for the POST System (concepts, associations and

Attributes)

Add Attributes in a Conceptual Model

Instances of a concept may have some properties. For examples, a Sale can have a date and

time; a Payment can have amount, a Furniture can have a size, a Module can have a code, title,

and number of credits, a Student has a name, registration number and age, etc.

An attribute of a class is the abstraction of a single characteristic or a property of entities that

have been abstracted as objects of the class. At any given moment of time, the attribute of an

individual object in the class is a logical data value representing the corresponding property of

the object, and called the value of attribute for the object at that time. One object has exactly

one value for each attribute at any given time. Therefore, the value for an attribute of an object

may change over time. For examples (Liu, 2001),

• time and date are attributes of class Sale, and an instance of Sale can be a sale at
13.30 on 1/10/1998.

• code, title, and credit are three attributes of class Module, and an instance
of Module can have a code MC 206, title: Software Engineering and System
Development, and credit: 20.

• name and age are attributes of Student, an individual student can have the name
John Smith, and age 19.

Object Oriented Analysis and Design

104104

Unit III: Object-Oriented analysis

Something to note in attributes:

(a) The attributes in a conceptual model should be simple and clear without ambiguity. Examples

of simple attributes are Date, Number, PhoneNumber, Name, Description, Code, Title etc

(b) In object-oriented approach no foreign keys. Attributes are not be used to relate concepts in

the conceptual model, but to store some information about the objects themselves. Liu, (2001)

state that the most common violation of this principle is to add a kind of foreign key attribute,

as is typically done in relational database designs, in order to associate two types. For example,

the currentPOSTNumber attribute in the Cashier type in Figure 3.12 is undesirable because its

purpose is to relate the Cashier to a POST object. The better way to express that a Cashier uses

a POST is with an association, not with a foreign key attribute Once again

Relate types with an association, not with an attribute

Figure 3.12: Do not use attributes as foreign keys

Steps to Create a Conceptual Model

The following steps can be applied to create a conceptual model:

• Identify and List candidate concepts using the Concept Category List and noun
phrase identification related to the current requirements under consideration.

• Represent them in a conceptual model.

• Add associations necessary to record relationships for which there are a need to
preserve some memory.

• Add the attributes necessary to fulfill the information requirements.

105105

Conclusion
System concepts can be identified by investigating the requirement document which includes:

system function, use cases and other initial reports on the domain. A conceptual model

show the static view of associations of concepts, they include as shown in Figure: 3.8 above;

Concepts, Relationship or association between concepts and Attributes of concepts.

The following elements are not suitable in a conceptual model (Liu, 2001):

• A software artifact, such as a window or a database, unless the domain being
modeled is of software concepts, such as a model of a graphical user interface.

• Operations (responsibilities) or methods.

Activity Assessment
i. Read the following problem and answer questions

A weather station is a package of software controlled instruments which collects data,

performs some data processing and transmits this data for further processing. The

instruments include air and ground thermometers, an anemometer, a wind vane, a

barometer and a rain gauge. Data is collected every five minutes. Weather stations

transmit their data to the area, computer in response to a request from that machine.

The area computer collates the collected data and integrates it with reports from other

sources such as satellites and ships. It then generates a set of local weather maps.

(a) Identify classes or concepts from the given scenario

(b) Identify attributes of the concepts identified

(c) Draw a conceptual diagram of the problem domain.

ii. Consider the following problem domain:

“The bank client must be able to deposit the amount to and withdraw the amount from

his/her account using touch screen. Each transaction must be recorded, the client must

be able to review all the transactions performed in the account. Record transactions

must include date, type, amount, and account balance after the transaction. A client

can have two types of account – a checking and a savings account. Access to the ATM

account is provided by a PIN code of 4 integer digits from 0 to 9.

(a) Identify classes or concepts from the given scenario

(b) Identify attributes of the concepts identified

(c) Draw a conceptual diagram of the problem domain

Object Oriented Analysis and Design

106106

Unit III: Object-Oriented analysis

iii. From individual/group case studies, do the following:

(a) Identify possible concepts/classes for your system

(b) Group concepts/classes identified in (a) above and find their relationships/

 associations

(c) Create a class/conceptual diagram to relate these concepts identified in (b)

(d) Identify attributes for concepts/classes used in a class diagram.

Activity 4 – System Behaviour: System Sequence Diagrams and Operations

Introduction

We need to identify the operations that the system needs to perform and in what order the

system need to perform these operations to carry out a use case, and the effect of such an

operation on the system, i.e. on the objects of the systems.

A use case defines a class of conversations between the actors and the system, and an

individual conversation of this class is a realization of the use case. Obviously, there may be

many realizations for a use case. A scenario of a use case is a particular instance or realized

path through the use case, i.e. a particular realization of the use case.

This activity is intending to introduce system sequence diagrams which are used to find

system events and system operations. Latter we will see how to create a contract of system

operations.

System operations are the operations that system needs to perform to carry out a use case

and the effects of these operations on the system. In this case, use cases – use case diagram

and use case descriptions are inputs of this activity.

System Input Events and System Operations

When an actor interacts with the system for a certain use case, events are being generated

to a system. This event is requesting the system to perform some operations in response. Liu,

(2001) indicate that events generated by actors are very tightly related to operations that the

system can perform. This implies that we identify system’s operations by identifying events

that actors generate.

By definition: A system input event is an external input generated by an actor to a system. A

system input event initiates a responding operation while a system operation is an operation

that the system executes in response to a system input event.

107107

Some system operations also generate output events to the actors to prompt the next system

event that an actor can perform; and A system event is either an input event or an output

event (Liu, 2001)..

Therefore, a system input event triggers a system operation, and a system operation response

to a system input event.

As an example given by Liu, (2001), we can formally define a scenario of a use case as a

sequence of system events that occur during a realization of the use case. Consider the use

case of Make Phone Calls for a telephone system, which involves two actors, Caller (initiator)

and Callee. The following sequence of events is a scenario of this use case:

Input Events Output Events

1. Caller lifts a receiver 2. Telephone starts dial tone

3. Caller dials a number 4. Telephone rings to Callee

5. Telephone is ringing tone to Caller

6. Callee answers the ringing phone 7. Telephone ringing tone stops

8. Telephone ringing tone stops

9. Telephones connected

10. Callee hangs up by returning the

telephone receiver

11. connection broken

12. Caller hangs up by returning the

telephone receiver

We can represent the set sequence of events is a scenario using event tracer diagram as shown
in Figure 3.13:

Object Oriented Analysis and Design

108108

Unit III: Object-Oriented analysis

Figure 3.13: Telephone system event trace diagram for the “Make Phone Calls”

(Source: Liu, 2001)

A System Sequence Diagram

During requirements analysis phase, we define the system by treating it as a single black box

so that the behaviour is a description of what a system does, without explaining how it does it.

In this way, only system operations that an actor requests of the system will be considered. The

interest is to find input events by making use of use cases and their scenario.

For example, the typical course of events in the Make Phone Calls indicates that the caller and

callee generate the system input events that can be denoted as liftReceiver, dialPhoneNumber,

answersPhone, hangsUp. In general, an event takes parameters (Liu, 2001).

UML Trace diagram is very useful in identifying the system operations, as in Figure 3.13 which

show, for a particular course of events within a use case, the external actors that interact directly

with the system, the system (as a black box), and the system input events that the actors

generate. A simplified trace diagram which shows only system input events is called a system

sequence diagram. A system sequence diagram (SSD) for the Make Phone Calls use case can

be illustrated as in Figure 3.14.

109109

Figure 3.14: A System Sequence Diagram for the Make Phone Calls of a Telephone System

(Source: Liu, 2001)

Recording system operations

The set of all required system operations are determined by identifying the system input events.

The name of the input event and the name of the operation are identical; the distinction is that

the input event is the named stimulus, the operation is the response.

For example, from the inspection of the use case Buy Items with Cash, we can identify the

system operations to be (Liu, 2001):

• enterItem(upc, quantity)

• endSale()

• makePayment()

The system operations can be grouped as operations of a type named System. The parameter

may optionally be ignored. Figure 3.15 shows a system concept showing identified system

operation.

Object Oriented Analysis and Design

110110

Unit III: Object-Oriented analysis

Figure 3.15: System Concept Showing System Operations for a “But Items with Cash” Use Case

The system operations for “Make Phone Calls” use case is shown in Figure 3.16.

