
Applied Computer Science: CSI 4105

SOFTWARE
ENGINEERING
Dr. Ellen Ambakisye Kalinga

Foreword

The African Virtual University (AVU) is proud to participate in increasing access to education in

African countries through the production of quality learning materials. We are also proud to

contribute to global knowledge as our Open Educational Resources are mostly accessed from

outside the African continent.

This module was developed as part of a diploma and degree program in Applied Computer

Science, in collaboration with 18 African partner institutions from 16 countries. A total of

156 modules were developed or translated to ensure availability in English, French and

Portuguese. These modules have also been made available as open education resources

(OER) on oer.avu.org.

On behalf of the African Virtual University and our patron, our partner institutions, the African

Development Bank, I invite you to use this module in your institution, for your own education,

to share it as widely as possible and to participate actively in the AVU communities of practice

of your interest. We are committed to be on the frontline of developing and sharing Open

Educational Resources.

The African Virtual University (AVU) is a Pan African Intergovernmental Organization

established by charter with the mandate of significantly increasing access to quality

higher education and training through the innovative use of information communication

technologies. A Charter, establishing the AVU as an Intergovernmental Organization, has

been signed so far by nineteen (19) African Governments - Kenya, Senegal, Mauritania, Mali,

Cote d’Ivoire, Tanzania, Mozambique, Democratic Republic of Congo, Benin, Ghana, Republic

of Guinea, Burkina Faso, Niger, South Sudan, Sudan, The Gambia, Guinea-Bissau, Ethiopia

and Cape Verde.

The following institutions participated in the Applied Computer Science Program: (1)

Université d’Abomey Calavi in Benin; (2) Université de Ougagadougou in Burkina Faso;

(3) Université Lumière de Bujumbura in Burundi; (4) Université de Douala in Cameroon; (5)

Université de Nouakchott in Mauritania; (6) Université Gaston Berger in Senegal; (7) Université

des Sciences, des Techniques et Technologies de Bamako in Mali (8) Ghana Institute of

Management and Public Administration; (9) Kwame Nkrumah University of Science and

Technology in Ghana; (10) Kenyatta University in Kenya; (11) Egerton University in Kenya; (12)

Addis Ababa University in Ethiopia (13) University of Rwanda; (14) University of Dar es Salaam

in Tanzania; (15) Universite Abdou Moumouni de Niamey in Niger; (16) Université Cheikh Anta

Diop in Senegal; (17) Universidade Pedagógica in Mozambique; and (18) The University of the

Gambia in The Gambia.

Bakary Diallo

The Rector

African Virtual University.

Software Engineering

22

Production Credits

Author
Dr. Ellen Ambakisye Kalinga

Peer Reviewer
Robert Oboko

AVU - Academic Coordination
Dr. Marilena Cabral

Overall Coordinator Applied Computer Science Program
Prof Tim Mwololo Waema

Module Coordinator
Robert Oboko

Instructional Designers
Elizabeth Mbasu

Diana Tuel

Benta Ochola

Media Team
Sidney McGregor			 Michal Abigael Koyier

Barry Savala 				 Mercy Tabi Ojwang

Edwin Kiprono				 Josiah Mutsogu

Kelvin Muriithi				 Kefa Murimi

Victor Oluoch Otieno			 Gerisson Mulongo

3

 Production Credits

3

Copyright Notice

This document is published under the conditions of the Creative Commons

http://en.wikipedia.org/wiki/Creative_Commons

Attribution http://creativecommons.org/licenses/by/2.5/

Module Template is copyright African Virtual University licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License. CC-BY, SA

Supported By

AVU Multinational Project II funded by the African Development Bank.

Software Engineering

44

Table of Contents
Foreword	 2

Production Credits	 3

Copyright Notice	 4

Supported By	 4

Acknowledgements	 5

Units. . 8

Assessment	 9

Unit 0. Introduction to Software System	 14

Introduction . . 14

Objectives . . 14

Learning Activities. . 15

Activity 1 –System Analysis and Design	 15

Activity 2 - Basics in Programming	 19

Unit I. Fundamentals of Software Engineering	 24

Activity 1 - Software	 25

Conclusion. . 27

Activity 2 – What is Software Engineering	 28

Conclusion . 29

Activity 3 – Software Applications	 30

Conclusion. . 32

Activity 4 – Software Development Process	 32

Activity 5 – Software Development Life Cycle	 35

Conclusion. . 39

Activity 6 – Software Development Approaches	 39

Conclusion. . 44

 Unit Assessment. . 	
	 45

Unit II: Planning a Software Project and Software Requirements Analysis
and Specification.	 47

55

Introduction . . 47

Objectives . . 47

Learning Activities. . 48

Activity 1 – Requirement Engineering	 48

Conclusion. . 53

Activity 2 – Planning Software Project	 53

Conclusion. . 59

Assessment . . 59

Unit Assessment. . 59

Unit III: Software Design	 61

Unit Introduction. . 61

Unit Objectives . . 61

Learning Activities. . 62

Activity 1 – Software Design	 62

Conclusion. . 68

Activity 2 – The Design Process	 68

Conclusion. . 78

Activity 3 – Other Aspects of the Software Design	 78

Conclusion. . 80

Unit Assessment. . 81

Unit IV: Implementation and Testing	 83

Unit Introduction. . 83

Unit Objectives . . 83

Learning Activities. . 84

Activity 1 – Software Coding	 84

Conclusion. . 87

Activity 2 – Software Testing Fundamentals	 87

Conclusion. . 89

Activity 3 – Levels of Testing	 89

Conclusion. . 93

Software Engineering

66

Activity 4 – White-Box and Black-Box Testing 	 94

Conclusion. . 99

 Unit Assessment. . 100

Unit V: Maintenance and Project Management	 101

Unit Introduction. . 101

Unit Objectives . . 101

Learning Activities. . 102

Activity 1 – Software Maintenance Phase	 102

Conclusion. . 105

Activity 2 – Software Risk Analysis and Management	 106

55

Software Engineering

66

Course Overview
Welcome to Software Engineering
Software engineering is concerned with all aspects of software production from the early

stages of system specification through to maintaining the system after it has gone into use

(Laurie Williams 2004). To engineering perspective, SE adopts a systematic and organized

approach to develop systems.

The course exposes students on how to use several specific practices and techniques used

in developing software. It is required to familiarize learners to industrial modeling tools with

the aim of exposing them to state-of-the-art practices with respect to software development.

At the end of the module , student will have a better understanding of the complexities

as well as subtleties of the various software development activities that include working in

a team or group. Students will learn process models, software testing techniques and

project management skills used in building software effectively, apply good practices,

effective design techniques, and development tools. SE is needed to develop all kinds of

software projects including complex software projects.

Prerequisites

•	 Introduction to database systems

•	 Introduction to structured programming

Material
The materials required to complete this course are:

•	 Text books

•	 Lecture notes

•	 Software tools

•	 Online Videos

•	 Wiki pages / Forum discussion

Course Goals
Upon completion of this course the learner should be able to:

•	 Extract, analyze and specify software requirements through a productive working
relationship with various stakeholders and communicate effectively in an ethical

manner as software engineering professionals.

 Course Overview

77

•	 Use the concepts of computer science and engineering principles to develop
software projects

•	 Apply proven and best practices to develop a quality software within time and
budgets

•	 Design, develop, and verify system and application software in industrial,
business, and personal applications.

Units

Unit 0: Pre-Assessment
This unit requires you to have an introductory part for this module. It reminds the basic

knowledge which will be used in Software Engineering module. This includes the basic

knowledge of what is a software system, who are participants in software system development

computer programming, the software development cycle and the cycle for data processing

with principles of structured programming.

Unit 1: Fundamentals of Software Engineering
The topic intends to introduce and explain the importance of SE in software development. It

describes problems faced software development and provides ethical and professional issues

needed in software engineering discipline. Software development needs a systematic process.

This part also explains a series of steps (a roadmap) that helps to create quality software

product. It also describes generic process models.

Unit 2: Planning a Software Project and Software
Requirements Analysis and Specification
This unit introduces the bases for obtaining the software requirement specification by

employing requirement engineering mechanisms. It explains how to understand what

customers want, analyze and validate their requirements and finally produce requirement

specification.

The unit also elaborates a set of activities related to software project planning. Software

project planning touches the cost estimation of the project and the project scheduling.

Software Engineering

88

Unit 3: Software Design
The purpose of the software design is to produce a model or a representation of an entity

that will later be built. It can be traced to a customer’s requirements and at the same time

assessed for quality against a set of predefined criteria for “good” design. This unit describes

design objectives and design principles. It elaborates design software processes which

include: Architectural Design, Abstract Design, User-Interface Design, Low-Level Design.

Function-oriented design, object-oriented design, design notation and specification and

verification for design were also presented.

Unit 4: Implementation and Testing
Software testing is a critical element of software quality assurance and represents the ultimate

review of specification, design, and code generation. It is the assurance of the responds to

the specifications from the design phase to implementation. This unit addresses in general

all aspects related to the implementation and testing of software. It describes approached

techniques used to implement and the mechanisms used to perform software testing

developed. It also presents the explored techniques in the whole process.

Unit 5: Maintenance and Project Management
This unit will focus on all aspects related to the management and maintenance of software.

The unit explains why software maintenance is needed. It also explains categories of

maintenance, an overview of maintenance costs and factors affecting maintenance. Lastly, the

unit touches issues of software risk analysis and management.

Assessment
Formative assessments, used to check learner progress, are included in each unit. Summative

assessments, such as final tests and assignments, are provided at the end of each module and

cover knowledge and skills from the entire module. Summative assessments are administered

at the discretion of the institution offering the course. The suggested assessment plan is as

follows:

20 marks Consultation of materials and resources

40 marks Practical (Hands-on) exercises

40 marks Formative and summative assessments

 Course Overview

99

Schedule

Estimated time Activities Unit

1 Weeks (8 Hrs) Introduction to Software System Unit 0

3 Weeks (24 Hrs) Fundamentals of Software Engineering Unit I

3 Weeks (24 Hrs) Planning a software project and Software

requirements analysis and specification

Unit II

3 Weeks (24 Hrs) Software Design Unit III

3 Weeks (24 Hrs) Implementation and Testing Unit IV

3 Weeks (24 Hrs) Maintenance and Project Management Unit V

15 Weeks (120

Hours)

Total

Readings and Other Resources
The readings and other resources in this course are:

Unit 0
Required readings and other resources:

Tran Thi Phien, (2006), “System Analysis and Design”, Institute of Information Technology

Vic Broquard, (2006), “C++ for Computer Science and Engineering, A step-by-Step Approach

to Learning C++ Programming for Beginners”, 4th Edition, Broquard eBooks, ISBN:

0-9705697-2-6

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Unit 1
Required readings and other resources:

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783.

Software Engineering

1010

Optional readings and other resources:

Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United Nations

University, UNU-IIST International Institute for Software Technology, Tech Report 229.

Sommerville I., (2000), “Software Engineering (6th Edition)”. Addison-Wesley, Boston USA

Unit 2
Required readings and other resources:

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783

Optional readings and other resources: Sommerville I., (2000), “Software Engineering (6th

Edition)”. Addison-Wesley, Boston USA

Unit 3
Required readings and other resources:

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783

Optional readings and other resources:

Sommerville I., (2000), “Software Engineering (6th Edition)”. Addison-Wesley, Boston USA

Unit 4
Required readings and other resources:

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783.

 Course Overview

1111

Optional readings and other resources:

Sommerville I., (2000), “Software Engineering (6th Edition)”. Addison-Wesley, Boston USA

Abran A. and Moore J. W., (2004), “IEEE Guide to the Software Engineering Body of

Knowledge (SWEBOK)”,

David Gustafson (2002), “Theory and Problems of Software Engineering”, Schaum’s Outline

Series, McGraw-Hill, 0-07-140620-4

Unit 5
Required readings and other resources:

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783

Optional readings and other resources

Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United Nations

University, UNU-IIST International Institute for Software Technology, Tech Report 229.

Sommerville I., (2000), “Software Engineering (6th Edition)”. Addison-Wesley, Boston USA

Abran A. and Moore J. W., (2004), “IEEE Guide to the Software Engineering Body of

Knowledge (SWEBOK)”,

Gustafson D., (2002), “Theory and Problems of Software Engineering”, Schaum’s Outline

Series, McGraw-Hill, 0-07-140620-4

Software Engineering

1212

Unit 0. Introduction to Software
System
Introduction
When studying Software Engineering, there is a number of preliminary basic knowledge a

student/learner need to have. This unit reviews some of this basic knowledge. The unit starts

by reviewing system analysis and design. It describes the general overview of the computer

systems, types of systems, roles of users participating in system development life-cycle. The

unit also explains basics in programming, which include: cycle of data processing, steps

needed to create a program and structured programming. The purpose of this unit is to

determine your grasp of knowledge related to this course.

Objectives
Upon completion of this unit you should be able to:

•	 Define computer system and Describe types of systems

•	 Identify major players or participants in the software development

•	 Practice IPO data processing

•	 Elaborate steps in program creation

•	 Use structured programming in solving real problems

•	 Elaborate steps in program creation

•	 Use structured programming in solving real problems

KEY TERMS

A System:

A system is a collection of components that work together to realize

some objective forms of a system.

IPO:

This is Input, Process and Output (IPO), the most basic design cycle of

data processing of a program.

 Unit 0. Introcduction to Software System

1313

Learning Activities

Activity 1 – System Analysis and Design

Computer Systems

Systems are created to solve problems. One can think of the systems approach as an

organized way of dealing with a problem. In this dynamic world, the subject System Analysis

and Design (SAD), mainly deals with the software development activities.

What is a System

From Tran Thi Phien, (2006), A system can generally be defined as a collection of components

that work together to realize some objective forms of a system. A system may include

software, mechanical, electrical and electronic hardware and be operated by people. Basically

there are three major components in every system, namely input, processing and output. In a

system the different components are connected with each other and they are interdependent,

for example:

•	 Human body represents a complete natural system

•	 We are also bound by many national systems such as political system, economic
system, educational system and so forth

•	 The objectives of the system demand that some output is produced as a result of
processing the suitable inputs.

Types of Systems

As stated by Tran Thi Phien, (2006), there are many types of systems that we come into

contact with everyday. The one we are interested with is an automated, computerized

information system. Automated systems are the man-made systems that interact with or are

controlled by one or more computers. We can distinguish many different kinds of automated

systems, but they all tend to have five basic components:

Infrastructure: The physical and hardware system components, e.g. servers, computer

hardware: CPUs, disks, terminals, etc

Computer software: The programs and operating software of a system, including

operating systems, database systems, utilities, and applications (financial systems)

People: to operate the system, to provide its inputs and consume its outputs, and to provide

manual processing activities in a system. E.g. programmers, operators, users of the systems

and management

Data: The information captured, used, and supported by a system, including files and

databases. The information that the system remembers over a period of time.

Software Engineering

1414

Procedures: The programmed and manual guidelines, instructions, and steps involved

in operating systems, including information technology (IT) procedures for backup and

maintenance. Formal policies and instructions for operating the system.

Business systems use these system components to transform data inputs into information

outputs.

Participants to System Development

In a typical systems development project, there are the following major categories of players

(Tran Thi Phien, (2006)):

User

The most important player in the systems is the person (or group of people) for whom the

system is being built. He or she is the person whom will be interviewed, often in great detail,

to learn what features the new system must have to be successful. The user is the “owner” in

the sense that he or she receives, or inherits-and thus owns- the system when it is finally built.

The user is also the “customer” in at least two important respects:

As in so many other professions, “the customer is always right”, regardless of how demanding,

unpleasant, or irrational he or she may seem.

The customer is ultimately the person paying for the system and usually has the right and/or

the ability to refuse to pay if he or she is unhappy with the product received.

Management

Management is a rather loose term. There are several different kinds of managers:

User managers: managers in charge of several people in the operational area where the

new system will be used. These are usually middle-level managers who want systems that will

produce a variety of internal reports and short-term trend analyses.

Executive development project (EDP)/MIS managers: the person in charge of the

systems development project itself, and the higher-level managers who are concerned with

the overall management and allocation of resources of all the technical staff in the systems

development organization.

General management: top-level managers who are not directly involved in the EDP

organization or in the user organization. This might include the president and/ or chairman of

the organization

Systems analysts

The system analyst is a key member of any systems development project. In a boarder sense,

the systems analyst plays several roles:

 Unit 0. Introcduction to Software System

1515

Archaeologist and scribe: As a systems analyst, one of the main jobs is to uncover detail

and to document business policy that may exist only as “tribal tradition”, passed down from

generation to generation of users.

Innovator: The systems analyst must separate the symptoms of the user’s problem from the

true causes. With his or her knowledge of computer technology, the analyst must help the

user explore useful, new applications of computers.

Mediator: The systems analyst who often finds himself in the middle of users, managers,

programmers, auditors, and various other players, all of whom frequently disagree with one

another.

Project leader: Because the systems analyst is usually more experienced than the

programmers on the project, and since he is assigned to the project before the programmers

begin working, there is a natural tendency to assign project management responsibilities to

the analyst.