Figure 3.16: System Concept Showing System Operations for a “Make Phone Calls” Use Case

System Operations Contracts

Use cases describe system behavior which is usually sufficient. But, sometimes a more detailed

description of system behavior is needed. Again system sequence diagram does not describe

the effect of the execution of an operation invoked. It is missing the details necessary to

understand the system response – the system behaviour. Part of the understanding of the

system behaviour is to understand the system state changes carried out by system operations.

A system state is a snapshot of the system at a particular moment of time which describes the

objects of classes currently existing, current values of attributes of these objects, and current

links between the objects at that time. The execution of a system operation changes the system

state into another state (Liu, 2001):

• Old objects may be removed,

• New objects and links may be created, and

• Values for attributes of objects may be modified.

To describe detailed system behavior in terms of state changes to objects in the Domain Model,

after a system operation has executed, contracts are being used. We need to know how to write

a contract for a system operation. As explained by Liu, (2001) the contract of an operation is

defined mainly in terms of its pre-conditions and post-conditions.

• Pre-conditions are the conditions that the state of the system is assumed to satisfy
or must hold true before the execution of the operation

• Post-conditions are the conditions that the system state has to satisfy when the
execution operation has finished, or the constraint that must hold true after the
completion of an operation.

111111

Documenting Contracts

Suggested schema by Liu, (2001) for presenting a contract is as shown in Table 3.11:

Table 3.11: Schema for Documenting a Contract of a System Operation

Name Name of a system operation and

parameters

Responsibilities A short description of the

responsibility the operation

Type Name of type (concept, software

class, interface)

Cross References System function reference

numbers, use cases, etc

Note Design notes, algorithms, and so

on

Exceptions Exceptional cases

Output Non-User Interface (UI) outputs, such

as messages or records that are sent

outside of the system

Pre-conditions The conditions that the state of the

system is assumed to satisfy before

the execution of the operation

Post-conditions Describes changes in the state of

objects in the domain area. The

sate changes can include: instances

creation, associations formed or

deletion and attributes changed.

Contracts for Some Operations in POST system

Tables 3.12 and 3.13 show examples contracts for “enterItem” operation and “makePayment”

operation of the POST system.

Object Oriented Analysis and Design

112112

Unit III: Object-Oriented analysis

Table 3.12: Contract for enterItem Operation Contract

Name enterItem(upc:UPC, quantity:Integer):

Responsibilities: Enter (or record) sale of an item and add it to the sale.

Display the item description and price.

Type: System.

Cross References: System Functions: R1.1, R1.3, R1.9

Use Cases, Buy Items:

Note: Use superfast database access.

Exceptions: If the UPC is not valid, indicate that it was an error.

Output:

Pre-conditions: UPC is known to the system.

Table 3.13: Contract for makePayment Operation

Name: makePayment(amount: Quantity).

Responsibilities: Record the payment, calculate balance and print

receipt.

Type: System.

Cross References: System Functions: R2.1

Use Cases: Buy Items

Note: Use superfast database access

Exceptions: • If sale is not complete, indicate that it
was an error.

• If the amount is less than the sale total,
indicate an error.

Output:

Pre-conditions:

113113

Post-conditions: 1. A Payment was created (instance creation).

2. Payment.amountTendered was set to amount

(attribute medication).

3. The Payment was associated with the Sale

(association formed).

4. The Sale was associated with the Store, to add it

to the historical log of completed sales (association

formed).

How to Create a Contract

Apply the following advice from Liu, (2001) to create a contract for a system operation

1. Identify the system operations from the system sequence diagram.

2. For each system operation, construct a contract.

3. Start by writing the Responsibilities section, informally describing the
purpose of the operation.

4. Then complete the Post-conditions section, declaratively describing the
state changes that occur to objects in the conceptual model.

5. To describe the post-conditions, use the following categories:

• Instances creation and deletion.

• Attributes modification.

• Associations formed and broken.

Conclusion

Relating the three models used so far in this unit, it can be observed that:

i. Use cases suggest the system input events and system sequence diagram.

ii. The system operations are then identified from system sequence diagrams.

iii. The effect of the system operation is described in contract within the context
of the conceptual model.

Object Oriented Analysis and Design

114114

Unit III: Object-Oriented analysis

Activity Assessment
i. Discuss how post conditions of an operation can be generated from the use case

 of the operation and the conceptual model. What are the relationships among

 the three main kinds of effects of an operation described in the post-conditions?

ii. Clearly describe the importance of:

(a) System sequence diagram

(b) Operation contracts

iii. From individual/group case projects, do the following:

(a) Identify system input events for four selected key use cases which reflect the main

 tasks of your project, with the help of system sequence diagram. These are

associated

 with system operations. Other operations for use cases can be presented in tabular

 form. Note: consider using four Use Cases selected as a continuation.

(b) Create contracts for at least four system operations each obtained from each key use

 case in (a)

Note: The system operations selected will be used in the object oriented design stage

 UNIT SUMMARY

Object-oriented analysis phase is concerned with the understanding of requirements, concepts
and system operations related to the system’s area of application. A number of tools have been
applied to do the analysis, including: use cases, use case diagrams, use case scenario, conceptual
model, tracer sequence diagram, system sequence diagrams and system operation contracts.
Investigation and analysis are often characterized as focusing on questions of what – what are the
processes, concepts, associations, attributes, operations.

We have explored the following minimal but useful set of artifacts that can be used to capture the
results of an investigation and analysis:

115115

Analysis Artifact Questions Answered

Use Cases What are the domain processes?

Conceptual Model What are the concepts,

associations and attributes?

System Sequence

Diagrams

What is the system input events

and operations?

Contracts What do the system operations

do?

 Unit Assessment
Instructions

Answer the following questions.

i. List characteristics of requirements and describe any three of them (Answer: section

3.1.2.4)

ii. Explain the following terms as applied to object-oriented analysis

(a) Requirement (Answer: section 3.1.1)

(b) Requirement specification (Answer: section 3.1.2)

iii. List six information to be included in a requirement specification (Answer: section

3.1.2)

iv. Differentiate the following terms:

(a) Functional requirements and non-functional requirements (Answer: section 3.1.2.4)

(b) Evident functions and hidden functions (Answer: section 3.1.2.4)

v. With an example explain the concept of use case granularity (Answer: section 3.2.2)

vi. Explain two ways applied to identify use cases (Answer: section 3.2.2)

vii. List six reasons why use cases are important (Answer: section 3.2.7)

viii. List three possible state change when a system operation is executed (Answer:

section 3.4.5)

ix. Explain the importance of a contract on object-oriented analysis (Answer: 3.4.5)

x. How do “system input event” relate to “system operation” (Answer: section 3.4.2)

Object Oriented Analysis and Design

116116

Unit III: Object-Oriented analysis

Answers

i.Requirements characteristics and their descriptions (Any three of them) (@ 2 marks)

(a) Verifiable:

A requirements document often becomes part of the contract between a client and a system

developer. It describes what the developer will deliver and be paid for. Requirements should be

verified against requirements, i.e. to check if the software meets the requirements.

(b) Complete

The requirements should be complete, and not leave out any areas. Current trends are to break

the development up into smaller modules and implement each of them.

(c) Unambiguous

A requirement is ambiguous if it has more than one possible meaning. May be ambiguous due

to poor choice of words and/or differing definitions of a word or phrase.

(d) Consistent

All parts of the requirements document should be consistent with each other. They should not

contradict each other.

(e) Modifiable

The requirements should be structured so that it is possible to change it at little to no cost.

Requires it to be structured carefully, e.g. separating functional from non functional requirements,

supplying a glossary (a table of definitions)

(f) Traceable

The requirements should be structured so that it is possible to uniquely identify each requirement

• Each one should have a unique number

• This allows it to be referred to in final testing of the delivered software, and in
discussions with a client.

ii.Explain the following terms as applied to object-oriented analysis

a) Requirement (2 marks)

Requirement is a description or statement of a function, feature or condition that a user seeks

to have implemented in a system.

(b)Requirement specification (2 marks)

The requirements document is called the Software Requirements Specification (SRS). The SRS

is a specification for a particular software product, program, or set of programs that perform

certain functions in a specific environment

117117

iii.Six information to be included in a requirement specification (3 marks)

(a) An overview of the project

(b) Goals/purpose

(c) Glossary – definition all relevant terms

(d) System functions

• System functional requirements, these are functional requirements

• System attributes (non-functional requirements)

(e) Use cases – narrative descriptions of the domain processes

(f) Conceptual model – a model of important concepts and their relationships in the application

 domain.

iv. Differentiate the following terms:

(a) Functional requirements and non-functional requirements (4 marks)

• Functional Requirements

• Are those that relate directly to the functioning of the system.

• These are the aspects of the system the client is most likely to recognize.

• Non-functional requirements:

• They are constraints/restrictions imposed on the system

(b) Evident functions and hidden functions (3 marks)

• Evident functions are requirement to be performed and recognized by the user.

• Hidden functions are requirement to be performed by the system, but not visible
to users.

v. With an example explain the concept of use case granularity (2 marks)

 Use case granularity Is to keep use cases at a fairly “high level”, by using the following rule-

 of-thumb in mind. “A Use Case should satisfy a goal for the actor”

vi. Two ways applied to identify use cases

(c) Use case identification on actor-based: method (2 marks))

• Find and specify all the actors by looking at which users will use the system and
which other systems must interact with it.

• For each actor, identifying the processes they initiate or participate in by looking
at how the actor communicate/interact with (or use) the system to do his work.

Object Oriented Analysis and Design

118118

Unit III: Object-Oriented analysis

(d) Use case identification on event-based method (2 marks)

(a) Identify the external events that a system must respond to.

(b) Relate the events to actors and use cases.

vii. List six reasons why use cases are important (Any six) (3 marks))

(a) They answer what the system should do for each user or actor question.

(b) Use Cases define the scope of the system. They enable to visualize size and scope of the

 entire development.

(c) They facilitate communication means between the customer and developers (use case

diagram is so simple, anyone can understand it)

(d) They represent system functions and the relationship among the system functions in a

narrative way.

(e) They extent the identification of concepts and objects involved in the application domain.

(f) Use Cases are very similar to requirements, but whilst requirement tend to be vague, confusing,

ambiguous and poorly written, the tighter structure of Use Case tend to make them far more

focused

(g) The “sum” of the use cases is the whole system. Anything not covered by a use case is

outside the boundary of the system to be developed. So the Use Case diagram is complete

with no holes

(h) Use Cases guide the development teams through the development process. They give the

 summary of what is needed to be done by the system

(i) Use Cases provide a method for planning development work, and allow to estimate how long

the development will take

(j) Use Cases provide the basis for creating system tests

(k) Use cases help with the creation of user guides

(l) Use cases can be a source of information during validation and verification of a software

viii. Three possible state change when a system operation is executed (1.5 marks)

(a) Old objects may be removed,

(b) New objects and links may be created, and

(c) Values for attributes of objects may be modified.

119119

ix. Importance of a contract on object-oriented analysis (3 marks)

 Contracts are used to describe detailed system behavior in terms of state changes to objects

 in the Domain Model, after a system operation has executed. We need to know how to write

 a contract for a system operation, the contract of an operation is defined mainly in terms of its

 pre-conditions and post-conditions.

x. How do “system input event” relate to “system operation” (3 marks)

 When an actor interacts with the system for a certain use case, events are being generated

 to a system.

• A system input event is an external input generated by an actor to a system. A
system input event initiates a responding operation

• A system operation is an operation that the system executes in response to a
system input event.

Unit Readings and Other Resources

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

• Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing,
an Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

Object Oriented Analysis and Design

120120

Unit IV: Object-Oriented Design

Unit IV: Object-Oriented Design
Unit Introduction
After identifying requirements and creating a domain model, then methods are added to the

software classes, and messaging between the objects to fulfill the requirements are defined.

Deciding what methods belong where, and how the objects should interact, is terribly important.

This is the heart of what it means to develop an object-oriented system, apart from drawing

domain model diagrams.

Unit Objectives
Upon completion of this unit you should be able to:

1. Explain notion of collaboration diagrams

2. Apply UML notation for collaboration diagram

3. Describe the nature of the design phase

4. Use Patterns for assigning responsibilities to objects

5. Use Patterns to create collaboration diagrams

 KEY TERMS

GRASP Pattern

The GRASP patterns are a learning aid to help one understand essential

object design, and apply design reasoning in methodical, rational,

explainable way. They describe best practices, good designs, and capture

experience in a way that it is possible for others to reuse this experience.

This approach to understanding and using design principles is based on

patterns of assigning responsibilities.

Software Design

Software design is an activity in which software components and their

relationships are identified, based on a customer’s requirements. Design is

about how to solve a problem, so there is always a design process.

Software Design Process

The process of object-oriented design includes activities to design the

system architecture, identify objects in the system, describe the design

using different object models, and document the component interfaces.

121121

Activity 1 – Interactive Diagrams – Collaboration Diagram

Introduction

A contract for system operations describes what the system operation does, but it does not

show a solution of how software objects are going to work collectively to fulfill the contract of

the operation. The later (how) is specified by an interaction diagrams in UML. A major task of

the design phase is to create the interaction diagrams for the system operations.

Types of Interactive Diagrams

As explained in activity 2.2: UML diagrams, the UML define two kinds of interaction diagrams:

Collaboration diagrams and sequence diagrams, either of which can be used to express

similar or identical messages interactions.

Each type has strengths and weaknesses as shown as indicated in Table 4.1:

• When drawing diagrams to be published on pages of narrow width, collaboration
diagrams have the advantage of allowing vertical expansion for new objects

• Additional objects in a sequence diagram must extend to the right, which is
limiting.

• On the other hand, collaboration diagram examples make it harder to easily see
the sequence of messages.

Table 4.1: Sequence Diagram Versus Collaboration Diagram

Type Strengths Weaknesses

Sequence Diagram Clearly shows sequence or time

ordering of messages

Forced to extend to

the right when adding

new objects; consumes

horizontal space
 Simple notation

Collaboration

Diagram

Space economy – flexibility

to add new objects in two

dimensions

Difficult to see sequence of

messages

Better to illustrate complex

branching, iteration, and

concurrent behaviour

 More complex notation

Object Oriented Analysis and Design

122122

Unit IV: Object-Oriented Design

We have used system sequence diagrams in object oriented analysis, but now we are referring

to another name object sequence diagram. Table 4.2 describes the difference between the

system sequence diagram and object sequence diagram. You can note that the object sequence

diagram is being used at design phase.

Table 4.2: Difference Between System Sequence Diagram and Object Sequence Diagram

System Sequence Diagrams Object Sequence Diagrams

Illustrates the interaction

between the whole system and

external actors

 Shows the interactions

between objects of the

system

 Shows only system’s external

events and thus identifies

system operations

 Identifies operations of

objects

Are created during the analysis

phase

 Are models created and used

in the design phase

Collaboration Diagrams

A collaboration diagram is a graphical representation which shows the linkage between a
number of objects and the links between them. Collaboration diagrams show the messages
that are passed from one object to another. Since both collaboration diagrams and object
sequence diagrams can express similar constructs, we can opt to use one over the other. We
shall mainly discuss and use collaboration diagrams. As an example, collaboration diagram for

“makePayment(cashTendered)” operation for the POST system is shown in Figure 4.1

Figure 4.1: A Collaboration Diagram for makePayment(cashTendered) Operation

123123

While in comparison with the object sequence diagram for “makePayment(cashTendered)”

operation for the POST system we can have as shown in Figure 4.2.

Figure 4.2: A Object Sequence Diagram for makePayment(cashTendered) Operation

Both of the two diagrams represent the following pseudo program (Liu, 2001)

• POST accepts a call of it method makePayment() (from an Interface Object);

• POST calls for the method makePayment() of :Sale;

• Sale calls the constructor of class Payment to create a new:Payment

UML Notation for Collaboration Diagrams

Collaboration diagrams have basic notations as presented in Figure 4.1. Basic notations include:

• Instances: is the same object but the name is being underlined and it has to
always preceded by a colon.

• Links: this is a connection path between two objects to show some form of
navigation and visibility instances.

• Message: messages are represented using an arrow on the link line. Messages are
numbered to show the sequential order in which the message are sent.

• Parameter: Parameters are shown within parentheses following the message.