Systems designers

The systems designer is the person (or group of people) who will receive the output of the

systems analysis work. His or her job is to transform a technology-free statement of user

requirements into a high-level architectural design that will provide the framework within

which the programmer can work. In many case, the systems analyst and the systems designer

are the same person, or member of the same unified group of people. It is important for the

systems analyst and systems designer to stay in close touch throughout the project.

Programmers

Particularly on large systems development projects, the systems designers are likely to be

a “buffer” between the systems analysts and the programmers. The systems analysts deliver

their product to the system designers, and the system designers deliver their product to

the programmer. Systems analyst and the programmer may have little or no contact with

each other because work is often performed in a strictly serial sequence in many systems

development projects. The work of systems analysis takes place first and it has to be

completely finished before the work of programming begins.

Operations personnel

The operations personnel are responsible for the computer center, telecommunications

network, security of the computer hardware and data, as well as the actual running of

computer programs, mounting of disk packs, and handling of output from computer printers.

This happens after a new system has not only been analyzed and designed, but has also been

programmed and tested.

Software Engineering

1616

Management

Management is a rather loose term. There are several different kinds of managers:

User managers: managers in charge of several people in the operational area where the new

system will be used. These are usually middle-level managers who want systems that will

produce a variety of internal reports and short-term trend analyses.

Executive development project (EDP)/MIS managers: the person in charge of the systems

development project itself, and the higher-level managers who are concerned with the overall

management and allocation of resources of all the technical staff in the systems development

organization.

General management: top-level managers who are not directly involved in the EDP

organization or in the user organization. This might include the president and/ or chairman of

the organization

Systems analysts

The system analyst is a key member of any systems development project. In a boarder sense,

the systems analyst plays several roles:

Archaeologist and scribe: As a systems analyst, one of the main jobs is to uncover detail

and to document business policy that may exist only as “tribal tradition”, passed down from

generation to generation of users.

Innovator: The systems analyst must separate the symptoms of the user’s problem from the

true causes. With his or her knowledge of computer technology, the analyst must help the

user explore useful, new applications of computers.

Mediator: The systems analyst who often finds himself in the middle of users, managers,

programmers, auditors, and various other players, all of whom frequently disagree with one

another.

Project leader: Because the systems analyst is usually more experienced than the

programmers on the project, and since he is assigned to the project before the programmers

begin working, there is a natural tendency to assign project management responsibilities to

the analyst.

Systems designers

The systems designer is the person (or group of people) who will receive the output of the

systems analysis work. His or her job is to transform a technology-free statement of user

requirements into a high-level architectural design that will provide the framework within

which the programmer can work. In many case, the systems analyst and the systems designer

are the same person, or member of the same unified group of people. It is important for the

systems analyst and systems designer to stay in close touch throughout the project.

 Unit 0. Introcduction to Software System

1717

Programmers

Particularly on large systems development projects, the systems designers are likely to be

a “buffer” between the systems analysts and the programmers. The systems analysts deliver

their product to the system designers, and the system designers deliver their product to

the programmer. Systems analyst and the programmer may have little or no contact with

each other because work is often performed in a strictly serial sequence in many systems

development projects. The work of systems analysis takes place first and it has to be

completely finished before the work of programming begins.

Operations personnel

The operations personnel are responsible for the computer center, telecommunications

network, security of the computer hardware and data, as well as the actual running of

computer programs, mounting of disk packs, and handling of output from computer printers.

This happens after a new system has not only been analyzed and designed, but has also been

programmed and tested.

Exercise

What is system, give some definitions of system

How do you distinguish natural systems and man-made systems

List some automated systems and the rules to build them up

Who participate in system development? Explain the role of each of them

Activity 2 - Basics in Programming

The Cycle of Data Processing

The most important aspect of solving a problem on the computer is the initial design phase in

which one use paper and pencil to provide the precise steps the computer must take. Nearly

every significant program follows the same fundamental design and

it is called the Cycle of Data Processing.The Cycle of Data Processing is Input, Process

and Output. First the computer must input a set of data on which to work. Once the data

has been input into the computer, it can then process that data, often performing some

calculations on that information. When the calculations are finished, the computer outputs

that set of data and the results. The Cycle of Data Processing is called IPO for short. IPO is

the most basic design of a program. Thus, when you are confronting a computer problem

to solve, IPO is the starting point! Input a set of information first. Then do the requisite

processing steps using that information. Last, output the results.

Software Engineering

1818

The Steps Needed to Create a Program

The following steps represent an optimum procedure to follow to solve any problem on the

computer (Broquard V., 2006)):

Step 1

Fully understand the problem to be solved. Begin by looking over the output, what the

program is supposed to be producing, what are the results? Then look over the input that

the program will be receiving. Finally, determine what general processing steps are going

to be needed to turn that input into the required output. Part of this step of understanding

the problem involves determining the algorithm to be used. An algorithm is a finite series of

steps for solving a logical or mathematical problem.

Step 2

Design a solution using paper and pencil. This process involves two distinct activities.

The first action is to design what function(s) would best aid in the solution. Note these are

functions that you must write, and not those that are provided by the compiler manufacturer

e.g. sqrt.

The second action is crucial. Write out on paper the precise steps needed to solve the

problem in the precise sequence. This is often called pseudocode. Pseudocode is done by

using English and perhaps some programming language statements.

You are trying at this point to say in English the correct sequence of steps that must be

followed to produce the result.

Step 3

Thoroughly desk checks the solution. Desk checks means to play computer and follow

slavishly and precisely the steps written down in the solution. You are looking for errors at this

point, i.e. the whole purpose of desk checking is to find all errors in the solution.

Step 4

Code the solution into the programming language. With the pseudo coding and memory

drawings at hand, it becomes a fairly simple matter to convert the solution into a source

program.

 Unit 0. Introcduction to Software System

1919

Step 5

Compile the program. If there are any errors found by the compiler, these are called syntax

errors. Again a syntax error is just incorrect coding. Just fix up the mistyping and recompile.

Once you have a clean compile and built the program (and have an executable file), go on to

the next step.

Step 6

Test the program with one set of data. Try inputting one set of test data only. Examine the

output and verify it is correct. An error here is called a runtime logic error. If the results are

not correct, then you have missed something. It is back to Step 1 or 2 to figure out what was

missed.

Step 7

Documentation: for the future use. Minimum documentation should include: Title of program,

Statement of the problem (abstract), programmer’s name, and date.

Structured Programming

A program is usually not limited to a linear sequence of instructions. During its process it

may branch off, repeat code or take decisions. There are a number of situations, where

the program may have to change the order of execution of statement based on certain

conditions, or repeat a group of statement until certain specified conditions are met. This

involve a kind of decision making to see whether a particular condition has occurred or not

and then direct the computer to execute certain statement accordingly.

Structured programs have the single-entry, single-exit property. This feature helps in reducing

the number of paths for flow of control. If there are arbitrary paths for the flow of control, the

program will be difficult to read, understand, debug, and maintain.

A program is one of two types (Agarwal et al, 2010):

Static structure or Dynamic structure.

The static structure is the structure of the text of the program, which is usually just a linear

organization of statements of the program. The dynamic structure of the program is the

sequence of statements executed during the execution of the program.

Both static and dynamic structures are the sequence of statements. The only difference is that

the sequence of statements in a static structure is fixed, whereas in a dynamic structure it is

not fixed. That means the dynamic sequence of statements can change from execution to

execution.

Software Engineering

2020

The static structure of a program can be easily understood. The dynamic structure of a

program can be easily seen at the time of execution.

Exercise

Clearly describe the cycle of data processing in computer programming

In short explain the steps needed to create a program

Explain the importance of “algorithms” in programming

Describe the possible errors to be encountered when testing programs

Distinguish between “static structure” and “dynamic structure”

 UMIT SUMMARY

There are several software development methodologies employed, one of them is the

structured approach. Structured approach is the most widely used methodology. Techniques

which are invariably present include entity relationship diagrams, dataflow diagrams and

data dictionaries. Structured Systems Analysis and Design prescribe analyzing and designing

software systems through functional decomposition – i.e. examining an information system

in terms of the functions it performs and the data it uses and maintains. The analyst identifies

the major functions or processes of a system, then breaks or decomposes each function down

into its smaller composite steps.

 Unit Assessment
 Check your understanding

1. Describe five basic components of automated systems.

 (Answer: section 0.1.3)

2. Explain the role of the following roles in system development:

 (Answer: section 0.1.4)

a) User

b) System Designer

3. Describe the three basic structured control constructs.

 (Answer: section 0.2.4)

 Unit 0. Introcduction to Software System

2121

Unit Readings and Other Resources

Tran Thi Phien, (2006), “System Analysis and Design”, Institute of Information Technology

Broquard V., (2006), “C++ for Computer Science and Engineering, A step-by-Step Approach

to Learning C++ Programming for Beginners”, 4th Edition, Broquard eBooks, ISBN:

0-9705697-2-6

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Software Engineering

2222

Unit I. Fundamentals of Software
Engineering
Unit Introduction
The unit starts by explaining what software is and its types. It describes the crisis and myths

of software development. The unit introduces the need of software engineering and Software

development process or software development life cycle will be explained. Generic process

models, Waterfall and evolutionary are included.

Unit Objectives
Upon completion of this unit you should be able to:

Describe the term software and its types

Define Software Engineering and explain why engineering is being employed in software

development

Illustrate phases involved in software development process, i.e. Software development Life

Cycle Describe generic process models of the software development

 KEY TERMS

Software: Software is a set of instructions with all associated

documentation and configuration data used to acquire inputs and to

manipulate them to produce the desired output in terms of functions and

performance as determined by the user of the software.

Software Engineering: Software engineering is the application of

a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software, and the study of these approaches

Software Product:

Software products are software systems delivered to a customer with the

documentation which describes how to install and use the system

SDLC: System development life cycle (SDLC) means combination of various

activities. In other words we can say that various activities put together are

referred as system development life cycle

Process: Process defines a framework for a set of key process areas that

must be established for effective delivery of software engineering technology

 Unit 1. Fundamentals of Software Engineering

2323

Learning Activities

Activity 1 - Software

Introduction

In this activity, the definition of software, types and classes of software, software crisis and

software myths are presented.

What is Software

Software is not just the program but also with all associated documentation and configuration

data which is needed to make these programs operate correctly. As defined by Agarwal et

al,(2010), software is a set of instructions used to acquire inputs and to manipulate them to

produce the desired output in terms of functions and performance as determined by the user

of the software. It also includes a set of documents, such as the software manual, meant to

help users understand the software system. Today’s software is comprised of Source Code,

Executables, Design Documents, Operations, and System Installation and Implementation

Manuals. In other words a software system consists of:

Instructions (a number of separate computer programs) that when executed provide

desired functions and performance

Configuration files which are used to set up these programs and data structures that

enables the programs to adequately manipulate information

System documentation which describes the structure of the system and

User documentation which explains the use the programs and the system

Software Crisis

Why software projects are not delivering the promised products according to the
specifications, on time, within budget and to the quality specified?

Software development was in crisis (disaster) because the methods (if there were any) used

were not good enough:

Techniques applicable to small systems could not be scaled up

Major projects were sometimes years late, they cost much more that originally predicted

Software developed were unreliable, performed poorly and were difficult to maintain

During software development, many problems are raised and that set of problems is known

as the software crisis. When software is being developed, problems are encountered

associated with the development steps.

Software Engineering

2424

Problems

Problems encountered include:

•	 Schedule and cost estimates are often grossly inaccurate.

•	 The “productivity” of software people hasn’t kept pace with the demand for their
services.

•	 The quality of software is sometimes less than adequate.

•	 With no solid indication of productivity, we can’t accurately evaluate the efficiency
of new, tools, methods, or standards.

•	 Communication between the customer and software developer is often poor.

•	 Software maintenance tasks overwhelm the majority of all software funds.Causes

Causes of the problems include:

•	 The quality of the software is not good because most developers use historical
data to develop the software.

•	 If there is delay in any process or stage (i.e., analysis, design, coding & testing)
then scheduling does not match with actual timing.

•	 Communication between managers and customers, software developers, support
staff, etc., can break down because the special characteristics of software and the
problems associated with its development are misunderstood.

•	 The software people responsible for tapping the potential often change when it is
discussed and resist change when it is introduced.

Software Crisis from the Programmer’s Point-of-View

From Programmers’ point of view problems include: Problem of compatibility, Problem of

portability, Problem in documentation, Problem of piracy of software, Problem in coordination

of work of different people, Problem of proper maintenance.

of piracy of software, Problem in coordination of work of different people, Problem of proper

maintenance.

Software Crisis from the User’s Point-of-View

From the User’s Point-of-View problems include: high costs of software, deterioration of

Hardware, lack of specialization in development, problem of different versions of software,

problem of views, and problem of bugs.

 Unit 1. Fundamentals of Software Engineering

2525

Software Myths

Many causes of a software difficulty can be traced to a mythology - Myths (tradition way) that

arose during the early history of software development, some being (Pressman, 2001 and

Agarwal et al, 2010):

•	 We already have a book that’s full of standards and procedures for building
software, won’t that provide my people with everything they need to know?

•	 “A general statement of objectives” is all I need to begin writing programs; we
can fill in the details later.

•	 If we get behind schedule, we can add more programmers and catch up.

•	 I have got to begin coding because we are already late!

•	 Project requirement continuously changes, but changes can be easily
accommodated because software is flexible.

•	 It is impossible to assess the quality of a program until after it is written and
working.

•	 Any competent engineer can write programs.

•	 Let us run a few test cases and then we’ll be finished!

•	 I know what the program does, I don’t have time to document it. The only
deliverable work product for a successful project is the working program.

•	 My people do have state-of-art software development tools. After all, we buy
them the newest computers

•	 Working on programs that were written 30 years ago. How can I use modern
software engineering techniques?

Conclusion
The solution to problems raised during software development can be done by applying an

engineering approach to software development, which includes procedures for Planning,

Development, Quality control, Validation and Maintenance. The approach has to be applied

consistently, across all types of software, hence the name “Software Engineering”.

Software Engineering

2626

 Assessment

1.	 Define software.

2.	 What are the different myths and realities about software?

3.	 What are the different software components?

4.	 What is a software crisis? Explain the problems of a software crisis.

5.	 What are software myths?

6.	 The “myths” noted are slowly fading as the years pass, but others are
taking their place. Attempt to add one or two “new” myths.

Activity 2 – What is Software Engineering

Introduction

This sub-unit provides the concept of applying engineering norms in software development,

hence the name “Software Engineering”

Definition

As defined by Pollice, 2005 and IEEE 1993,

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software, and the
study of these approaches.

The key criteria for SE are: a well-defined methodology, Predictable milestones, traceability

among steps, documentation and control that is maintainability. SE is concerned with the

theories, methods and tools which are needed to develop software. A SE is not to produce a

working software system only, but also documents such as system design, user manual, etc.

Software engineering deals with both the process of software engineering and the final

product. The right process will help produce the right product, but the desired product will

also affect the choice of which process to use. A traditional problem in software engineering

has been the emphasis on either the process or the product to the exclusion of the other.

Software-Engineering Principles

Software-engineering principles deal with both the process of software engineering and the

final product.

 Unit 1. Fundamentals of Software Engineering

2727

The right process will help produce the right product, but the desired product will also affect

the choice of which process to use. A traditional problem in software engineering has been

the emphasis on either the process or the product to the exclusion of the other. Both are

important. To apply principles, the software engineer should be equipped with appropriate

methods (general guidelines that govern the execution of some activity; they are accurate,

systematic, and disciplined approaches.) and specific techniques that help incorporate the

desired properties into processes and products.

Software Product

Software products are software systems delivered to a customer with the documentation

which describes how to install and use the system. The critical characteristics of a software

product include (Liu, 2001):

Usability: must be useful and usable to improve people’s lives.

Software is flexible. A program can be developed to do almost anything. A program can be

developed to do almost anything. The characteristic may help to accommodate any kind of

change.

Maintainability: should be possible to evolve software to meet the changing needs of

customers

Dependability: includes a range of characteristics; reliability, security and safety. Dependable

software should not cause physical or economic damage in the event of system failure.

Efficiency: should not make wasteful use of system resources such as memory and processor

cycles

Conclusion

To build good systems, we need a well defined development process with clear phases of

activities, each of which has an end product, methods and techniques for conducting the

phases of activities and for modeling their products and tools for generating the products.

The importance of software product characteristics varies from system to system, and

optimizing all the characteristics is difficult as some are exclusive.

 Assessment

1.	 What is software engineering?

2.	 Explain characteristics of software product.

Software Engineering

2828

As software becomes more pervasive, risks to the public (due to faulty programs) become

an increasingly significant concern. Develop a realistic doomsday scenario (other than Y2K)

where the failure of a computer program could do great harm (either economic or human).

Activity 3 – Software Applications

Areas of Software Applications

Software applications are grouped into eight areas for convenience as shown in Figure 1.1

(Agarwal et al, 2010).

System Software

A collection of programs used to run the system as assistance to other software programs.