A collaboration diagram has more notations which can be used when need comes as follows

(Liu, 2001):

Representing a return value

Some message sent to an object may require a returning message. A return value may be shown

by preceding the message with a return value variable name and an assignment operator (‘:=’)

as shown in Figure 4.3. The standard syntax for messages is:

Object Oriented Analysis and Design

124124

Unit IV: Object-Oriented Design

return := message(parameter : parameterType) : returnType

Figure 4.3: Return Values in Collaboration Diagram

Representing iteration

An object may repeatedly send a message to another object a number of times. This is indicated

by prefixing the message with a start (‘*’) as in Figure 4.4.

Figure 4.4: Representing Iteration in Collaboration DiagramRepresenting creation of
instances

The UML creation message is create which is independent of programming languages, shown

being sent to the instance being created. Optionally, the newly created instance may include

a <<new>> symbol as shown in Figure 4.5. A create message can optionally take parameters

when some attributes of the object to be created need to be set an initial value

Figure 4.5: Creation of an Instance in Collaboration Diagram

Representing message number sequencing

The order of messages is illustrated with sequence numbers, as shown in Figure. The numbering

scheme is:

 i. The first message is not numbered. Thus, msg1() is unnumbered.

125125

 ii. The order and nesting of subsequent messages is shown with a legal numbering scheme

 in which nested messages have appended to them a number. Nesting is denoted by

 pre-pending the incoming message number to the outgoing message number.

Figure 4.6: Message Number Sequencing in Collaboration Diagram

Representing conditional messages

Sometimes, a message may be guarded and can be sent from one object to another only

when a condition holds. At a point during the execution of an object, a choice of several

messages, guarded by different conditions, will be sent. In a sequential system, an object

can send one message at a time and thus these conditions must be mutually exclusive. When

we have mutually exclusive conditional messages, it is necessary to modify the sequence

expressions with a conditional path letter.

Figure 4.7: Conditional Message in Collaboration Diagram

Object Oriented Analysis and Design

126126

Unit IV: Object-Oriented Design

Note that:

• Either 1a or 1b could execute after msg1() , depending on the conditions.

• The sequence number for both is 1, and a and b represent the two paths.

• This can be generalized to any number of mutually exclusive Conditional
Messages.

Representing multiobjects

We call a logical set of instances/objects as a multiobject. A multiobject is an instance of a

container class each instance of which is a set of instances of a given class (or type). E.g. SetOfSales

is a class each instance of which is a set of sales. Each multiobject is usually implemented as

a group of instances stored in a container or a collection object. In a collaboration diagram, a

multiobject represents a set of objects at the “many” end of an association. In UML, a multiobject

is represented as a stack icon as illustrated in Figure 4.8.

Figure 4.8: Multiobject and Message to Multiobject

Conclusion

Collaboration diagrams are mainly used in object-oriented design phase. They are flexible to

add new concepts in two dimensions hence occupy less space. In design phase objects are

supposed to be provided with operations to perform. Collaborations are easily used for this

purpose with the help of a Pattern which facilitate assigning responsibility to objects.

127127

 Activity Assessment
i. Clearly describe basic UML notation used in collaboration diagrams.

ii. What is the difference between *msg(), *[true] msg(), and [true] msg() in a

 collaboration diagram?

iii. Develop a collaboration diagram in which:

(a) An object O receives message meg from an actor;

(b) O create a new object P;

(c) P sends a message to Q;

(d) then O destroy P

iv. Distinguish between the following terms

(e) Sequence diagram and collaboration diagram

(f) System Sequence diagram and object sequence diagram

Activity 1 – Overview of Design Phase

Introduction

Complex system operations must be decomposed into simpler internal operations which are

assigned to (or carried out by) objects. The major task in the design is to create the collaboration

diagrams for the system operations identified in the requirement analysis phase. The most

important and difficult part in the generation of collaboration diagrams is the assignment

of responsibilities to objects. This activity discusses the general principles for responsibility

assignment, which are structured in a format called patterns.

Artifacts needed for creating collaboration diagrams:

(a) Conceptual model: In this, software classes corresponding to concepts are defined.

(b) System operations contracts: which deals with the identification of responsibilities and

 post conditions that the interaction diagrams must fulfill

(c) Essential (or real) use cases: Involves collection of information about what tasks the

 interaction diagrams fulfill, in addition to what is in the contracts

Object Oriented Analysis and Design

128128

Unit IV: Object-Oriented Design

GRASP: Patterns for Assigning Responsibilities

Deciding what methods belong where and how objects should interact is terribly important and

trivial. Assigning responsibility is a crucial/critical step in developing object-oriented systems.

By definition; a responsibility is a contract or obligation of an object. Responsibilities are related

to the obligations of objects in terms of their behaviour. The purpose is to help methodically

apply fundamental principles for assigning responsibilities to objects. Within the UML artifacts,

a common context where these responsibilities (implemented as methods) are considered is

during the creation of interaction diagrams. Responsibilities can be grouped into two main

types (Liu, 2001):

Doing responsibilities:

These are about the actions that an object can perform including: doing something itself such

as creating an object or doing a calculation, initiating an action or operation in other objects,

controlling and coordinating activities in other objects

Knowing responsibilities:

These are about the knowledge an object maintains: knowing about private encapsulated data,

knowing about related objects, knowing about things it can derive or calculate.

Creation of Collaboration Diagrams

When creating collaboration diagrams:

• Start with the responsibilities which are identified from the use cases, conceptual
model, and system operations’ contracts.

• Assign these responsibilities to objects, then:

• Decide what the objects need to do to fulfill these responsibilities in order to
identify further responsibilities which are again assigned to objects.

• Repeat these steps until the identified responsibilities are fulfilled and a
collaboration diagram is completed.

Responsibilities are assigned to classes of objects during object oriented design stage. Note

that a responsibility is not the same thing as a method, but methods are implemented to

fulfill responsibilities. Responsibilities of an object are implemented by using methods of the

object which either act alone or collaborate with other methods and objects. For example, with

reference to POST system (Liu, 2001):

• The Sale class might define a method that is performing printing of a Sale
instance; say a method named print.,

• To fulfill that responsibility, the Sale instance may have to collaborate with other
objects, such as sending a message to SalesLineItem objects asking them to print
themselves.

129129

Within UML, responsibilities are assigned to objects when creation a collaboration diagram and

the collaboration diagram represents both of the assignment of responsibilities to objects and

the collaboration between objects for their fulfillment. Example, as presented in Figure 4.9:

• Sale objects have been given a responsibility to print themselves, which is
invoked with a print message.

• The fulfillment of this responsibility requires collaboration with SalesLineItem
objects asking them to print.

Figure 4.9: Performing Print Operation on Each Object of a Multiobject

General Principles in Assigning Responsibilities

Patterns are best principles for assigning responsibilities to objects. Patterns are guide to

the creation of software methods. They are best principles for assigning responsibilities to

objects. They are solutions to common occurring problems. In view of this module the GRASP

patterns: General Responsibility Assignment Software Patterns is going to be applied. GRASP

pattern takes the following format:

Pattern Name: The name given to the pattern

Solution: Description of the solution of the problem

Problem: Description of the problem that the pattern solves

Most simply, a pattern is a named problem/solution pair that can be applied to new context,

with advice on how to apply it in novel situations. GRASP patterns include the following five

basic patterns (Ariadne, 2004 and Liu, 2001):

1. Expert,

2. Creator,

3. High Cohesion

4. Low Coupling and

5. Controller.

Object Oriented Analysis and Design

130130

Unit IV: Object-Oriented Design

GRASP 1: Expert

This is a very simple pattern and is being used more than any other pattern in assignment

of responsibilities. Expert class is that class that has information necessary to fulfill the

responsible. Experts do things relating to the information they know. Assign a responsibility

to the information expert — the class that has the information necessary to fulfill the

responsibility. Example is as shown in Figure 4.10.:

Figure 4.10: Collaboration Diagram for Getting the price of a product

Design Class Responsibility

Sale Knows sale total

SalesLineItem Knows line item

subtotal

ProductSpecification Knows product prices

GRASP 2: Creator

The creation of objects is one of the most common activities in an OO system. It asks the

question “who should be responsible for creating instances of a particular class?” Assign class

B the responsibility to create an instance of class A if one of these is true:

• B contains A

• B records A

• B aggregates A

• B closely uses A

• B has the initializing data for A

131131

For example in POST system, who should be responsible for creating a SalesLineIteM instance?

By Creator pattern, we should look for a class that aggregates, contains SalesLineItem instances.