Examples are compliers, editors, utilities, operating system components, drivers, and

interfaces. This software resides in the computer system and consumes its resources.

Real-time Software

Deals with a changing environment. First, it collects the input and converts it from analog to

a digital, control component that responds to the external environment and performs the

action. The software is used to monitor, control, and analyze real-world events as they occur.

Elements of real-time software include a data gathering component that collects and formats

information from an external environment, an analysis component that transforms information

as required by the application, a control/output component that responds to the external

environment, and a monitoring component that coordinates all other components so that

real-time response (typically ranging from 1 millisecond to 1 second) can be maintained.

Embedded Software

Software, when written to perform certain functions under control conditions and is further

embedded into hardware as a part of large systems, is called embedded

software. The software resides in the Read-Only-Memory (ROM) and is used to control the

various functions of the resident products. The products could be a car, washing machine,

microwave oven, industrial processing products, gas stations, satellites, and a host of other

products, where the need is to acquire input, analyze, identify status, and decide and take

action that allows the product to perform in a predetermined manner.

 Unit 1. Fundamentals of Software Engineering

2929

Business Software

Software designed to process business applications is called business software. Business

software can be a data- and information processing application. It can drive the business

process through transaction processing in on-line or in real-time mode. This software is used

for specific operations, such as accounting packages, management information systems,

payroll packages, and inventory management.

Personal Computer Software

Word processing, spreadsheets, computer graphics, multimedia, entertainment, database

management, personal and business financial applications, external networks, or database

access are only a few of hundreds of applications.

Artificial-intelligence Software

Artificial-intelligence software uses non-numerical algorithms, which use the data and

information generated in the system to solve complex problems. These problem scenarios

are not generally amenable to problem-solving procedures, and require specific analysis

and interpretation of the problem to solve it. Expert systems, also called knowledge-based

systems, pattern recognition (image and voice), artificial neural networks, theorem proving,

and game playing are representative of applications within this category.

Web-based Software

Web-based software includes the languages by which web pages are processed, i.e., HTML,

Java, CGI, Perl, DHTML, etc.

Software Engineering

3030

Engineering and Scientific Software

The design and engineering of scientific software deals with processing requirements in their

specific fields. They are written for specific applications using the principles and formulae of

each field.

Conclusion
Software is important because it affects nearly every aspect of our lives and has become

pervasive in our commerce, our culture, and our everyday activities. With Software

engineering, any type of software system, including complex systems can be build in timely

manner and with high quality

 Assessment
1.	 Give the various application areas of software.

2.	 Explain “Embedded Software” as one of the software application

Activity 4 – Software Development Process

Software Engineering Layers

Software engineering is a layered technology. Referring to Figure 1.2, any engineering

approach (including software engineering) must rest on an organizational commitment to

quality. The bedrock that supports software engineering is a quality focus.

 Unit 1. Fundamentals of Software Engineering

3131

To build good systems, we need:

A well defined development process with clear phases of activities, each of which has

an end product. Process defines a framework for a set of key process areas that must be

established for effective delivery of software engineering technology.

The key process areas form the basis for management control of software projects and

establish the context in which technical methods are applied, work products (models,

documents, data, reports, forms, etc.) are produced, milestones are established, quality is

ensured, and change is properly managed.

Methods and techniques for conducting the phases of activities and for modeling their

products

Methods encompass a broad array of tasks that include requirements analysis, design,

program construction, testing, and support. Software engineering methods rely on a set of

basic principles that govern each area of the technology and include modeling activities and

other descriptive techniques.

Tools for generating the products. Software engineering tools provide automated or semi-

automated support for the process and the methods.

The Process

The foundation for software engineering is the process layer. Software engineering process

is the glue that holds the technology layers together and enables rational and timely

development of computer software. In general, a process is a series of steps involving

activities, constraints, and resources that produce an intended output of some kind. Any

process has the following characteristics:

•	 The process prescribes all of the major process activities.

•	 The process uses resources, subject to a set of constraints (such as a schedule),
and produces intermediate and final products.

•	 The process may be composed of sub-processes that are linked in some way. The
process may be defined as a hierarchy of processes, organized so that each sub-
process has its own process model.

Software Engineering

3232

•	 Each process activity has entry and exit criteria, so that we know when the activity
begins and ends.

•	 The activities are organized in a sequence, so that it is clear when one activity is
performed relative to the other activities.

•	 Every process has a set of guiding principles that explain the goals of each
activity.

•	 Constraints or controls may apply to an activity, resource, or product

Software Process

All engineering is about how to produce products in a disciplined process. In general, a

process defines who is doing what when and how to reach a certain goal. A process to build

a software product or to enhance an existing one is called a software development process. A

software development process is thus often described in terms of a set of activities needed to

transform a user’s requirements into a software system (Figure 1.3).

The client’s requirements define the goal of the software development. They are prepared by

the client (sometime with the help from a software engineer) to set out the services that the

system is expected to provide, i.e. functional requirements. The functional requirements

should state what the system should do rather than how it is done. Apart from functional

requirements, a client may also have non-functional constraints that s/he would like to place

on the system, such as the required response time or the use ofa specific language standard.

There are four fundamental process activities, which are common to all software processes.

These activities are:

•	 Software specifications: The functionality of the software and constraints on its
operation must be defined.

 Unit 1. Fundamentals of Software Engineering

3333

•	 Software development: Software that meets the specifications must be produced.

•	 Software validation: The software must be validated to ensure that it does what
the customer wants.

•	 Software evolution: The software must evolve to meet changing customer needs.

Note that different software processes organize these activities in different ways and are

described at different levels of detail. The timing of the activities varies, as does the results of

each activity.

Conclusion

Any software development process must start with the activities of capturing and analyzing

the client’s requirements. These activities and the associated results form the first phase (or

sub-process) of the process called requirement analysis (Liu, 2010).

 Assessment
1.	 Why do we need a software development process.

2.	 Explain in detail the software-engineering process.

3.	 Describe four fundamental process activities used in software processes.

Activity 5 – Software Development Life Cycle

Introduction

The software-development life-cycle (SDLC) is used to facilitate the development of a large

software product in a systematic, well-defined, and cost-effective way. An information system

goes through a series of phases from conception to implementation. This process is called the

Software-Development Life-Cycle. Various reasons for using a life-cycle model include:

•	 Helps to understand the entire process

•	 Enforces a structured approach to development

•	 Enables planning of resources in advance

•	 Enables subsequent controls of them

•	 Aids management to track progress of the system

Software Engineering

3434

Phases of SDLC

The SDLC consists of several phases and these phases need to be identified along with

defining the entry and exit criteria for every phase. A phase can begin only when the

corresponding phase-entry criteria are satisfied. Similarly, a phase can be considered to be

complete only when the corresponding exit criteria are satisfied. If there is no clear indication

of the entry and exit for every phase, it becomes very difficult to track the progress of the

project. The SDLC can be divided into 5-9 phases, i.e., it must have a minimum of five phases

and a maximum of nine phases. On average it has seven or eight phases. These are:

•	 Project initiation and planning/Recognition of need/Preliminary investigation

•	 Project identification and selection/Feasibility study

•	 Project analysis

•	 System design

•	 Coding

•	 Testing

•	 Implementation

•	 Maintenance

Project initiation and planning/Recognition of need/Preliminary investigation

Recognition of need is nothing but the problem definition. It is the decision about problems

in the existing system and the impetus for system change. The first stage of any project or

SDLC is called the preliminary investigation. It is a brief investigation of the system under

consideration. At this stage the need for changes in the existing system are identified and

shortcomings of the existing system are detected.

Feasibility Study

A feasibility study is a preliminary study which investigates the information needs of

prospective users and determines the resource requirements, costs, benefits, and feasibility

of a proposed project. The goal of feasibility studies is to evaluate alternative systems and to

propose the most feasible and desirable systems for development.

System Analysis

Project analysis is a detailed study of the various operations performed by a system and their

relationships within and outside the system. Detailed investigation should be conducted with

personnel closely involved with the area under investigation, according to the precise terms

of reference arising out of the initial study reports.

 Unit 1. Fundamentals of Software Engineering

3535

The tasks to be carried out should be clearly defined such as:

•	 Examine and document the relevant aspects of the existing system, its
shortcomings and problems.

•	 Analyze the findings and record the results.

•	 Define and document in an outline the proposed system.

•	 Test the proposed design against the known facts.

•	 Produce a detailed report to support the proposals.

•	 Estimate the resources required to design and implement the system.

The objectives at this stage are to provide solutions to stated problems, usually in the form

of specifications to meet the users’ requirements and to make recommendations for a

new computer-based system. Analysis is an iterative and progressive process, examining

information flows and evaluating various alternative design solutions until a preferred solution

is available. This is documented as the system proposal.

System Design

System design is the most creative and challenging phase of the SDLC. The term design

describes the final system and process by which it is developed. This phase is a very

important phase of the life-cycle. The design process translates requirements into a

representation of the software that can be assessed for quality before coding begins. The

design is documented and becomes part of the software configuration.

Coding

The goal of the coding phase is to translate the design of the system into code in a given

programming language. In this phase the aim is to implement the design in the best possible

manner. This phase affects both testing and maintenance phases.

Well-written code can reduce the testing and maintenance effort. Hence, during coding the

focus is on developing programs that are easy to read and understand and not simply on

developing programs that are simple to write.

Testing

Testing is the major quality-control measure used during software development. Its basic

function is to detect errors in the software. The goal of testing is to uncover requirement,

design, and coding errors in the program. Testing is an extremely critical and time-consuming

activity. It requires proper planning of the overall testing process.

Software Engineering

3636

During the testing of the unit, the specified test cases are executed and the actual results are

compared with the expected output. The final output of the testing phase is the test report

and the error report, or a set of such reports (one for each unit tested).

Implementation

The implementation phase is less creative than system design. It is mainly concerned with

user training, site selection, and preparation and file conversion. Once the system has been

designed, it is ready for implementation. Implementation is concerned with those tasks

leading immediately to a fully operational system. It involves programmers, users, and

operations management, but its planning and timing is a prime function of a systems analyst.

It includes the final testing of the complete system to user satisfaction, and supervision of

initial operation of the system. Implementation of the system also includes providing security

to the system.

Maintenance

Maintenance is an important part of the SDLC. If there is any error to correct or change then

it is done in the maintenance phase. Maintenance of software is also a very necessary aspect

related to software development. Many times maintenance may consume more time than the

time consumed in the development. Also, the cost of maintenance varies from 50% to 80% of

the total development cost. Maintenance may be classified as:

Corrective Maintenance. Corrective maintenance means repairing processing or

performance failures or making changes because of previously uncorrected problems.

Adaptive Maintenance. Adaptive maintenance means changing the program function. This

is done to adapt to the external environment change, such as new government regulations.

For example, the current system was designed so that it calculates taxes on profits after

deducting the dividend on equity shares. The government has issued orders now to include

the dividend in the company profit for tax calculation. This function needs to be changed to

adapt to the new system.

Perfective Maintenance. Perfective maintenance means enhancing the performance or

modifying the programs to respond to the user’s additional or changing needs. It involves

changes that the client thinks will improve the effectiveness of the product, such as

additional functionality or decreased response time.As maintenance is very costly and very

essential, efforts have been done to reduce its costs. One way to reduce the costs is through

maintenance management and software modification audits. Software modification consists

of program rewriting and system-level-upgrading.

Preventive Maintenance. Preventive maintenance is the process by which we prevent our

system from being obsolete. Preventive maintenance involves the concept of re-engineering

and reverse engineering in which an old system with an old technology is re-engineered using

new technology. This maintenance prevents the system from dying out.

 Unit 1. Fundamentals of Software Engineering

3737

Conclusion
When you build a software system, it’s important to go through a series of steps. This is a road

map that helps in creating a timely and a high-quality result. This is a systematic approach in

which software engineering is emphasizing with a number of phases.

 Assessment
1.	 Discuss the SDLC in brief.

2.	 Give the basic phases in the software-development life-cycle.

3.	 What are the different steps in the software-development life-cycle?
What are the end products at each step?

4.	 What are the important activities that are carried out during the feasibility
study phase?

5.	 Explain the different categories of maintenance in the software-
development lifecycle.

Activity 6 – Software Development Approaches

Introduction

Approaches to systems development, in professional organizations, usually follow one of two

basic models: the waterfall model or the evolutionary model.

The Waterfall model

The waterfall model is a very common software development process model. Waterfall is the

basis of most of the structured development methods that came into use from the 1970s

onwards. It is also known as “The Linear Sequential Model”. The linear sequential model

suggests a systematic, sequential approach to software development that begins at the

system level and progresses through analysis, design, implementation, testing, and support or

maintenance as shown in Figure 1.4.

The Waterfall model provides a framework for planning top – down systems development.

The development flows down a number of successive activity stages. the stages in the

waterfall model overlap and feed information to each other.

Software Engineering

3838

During design, problems with requirements are identified; during coding, design problems

are found and so on. The development process is not a simple linear model but involves a

sequence of iterations of the development activities.

Advantages of Waterfall Model

The various advantages of the waterfall model include:

•	 It is a linear model.

•	 It is a segmental model.

•	 It is systematic and sequential.

•	 It is a simple one.

•	 It has proper documentation.

Disadvantages of Waterfall Model

The various disadvantages of the waterfall model include:

•	 It is difficult to define all requirements at the beginning of a project.

•	 This model is not suitable for accommodating any change.

•	 A working version of the system is not seen until late in the project’s life.

•	 It does not scale up well to large projects.

•	 It involves heavy documentation.

•	 We cannot go backward in the SDLC.

•	 There is no sample model for clearly realizing the customer’s needs.

•	 There is no risk analysis.

•	 If there is any mistake or error in any phase then we cannot make good software.

•	 It is a document-driven process that requires formal documents at the end of
each phase.

 Unit 1. Fundamentals of Software Engineering

3939

Problems with the Waterfall model

The waterfall model is the oldest and the most widely used paradigm for software

engineering. Among the problems that are sometimes encountered when the waterfall model

is applied are:

Real projects rarely follow the sequential flow that the model proposes. Although the waterfall

model can accommodate iteration, it does so indirectly. As a result, changes can cause

confusion as the project team proceeds.

It is often difficult for the customer to state all requirements explicitly. The waterfall model

requires this and has difficulty accommodating the natural uncertainty that exists at the

beginning of many projects.

The customer must have patience. A working version of the program(s) will not be available

until late in the project time-span. A major blunder, if undetected until the working program is

reviewed, can be terrible.

Each of these problems is real. However, the waterfall model has a definite and important

place in software engineering work. This model is only appropriate when the requirements

are well-understood. It provides a template into which methods for analysis, design,

implementation, testing, and support can be placed. The waterfall model remains a widely

used procedural model for software engineering.

Evolutionary Software Process Models

There is growing recognition that software, like all complex systems, evolves over a period of

time. Business and product requirements often change as development proceeds, making

a straight path to an end product unrealistic. The linear sequential model is designed for

straight-line development. In essence, this waterfall approach assumes that a complete

system will be delivered after the linear sequence is completed. Evolutionary models are

iterative. They are characterized in a manner that enables software engineers to develop

increasingly more complete versions of the software.

The techniques used in an evolutionary development include:

Exploratory development where the objective of the process is to work with the client to

explore their requirements and deliver a final system. The development starts with the parts

of the system which are understood. The system evolves by adding new features as they are

proposed by the client.

Prototyping where the objective of the development is to understand the customer’s

requirements and hence develop a better requirements definition for the system. The

prototype concentrates on experimenting with those parts of the client requirements which

are poorly understood.

Evolutionary development is based on the idea of developing an initial implementation,

exposing this to user comment and refine through many versions until an adequate system

has been developed.

Software Engineering

4040

Two evolutionary approaches

•	 The Incremental Model

•	 The Spiral Model

The Incremental Model

Rather than delivering the system as a single delivery, the development and delivery is broken

down into increments with each increment delivering part of the required functionality as

shown in Figure 1.5. User requirements are prioritised and the highest priority requirements

are included in early increments. Once the development of an increment is started, the

requirements are frozen though requirements for later increments can continue to evolve.

Analysis

Increment 2

Increment 3

Analysis

Design Code Test

Design Code Test

Analysis Design Code Test

Delivery of
2nd Increment

Delivery of
3rd Increment

Delivery of
1st Increment

The spiral model

The spiral model is an evolutionary software process model that couples the iterative nature

of prototyping with the controlled and systematic aspects of the linear sequential model. It

provides the potential for rapid development of incremental versions of the software. Using

the spiral model, software is developed in a series of incremental releases. The project is

executed in a series of short lifecycles, each one ending with a release of executable software.

During early iterations, the incremental release might be a paper model or prototype. During

later iterations, increasingly more complete versions of the engineered system are produced.

As per Figure 1.6, a spiral model is divided into a number of framework activities, also called

task regions. Typically, there are between three and six task regions

Customer communication —tasks required to establish effective communication between

developer and customer.

Planning —tasks required to define resources, timelines, and other project related

information.

Risk analysis —tasks required to assess both technical and management risks.

Engineering —tasks required to build one or more representations of the application.

4141

 Unit 1. Fundamentals of Software Engineering

Construction and release —tasks required to construct, test, install, and provide user

support (e.g., documentation and training).

Customer evaluation —tasks required to obtain customer feedback based on evaluation of

the software representations created during the engineering stage and implemented during

the installation stage.

Each of the regions is populated by a set of work tasks, called a task set, that are adapted to

the characteristics of the project to be undertaken.

Problems with the Iterations model

Model with the iterations suffers from the following problems

The process is not visible It is difficult and expensive to produce documents which reflect

every version of the system.

Systems are poorly structured Continual change tends to corrupt the software structure.

It is not always feasible for large systems, changes in later versions are very much difficult

and sometimes impossible. New understanding and new requirements sometimes force the

developer to start the whole project all over again. Software evolution is therefore likely to be

difficult and costly. Frequent prototyping is also very expensive.

These problems directly lead to the problems that the system is difficult to understand and

maintain. It is suggested that this model should be used in the following circumstances:

The development of relatively small systems.

The development of systems with a short lifetime. Here, the system is developed to support

some activity with is bounded in time, and hence the maintenance problem is not an

important issue.

Software Engineering

4242

The development of systems or parts of large systems where it is impossible to express the

detailed specification in advance

The ideas, principles and techniques of the evolutionary development process are always

useful and should be used in different stages of a wider development process, such as the

requirements understanding and validating in the waterfall process.

Conclusion
There are a number of different software development approaches or process models for

software engineering which have been proposed, each of which exhibiting strengths and

weaknesses, but all having a series of generic phases in common. Software development

approach can be chosen based on the nature of the project and application, the methods and

tools to be used, and the controls and deliverables that are required.

 Assessment
1.	 Draw the schematic diagram of the waterfall model of software development.

Also discuss its phases in brief.

2.	 What is a prototype? Draw the schematic diagram of the prototyping model
of software development. Also discuss its phases in brief.

3.	 How do linear and iterative process models differ?

4.	 Compare the spiral model with the prototyping model by giving their
advantages and disadvantages.

5.	 Is there ever a case when the generic phases of the software engineering
process don’t apply? If so, describe it.

 UNIT SUMMARY

Software has become the key element in the evolution of computer-based systems and

products. The problems encountered in terms of software crisis and myths have made the

software developers to apply engineering techniques in software development, hence the

Software Engineering discipline. Software is composed of programs, data, and documents.

Each of these items comprises a configuration that is created as part of the software

engineering process. The intent of software engineering is to provide a framework for

building software with higher quality.

4343

 Unit 1. Fundamentals of Software Engineering

This unit presented the introduction of software engineering. It explained why engineering

discipline was employed in software development after analyzing problems encountered in

software development. The unit went further and presented software development process

in the form of software development life cycle. Generic process models: the Waterfall and

evolutionary models were described.

 Unit Assessment		
 Check your understanding!

1.	 What do you understand by the term software? (Answer: section 1.1.2)

2.	 Describe three areas of software application. (Answer: section 1.3)

3.	 Distinguish between “engineering and scientific software” and “personal
computer software”? (Answer: section 1.3(h) and 1.3(e))

4.	 What are the different myths and reality about software?

5.	 (Answer: section 1.1.4)

6.	 In detail explain the process of software engineering.

7.	 (Answer: section 1.4.2)

8.	 Differentiate between “system analysis” and “system design” phases of
system development. (Answer: section 1.5.2 (c) and (d))

9.	 Differentiate between waterfall and evolutionary software process models

 (Answer: section 1.6)

Unit Readings and Other Resources

Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing, an

Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

Pressman Roger S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth Edition,

McGraw-Hill Higher Education, ISBN 0073655783

Liu Z., (2001), “Object-Oriented Software Development Using UML”, The United

Nations University, UNU-IIST International Institute for Software Technology, Tech Report 229.

Software Engineering

4444

Unit II: Planning a Software
Project and Software
Requirements Analysis and
Specification.
Introduction
This unit introduces the bases for obtaining the software requirement specification by

employing requirement engineering mechanisms. It explains how to understand what

customers want, analyze and validate their requirements and finally produce requirement

specification. The unit also elaborates a set of activities related to software project planning.

Software project planning touches the cost estimation of the project and the project

scheduling.

Objectives
Upon completion of this unit you should be able to:

•	 Define the following terms: Requirement Engineering, Requirement, software
planning

•	 Describe the processes adopted in requirement engineering

•	 Demonstrate the process of determining requirements

•	 Explain the concept of project management and its four important components
involved (people, product, process, and project)

•	 Describe the concept of project management based on finding the cost estimate
of the project

•	 Use the guided steps of software project estimation to obtain the cost of the
project

 KEY TERMS

Requirement:

A requirement is a feature of the system or a description of something the

system is capable of doing in order to fulfill the system’s purpose.

4545

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

Requirement Engineering: 	

Requirements engineering is the systematic use of proven principles,

techniques, and language tools for the cost-effective analysis, documentation,

and on-going evaluation of the user’s needs and the specifications of the

external behavior of a system to satisfy those user needs.

Software-Project Estimation:

Software-project estimation is the process of estimating various resources

required for the completion of a project.	 [Definition]

Learning Activities

Activity 1 – Requirement Engineering

Introduction

In this activity, the definition of “Requirement” and “Requirement Engineering” is presented.

It elaborates the process adopted in requirement engineering which will lead to obtaining the

system/software requirement specification

Requirement

A requirement is a feature of the system or a description of something the system is capable

of doing in order to fulfill the system’s purpose.

Requirements describe the “what” of a system, not the “how.” Requirements engineering

produces one large document, written in a natural language, and contains a description

of what the system will do without describing how it will do it. It provides the appropriate

mechanism for understanding what the customer wants, analyzing need, assessing feasibility,

negotiating a reasonable solution, specifying the solution unambiguously, validating the

specification, and managing the requirements

Requirements engineering is the systematic use of proven principles, techniques, and

language tools for the cost-effective analysis, documentation, and on-going evaluation of the

user’s needs and the specifications of the external behavior of a system to satisfy those user

needs. It can be defined as a discipline, which addresses requirements of objects all along a

system-development process.

As in Figure 2.1, the input to requirements engineering is the problem statement prepared

by the customer. The output of the Requirements Engineering (RE) process is a system

requirements specification called the Requirement Definition and Description (RDD). The

system requirements specification forms the basis for designing software solutions.

Software Engineering

4646

Types of Requirements

Requirements are classified into two types

Functional requirements.

They define factors, such as I/O formats, storage structure, computational capabilities, timing,

and synchronization.

Are those that relate directly to the functioning of the system.

These are the aspects of the system the client is most likely to recognize.

Non-functional requirements.

They define the properties or qualities of a product or they are constraints/restrictions

imposed on the system

They include usability, efficiency, performance, space, reliability, portability, etc.

Requirement Engineering Processes

Figure 2.2 illustrates the process steps of requirements engineering. Requirements

engineering consists of the following processes:

4747

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

Requirements gathering (elicitation)

It is a communication process between the parties involved and affected in the problem

situation. Sources information includes Customers, End Users, Primary Users, Secondary Users

and Stakeholders. Ask the customer, the users, and others what the objectives for the system

or product are, what is to be accomplished, how the system or product fits into the needs

of the business, and finally, how the system or product is to be used on a day-to-day basis.

The tools in elicitation are meetings, interviews, video conferencing, e-mails, and existing

documents study and facts findings. More than 90% to 95% elicitation should be complete in

the initiation stage while the remaining 5% is completed during the development life-cycle.

Requirements elicitation is normally difficult:

Problems of scope

The boundary of the system is not well defined or the customers/users specify unnecessary

technical detail that may confuse, rather than clarify, overall system objectives.

Problems of understanding

The customers/users are not completely sure of what is needed, have a poor understanding

of the capabilities and limitations of their computing environment, don’t have a full

understanding of the problem domain, have trouble communicating needs to the system

engineer, omit information that is believed to be “obvious,” specify requirements that conflict

with the needs of other customers/users, or specify requirements that are ambiguous or

untestable.

Problems of volatility

The requirements change over time

Requirements analysis and modelling

Once requirements have been gathered, the work products noted earlier form the basis for

requirements analysis. Analysis categorizes requirements and organizes them into related

subsets; explores each requirement in relationship to others; examines requirements for

validity, consistency, omissions, ambiguity; feasibility and ranks requirements based on the

needs of customers/users.

Validity confirms its relevance to goals and objectives and consistently confirms that it does

not conflict with other requirements but supports others where necessary.

Feasibility ensures that the necessary inputs are available without bias and error, and

technology support is possible to execute the requirement as a solution

In other point, analysis attempts to find for each requirement, its functionality, features, and

facilities and the need for these under different conditions and constraints.

Software Engineering

4848

Functionality states “how to achieve the requirement goal.”

Features describe the attributes of functionality, and

Facilities provide its delivery, administration, and communication to other systems.

A generic process model of the elicitation and analysis process is shown in Figure 2.3. The

process activities are:

Domain Understanding: Analysts must develop their understanding of the application

domain.

Requirements Collection: This is the process of interacting with stakeholders in the system

to discover their requirements. More domain understanding develops further during this

activity.

Classification: This activity takes the unstructured collection of requirements and organizes

them into coherent clusters.

Conflict Resolution: When multiple stakeholders are involved, requirements will conflict.

This activity is concerned with findings and resolving these conflicts.

Prioritization: In any set of requirements some priorities will be more important than others.

This stage involves interaction with stakeholders to discover the most important requirements.

Requirements Checking: The requirements are checked to discover if they are complete,

consistent, and in accordance with what stakeholders really want from the system.

4949

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

Requirements review (Validation)

This is a manual process which involves multiple readers from both client and contractor staff

checking the requirements document for anomalies and omissions.

Requirements validation examines the specification to ensure that all system requirements

have been stated unambiguously; that inconsistencies, omissions, and errors have been

detected and corrected; and that the work products conform to the standards established for

the process, the project, and the product.

A requirements review can be informal or formal.

Informal reviews simply involve contractors is discussing requirements with as many system

stakeholders as possible. Many problems can be detected simply by talking about the system

to stakeholders before making a commitment to a formal review.

In a formal requirements review, the development team should ‘walk’ the client through

the system requirements, explaining the implications of each requirement. The review team

should check each requirement for consistency and should check the requirements as a

whole for completeness. The formal technical review is the primary requirements validation

mechanism

Requirements management

Requirements define the capability that the software system solution must deliver and the

intended results that must result on its application to business problems. In order to generate

such requirements, a systematic approach is necessary, through a formal management

process called Requirements Management.

Requirements management is defined as a systematic approach to eliciting, organizing, and

documenting the requirements of the system, and a process that establishes and maintains

agreement between the customer and project team on the changing requirements of

the system. It is a set of activities that help the project team to identify, control, and track

requirements and changes to requirements at any time as the project proceeds.

Requirements management begins with identification. Each requirement is assigned a unique

identifier that might take the form

<requirement type><requirement #>

Where requirement type takes on values such as F = functional requirement, D = data

requirement, B = behavioral requirement, I = interface requirement, and P = output

requirement.

Software Engineering

5050

Conclusion
The important and difficult part in building a software system is in deciding precisely what

to build and establishing the detailed technical requirements. Requirements are identified

by eliciting information from the customer. Requirements are analyzed to assess their clarity,

completeness, and consistency. Finally, system requirements are managed to ensure that

changes are properly controlled.

 Assessment
1.	 What do the term requirements mean?

2.	 Explain the process of determining the requirements for a

 software-based system.

3.	 Discuss the significance and use of requirement engineering. What are
the problems in the formulation of requirements?

4.	 What are the crucial process steps of requirement engineering? Discuss
with the help of a diagram.

5.	 Explain the importance of requirements. How many types of requirements
are possible and why?

6.	 What is requirements elicitation? Discuss any two techniques in detail.

Activity 2 – Planning Software Project

Introduction

This activity briefly explains the concept of “project management” by emphasizing more on

project cost estimation. It presents four most need components in project management which

are people, product, process, and project. The activity also describes the main steps to be

followed in software-project estimation

Project Management

Project management involves the planning, monitoring, and control of the people, process,

and events that occur as software evolves from a preliminary concept to an operational

implementation. Building computer software is a complex undertaking, particularly if it

involves many people working over a relatively long time. That’s why software projects need

to be managed. In project management there is a need to understand the four P’s—people,

product, process, and project.

5151

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

People must be organized to perform software work effectively.

Communication with the customer must occur so that product scope and requirements are

understood.

Before a project can be planned, product1 objectives and scope should be established,

alternative solutions should be considered, and technical and management constraints should

be identified. Without this information, it is impossible to define reasonable (and accurate)

estimates of the cost, an effective assessment of risk, a realistic breakdown of project tasks, or

a manageable project schedule that provides a meaningful indication of progress.

A process must be selected that is appropriate for the people and the product.

A software process provides the framework from which a comprehensive plan for software

development can be established. A small number of framework activities are applicable to all

software projects, regardless of their size or complexity. A number of different task sets—tasks,

milestones, work products, and quality assurance points—enable the framework activities to

be adapted to the characteristics of the software project and the requirements of the project

team.

The project must be planned by estimating effort and calendar time to accomplish work

tasks: defining work products, establishing quality checkpoints. A planned and controlled

software project is the way of managing complexity. In order to avoid project failure, a

software project manager and the software engineers who build the product must avoid

a set of common warning signs, understand the critical success factors that lead to good

project management, and develop a commonsense approach for planning, monitoring and

controlling the project. Software project management begins with a set of activities that are

collectively called project planning. There is a need to estimate the work to be done, the

resources that will be required, and the time that will elapse from start to finish before the

project begin. Whenever estimates are made, we look into the future and accept some

degree of uncertainty as a matter of course.

Project Planning Objectives

The objective of software project planning is to provide a framework that enables the manager

to make reasonable estimates of resources, cost, and schedule. The planning objective is

achieved through a process of information discovery that leads to reasonable estimates.

Activities associated with software project planning include:

Determination of Software Scope

Function and performance allocated to software during requirement engineering should

be assessed to establish a project scope that is unambiguous and understandable at the

management and technical levels. Software scope describes the data and control to be

processed, function, performance, constraints, interfaces, and reliability.

Software Engineering

5252

Functions described in the statement of scope are evaluated and in some cases refined

to provide more detail prior to the beginning of estimation. Because both cost and

schedule estimates are functionally oriented, some degree of decomposition is often

useful. Performance considerations encompass processing and response time requirements.

Constraints identify limits placed on the software by external hardware, available memory, or

other existing systems.

Estimation of the Resource

Figure 2.4 illustrates development resources as a pyramid. The development environment—

hardware and software tools—sits at the foundation of the resources pyramid and provides

the infrastructure to support the development effort. At a higher level, we encounter reusable

software components— software building blocks that can dramatically reduce development

costs and accelerate delivery. At the top of the pyramid is the primary resource—people.

Each resource is specified with four characteristics: description of the resource, a statement

of availability, time when the resource will be required; duration of time that resource will

be applied. The last two characteristics can be viewed as a time window. Availability of the

resource for a specified window must be established at the earliest practical time.

Software Project Estimation

Effective software project estimation is one of the most challenging and important activities

in software development. Proper project planning and control is not possible without a sound

and reliable estimate. The following sub-unit elaborates more on software project estimation.

Project Cost Estimation

Estimation lays a foundation for all project planning activities and project planning, hence

provides the road map for successful software engineering. Underestimating software projects

and understaffing it often leads to low-quality deliverables, and the project misses the target

deadline leading to customer dissatisfaction and loss of credibility to the company.

5353

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

 On the other hand, overstaffing a project without proper control will increase the cost of the

project and reduce the competitiveness of the company

Software-project estimation is the process of estimating various resources required for the

completion of a project. Software-project estimation mainly encompasses the following steps:

Estimating the Size of the Project

There are many procedures available for estimating the size of a project, which are based

on quantitative approaches, such as estimating lines of code or estimating the functionality

requirements of the project called function points.

Estimating Efforts Based on Person-months or Person-hours

Person month is an estimate of the personal resources required for the project.

Estimating Schedule in Calendar Days/Month/Year Based on Total Person-
months Required and Manpower Allocated to the Project

The duration in calendar month = Total person-months/Total manpower allocated.

Estimating Total Cost of the Project Depending on the Above and Other
Resources

In a commercial and competitive environment, software-project estimation is crucial for

managerial decision-making.

Table 2.1 gives the relationship between various management functions and software metrics/

indicators. Project estimation and tracking help to plan and predict future projects and

provide baseline support for project management and supports decision-making

Activity Tasks Involved

Planning Cost estimation, planning for training of manpower,

project scheduling, and budgeting the project.

Controlling Size metrics and schedule metrics help the manager to

keep control of the project during execution.

Monitoring/ Metrics are used to monitor progress of the project and

wherever possible sufficient resources are allocated to

improve it.
improving

Software Engineering

5454

Estimating Size

Estimating the size of the software to be developed is the very first step to make an effective

estimation of the project. Customer requirements and system specifications form a baseline

for estimating the size of software. At a later stage of the project, system design documents

can provide additional details for estimating the overall size of the software.