Since Sale contains (aggregates) many SalesLine Item objects, the creator pattern suggests that

Sale is the right candidate to have the responsibility of creating SalesLine Items instances as in

Figure 4.11. This means “makeLineItem” method will be defined in Sale.

Figure 4.11: Collaboration Diagram for Create a SalesLineItem

GRASP 3: High Cohesion

Cohesion or coherence is the strength of dependencies within a subsystem. Cohesion is a

measure of how strongly related and focused the responsibilities of a class. It is the internal

“glue” with which a subsystem is constructed. A component is cohesive if all its elements

are directed towards a task and the elements are essential for performing the same task. If a

subsystem contains unrelated objects, coherence is low. High cohesion is desirable.

A class with high cohesion has highly related functional responsibilities, and does not do

tremendous amount of work. Such classes have a small number of methods with simple but

highly related functionality. In a good object-oriented design, each class should not do too much

work. Assign few methods to a class and delegate parts of the work to fulfill the responsibility

to other classes.

The following “liftController” class in Figure 4.12 is not well designed. A class does a lot of work.

Object Oriented Analysis and Design

132132

Unit IV: Object-Oriented Design

Figure 4.12: The Lift Controller Class with Low CohesionNote that a class should represent one

“thing” from the real would. Key separate abstractions from liftController as shown in Figure

4.13 are:

• An Alarm

• Lift

• Doors and

• Logs

Figure 4.13: The Lift Controller Class Modelled as a Four Separate, More Cohesive Classes

GRASP 4: Low Coupling

Coupling is a measure of how strongly one class is connected to; has knowledge of; or relies on

other classes. A class with low (or weak) coupling is not dependent on too many other classes.

When we assign a responsibility to a class, we would like to assign responsibilities in a way so

that coupling between classes remains low.

From the following example for “makePayment” use case and with the consideration of low

coupling, the second design is preferable because it does not need an extra link formed between

POST and Payment. This assignment of responsibility is also justifiable as it is reasonable to think

that a Sale closely uses a Payment (Figure 4.14).

GRASP 5: Controller

Who handles a system event? Assign the responsibility for handling a system event message to

a class representing one of these choices:

133133

• Represents the overall system, device, or a subsystem (facade controller).

• Represents a use case scenario within which the system event occurs (use-case or
session controller)

A controller is a non-user interface object responsible in handling a system input events, and

the controller defines the method for the system operation corresponding to the system input

event. One possible solution is to add/introduce a new class, and make it sit between the actor

and the business classes. The name of this controller is usually called <name>Handler. Handler

reads the commands from the user and then decides which classes the messages should be

directed to. The handler is the only class that will be allowed to read and display. The system

receive external input events, typically involving a GUI operated by a person.

Controller pattern takes the following form:

Table 4.3: Controller Pattern

Pattern Name Controller

Solution Assign the responsibility for handling a

system (input) event to a class representing

one of the following choices

• Represents the “overall system”
(facade controller).

• Represents the overall business
or organization (facade
controller).

• Represents something in the
real-world that is active (for
example, the role of a person)
that might be involved in the
task (role controller).

• Represents an artificial handler
of all system (input) events of
a use case, usually named “<
UseCaseName> Handler” (use-
case controller).

Problem Who should be responsible for handling a

system input event?

Object Oriented Analysis and Design

134134

Unit IV: Object-Oriented Design

Conclusion
A pattern is a well used procedure in collaboration diagrams. It is a solution to a common

occurring problem. Five basis patters under GRASP patterns have been described, these are

Expert, Creator, High Cohesion, Low Coupling and Controller. You need to be careful when

using patterns so as to develop a modifiable and robust object-oriented design.

 Activity Assessment
i. Explain clearly the following aspects of Object Model:

(a) Controller Pattern

(b) Cohesion Pattern

ii. A good piece of software should have high cohesion and low coupling. Explain.

Activity 2 – Application of Patterns in Design

Introduction

This activity shows how to apply GRASP patterns to assign responsibilities to object. It does the

actual application in a POST case project system. As done by Liu (2001), the design is going to

consider “Buy Item with Cash” and “Start Up” use cases.

From activity 4.2, the following can be highlighted as a guideline for making collaboration

diagram: (Liu, 2001): The same guideline is summarized in Figure 4.15.

• Create a separate diagram for each system operation which has identified and
whose contracts are defined.

• If the diagram gets complex, split it into smaller diagrams.

• Using the contract responsibilities and post-conditions, and use case description
as a starting point, design a system of interacting objects to fulfill the tasks.

• Apply the GRASP to develop a good design.

Note that this areas if fully adopting the design made by Liu, (2001)

135135

Figure 4.15: Guidelines for design

A Design of POST System

With “Buy Items with Cash” and “Start Up” use cases, we have identified four system

operations enterItem, endSale, makePayment and startup as shown in Figure 3.13. According

to our guidelines we should construct at least four collaboration diagrams. This activity

will demonstrate only one operation and the remaining will be provided with the final

collaboration diagrams. According to the Controller pattern, the POST class could be chosen

as controller for handling these operations and hereby presented in Figure 4.16.

Figure 4.16: PPOST as a Controller Class

We need to look at the contract of enterItem what POST needs to do to fulfill this responsibility

(See Table 4.4).

Object Oriented Analysis and Design

136136

Unit IV: Object-Oriented Design

Table 4.4: Post-Condition for “enterItem” Operation

Post-conditions: If a new sale, a Sale was created (instance

creation).

 If a new Sale, the Sale was associated with the

POST (association formed).

 A SalesLineItem was created (instance creation).

 The SalesLineItem.quantity was set to quantity

(attribute modification).

The SalesLineItem was associated with a

ProductSpecification, based on UPC match

(association formed).

Creating a New Sale:

• The post-conditions of enterItem indicate a responsibility for creation an object
Sale.

• The Creator pattern suggests POST is a reasonable candidate creator of the Sale,
as POST records the Sale.

• Having POST created the Sale; the POST can easily be associated with it over
time.

• Creating a New SalesLineItem:

• When the Sale is created, it must create an empty collection to record all the
future SaleLineItem that will be added.

• This collection will be maintained by the Sale instance, which implies by Creator
that the Sale is a good candidate for creating it (SalesLineItem).

Figure 4.17 show the creation of a new sale by the POST controller class and a new SalesLine
Item by a Sale class.

Figure 4.17: Collaboration Diagram to Create a New Sale and a New SalesLineItem

137137

Finding a ProductSpecification

• Newly created SalesLineItem is required to be associated with
ProductSpecification that matches with upc

• This need the parameters to the makeLineItem message sent to the Sale include
ProductSpecification instance denoted by sec, which matches upc

• We need to retrieve the ProductSpecification before the message
makeItem(spec,qty) is sent to Sale

• From Expert pattern, ProductCatalog contains all the productSpecification, hence
good candidate for looking up the ProductSpecification

Visibility to a ProductCatalog

• From startUp() contract it shows POST was associated with the ProductCatalog

• POST is responsible in sending message to ProductCatalog denoted by
specification

Hence the collaboration Diagram for enterItem will be as shown in Figure 4.18

Figure 4.18: Collaboration Diagram for enterItem Operation

Collaboration Diagram for endSale will be as shown in Figure 4.19.

Figure 4.19: Collaboration Diagram for endSale Operation

Object Oriented Analysis and Design

138138

Unit IV: Object-Oriented Design

Figure 4.19: Collaboration Diagram for endSale Operation

Figure 4.20: Collaboration Diagram for makePayment Operation

Collaboration Diagram for Logging a complete sale will be as shown in Figure 4.21

Figure 4.21: Logging a Complete Sale Collaboration Diagram

Collaboration Diagram for StartUp will be as shown in Figure 4.22.

Figure 4.22: Collaboration Diagram for StartUp Operation

139139

Conclusion
Application of a GRASP pattern has been demonstrated in this activity. The main input to

this activity is the information from post condition of the system operation. We creating

collaboration diagrams for a single system operation for the purpose of assigning

responsibilities to collaborating object while performing a functionality.

Activity Assessment
Use the identified four system operation to do the following:

i. Bring forward the “post condition” obtained while creating system operation

 contracts

ii. Create collaboration diagram for the same four operations. With the help of GRASP

 assignment responsibility pattern identify methods for each class obtained

Activity 3 - Design Class Diagram

Introduction

During creation of a collaboration diagram, we record the methods corresponding to the

responsibilities assigned to a class in the third section of the class box. These classes with

methods are software classes representing the conceptual classes in the conceptual models.