The ways to estimate project size can be through past data from an earlier developed system.

The other way of estimation is through product feature/functionality. The system is divided

into several subsystems depending on functionality, and the size of each subsystem is

calculated.

Estimating Effort

Once the size of software is estimated, the next step is to estimate the effort based on the

size. The estimation of effort can be made from the organizational specifics of the software-

development life-cycle. Depending on deliverable requirements, the estimation of effort for a

project will vary.

Estimating Schedule

The next step in the estimation process is estimating the project schedule from the effort

estimated. The schedule for a project will generally depend on human resources involved in a

process. Efforts in person-months are translated to calendar months.

Schedule estimation in calendar months can be calculated using the following model

[McConnell]: Schedule in calendar months = 3.0*(person-months)1/3. Where the parameter

3.0 is variable, used depending on the situation that works best for the organization.

Estimating Cost

Cost estimation is the next step for projects. The cost of a project is derived not only from

the estimates of effort and size but from other parameters, such as hardware, travel expenses,

telecommunication costs, training costs, etc. Figure 2.6 depicts the cost-estimation process

and Figure 2.7 depicts the project-estimation process.

Reasons for Poor/Inaccurate Estimation

The following are some of the reasons for poor and inaccurate estimation:

•	 Requirements are imprecise. Also, requirements change frequently.

•	 The project is new and is different from past projects handled.

•	 Non-availability of enough information about past projects.

5555

 Unit II. Planning a Software Project and Software Requirements Analysis and Specification

•	 Estimates are forced to be based on available resources.

•	 Cost and time tradeoffs.

Problems associated with estimates:

•	 Estimating size is often skipped and a schedule is estimated, which is of more
relevance to management.

•	 Estimating size is perhaps the most difficult step, which has a bearing on all other
estimates.

•	 Good estimates are only projections and subject to various risks.

•	 Organizations often give less importance to collection and analysis of historical
data of past development projects. Historical data is the best input to estimate a
new project.

•	 Project managers often underestimate the schedule because management and
customers often hesitate to accept a prudent realistic schedule.

Project-Estimation Guidelines

Some guidelines for project estimation are as follows:

•	 Preserve and document data pertaining to past projects.

•	 Allow sufficient time for project estimation especially for bigger projects.

•	 Prepare realistic developer-based estimates. Associate people who will work on
the project to reach a realistic and more accurate estimate.

•	 Use software-estimation tools.

•	 Re-estimate the project during the life-cycle of the development process.

•	 Analyze past mistakes in the estimation of projects.

Conclusion
One of the problems affiliated in software development is to under-estimating resources

required for a project. Developing a practical project plan is essential to gain an

understanding of the resources required, and how these should be applied.

Assessment
Why does cost estimation play an important role in the software-development process?

Clearly describe processes for project-estimation

Explain the term “Estimate Effort” in view of the software cost estimation

What are the various reasons for poor/inaccurate estimation?

Software Engineering

5656

 UNIT SUMMARY

The software project planner must estimate three things before a project begins: how long it

will take, how much effort will be required, and how many people will be involved. The unit

presented requirement engineering and its process to obtain the requirement specification. It

also presented software project planning and specification in project cost estimation.

Unit Assessment
Check your understanding!

Discuss the significance and use of requirement engineering. (Answer: section 2.1.2)

What are the problems encountered during requirements gathering? (Answer: section

2.1.4.1)

Describe processes of requirement engineering. (Answer: section 2.1.4)

What does the term “Software Requirement Specification” mean? (Answer: section

2.1.4.3)

Why does cost estimation play an important role in the software-development process?

(Answer: section 2.2.4)

List and explain steps to be followed during software project estimation. (Answer:

section 2.2.4)

List six guidelines used for software project estimation. (Answer: section 2.2.7)

Unit Readings and Other Resources

•	 Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing,
an Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

•	 Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth
Edition, McGraw-Hill Higher Education, ISBN 0073655783

 

5757

Unit III: Software Design
Unit Introduction
The purpose of the software design is to produce a model or a representation of an entity

that will later be built. It can be traced to a customer’s requirements and at the same time

assessed for quality against a set of predefined criteria for “good” design. This unit defines

what a software design is. It describes design objectives and design principles. It further

elaborates design software processes which include: Architectural Design, Abstract Design,

User-Interface Design, Low-Level Design. Function-oriented design, object-oriented design,

design notation and specification and verification for design were presented.

Unit Objectives
Upon completion of this unit you should be able to:

•	 Describe what is software design

•	 Explain software design objectives and principles

•	 Distinguish and describe phases/processes of software design

•	 Describe importance of each phase/process of software design

•	 Distinguish between “Functional-Oriented” and “Object-Oriented “ approaches

•	 Develop design specifications and verify design

KEY TERMS

Software Design:

Software design is the practice of taking a specification of externally observable

behavior and adding details needed for actual computer system implementation,

including human interaction, task management, and data management details.

Design Principles

Software design is both a process and a model. The design process is a sequence

of steps that enable the designer to describe all aspects of the software to be

built.

Design Specifications

Design specifications address different aspects of the design model and are

completed as the designer refines his representation of the software.

 Unit III. Software Design

Software Engineering

5858

Learning Activities

Activity 1 – Software Design

Introduction

Software design sits at the technical kernel of software engineering and is applied regardless

of the software process model that is used. Beginning once software requirements have

been analyzed and specified, software design is the first of three technical activities—design,

code generation, and test—that are required to build and verify the software. Each activity

transforms information in a manner that ultimately results in validated computer software.

Definition of Software Design

Agarwal et al., (2010) is referring the definition of software design as stated by Coad and

Yourdon to be the practice of taking a specification of externally observable behavior and

adding details needed for actual computer system implementation, including human

interaction, task management, and data management details.

The input to software design includes an understanding of requirements, environmental

constraints and design criteria, while the output of the design effort is composed of the

following:

•	 Architecture design which shows how pieces are interrelated

•	 Specifications for any new pieces

•	 Definitions for any new data

During software design, software requirements specification feed the design task. Using one

of a number of design methods the design task produces a data design, an architectural

design, an interface design, and a component design.

The data design transforms the information domain model created during analysis into the

data structures that will be required to implement the software.

The architectural design defines the relationship between major structural elements of the

software, the “design patterns” that can be used to achieve the requirements that have been

defined for the system, and the constraints that affect the way in which architectural design

patterns can be applied [SHA96]. The architectural design representation—the framework of

a computer-based system—can be derived from the system specification, the analysis model,

and the interaction of subsystems defined within the analysis model.

The interface design describes how the software communicates within itself, with systems that

interoperate with it, and with humans who use it. An interface implies a flow of information

(e.g., data and/or control) and a specific type of behavior.

5959

 Unit III. Software Design

The component-level design transforms structural elements of the software architecture into a

procedural description of software components.

During design we make decisions that will ultimately affect the success of software

construction and, as important, the ease with which software can be maintained. The

importance of software design can be stated with a single word—quality. Design is the place

where quality is fostered in software engineering. Design provides us with representations

of software that can be assessed for quality. Design is the only way that we can accurately

translate a customer’s requirements into a finished software product or system. Software

design serves as the foundation for all the software engineering and software support steps

that follow. Without design, we risk building an unstable system:

•	 One that will fail when small changes are made;

•	 One that may be difficult to test;

•	 One whose quality cannot be assessed until late in the software process, when
time is short and many dollars have already been spent.

Design Objectives/Properties

Below are some of the properties or objectives of the software design:

Correctness

The design of a system is correct if the system built precisely according to the design

satisfies the requirements of that system. Clearly, the goal during the design phase is to

produce correct designs. The goal should focus in finding the best possible design within the

limitations imposed by the requirements and the physical and social environment in which the

system will operate.

Verifiability

Design should be correct and it should be verified for correctness. Verifiability is concerned

with how easily the correctness of the design can be checked. Various verification techniques

should be easily applied to design.

Completeness

Completeness requires that all the different components of the design should be verified, i.e.,

all the relevant data structures, modules, external interfaces, and module interconnections are

specified.

Software Engineering

6060

Traceability

Traceability is an important property that can get design verification. It requires that the entire

design element be traceable to the requirements.

Efficiency

Efficiency of any system is concerned with the proper use of scarce resources by the system.

The need for efficiency arises due to cost considerations. If some resources are scarce and

expensive, it is desirable that those resources be used efficiently. In computer systems, the

resources that are most often considered for efficiency are processor time and memory. An

efficient system consumes less processor time and memory.

Simplicity

Simplicity is the most important quality criteria for software systems. Maintenance of a

software system is usually quite expensive. The design of the system is one of the most

important factors affecting the maintainability of the system.

Design Principles

Software design is both a process and a model. The design process is a sequence of steps

that enable the designer to describe all aspects of the software to be built. It is important

to note, that creative skill, past experience, a sense of what makes “good” software, and an

overall commitment to quality are critical success factors for a competent design.

Like an architect’s plans for a house, the design model begins by representing the totality of

the thing to be built (e.g., a three-dimensional rendering of the house) and slowly refines the

thing to provide guidance for constructing each detail (e.g., the plumbing layout). Similarly,

the design model that is created for software provides a variety of different views of the

computer software.

Basic design principles enable the software engineer to navigate the design process.

Principles for software design as stipulated by Agarwal et al., 2010, include:

The design process should not suffer from “tunnel vision.”

A good designer should consider alternative approaches, judging each based on the

requirements of the problem, the resources available to do the job, and the design concepts.

The design should be traceable to the analysis model

Because a single element of the design model often traces to multiple requirements, it is

necessary to have a means for tracking how requirements have been satisfied by the design

model.

6161

 Unit III. Software Design

The design should not reinvent the wheel

Systems are constructed using a set of design patterns, many of which have likely been

encountered before. These patterns should always be chosen as an alternative to reinvention.

Time is short and resources are limited! Design time should be invested in representing truly

new ideas and integrating those patterns that already exist.

The design should “minimize the intellectual distance” between the software and the problem

as it exists in the real world.

That is, the structure of the software design should (whenever possible) mimic the structure of

the problem domain.

The design should exhibit uniformity and integration.

A design is uniform if it appears that one person developed the entire thing. Rules of style

and format should be defined for a design team before design work begins. A design is

integrated if care is taken in defining interfaces between design components.

The design should be structured to accommodate change

The design concepts discussed in the next section enable a design to achieve this principle.

The design should be structured to degrade gently, even when aberrant data, events, or

operating conditions are encountered

Well designed software should never “bomb.” It should be designed to accommodate

unusual circumstances, and if it must terminate processing, do so in a graceful manner.

Design is not coding, coding is not design

Even when detailed procedural designs are created for program components, the level of

abstraction of the design model is higher than source code. The only design decisions made

at the coding level address the small implementation details that enable the procedural

design to be coded.

The design should be assessed for quality as it is being created, not after the fact

A variety of design concepts (Section 13.4) and design measures (Chapters 19 and 24) are

available to assist the designer in assessing quality.

The design should be reviewed to minimize conceptual (semantic) errors

There is sometimes a tendency to focus on minutiae when the design is reviewed, missing

the forest for the trees. A design team should ensure that major conceptual elements of the

design (omissions, ambiguity, and inconsistency) have been addressed before worrying about

the syntax of the design model.

Software Engineering

6262

When these design principles are properly applied, the software engineer creates a design

that exhibits both external and internal quality factors [MEY88].

1 .External quality factors are those properties of the software
that can be readily observed by users (e.g., speed, reliability,
correctness, usability).

2. Internal quality factors are of importance to software
engineers. They lead to a high-quality design from the technical
perspective. To achieve internal quality factors, the designer
must understand basic design concepts.

As per Pressman, (2001), there are three design principles:

•	 Problem partitioning

•	 Abstraction and

•	 Top-down and Bottom-up design

Problem Partitioning

When solving a small problem, the entire problem can be tackled at once. But solving

larger problems, the basic principle is the time tested principle of “divide and conquer.”

This principle suggests dividing into smaller pieces, so that each piece can be conquered

separately. For software design, therefore, the goal is to divide the problem into manageably

small pieces that can be solved separately.

Abstraction

An abstraction of a component describes the external behavior of that component without

bothering with the internal details that produce the behavior. Abstraction is an crucial part of

the design process and it is essential for problem partitioning. Partitioning essentially is the

exercise in determining the components of a system. However, these components are not

isolated from each other, but interact with other components. In order to allow the designer

to concentrate on one component at a time, abstraction of other components is used.

Abstraction is used for existing components as well as components that are being designed.

Abstraction of existing components plays an important role in the maintenance phase.

During the design process, abstractions are used in a reverse manner not in the process of

understanding a system. During design, the components do not exist, and in the design the

designer specifies only the abstract specifications of the different components. The basic goal

of system design is to specify the modules in a system and their abstractions.

6363

 Unit III. Software Design

Once the different modules are specified, during the detailed design the designer can

concentrate on one module at a time. The task in detailed design and implementation is

essentially to implement the modules so that the abstract specifications of each module are

satisfied.

Top-down and Bottom-up Design

A system consists of components, which have components of their own, hence a system is a

hierarchy of components. The highest-level components correspond to the total system. To

design such hierarchies there are two possible approaches: top-down and bottom-up.

The top-down approach starts from the highest-level component of the hierarchy and

proceeds through to lower levels. By contrast,

A bottom-up approach starts with the lowest-level component of the hierarchy and proceeds

through progressively higher levels to the top-level component.

Top-Down Approach

A top-down design approach starts by identifying the major components of the system,

decomposing them into their lower-level components and iterating until the desired level of

detail is achieved.

Top-down design methods often result in some form of stepwise refinement. Starting from

an abstract design, in each step the design is refined to a more concrete level, until we reach

a level where no more refinement is needed and the design can be implemented directly.

The top-down approach has been promulgated by many researchers and has been found

to be extremely useful for design. Most design methodologies are based on the top-down

approach.

Bottom-Up Approach

A bottom-up design approach as shown in Figure 3.2 starts with designing the most basic or

primitive components and proceeds to higher-level components that use these lower-level

components. Bottom-up methods work with layers of abstraction. Starting from the very

bottom, operations that provide a layer of abstraction are implemented. The operations of

this layer are then used to implement more powerful operations and still a higher layer of

abstraction, until the stage is reached where the operations supported by the layer are those

desired by the system.

Note:

A top-down approach is suitable only if the specifications of the system are clearly known and

the system development is from scratch. However,

Bottom-up approach is used if a system to be built is from an existing system.

Software Engineering

6464

This is because it starts from some existing components. So, for example, if an iterative

enhancement type of process is being followed, in later iterations, the bottom-up approach

could be more suitable (in the first iteration a top-down approach can be used).

Conclusion
Software design encompasses the set of principles, concepts, and practices that lead to the

development of a high-quality system or product .Design principles establish an overriding

philosophy that guides the design work you must perform. Design concepts must be

understood before the mechanics of design practice are applied, and design practice itself

leads to the creation of various representations of the software that serve as a guide for the

constn1ction activity that follows Pressman, 2001).

Exercise

What is system design?

Explain, in detail, the three design principles in system design.

What is abstraction? What are the verification metrics for system design?

Define:

Problem partitioning

Abstraction

Top-down and bottom-up design

Activity 2 – The Design Process

Introduction

Software design is an iterative process through which requirements are translated into

a “blueprint” for constructing the software. Initially, the blueprint depicts a holistic view of

software. That is, the design is represented at a high level of abstraction—a level that can

be directly traced to the specific system objective and more detailed data, functional, and

behavioral requirements.

As design iterations occur, subsequent refinement leads to design representations at much

lower levels of abstraction. The means that the pieces of a problem are solvable separately;

the cost of solving the entire problem is more than the sum of the cost of solving all the

pieces. However, the different pieces cannot be entirely independent of each other as they

together form the system. The different pieces have to cooperate and communicate to solve

the larger problem.

6565

 Unit III. Software Design

Figure 3.3 shows the general model of the software design process.

Architectural Design

Large systems are always decomposed into subsystems that provide some related set of services.

The initial design process of identifying these subsystems and establishing a framework for

subsystem control and communication is called architectural design.

Architectural design represents the structure of data and program components that are

required to build a computer-based system. It considers the architectural style that the system

will take, the structure and properties of the components that constitute the system, and the

interrelationships that occur among all architectural components of a system.

The architecture is not the operational software. Rather, it is a representation that enables a

software engineer to:

•	 Analyze the effectiveness of the design in meeting its stated requirements,

•	 Consider architectural alternatives at a stage when making design changes is still
relatively easy, and Reducing the risks associated with the construction of the
software.

Architectural design methods have a look into various architectural styles for designing a system.

These are:

Data-centric architecture

Data-centric architecture involves the use of a central database operation of inserting and

updating it in the form of a table. A data store (e.g., a file or database) resides at the center of

this architecture and is accessed frequently by other components that update, add, delete, or

otherwise modify data within the store.

Software Engineering

6666

Figure 3.4 illustrates a typical data-centered style. Client software accesses a central repository. In

some cases the data repository is passive. That is, client software accesses the data independent

of any changes to the data or the actions of other client software.

Data-flow architecture

Data-flow architecture is central around the pipe and filter mechanism. This architecture is

applied when input data takes the form of output after passing through various phases of

transformations. These transformations can be via manipulations or various computations done

on the data.

Object-oriented architecture

In object-oriented architecture the software design moves around the clauses and objects of the

system. The class encapsulates the data and methods. The components of a system encapsulate

data and the operations that must be applied to manipulate the data. Communication and

coordination between components is accomplished via message passing.

Layered architecture

Layered architecture defines a number of layers and each layer performs tasks. The outer-most

layer handles the functionality of the user interface and the innermost layer mainly handles

interaction with the hardware.

The basic structure of a layered architecture is illustrated in Figure 3.5. A number of different

layers are defined, each accomplishing operations that progressively become closer to the

machine instruction set. At the outer layer, components service user interface operations. At

the inner layer, components perform operating system interfacing (Core layer). Intermediate

layers provide utility services (Utility layer) and application software (Application layer) functions.

Objectives of Architectural Design

To develop a model of software architecture, which gives an overall organization of the program

module in the software product. Software architecture encompasses two aspects of structures

of the data and hierarchical structures of the software components. Architectural design defines

the organization of program components. It does not provide the details of each component

and its implementation.

To control the relationship between modules. One module may control another module or may

be controlled by another module. The organization of a module can be represented by a tree-

like structure.

6767

 Unit III. Software Design

Why Is Software Architecture Important?

Software architecture is important because:

•	 Representations of software architecture are an enabler for communication
between all parties (stakeholders) interested in the development of a computer-
based system.

•	 The architecture highlights early design decisions that will have a profound impact
on all software engineering work that follows and, as important, on the ultimate
success of the system as an operational entity.

•	 Architecture “constitutes a relatively small, intellectually graspable model of how
the system is structured and how its components work together”.

Abstract Specification

For each sub-system, an abstract specification of the services it provides and the constraints

under which it must operate is produced. The basic goal of system design is to specify the

modules in a system and their abstractions. Once the different modules are specified, during

the detailed design the designer can concentrate on one module at a time. The task in detailed

design and implementation is essentially to implement the modules so that the abstract

specifications of each module are satisfied.

There are two common abstraction mechanisms for software systems:

Functional abstraction and Data abstraction.

In functional abstraction, a module is specified by the function it performs. For example, a

module to sort an input array can be represented by the specification of sorting. Functional

abstraction is the basis of partitioning in function-oriented approaches. That is, when the

problem is being partitioned, the overall transformation function for the system is partitioned

into smaller functions that comprise the system function.

The second unit for abstraction is data abstraction. There are certain operations required from a

data object, depending on the object and the environment in which it is used. Data abstraction

supports this view. Data is not treated simply as objects, but is treated as objects with some

predefined operations on them. The operations defined on a data object are the only operations

that can be performed on those objects. From outside an object, the internals of the object are

hidden; only the operations on the object are visible.

User-Interface Design

Interface design focuses on three areas of concern:

The design of interfaces between software components

Software Engineering

6868

The design of interfaces between the software and other nonhuman producers and consumers

of information (i.e. other external entities), and

The design of the interface between a human (i.e., the user) and the computer.

This process of software design is concerned with the third interface design category—user

interface design.

User interface design creates an effective communication medium between a human and a

computer. Following a set of interface design principles, design identifies interface objects and

actions and then creates a screen layout that forms the basis for a user interface prototype.

User interface design begins with the identification of user, task, and environmental requirements.

Once user tasks have been identified, user scenarios are created and analyzed to define a set of

interface objects and actions. These form the basis for the creation of screen layout that depicts

graphical design and placement of icons, definition of descriptive screen text, specification

and titling for windows, and specification of major and minor menu items. Tools are used to

prototype and ultimately implement the design model, and the result is evaluated for quality.

User interface design has as much to do with the study of people. Some few questions that must

be asked and answered as part of user interface design include:

•	 Who is the user?

•	 How does the user learn to interact with a new computer-based system?

•	 How does the user interpret information produced by the system?

•	 What will the user expect of the system?

Golden Rules in User Interface Design

There are three golden rules which form the basis for a set of user interface design principles

Place the user in control.

Reduce the user’s memory load.

Make the interface consistent.

Place the User in Control

The followings are the design principles that allow the user to maintain control:

Define interaction modes in a way that does not force a user into unnecessary or undesired

actions. An interaction mode is the current state of the interface.

Provide for flexible interaction. Because different users have different interaction preferences,

choices should be provided.

6969

 Unit III. Software Design

Allow user interaction to be interruptible and undoable. Even when involved in a sequence of

actions, the user should be able to interrupt the sequence to do something else (without losing

the work that had been done). The user should also be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to be customized. Users

often find that they perform the same sequence of interactions repeatedly. It is worthwhile to

design a “macro” mechanism that enables an advanced user to customize the interface to

facilitate interaction.

Hide technical internals from the casual user. The user interface should move the user into the

virtual world of the application. The user should not be aware of the operating system, file

management functions, or other arcane computing technology.

Design for direct interaction with objects that appear on the screen. The user feels a sense of

control when able to manipulate the objects that are necessary to perform a task in a manner

similar to what would occur if the object were a physical thing.

Reduce the user’s memory load

The more a user has to remember, the more error-prone will be the interaction with the system.

It is for this reason that a well-designed user interface does not tax the user’s memory. Whenever

possible, the system should “remember” pertinent information and assist the user with an

interaction scenario that assists recall.

Make the interface consistent.

The interface should present and acquire information in a consistent fashion. This implies that

All visual information is organized according to a design standard that is maintained throughout

all screen displays,

Input mechanisms are constrained to a limited set that are used consistently throughout the

application, and Mechanisms for navigating from task to task are consistently defined and

implemented.

Process of Designing User Interface

The overall process for designing a user interface:

Begins with the creation of different models of system function (as perceived from the outside).

The human- and computer-oriented tasks that are required to achieve system function are then

outlined; Design issues that apply to all interface designs are considered; tools are used to

prototype and Ultimately implement the design model; and the result is evaluated for quality.

Software Engineering

7070

Interface Design Models

A design model of the entire system incorporates data, architectural, interface, and procedural

representations of the software. The requirements specification may establish certain constraints

that help to define the user of the system, but the interface design is often only incidental to the

design model. The user model establishes the profile of end-users of the system. To build an

effective user interface, “all design should begin with an understanding of the intended users,

including profiles of their age, sex, physical abilities, education, cultural or ethnic background,

motivation, goals and personality”

The User Interface Design Process

The design process for user interfaces is iterative and can be represented using a spiral model as

shown in Figure 3.6. The spiral implies that each of these tasks will occur more than once, with

each pass around the spiral representing additional elaboration of requirements and the resultant

design. In most cases, the implementation activity involves prototyping—the only practical

way to validate what has been designed. The user interface design process encompasses four

distinct framework activities:

User, task, and environment analysis and modelling

The initial analysis activity focuses on the profile of the users who will interact with the system.

Skill level, business understanding, and general receptiveness to the new system are recorded;

and different user categories are defined. For each user category, requirements are elicited.

Once general requirements have been defined, a more detailed task analysis is conducted. Those

tasks that the user performs to accomplish the goals of the system are identified, described, and

elaborated (over a number of iterative passes through the spiral).

Interface design

The information gathered as part of the analysis activity is used to create an analysis model for

the interface. Using this model as a basis, the design activity commences. The goal of interface

design is to define a set of interface objects and actions (and their screen representations) that

enable a user to perform all defined tasks in a manner that meets every usability goal defined

for the system.

Interface construction

The implementation activity normally begins with the creation of a prototype that enables usage

scenarios to be evaluated. As the iterative design process continues, a user interface tool kit

may be used to complete the construction of the interface.

7171

 Unit III. Software Design

Interface validation

Validation focuses on

The ability of the interface to implement every user task correctly, to accommodate all task

variations, and to achieve all general user requirements;

The degree to which the interface is easy to use and easy to learn; and

The users’ acceptance of the interface as a useful tool in their work.

Component Design

Component-level design, also called procedural design, occurs after data, architectural, and

interface designs have been established. That is Data, architectural, and interface design must

be translated into operational software. To accomplish this, the design must be represented at

a level of abstraction that is close to code. Component-level design establishes the algorithmic

detail required to manipulate data structures, effect communication between software

components via their interfaces, and implement the processing algorithms allocated to each

component.

Component-level design is represented using a programming language. In essence, the

program is created using the design model as a guide. An alternative approach is to represent

the procedural design using some intermediate (e.g., graphical, tabular, or text-based)

representation that can be translated easily into source code.

Software Engineering

7272

Structured Programming

Pressman, 2001 state that in the early 1960s a set of constrained logical constructs was

proposed from which any program could be formed. The constructs emphasized “maintenance

of functional domain.” That is, each construct had a predictable logical structure, was entered

at the top and exited at the bottom, enabling a reader to follow procedural flow more easily.

The constructs are sequence, condition, and repetition.

Sequence implements processing steps that are essential in the specification of any algorithm.

Condition provides the facility for selected processing based on some logical occurrence, and

Repetition allows for looping.

These three constructs are fundamental to structured programming—an important component-

level design technique.

Low-Level Design

Modularization

A system is considered modular if it consists of discreet components so that each component

can be implemented separately, and a change to one component has minimal impact on other

components.

Modular systems incorporate collections of abstractions in which each functional abstraction,

each data abstraction, and each control abstraction handles a local aspect of the problem being

solved.

Modular system consists of well-defined, manageable units with well-defined interfaces among

the units. Desirable properties of a modular system include:

Each function in each abstraction has a single, well-defined purpose.

Each function manipulates no more than one major data structure.

Functions share global data selectively. It is easy to identify all routines that share a major data

structure. Functions that manipulate instances of abstract data types are encapsulated with the

data structure being manipulated.

Modularity enhances design clarity, which in turn eases implementation, debugging, testing,

documenting, and maintenance of the software product.

Structure Charts

The structure chart is one of the most commonly used methods for system design. Structure

charts are used during architectural design to document hierarchical structures, parameters, and

interconnections in a system.

7373

 Unit III. Software Design

It partitions a system into black boxes. A black box means that functionality is known to the

user without the knowledge of internal design. Inputs are given to a black box and appropriate

outputs are generated by the black box. This concept reduces complexity because details are

hidden from those who have no need or desire to know. Thus, systems are easy to construct

and easy to maintain.

Pseudo-Code

“Pseudo” means imitation or false and “code” refers to the instructions written in a programming

language. Pseudo-code notation can be used in both the preliminary and detailed design

phases. Using pseudo-code, the designer describes system characteristics using short, concise

English language phrases that are structured by keywords, such as If-Then-Else, While-Do, and

End. Keywords and indentation describe the flow of control, while the English phrases describe

processing actions. Pseudo-code is also known as program-design language or structured

English.

Flowcharts

A flowchart is a convenient technique to represent the flow of control in a program. A flowchart

is a pictorial representation of an algorithm that uses symbols to show the operations and

decisions to be followed by a computer in solving a problem. The actual instructions are written

within symbols/boxes using clear statements. These boxes are connected by solid lines having

arrow marks to indicate the flow of operation in a sequence.

Flowcharts are the plan to be followed when the program is written. Expert programmers may

write programs without drawing the flowcharts. But for a beginner it is recommended that a

flowchart should be drawn before writing a program, which in turn will reduce the number of

errors and omissions in the program. Flowcharts also help during testing and modifications in

the programs.

Difference between Flowcharts and Structure Charts

A structure chart differs from a flowchart in the following ways:

It is usually difficult to identify different modules of the software from its flowchart representation.

Data interchange among different modules is not represented in a flowchart.

Sequential ordering of tasks inherent in a flowchart is suppressed in a structure chart.

A structure chart has no decision boxes.

Unlike flowcharts, structure charts show how different modules within a program interact and

the data that is passed between them.

Software Engineering

7474

Conclusion
Design is the place where stakeholder requirements, business needs and technical consideration

all come together in the formulation of a product or system. Design creates a representation or

model of the software, but unlike the requirements model (that focuses on describing required

data, function, and behavior), the design model provides detail about software architecture,

data structures, interlaces, and components that are necessary to implement the system.

Exercises

Define architectural design.

What are the objectives of architectural design?

Explain the various design techniques that come under the category of low-level design.

Define:

•	 Modularization

•	 Structure charts

•	 Pseudo-code

•	 Flowcharts

Distinguish between “Structure Charts” and “”Flowcharts” giving an example to each

Give the hierarchical format of a structure chart. Also, give the basic building blocks of a

structure chart.

Develop two additional design principles that “place the user in control.”

Develop two additional design principles that “reduce the user’s memory load.”

Develop two additional design principles that “make the interface consistent.”

All modern programming languages implement the structured programming constructs. Provide

examples from three programming languages.

Activity 3 – Other Aspects of the Software Design

Functional-Oriented Versus the Object-Oriented Approaches

Table 3.1 provides the difference between the Functional-Oriented Versus the Object-Oriented

Approach in software design

7575

 Unit III. Software Design

S/N Functional-oriented

Approach

Object-oriented Approach

The basic abstractions, which

are given to the user, are

real-world functions, such as

sort, merge, track, display,

etc.

The basic abstractions are not the

real-world functions, but are the data

abstraction where the real-world

entities are represented, such as picture,

machine, radar system, customer,

student, employee, etc.

Functions are grouped

together by which a

higher-level function is

obtained. An example of

this technique is software

analysis/Software Design

(SA/SD).

The functions are grouped together

on the basis of the data they operate

on, such as in class person, function

displays are made member functions to

operate on its data members such as

the person name, age, etc.

The state information is

often represented in a

centralized shared memory.

The state information is not represented

in a centralized shared memory but is

implemented/distributed among the

objects of the system.

Design Specifications

Design specifications address different aspects of the design model and are completed as the

designer refines his representation of the software.

First, the overall scope of the design effort is described, which is derived from system specification

and the analysis model (software requirements specification).

Then, data design is specified, which includes data structures, any external file structures, internal

data structures, and a cross-reference that connects data objects to specific files.

Then architectural design indicates how the program architecture has been derived from the

analysis model. Structure charts are used to represent the module hierarchy.

Software Engineering

7676

Interface design indicates the design of external and internal program interfaces along with

a detailed design of the human/machine interface. A detailed prototype of a GUI may also

be represented. Procedural design specifies components—separately addressable elements

of software—such as subroutines, functions, or procedures in the form of English language

processing narratives. This narrative explains the procedural function of a component (module).

Design specification contains a requirements cross-reference. The purpose of this cross-

reference is:

•	 To establish that all requirements are satisfied by the software design.

•	 To indicate which components are critical to the implementation of specific
requirements.

The final section of the design specification contains supplementary data, such as algorithm

descriptions, alternative procedures, and tabular data.

Verification for Design

Like in other phases in the development process, the output of the system design phase should

be verified before proceeding with the activities of the next phase.

If the design is expressed in some formal notation for which analysis tools are available, then

through tools it can be checked for internal consistency (e.g., those modules used by another

are defined, the interface of a module is consistent with the way others use it, data usage is

consistent with declaration, etc.).

If the design is not specified in a formal, executable language, it cannot be processed through

tools, and other means for verification have to be used.

There are two fundamental approaches to verification.

•	 The first consists of experimenting with the behavior of a product to see whether
the product performs as expected (i.e., testing the product).

•	 The other consists of analyzing the product—or any design documentation related
to it—to deduce its correct operation as a logical consequence of the design
decisions. The two categories of verification

Conclusion
A number of design methods or approaches are being applied throughout t he industry. Each

soft ware design approach introduces unique heuristics and notation view of what characterizes

design quality. Yet, all of these methods have a number of common characteristics: a mechanism

for the translation of the requirements model into a design representation, a notation for

representing functional components and their interfaces, heuristics for refinement and

partitioning, and guidelines for quality assessment.

7777

 Unit III. Software Design

Regardless of t he design method that is used, you should apply a set of basic concepts to data,

architectural, interface, and component-level design.

Verification in the design phase is aimed at assessing the correctness, consistency, and adequacy

of the design with respect to the requirements and analysis models.

Exercise

Give any two important differences between the function-oriented and object-oriented design

approaches.

Discuss the major advantages of the object-oriented design approach over the function-oriented

design approach.

Explain the term design specification.

What is abstraction? What are the verification metrics for system design?

Do you design software when you “write” a program? What makes software design different

from coding?

 UNIT SUMMARY

Design is the most important part of software engineering. During design, progressive

refinements of data structure, architecture, interfaces, and procedural detail of software

components are developed, reviewed, and documented. Design results in representations of

software that can be assessed for quality.

A number of fundamental software design principles and concepts have been presented.

Design principles guide the software engineer as the design process proceeds. Design concepts

provide basic criteria for design quality. Modularity (in both program and data) and the concept

of abstraction enable the designer to simplify and reuse software components.

Refinement provides a mechanism for representing successive layers of functional detail.