Then based on these identified software classes, the collaboration diagrams and the original

conceptual model, we can create a design class diagram which illustrate the following

information:

• Classes, associations and attributes

• Methods

• Attribute type information

• Navigability

• Dependencies

Note that the design part has been adopted from Liu, (2001)

Object Oriented Analysis and Design

140140

Unit IV: Object-Oriented Design

Steps in Making a Design Class Diagram

Use the following strategy to create a design class diagram:

1. Identify all the classes participating in object interaction by analyzing the collaborations

2. Present them in a class diagram

3. Copy attributes from the associated concepts in the conceptual model

4. Add methods names by analyzing the interaction diagrams

5. Add type information to the attributes and methods

6. Add the association necessary to support the required attribute visibility

7. Add navigability arrow necessary to the associations to indicate the direction of the

 attribute visibility

8. Add dependency relationship lines to indicate non-attribute visibility

9. More:

• Enhance attributes by adding datatypes

• Determine visibility e.g. public (+), Private (–) – concept for encapsulation

Add Associations and Navigability

Each end of an association is called a role. In a design class diagram, the role may be decorated

with a navigability arrow. Navigability is a property of the role which indicates that it is possible

to navigate uni-directionally across the association from objects of the source to the target class

as shown in Figure 4.23.

Figure 4.23: Part of Design Class Diagram Showing Navigability

141141

Navigability is usually interpreted as attribute visibility from the source class to the target class.

During the implementation in a OOP language it is usually translated as the source class having

an attribute that refers to an instance of the target class. For example, the POST classes will

define an attribute that reference a Sale instance.

DCD with Association and Navigability

Correcting all the activities done in previous units and activities, finally the design class Diagram

will be as shown in Figure 4.24.

Figure 4.24: Design diagram with association and navigability

Conclusion
DCD is the final structure of the software designed. To make concepts coordinate, associations

has to be considered and their multiplicity. Navigation into DCD is important to be shows as

well.

Object Oriented Analysis and Design

142142

Unit IV: Object-Oriented Design

 Activity Assessment
i. Discuss the relationship between the conceptual model and the design class model

 in terms of their classes and associations. What are the possible ways to associate

 two classes in a design class diagram?

ii. From individual/group case studies, do the following:

(a) Create object sequence diagram for the four operations selected during object

 oriented analysis

(b) Create collaboration diagram for the same four operations used in question (a)

 above. With the help of GRASP assignment responsibility pattern identify methods

 for each class. (Compare with the related object sequence diagrams. note at this

 stage any of the two can be used as per the convenience)

(c) By using some of the information contained in the conceptual class diagrams,

 describe the attributes and operation of the software classes. Indicate the types for

 attributes and operations of the classes as well their visibilities

(d) Present your software classes in a design class diagram and indicate navigability on

 class associations

 UNIT SUMMARY

In this unit five “GRASP” Pattern have been explored to show its importance in Object Oriented

Design. Having a Design Class Diagram in place any implementation language can be applied

to implement a DCD into code. As with structured approach to have the entity relation Diagram

(ERD) to be the final structure for implementation, with object-oriented the final product is a

Design Class Diagram ready for implementation using any means.

This module is opting to show how the DCD can be mapped with the typical object-oriented

programming language. The language applied is Java, though any object oriented programming

language can be applied, like C++.

143143

 Unit Assessment
Instructions

Answer the following questions.

i. Explain the difference between coupling and cohesion in application design,

 including explanation of why each is important. (Answer: Section 4.2.4).

ii. With reference to object oriented approach in system analysis and design, describe

 the followings:

(a) Two general types of responsibilities when using patterns (Answer: Section 4.2.2).

(b) The term “Responsibility” (Answer: Section 4.2.2).

(c) “Controller” patterns (Answer: Section 4.2.4).

iii. Distinguish between a system sequence diagram and an object sequence diagram

 (Answer: Section 4.1.2).

iv. Explain clearly why “Patterns” are needed while using Object Oriented Analysis

 and Design approach to software development? (Answer: Section 4.2.2).

Answer

i. The difference between coupling and cohesion in application design, including explanation of

 why each is important. (Each 2 marks)

(a) Coupling: Coupling is a measure of how strongly one class is connected to; has knowledge

 of; or relies on other classes.

Importance:

When we assign a responsibility to a class, we would like to assign responsibilities in a way so

that coupling between classes remains low. That is to make a class is not to depend on too

many other classes.

(b) High Cohesion: Cohesion is a measure of how strongly related and focused the responsibilities

 of a class. It is the internal “glue” with which a subsystem is constructed.

Object Oriented Analysis and Design

144144

Unit IV: Object-Oriented Design

Importance:

When we assign a responsibility to a class, we would like to assign responsibilities in a way so

that cohesion of a classes remains high. That is to make a class perform highly related functional

responsibilities, and not do tremendous amount of work.

ii. With reference to object oriented approach in system analysis and design, describe the

followings

(a) Two general types of responsibilities when using patterns (@ 2 marks)

Doing responsibilities:

These are about the actions that an object can perform including: doing something itself such

as creating an object or doing a calculation, initiating an action or operation in other objects,

controlling and coordinating activities in other objects

Knowing responsibilities:

These are about the knowledge an object maintains: knowing about private encapsulated data,

knowing about related objects, knowing about things it can derive or calculate.

(b) The term “Responsibility” (2 marks)

A responsibility is a contract or obligation of an object. Responsibilities are related to the

obligations of objects in terms of their behaviour.

(c) “Controller” patterns

A controller is a non-user interface object responsible in handling a system input events. The

controller defines the method for the system operation corresponding to the system input event.

iii. Difference between a system sequence diagram and an object sequence diagram is (3

Marks) (Answer: Section 4.1.2)

System Sequence Diagrams Object Sequence Diagrams

 Illustrates the interaction between

the whole system and external

actors

 Shows the interactions between

objects of the system

 Shows only system’s external

events and thus identifies system

operations

 Identifies operations of objects

 Are created during the analysis

phase

 Are models created and used in the

design phase

145145

iv. “Patterns” are needed while using Object Oriented Analysis and Design approach to software

development since (2 marks):

Patterns are guide to the creation of software methods. They are best principles for assigning

responsibilities to objects. They are solutions to common occurring problems.

Unit Readings and Other Resources

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

Object Oriented Analysis and Design

146146

Unit V- Implementing Object-Oriented Designs into Programming Languages

Unit V- Implementing
Object-Oriented Designs into
Programming Languages
Unit Introduction
The UML artifacts created during the design phase: the interaction diagrams and DCDs will

be used as input to the code generation process. Implementation consists of artifacts such as

the source code, database definitions, JSP/XML/HTML pages etc. Code created is part of the

implementation model.

Java is used for the examples because of its widespread use and familiarity. However, this is

not meant to imply a special endorsement of Java; any other object oriented programming

language can be used like C++, Visual Basic, C#.

Implementation in an object-oriented programming language requires writing source code for:

• Class definitions – define the classes in the design class diagram in terms of the
programming notation.

• Method definitions – define the methods of classes in the design class diagram in
terms of the programming notation.

Unit Objectives
Upon completion of this unit you should be able to:

1. Describe the notion of the interface of a class and its features

2. Define a class in a programming language

3. Define a method of a class in a programming language

 KEY TERMS

Software implementation

Software implementation in object-oriented system analysis and design

approach is the creation of code. Implementation is the process of realizing

the design as a program.

Reference attribute

A reference attribute is an attribute that refers to another complex object, not

to a primitive type such as a String, Number and so on

147147

Activity 1 - Notation for Class Interface Details

Introduction

The interface of a class primarily consists of the declarations of all the methods (or operations)

applicable to instances of this class, but it may also include the declaration of other classes,

constants, variables (attributes), and initial values. Therefore, the interface of a class provides

its outside view and emphasizes the abstraction while hiding its structure and the secrets of its

behaviour. By contrast, the implementation of a class is its inside view, which encompasses the

secretes of its behaviour. The implementation of a class primarily consists of the definitions of all

the methods (or the implementation of all the operations) declared in the interface of the class.

The Interface of a Class

The interface of a class can be in general divided into three parts

a. Public: A declaration that is accessible to all the clients which are the classes that

 have attribute visibility to this class.

b. Protected: A declaration that is accessible only to the class itself, its subclasses,

 and its friends

c. Private: A declaration that is accessible only to the class itself and its friends.