Program and data structure contribute to an overall view of software architecture, while

procedure provides the detail necessary for algorithm implementation. Information hiding and

functional independence provide heuristics for achieving effective modularity.

Software Engineering

7878

Unit Assessment
Check your understanding!

List five software design principles and describe any two of them. (Answer: section 3.1.4)

Describe the essence of “problem partitioning” in software design. (Answer: section

3.1.4.1)

Describe the statement “Design is not coding, coding is not design” as one of the

software design principle. (Answer: section 3.1.4(h))

With the aid of diagrams, differentiate between Top-down and bottom-up software

design approaches. (Answer: section 3.1.4.3)

Briefly explain the user-interface design of the software process. (Answer: section 3.2.4)

Differentiate between a flowchart and a pseudo code. (Answer: sections 3.2.6.3 and

3.2.6.4)

Discuss the term verification in reference to system design. (Answer: section 3.3.3)

Unit Readings and Other Resources

•	 Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing,
an Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

•	 Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth
Edition, McGraw-Hill Higher Education, ISBN 0073655783

7979

Unit IV: Implementation and
Testing
Unit Introduction
During implementation phase, each of the components from the design is realized as a

program unit. Each unit then must be either verified or tested against its specification

obtained in the design stage. Testing the software is how to ensure that it responds the

specifications from the design phase to implementation. This unit will address in general

all aspects related to the implementation and testing of software. The unit will describe

the techniques used to implement software and the mechanisms used to perform software

testing.

Unit Objectives
Upon completion of this unit you should be able to:

•	 Define what is implementation and testing

•	 Describe basic principles of testing and testing objectives

•	 Determine whether the observed behavior conforms to the expected behavior

•	 Elaborate different levels of testing

•	 Distinguish and perform white-box and black-box testing

•	 Define the different testing techniques and distinguish their differences

•	 Perform the test plans

KEY TERMS

Software Implementation:

Software implementation is a process of realizing the design specification as a

program unit

Software Testing

Testing is a set of activities used to test the source code in order to uncover (and

correct) errors before delivery of software to customer.

Test Case

A test case is a set of instructions designed to discover a particular type of error or

defect in the software system by inducing a failure

 Unit IV. Implementation and Testing

Software Engineering

8080

Structural Testing

Structural testing is an approach to testing where the tests are derived from

knowledge of the software’s structure and implementation.

Functional testing

Functional testing refers to testing that involves only observation of the

output for certain input values, and there is no attempt to analyze the code,

which produces the output.

Learning Activities

Activity 1 – Software Coding

Introduction

During implementation stage, each of the components from the design is realized as a

program unit. Each unit then must be either verified or tested against its specification

obtained in the design stage. This process is as depicted in Figure 4.1. Then the individual

program units representing the components of the system are combined and tested as a

whole to ensure that the software requirements have been met. When the developers are

satisfied with the product, it is then tested by the client (acceptance testing). This phase ends

when the product is accepted by the client.

Coding

During coding the focus is on developing programs that are easy to read and understand

and not simply on developing programs that are simple to write. Coding can be subject to

company-wide standards that may define the entire layout of programs, such as headers

for comments in every unit, naming conventions for variables, classes and functions, the

maximum number of lines in each component, and other aspects of standardization.

Structured programming helps the understandability of programs. The goal of structured

programming is to linearize the control flow in the program. Single entry-single exit

constructs should be used. The constructs include selection (if-then-else) and iteration (while,

repeat-unit).

8181

 Unit IV. Implementation and Testing

Structured Programming

Structured programming refers to a general methodology of writing good programs. A good

program is one that has the following properties:

•	 It should perform all the desired actions.

•	 It should be reliable, i.e., perform the required actions within acceptable margins
of error.

•	 It should be clear, i.e., easy to read and understand.

•	 It should be easy to modify.

•	 It should be implemented within the specified schedule and budget.

Structured programs have the single-entry, single-exit property. This feature helps in reducing

the number of paths for flow of control. If there are arbitrary paths for the flow of control, the

program will be difficult to read, understand, debug, and maintain.

A program is one of two types: static structure or dynamic structure.

The static structure is the structure of the text of the program, which is usually just a linear

organization of statements of the program.

The dynamic structure of the program is the sequence of statements executed during the

execution of the program.

Both static and dynamic structures are the sequence of statements. The only difference is that

the sequence of statements in a static structure is fixed, whereas in a dynamic structure it is

not fixed. That means the dynamic sequence of statements can change from execution to

execution. The static structure of a program can be easily understood. The dynamic structure

of a program can be easily seen at the time of execution.

Objectives of Structured Programming

The objective of structured programming is to write programs so that the sequence of

statements executed during the execution of a program is the same as the sequence of

statements in the text of that program.

As the statements in a program text are linearly organized, the objective of structured

programming is to develop programs whose control flow during execution is linearized and

follows the linear organization of the program text.

Since program cannot be written as a sequence of simple statements without any branching

or repetition, structured constructs are used. In structured programming, a statement is not a

simple assignment statement, it is a structured statement.

Software Engineering

8282

Principles of Structured Programming

All structured program design methods are based upon the two fundamental principles

stepwise refinement and three structured control constructs. The objective of program design

is to transform the required function of the program, as stated in the program specification,

into a set of instructions, which can easily be translated into a chosen programming language.

The process of stepwise refinement is an approach that the stated program function is broken

down into subsidiary functions in progressively increasing levels of detail until the lowest level

functions are achievable in the programming language.

The second principle of structured program design is that any program can be constructed

using only three structured control constructs. The constructs selection, iterations, and

sequence are shown in Figure 4.2 (a, b, c, d). Any program independent of the technology

platform can be written using these constructs, i.e., selection, repetition, sequence. These

structures are the basis of structured programming.

Figure 4.2: Basics of Structured Programming: Selection, Iterations, and Sequence

Advantages of Structured Programming

The advantages of structured programming are:

Is that it is very convenient to put logic systematically into the program. Due to the ease of

handling complex logic, the user, reader, and programmer understand the program easily.

It is easy to verify, conduct reviews, and test the structured programs in an orderly manner. If

errors are found, they are easy to locate and correct.

8383

 Unit IV. Implementation and Testing

Conclusion
The goal of the coding phase is to translate the design of the system into code in a given

programming language. In this phase the aim is to implement the design in the best possible

manner. This phase affects both testing and maintenance phases. Well-written code can

reduce the testing and maintenance effort.

Exercise

Explain the term “implementation” of the SDLC.

What is “structured programming”? How do modern programming languages, facilitate

writing structured programs? (Use any programming language you are familiar with.

What are the advantages of writing structured programs versus unstructured programs?

State two advantages of structured programming.

Activity 2 – Software Testing Fundamentals

Testing Principles

Testing is a set of activities that can be planned in advance and conducted systematically.

A number of software-testing strategies have been proposed in the literature. All provide

the software developer with a template for testing. Before a software engineer make use of

testing techniques, he/she should know the basic principles that script the testing process. A

template for testing has the following basic principle (Agarwal et al., 2010):

All tests should be determined according to customer requirements

The purpose is to discover possible defects or flaws that cause the system to not function

according to customer requirements.

Tests should be planned before you even start:

After finishing the requirements analysis process the test planning can start. Detailed Test

cases can start as soon as the design model ends.

The Pareto principal is applied to software testing

Simple test using Pareto principle argues that 80 percent of all faults discovered during the

testing phase can affect 20 percent of all program components. The problem at this stage is

to isolate these components suspected by testing the same.

Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focuses on individual components. As testing

progresses, focus shifts in an attempt to find errors in integrated clusters of components and

ultimately in the entire system.

Software Engineering

8484

Exhaustive testing is not possible

The number of path permutations for even a moderately-sized program is exceptionally large.

For this reason, it is impossible to execute every combination of paths during testing. It is

possible, however, to adequately cover program logic and to ensure that all conditions in the

component-level design have been exercised.

To be more efficient test should be conducted by an independent third party.

The software engineer who creates a system is not the best person to perform all program

tests. Especially for large projects an independent test group is required.

A strategy for software testing must accommodate low-level tests that are necessary to verify

that a small source-code segment has been correctly implemented as well as high-level tests

that validate major system functions against customer requirements. A strategy must provide

guidance for the practitioner and a set of milestones for the manager.

Test Oracle

To test any program, we need to have a description of its expected behavior and a method of

determining whether the observed behavior conforms to the expected behavior. For this we

need a test oracle.

A test oracle is a mechanism, different from the program itself, which can be used to check

the correctness of the output of the program for the test cases.

Conceptually, we can consider testing a process in which the test cases are given to the

test oracle and the program under testing. The output of the two is then are compared to

determine if the program behaved correctly for the test cases, as shown in Figure 4.3.

Figure 4.3: Test Oracles (Source: Agarwal et al., 2010)

Test oracles are considered as human, they can conduct tests when there is a discrepancy

between the oracles and program results. First you need to check the results produced by the

oracles before declaring that there is a flaw in the program. In the above illustrated picture, the

test case data is according to the oracle and test the program on that will be tested. The result

of each of the end elements is compared to determine if the Program behaved properly in

accordance with the test case.

8585

 Unit IV. Implementation and Testing

The human oracles generally use the specifications of the program to decide what the “correct”

behavior of the program shouldn’t be. To help the oracle to determine the correct behavior, it

is important that the behavior of the system be unambiguously specified and the specification

itself shouldn’t be error-free.

Conclusion
Software testing means finding errors. While designing and implementing a computer-based

system or a product, one should consider “testability” in mind. At the same time, the tests

themselves must exhibit a set of characteristics that achieve the goal of finding the most errors

with a minimum of effort.

Exercise

What is testing? Explain the different types of testing performed during software development.

Define the various principles of testing.

What are test oracles?

Activity 3 – Levels of Testing

Introduction

There are three levels of testing, i.e., three individual modules in the entire software system

Unit Testing

Integration Testing

System Testing

Test Unit

In unit testing individual components are tested to ensure they operate correctly. Focus on

the verification effort. . On the smallest unit of software design, each component is tested

independently without the other system components. There are some reasons to perform test

drives instead of a testing the whole product:

The size of a simple module is small enough that you can allocate an error fairly easily.

The module is small enough that you can attempt to test it in some demonstrably some

exhaustive fashion.

Software Engineering

8686

Shuffling the interaction of multiple errors in widely different parts of the software are eliminated.

In this case the module interface is tested to ensure that the information properly flows inside

and outside the program unit that is being tested. The local data structure is examined to ensure

that data stored temporarily maintains its integrity during all steps of the execution algorithm.

Conditions boundary tested are to ensure that modules enquiries operate at the boundaries

established to limit or restrict processing. All independent paths through the control of structure

are exercised to ensure that all the statements have Been module executed at least once. And

finally, all errors handling paths are tested computation. According to Agarwal et al, 2010 there

are some common errors in computation as follows:

•	 Codes Mixing operation

•	 incorrect Initialization

•	 Arithmetic incorrectly precedence

•	 Precision inaccuracy

•	 incorrect representation of representation of expressions

Test cases in unit testing should uncover errors like:

•	 Comparison of different data types

•	 incorrect Logical operators or precende

•	 incorrect Comparison of variables

•	 Improper loop termination

•	 Failure to exit when divergent iteration is encountered

•	 Improperly modified loop variables

Integration Testing

Another test level is the integration test. Integration test is a systematic technique for constructing

the program structure while at the same time conducting tests to uncover errors associated with

interfacing .In such a test, unit-tested modules are combined into subsystems, which are then

tested. The goal is to see if the modules can be integrated properly.

The following are the various approaches used to perform integration testing:

Incremental Approach

The incremental approach means to first combine only two components together and test them.

Remove the errors if they are there, otherwise combine another component to it and then test

again, and so on until the whole system is developed.

8787

 Unit IV. Implementation and Testing

Top-Down Integration Testing

Top-down integration testing is an incremental approach to construction of program structures.

Modules are integrated by moving downward through the control hierarchy beginning with the

main control module.

Bottom-up integration

Bottom-up integration testing, as its name implies, begins construction and testing with the

components at the lowest level in the program structure. A bottom-up integration strategy may

be implemented with the following steps:

•	 Low-level components are combined into clusters (sometimes called builds) that
perform specific software sub-functions.

•	 A driver (a control program for testing) is written to coordinate test case input and
output.

The cluster is tested.

Drivers are removed and clusters are combined moving upward in the program structure.

Regression Test

Regression testing is the activity that helps to ensure that changes (due to testing or for other

reasons) do not introduce unintended behavior or additional errors. The regression test suite

contains three different classes of test cases:

•	 Additional tests that focus on software functions.

•	 A representative sample of tests that will exercise all software functions.

•	 Tests that focus on the software components that have been changed.

Smoke Test

Smoke testing is an integration testing approach that is commonly used when “shrink-wrapped”

software products are developed. Smoke testing is characterized as a rolling integration

approach because the software is rebuilt with new components and testing.

Smoke testing encompasses the following activities:

Software components that have been translated into code are integrated into a “build.” A build

includes all data files, libraries, reusable modules, and engineered components that are required

to implement one or more product functions.

A series of tests is designed to expose errors that will keep the build from properly performing

its functions.

Software Engineering

8888

The build is integrated with other builds and the entire product (in its current form) is smoke

tested daily.

Smoke testing provides a number of benefits when it is applied on complex software engineering

projects:

•	 Integration risk is minimized.

•	 Quality of end product is improved.

•	 Error diagnosis and correction are simplified.

•	 Progress is easier to assess.

Integration Sandwich

Sandwich integration testing is the combination of both the top-down and bottom-up approach.

So, it is also called mixed integration testing. In it, the whole system is divided into three layers,

just like a sandwich: the target is in the middle and one layer is above the target and one is

below the target. The top-down approach is used in the layer that is above the target and the

bottom-up approach is used in the layer that is below the target.

System Test

In the system test, subsystems are integrated to make the whole system. The testing process is

concerned with finding errors that result from unanticipated interactions between subsystems

and system components. It is also concerned with validating that the system meets its functional

and non functional requirements. There are three essentially main kinds of system testing:

Alpha Testing

Alpha testing refers to the system testing carried out by the test team within the development

organization. The alpha test is conducted at the developer’s site by the customer under the

project team’s guidance. In this test, users test the software on the development platform and

point out errors for correction. However, the alpha test, because a few users on the development

platform conduct it, has limited ability to expose errors and correct them. Alpha tests are

conducted in a controlled environment. It is a simulation of real-life usage. Once the alpha test

is complete, the software product is ready for transition to the customer site for implementation

and development.

Beast test

Beta testing is the system testing performed by a selected group of friendly customers. If the

system is complex, the software is not taken for implementation directly. It is installed and all

users are asked to use the software in testing mode; this is not live usage. This is called the

beta test.

8989

 Unit IV. Implementation and Testing

Beta tests are conducted at the customer site in an environment where the software is exposed

to a number of users. The developer may or may not be present while the software is in use. So,

beta testing is a real-life software experience without actual implementation. In this test, end

users record their observations, mistakes, errors, and so on and report them periodically.

In a beta test, the user may suggest a modification, a major change, or a deviation. The

development has to examine the proposed change and put it into the change management

system for a smooth change from just developed software to a revised, better software. It is

standard practice to put all such changes in subsequent version releases.

Acceptance Test

Acceptance testing is the system testing performed by the customer to determine whether to

accept or reject the delivery of the system. When customer software is built for one customer,

a series of acceptance tests are conducted to enable the customer to validate all requirements.

Conducted by the end-user rather than the software engineers, an acceptance test can range

from an informal ‘test drive’ to a planned and systematically executed series of tests. In fact,

acceptance testing can be conducted over a period of weeks or months, thereby uncovering

cumulative errors that might degrade the system over time.

Conclusion
Each level in software testing has its importance which provides a means of eliminating errors

from early stages. In unit testing individual components are tested to ensure that they operate

correctly, In integration testing, many unit-tested modules are combined into subsystems which

are then tested. In system testing, subsystems are integrated to make up the whole system and

then tested.

Exercise

What are the different levels of testing? Explain.

Suppose developed software has successfully passed all the three levels of testing, i.e., unit

testing, integration testing, and system testing. Can we claim that the software is defect-free?

Justify your answer.

What is unit testing?

What is integration testing? Which types of defects are uncovered during integration testing?

What is regression testing? When is regression testing done? How is regression testing

performed?

Define sandwich testing.

Software Engineering

9090

Activity 4 – White-Box and Black-Box Testing

White-Box Testing/Structural Testing

A complementary approach to functional or black-box testing is called structural or white-box

testing. In this approach, test groups must have complete knowledge of the internal structure

of the software. Structural testing is an approach to testing where the tests are derived from

knowledge of the software’s structure and implementation. Structural testing is usually applied

to relatively small program units, such as subroutines, or the operations associated with an

object. As the name implies, the tester can analyze the code and use knowledge about the

structure of a component to derive test data as shown in Figure 4.5. The analysis of the code

can be used to find out how many test cases are needed to guarantee that all of the statements

in the program are executed at least once during the testing process.

Figure 4.5: Structural Testing (Source: Agarwal et al., 2010)

In white-box testing, test cases are selected on the basis of examination of the code, rather than

the specifications. White-box testing is illustrated in Figure 4.6.