The UML provides a rich notation to describe features of the interface of a class. Attributes are

assumed to be private by default. The notation for other kind of interface declarations is shown

in Figure 5.1.

Similarly, Figure 5.2 shows some interface information about the classes in the POST system.

Notice that except for loadProdSpecs() which is a private method of ProductCatalog, all other

methods are private

.

Object Oriented Analysis and Design

148148

Unit V- Implementing Object-Oriented Designs into Programming Languages

Figure 5.1: Notation for Class Interface Declaration

Figure 5.2: Interface Details for Post System Classes

Conclusion
Object-oriented system analysis and design follows all basis knowledge available in object

oriented programming language like Java or C++. It is important to clearly show parts of class

interfaces in terms of public, protected and private.

 Activity Assessment
i. Differentiate between “public” and “private” terms as applied to object oriented

ii. With reference to classes in a design class diagram of your individual/group case

 projects, provide interface details

Activity 2 - Mapping a Design to Code

Introduction

At the very least, design class diagrams depict the class name, superclasses, method signatures,

and simple attributes of a class. This is sufficient to create a basic class definition in an object-

oriented programming language. More information can be added later on after such a basic

definition is obtained.

149149

Defining a Class with Methods and Simple Attributes

Consider the class SalesLineItem and the partial design class diagram in Figure 5.3. A mapping

of the class box for SalesLineItem in the design diagram to the basic attribute definitions and

method signatures for the Java definition of SalesLineItem is straightforward.

Note that, we had to add the Java constructor SalesLineItem(….) because of the fact that a

create(spec,qty) message is sent to a SalesLineItem in the enterItem collaboration diagram. This

indicates, in Java, that a constructor supporting these parameters is required.

Observe also that the return type for the subtotal method was changed from Quantity to a

simple float. This implies the assumption that in the initial coding work, the programmer does

not want to take the time to implement a Quantity class, and will defer that.

Figure 5.3: SalesLineItem in Java

Add Reference Attributes

A reference attribute is an attribute that refers to another complex object, not to a primitive

type such as a String, Number and so on.

The reference attribute of a class are suggested by the associations and navigability in a

design class diagram.

For example, a SalesLineItem has an association to a ProductSpecification, and with

navigability to it. This navigability is needed for sending the message price to the

ProductSpecification from the SalesLineItem in the collaboration diagram for the total of the

Sale. In Java, this means that an instance variable referring to a productSpecification instance

is suggested.

Reference attributes are often implied, rather than explicit, in a class diagram. Sometimes,

if a role name for an association is present in a class diagram, we can use it as the basis for

the name of the reference attribute during code generation. The Java definition of the class

SalesLineItem with a reference attribute prodSpec is shown in Figure 5.4.

Object Oriented Analysis and Design

150150

Unit V- Implementing Object-Oriented Designs into Programming Languages

Figure 5.4: Add Reference Attributes

In the same way as we have defined the Java class for SalesLineItem, we can define the Java

class for POST. This is shown in Figure 5.6.

Defining a Method from a Collaboration Diagram

A collaboration diagram shows the messages that are sent in response to a method invocation.

The sequence of these messages translates to a series of statements in a method definition.

For example, Recall the collaboration diagram for the enterItem operation given in Figure 5.5.

We should declared enterItem as a method of the POST class: public void enterItem(int upc,

int qty)

Figure 5.5: The enterItem Collaboration Diagram

151151

Then we have to look at the messages sent by POST in response to the message enterItem

received by POST as in Figure 5.6.

Figure 5.6: The Post Class in Java

Message 1: According to the collaboration diagram. In response to the enterItem message,

the first statement is to conditionally create a new Sale

if (isNewSale()) {sale = new Sale() ;)

This indicates that the definition of the POST – enterItem method, needs the introduction of a

new method to the POST class: isNewSale. This is a small example of how, during the coding

phase, changes from the design will appear. It is possible that this method could have been

discovered during the earlier solution phase, but the point is that changes will inevitably arise

while programming.

As a first attempt, this (private) method will perform a test based on whether or not the sale

instance variable is null (i.e. sale does not point to anything yet).

private Boolean isNewSale()

{

 return (sale == null);

}

Object Oriented Analysis and Design

152152

Unit V- Implementing Object-Oriented Designs into Programming Languages

You may wonder why not simply hard-core this test into the enterItem method? The reason

is that it relies on a design decision about the representation of information. In general,

expressions that are dependent on representation decisions are best wrapped in methods

so that if the representation changes, the change impact is minimized, Furthermore, to a

reader of the code, the isNewSale test is more informative in terms of semantic intent that the

expression

if (sale == null)

On reflection, you will realize that this test is not adequate in the general case. For example,

what if one sale has completed, and a second sale is about to begin. In that case, the sale

attribute will not be null; it will point to the last sale. Consequently, some additional test is

required to determine if it is a new sale. To solve this problem, assume that if the current sale

is in the complete state, then a new sale can begin. If it turns out later this is an inappropriate

business rule, a change can be easily made. Therefore,

private Boolean isNewSale()

{

 return (sale == null) || (sale.isComplete());

}

Based on the above coding decisions, the new method isNewSale needs to be added to the

POST class definition given in Figure 5.5. The design class diagram depicting the POST class

should be updated to reflect this code change.

Message 2: The second message sent by the POST is specification to the ProductCatalog to

retrieve a ProductSpecification:

ProductSpecification spec = prodCatalog.specification(upc);

Notice the use of the reference attribute prodCatalog.

Message 3:The third message sent by POST is the makeLineItem to the Sale:

sale.makeLineItem(spec, qty);

153153

In summary, each sequenced message within a method, as shown on the collaboration

diagram, is mapped to a statement in the Java method. Therefore, the complete enterItem of

POST method is given as:

public void enterItem(int upc, int qty)

{

 if (isNewSale()) { Sale = new Sale(); }

 ProductSpecification spec = prodCatalog.specification(upc);

 sale.makeLineItem(spec, qty);

}

Container/Collection Classes in Code

It is often necessary for an object to maintain visibility to a group of other objects; the need

for this is usually evident from the multiplicity value in a class diagram – it may be greater

than one. For example, a Sale must maintain visibility to a group of SalesLineItem instances as

shown in Figure 5.7.

Figure 5.7: Reference to a Container

In object-oriented programming languages, these relationships are often implemented with the

introduction of an intermediate container or collection. The one-side class in the association

defines a reference attribute pointing a container/collection instance, which contains instances

of the many-side class.

Object Oriented Analysis and Design

154154

Unit V- Implementing Object-Oriented Designs into Programming Languages

The choice of a container class is influenced by the requirements; key-based lookup requires the

use of a Hashtable, a growing ordered list requires a Vector, and so on.

With these discussions, we can now define the makeLineItem method of the Sale class as shown

in Figure 5.7.

Note that there is another example of code deviating from the collaboration diagram in this

method: the generic add message has been translated into the Java-specific addElement

message.

Figure 5.7: Sale – makeLineItem Method

Exceptions and Error Handling

Error handling has been ignored so far in the development of a solution, as we would like to

focus on the basic questions of responsibility assignment and object-oriented design. However,

in real application development, it is wise to consider error handling during the design phase.

For example, the contracts can be annotated with a brief discussion of typical error situations

and the general plan of response.

The UML does not have a special notation to illustrate exceptions. Rather, the message notation

of collaboration diagrams is used to illustrate exceptions. A collaboration diagram may start with

a message representing an exception handling.

Order of implementation

Classes need to be implemented (and ideally, fully unit tested) from least coupled and most

coupled. For example, in the POST system, possible first classes to implement are either

Payment or ProductSpecification. Next are classes only dependent on the prior implementations

ProductCatalog or SalesLineItem.

155155

Conclusion
The implementation made use of an object oriented programming language, however any

means can be used implementation as long as a the final DCD is present.

 Activity Assessment
i. Define a Java class for ProductCatalog

ii. Define a Java class for Store.

iii. Define a Java class for Sale

iv. From individual/group case studies, create a Java code from the developed case

 project DCD. (It can be part of it as well)

 UNIT SUMMARY

Having a DCD in palce, any means of implementation can be adopted. This due to the fact that

for many years, the term object oriented (OO) was used to denote a software development

approach that used one of a number of object-oriented programming languages (e.g., Java,

C++). Today, the OO paradigm encompasses a complete view of software engineering. Meaning

that the OO is emphasizing more on the process which will lead to a quality software if designed

following the software development process.

 Unit Assessment
Instructions

Answer the following questions:

i. List and Describe three parts of the class interface (Answer: section 5.1.2)

ii. What does the term “protected” means in a class (Answer: section 5.1.2)

iii. What the term “reference attribute” mean (Answer: section 5.2.3)

Object Oriented Analysis and Design

156156

Unit V- Implementing Object-Oriented Designs into Programming Languages

Answers

i. Three parts of the class interface are(@ 2 marks)

(a) Public: A declaration that is accessible to all the clients which are the classes that have

attribute visibility to this class.

(b) Protected: A declaration that is accessible only to the class itself, its subclasses, and its

friends

(c) Private: A declaration that is accessible only to the class itself and its friends.

ii. The term “protected” in a class means a declaration that can be accessible only to the class

 itself, its subclasses, and its friends (2 marks)

iii. The term “reference attribute” mean (2 marks)

• An attribute that refers to another complex object, not to a primitive type such as
a String, Number and so on.

• The reference attribute of a class are suggested by the associations and
navigability in a design class diagram.

Unit Readings and Other Resources

• Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing,
an Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

• Ojo A. and Estevez El., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

 COURSE SUMMARY

Object-oriented system analysis and design is the model driven approach and the modeling is

being done by the help of the UML as a notation language. Several view points as presented

by the UML has been discussed. We can summarize the ccategories of UML Documents with

respect to SDLC from the first phase of requirement capture through implementation as shown

in Table C.1. If the approach will be systematically followed the design will be well produced.

157157

Table C.1: Categories of UML Documents for SDLC

Development

Phase

Static Behavioral

Requirements Use Cases

High Level Use Cases

Use Case Diagram

Analysis Domain or

Conceptual or Class

Diagram

System Sequence

Diagrams

Operation Contracts

Design Collaboration Diagrams

or Object Sequence

Diagram

Design Class

Diagrams

 Course Assessment
i. Briefly explain the following terms in object-oriented software engineering context:

(a) use case,

(b) aggregation,

(c) association,

(d) specialization,

(e) abstraction.

ii.Explain what categories of information are included in “post-condition” field of the

 operation contract.

iii. What are the differences and relationships between Functional Requirements and

 use cases? How can they be identified?

Object Oriented Analysis and Design

158158

Unit V- Implementing Object-Oriented Designs into Programming Languages

 iv. Briefly describe five GRASP Patterns. Whenever possible provide an example

v. Object-oriented development methods are rapidly replacing older structured

 development methods. Has structured development failed and why should object

 oriented development prove to be any better?

vi. Design a class called PhoneNumber, which represents a phone number then

implement it in C++. A phone number has three parts country code, city code and the

line number. For example given the phone number 255-22-2708624, the country code

is 255, the city code is 22 and the line number is 2708624. There should be a way to

access all the three parts of a phone number. Once a phone number object is created,

the city code and the line number cannot be changed. However the country code may

be changed. The phone number class should have a method called toString (), which

returns a string in this format (country code)-city code-line number (i.e. left bracket,

country code, right bracket, dash, city code, dash, line number)

vii. Total (T) Ltd wishes to computerise their petrol pumps. The program to be designed

must start in wait state. On pressing any key there shall be a request to put the pump

nozzle into the petrol tank. There are FOUR types of fuel available: LPG at a cost of 800

Tshs per litre. Unleaded at a cost of 700 Tshs per litre. Diesel at a cost of 850 Tshs per

litre, Premium Unleaded at a cost of 900 Tshs per litre. Your program should cause the

user to select the type of fuel required. The user must be able to :

i. Cancel the transaction prior to and during money input.

ii. Enter the amount of fuel required. For safety reasons only a maximum of 50 litres

 can be delivered at a time.

iii.Prepay for the fuel

After dispensing there must be a thank you message and an indication of any overpaid

money that will be returned. There must be a request to return the nozzle to its holder.

The program must return to its wait state.

(a) Identify at least 10 classes for the program

(b) Identify at least four use cases then draw a use-case model

viii. A program is required to run the controller of a burglar alarm system. A typical

system consists of a number of sensors connected by individual circuits to a central

control box containing the controller. The control box has a simple keypad and display.

Sensors include switches, heat detectors and motion detectors. Each sensor has an

identification code which can be read by the controller to identify the sensor.

159159

 The controller allows an operator to select which sensors are active and turn on or

off the system. If a sensor is triggered when the system is active, the controller must

activate the alarms (a siren and a bell) and display a message on the display panel

indicating which sensor is involved. The operator must enter a security code before

the system is turned on or off.”

(a) Create a detailed UML class diagram framework for the alarm program.

(b) Draw a use case model consisting of 4 use cases and actors that interact with them.

 Describe each use case in 1-3 sentences.

ix. Consider the following scenarion

STREPT is an academic system. Some of the exercises concern a student record system.

Students belong to departments like Computing or Electronics. Departments are

organized into faculties, like Science or Engineering. Students study for a qualification

like a Degree in Mathematics or a Post-Graduate Diploma in Holistic Synergizing. To

obtain a qualification, students take courses.

Courses last for an academic year and consist of one or more modules like

NumberTheory or PropositionalCalculus. Each module is worth a number of credit

points and each course has a required credit points total. Courses and modules vary

a little bit, year by year. Credit points, prerequisites and durations might be modified,

for example. A presentation is what the actual delivery of course or module is called.

a) Write at least eight (8) functional requirements for STREPT academic system. For

each functional requirement provide the requirement cross references, description, and

category.

(b) Apart from “System Administrator” role, identify at least two more possible actors

of this system, and describe their role to play

(c) Identify major use cases for this system and Draw a simple use case diagram showing

identified possible actors and use cases for each

x.Pretend that you are going to build a new system that automates or improves the

interview process for the career services department of your school.

(a) Develop a requirements definition for the new system. Include both functional and

only two (2) important nonfunctional system requirements.

(b) Describe two possible main actors

(c) Identify use cases and represent it using a use case diagram for two identified actors

in 5 (ii)

(d) From a use case diagram presented above, provide a detailed use case description

for any two of the use cases related to the basic functioning of the interview process

using the use case description template.

Object Oriented Analysis and Design

160160

Unit V- Implementing Object-Oriented Designs into Programming Languages

Course References

• Ariadne Training (2001), “UML Applied Object Oriented Analysis and Design
Using the UML”, Ariadne Training Limited

• Bjork R. C., (2004), “ATM Simulation”, ATM Online”, URL: http://www.math-cs.
gordon.edu/courses/cps211/ATMExample/

• Booch G., Rumbaugh J. and Jacobson I. (2005), “ Unified Modeling Language
User Guide”, Addison Wesley , Second Edition

• Larman C. (2004), “Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development”, (3rd Edition) 3rd
Edition, Prentice Hall; 3 edition (October 30, 2004), ISBN-13: 978-0131489066

• Liu, Z. (2001), “Object-Oriented Software Development Using UML”, March, The
United University – International Institute for Software Technology (UNU/IIST),
Report No. 229.

• Nellen, T. and Mayo, L. (2000), “We Learn by Doing”, URL: http://english.ttu.edu/
kairos/5.1/coverweb/nellenmayo/doing.html.

• Ojo A. and Estevez E., (2005), “Object-Oriented Analysis and Design with UML”,
Training Course, The United Nations University, UNU-IIST International Institute for
Software Technology, e-Macao Report 19, Version 1.0, October.

• Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach”
Fifth Edition, McGraw-Hill Higher Education, ISBN 0073655783

• Sommerville Ian (2000), “Software Engineering (6th Edition)”. Addison-Wesley,
Boston USA

161161

Object Oriented Analysis and Design

162162

Unit IV: Object-Oriented Design

163163

2017 AVU

The African Virtual University
Headquarters

Cape Office Park

Ring Road Kilimani

PO Box 25405-00603

Nairobi, Kenya

Tel: +254 20 25283333

contact@avu.org

oer@avu.org

The African Virtual University Regional
Office in Dakar

Université Virtuelle Africaine

Bureau Régional de l’Afrique de l’Ouest

Sicap Liberté VI Extension

Villa No.8 VDN

B.P. 50609 Dakar, Sénégal

Tel: +221 338670324

bureauregional@avu.org