Figure 4.6: White-Box Testing (Source: Agarwal et al., 2010)

9191

 Unit IV. Implementation and Testing

Using white-box testing methods the software engineer can test cases that:

•	 Guarantee that all independent paths within a module have been exercised at
least once.

•	 Exercise all logical decision on their true and false sides.

•	 Exercise all loops at their boundaries.

•	 Exercise internal data structures to ensure their validity.

The nature of software defects are:

•	 Logical errors and incorrect assumptions are inversely proportional to the
probability that a program path will be executed.

•	 We often believe that a logical path is not to be executed when, in fact, it may be
executed on a regular basis.

•	 Typographical errors are random. When a program is translated into programming
language source code, it is likely that some typing errors will occur.

Reasons White-box Testing is Performed

White-box testing is carried out to test whether:

•	 All paths in a process are correctly operational.

•	 All logical decisions are executed with true and false conditions.

•	 All loops are executed with their limit values tested.

•	 To ascertain whether input data structure specifications are tested and then used
for other processing.

Advantages of Structural/White-box Testing

The various advantages of white-box testing include:

•	 Forces test developer to reason carefully about implementation.

•	 Approximates the partitioning done by execution equivalence.

•	 Reveals errors in hidden code.

Functional/Black-Box Testing

In functional testing the structure of the program is not considered. Test cases are decided on

the basis of the requirements or specifications of the program or module and the internals of

the module or the program are not considered for selection of test cases.

Software Engineering

9292

Functional testing refers to testing that involves only observation of the output for certain

input values, and there is no attempt to analyze the code, which produces the output. The

internal structure of the program is ignored. For this reason, functional testing is sometimes

referred to as black-box testing (also called behavioral testing) in which the content of a black-

box is not known and the function of black box is understood completely in terms of its inputs

and outputs.

Black-box testing, also called behavioral testing, focuses on the functional requirements of the

software. Black-box testing enables the software engineer to derive sets of input conditions

that will fully exercise all functional requirements for a program.

Other names for black-box testing (BBT) include specifications testing, behavioral testing,

data-driven testing, functional testing, and input/output driven testing. In black-box testing,

the tester only knows the inputs that can be given to the system and what output the system

should give. In other words, the basis for deciding test cases in functional testing is the

requirements or specifications of the system or module. This form of testing is also called

functional or behavioral testing.

Black-box testing is not an alternative to white-box techniques; rather, it is a complementary

approach that is likely to uncover a different class of errors than white-box methods. Black-

box testing identifies the following kinds of errors:

•	 Incorrect or missing functions.

•	 Interface missing or erroneous.

•	 Errors in data model.

•	 Errors in access to external data source.

When these errors are controlled then:

•	 Function(s) are valid.

•	 A class of inputs is validated.

•	 Validity is sensitive to certain input values.

•	 The software is valid and dependable for a certain volume of data or transactions.

•	 Rare specific combinations are taken care of.

Black-box testing tries to answer the following questions:

•	 How is functional validity tested?

•	 How are system behavior and performance tested?

•	 How are the boundaries of a data class isolated?

•	 How will the specific combinations of data affect system operation?

•	 What data rates and data volume can the system tolerate?

9393

 Unit IV. Implementation and Testing

•	 Is the system particularly sensitive to certain input values?

•	 What effect will specific combinations of data have on system operation?

By applying black-box techniques, we derive a set of test cases that satisfy the following

criteria:

•	 Test cases that reduce by a count that is greater than one.

•	 Test cases that tell us something about the presence or absence of classes of
errors.

Advantages of Black-box Testing

The advantages of this type of testing include:

•	 The test is unbiased because the designer and the tester are independent of each
other.

•	 The tester does not need knowledge of any specific programming languages.

•	 The test is done from the point-of-view of the user, not the designer.

•	 Test cases can be designed as soon as the specifications are complete.

Test Plan

The test plan is a document that contains different test cases designed to test different test

objects and different testing attributes. The plan puts the test of a logical and sequential

order form according to the chosen strategy, top-down or bottom-up. Usually the test plan is

a test matrix and list of test cases in accordance with the execution order of each task. Table

4.1 illustrates the matrix of test and test cases within the test. Test ID, test name, and test

cases are designed well before the development phase and have been designed for those

who conduct the tests. A test plan states:

•	 The items to be tested.

•	 At what level they will be tested at.

•	 The sequence they are to be tested in.

•	 How the test strategy will be applied to the testing of each item and the test
environment.

Test

Planned Date N … 4 3 2 1 Test Test ID

Successful Completed Name Tester ID

Table 4.1: Test Plan (Source: Agarwal et al., 2010)Tests-Case Design

Software Engineering

9494

A test case is a set of instructions designed to discover a particular type of error or defect in the

software system by inducing a failure. The goal of selected test cases is to ensure that there is no

error in the program and if there is it then should be immediately depicted. Ideal test casement

should contain all inputs to the program. This is often called exhaustive testing.

There are two criteria for the selection of test cases:

•	 Specifying a criterion for evaluating a set of test cases.

•	 Generating a set of test cases that satisfy a given criterion.

Each test case needs proper documentation, preferably in a fixed format. There are many

formats; one format is suggested in Table 4.2:

Test Case Name Test Case ID

Purpose of Test Testing Object (Unit, Application,

Module, etc)

Test Attribute

Tests focus (function, feature, process, interface, validation, verification,

etc.)

Test type (alpha, beta, unit, integration, system)

Test Process A set of instructions for

conducting the test-initial stating

condition-inputs-specifications-

output expected

Test Results Expected and actual and

comparison, error description,

post-process state

Action Correction, authorization, and

feedback through retest

Action to initialize the pre-test status

Table 4.2: Test Case Documentation Format (Source: Agarwal et al., 2010)

9595

 Unit IV. Implementation and Testing

Conclusion
For conventional applications, software is tested from two different perspectives: internal

program logic is exercised using “white box” test-case design techniques and software

requirements are exercised using “black box” test-case design techniques. Use cases assist in

the design of tests to uncover errors at the software validation level. In every case, the intent

is to find the maximum number of errors with the minimum amount of effort and time. A set

of test cases designed to exercise internal logic, interfaces, component collaborations, and

external requirements is designed and documented, expected results a redefined, and actual

results are recorded (Pressman, 2001).

Exercise

What is a test case? What is test-case design?

What is the difference between

Black-box testing and white-box testing

Top-down and bottom-up testing approaches

Alpha and beta testing

What are test plans and test cases? Illustrate each with an example.

Why does software testing need extensive planning? Explain.

What is smoke testing?

Differentiate between integration testing and system testing.

Define structural testing. Give the various reasons structural testing is performed.

 UNIT SUMMARY

In this unit aspects related to the implementation/coding phase and testing were discussed.

In coding phase, a structured programming has been explained more. The primary objective

for test case design is to derive a set of tests that have the highest likelihood for uncovering

errors in the software. To accomplish this objective, two different categories of test case

design techniques are used: white-box testing and black-box testing.

White-box tests focus on the program control structure. Test cases are derived to ensure

that all statements in the program have been executed at least once during testing and

that all logical conditions have been exercised. Black-box tests are designed to validate

functional requirements without regard to the internal workings of a program. Black-box

testing techniques focus on the information domain of the software, deriving test cases by

partitioning the input and output domain of a program in a manner that provides thorough

test coverage.

Software Engineering

9696

The difference between the various testing techniques such as unit testing, integration and

system were explained in detail. The need to implement a test plan, or a life cycle of software

testing and how the techniques and tools are integrated into this was discussed in this

chapter.

 Unit Assessment
Check your understanding!

With the aid of sketches, explain three basic control structures of the structured

programming. (Answer: section 4.1.5)

Describe two principles of structured programming. (Answer: section 4.1.5)

Why is regression testing important? When is it used? (Answer: section 4.3.3)

List and describe four software testing principles. (Answer: section 4.2.1)

List levels of software testing and briefly describe one level. (Answer: section 4.3)

Define the term “test plan” as applied in software testing. (Answer: section 4.4.3)

Unit Readings and Other Resources

•	 Agarwal B. B., Tayal S. P. and Gupta M., (2010), “Software Engineering & Testing,
an Introduction”, Jones and Bartlett Publishers, ISBN: 978-1-934015-55-1

•	 Pressman R. S., (2001), “Software Engineering, A Practitioner’ S Approach” Fifth
Edition, McGraw-Hill Higher Education, ISBN 0073655783

•	 Liu Z., (2001), “Object-Otiented Software Development Using UML”, The United
Nations University, UNU-IIST International Institute for Software Technology, Tech
Report 229.

9797

Unit V: Maintenance and Project
Management
Unit Introduction
Software will definitely undergo change after it is delivered to the customer. This maintenance

phase starts with the system being installed for practical use, after the product is delivered

to the client. It lasts till the beginning of system’s retirement phase. Maintenance does not

normally involve major changes to the system’s architecture. Changes are implemented by

modifying existing components and adding new components to the system. Maintenance

includes all changes to the product once the client has agreed that it satisfied the

specification document.

Software is a difficult activity. Lots of things can go wrong. Understanding the risks and taking

proactive measures to avoid or manage them—is a key element of good software

Unit Objectives
Upon completion of this unit you should be able to:

•	 Explain why software maintenance is needed

•	 Describe categories of maintenance

•	 Describe factors affecting maintenance

•	 Define what is risk analysis and management

•	 Describe categories of risks and risk management

•	 Identify risks and produce risk item checklists

•	 Perform the test plans

 KEY TERMS

Software Maintenance:

Software maintenance is the activity associated with keeping an operational

computer system continuously in tune with the requirements of users and

data processing operations.

Software Risk Analysis and Management

Risk analysis and management are a series of steps that help a software team

to understand and manage uncertainty.

 Unit V. Maintenance and Project Management

Software Engineering

9898

Risk

Risk is defined as an exposure to the chance of injury or loss

Risk Management

Risk management is the area that tries to ensure that the impact of risks on

cost, quality, and schedule is minimal

Learning Activities

Activity 1 – Software Maintenance Phase

Introduction

Software maintenance is the activity associated with keeping an operational computer

system continuously in tune with the requirements of users and data processing operations.

Software maintenance is a very broad activity that includes error corrections, enhancements

of capabilities, deletion of obsolete capabilities and optimization. The software maintenance

process is expensive and risky and is very challenging. There is a need for software

maintenance due to the following reasons:

•	 Changes in user requirements with time. That is the customer requires functional
or performance enhancements

•	 Program/System problems, errors have been encountered

•	 The software must be adapted to accommodate changes in its external
environment (e.g., a change required because of a new operating system or
peripheral device), - Changing hardware/Software environment

•	 To improve system efficiency and throughout

•	 To modify the components

•	 To test the resulting product to verify the correctness of changes

•	 To eliminate any unwanted side effects resulting from modifications

•	 To augment or fine-tune the software

•	 To optimize the code to run faster

•	 To review standards and efficiency

•	 To make the code easier to understand and work with

•	 To eliminate any deviations from specifications

9999

 Unit V. Maintenance and Project Management

Categories of Maintenance

Maintenance may be classified into the four categories as follows:

•	 Corrective - reactive modifications to correct discovered problems.

•	 Adaptive - modifications to keep it usable in a changed or changing environment.

•	 Perfective - improve performance or maintainability.

•	 Preventive - modifications to detect and correct latent faults.

Corrective Maintenance

Corrective maintenance means repairing processing or performance failures or making

changes because of previously uncorrected problems. involves correcting errors which were

not discovered in earlier stages of the development process while leaving the specification

unchanged.

Adaptive Maintenance

Adaptive maintenance means changing the program functions. This is done to adapt to

external environment changes in which the product operates such as new government

regulations. This type is known as enhancement maintenance.

Perfective Maintenance

Perfective maintenance means enhancing the performance or modifying the programs to

respond to the user’s additional or changing needs. Involves changes that the client thinks

will improve the effectiveness of the product, such as additional functionality or decreased

response time. This type is also a kind of enhancement maintenance

Preventive Maintenance

Preventive maintenance is the process of preventing systems from being obsolete. Preventive

maintenance involves the concept of re-engineering and reverse engineering in which an

old system with an old technology is re-engineered using new technology. This maintenance

prevents the system from dying out.

Studies have indicated that, on average, maintainers spend approximately 17 % of their

time on corrective maintenance, 65% on perfective maintenance, and 18% on adaptive

maintenance as shown in Figure 5.1(Sommeville, 2000). It is estimated that between 40% and

70% of the overall software development lifecycle costs are spent on maintenance.

Software Engineering

100100

Figure 5.1: Distribution of maintenance effort (Source: Sommeville, 2000)

Maintenance Costs

Maintenance cost is usually greater than development costs (2* to 100* depending on the

application), it is affected by both technical and non-technical factors. The cost increases

as software is maintained. Maintenance corrupts the software structure so makes further

maintenance more difficult.

It is advisable to invest more effort in early phases of the software life-cycle to reduce maintenance

costs. The defect repair ratio increases heavily from the analysis phase to the implementation

phase as shown in Table 5.1. Therefore, more effort during development will certainly reduce

the cost of maintenance.

Table 5.1: Defect Repair Ratio

Phase Ratio

Analysis 1

Design 10

Implementation 100

Factors Affecting Maintenance

There are many other factors that contribute to the effort needed to maintain a system. These

factors include the following:

New Application

As users gain experience of new application, they will begin to see potential improvement and

features

101101

 Unit V. Maintenance and Project Management

Staff Mobility

It is always easier for original programmers to update the code than someone else. When staff

move on, it becomes harder to maintain code unless it is very well documented.

Too Many Versions

It can be difficult to trace changes in code if there have been a number of releases.

Insufficient Documentation

If the design documentation or internal commentary is poor or missing, then maintenance will

be affected. It is good practice to use internal commentary and descriptive variable names.

External Hardware and Software Changes

Changes to hardware platforms, or upgrades to operating systems can affect maintenance

requirements.

Conclusion
Technology is changing rapidly and business requirements or functions and information

technology that support organizations are changing very fast. This rapid change causes the

continuous maintenance of software on businesses. For computer software, change occurs when

errors are corrected, when the software is adapted to a new environment, when the customer

requests new features or functions, and when the application is reengineered to provide benefit

in a modern context.

Exercise

What is software maintenance? Describe various categories of maintenance. Which category

consumes maximum effort and why?

Some people feel that “maintenance is manageable.” What is your opinion about this issue?

Explain the different types of maintenance

Why is maintenance needed?

What are the different types of maintenance that a software product might need? Why is such

maintenance required?

Software Engineering

102102

Activity 2 – Software Risk Analysis and Management

Introduction

Risk analysis and management are a series of steps that help a software team to understand and

manage uncertainty. A risk is a potential problem—it might happen, it might not. But, regardless

of the outcome, it’s a really good idea to identify it, assess its probability of occurrence, estimate

its impact, and establish a contingency plan should the problem actually occur.

Risk is defined as an exposure to the chance of injury or loss. That is, risk implies that there is a

possibility that something negative may happen. In the context of software projects, negative

implies that there is an adverse effect on cost, quality, or schedule.

Risk management is the area that tries to ensure that the impact of risks on cost, quality, and

schedule is minimal

Software Risks

Risk always involves two characteristics

Uncertainty—the risk may or may not happen; that is, there are no 100% probable risks.1

Loss—if the risk becomes a reality, unwanted consequences or losses will occur.

When risks are analyzed, it is important to quantify the level of uncertainty and the degree of

loss associated with each risk. To accomplish this, different categories of risks are considered.

Project Risks

Project risks threaten the project plan. That is, if project risks become real, it is likely that project

schedule will slip and that costs will increase. Project risks identify potential budgetary, schedule,

personnel (staffing and organization), resource, customer, and requirements problems and their

impact on a software project.

Technical Risks

Technical risks threaten the quality and timeliness of the software to be produced. If a technical

risk becomes a reality, implementation may become difficult or impossible. Technical risks

identify potential design, implementation, interface, verification, and maintenance problems.

In addition, specification ambiguity, technical uncertainty, technical obsolescence, and “leading-

edge” technology are also risk factors. Technical risks occur because the problem is harder to

solve than we thought it would be.

Business Risks

Business risks threaten the viability of the software to be built. Business risks often jeopardize

the project or the product. Candidates for the top five business risks are:

Building a excellent product or system that no one really wants (market risk),

103103

 Unit V. Maintenance and Project Management

Building a product that no longer fits into the overall business strategy for the company (strategic

risk),

Building a product that the sales force doesn’t understand how to sell,

Losing the support of senior management due to a change in focus or a change in people

(management risk), and Losing budgetary or personnel commitment (budget risks).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests are

serviced). Unpredictable risks are the joker in the deck. They can and do occur, but they are

extremely difficult to identify in advance.

Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). A first step toward avoiding risks when possible and controlling

them when necessary is by identifying known and predictable risks. There are two distinct types

of risks for each of the categories that have been presented above: generic risks and product-

specific risks. Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the technology,

the people, and the environment that is specific to the project at hand.

To identify product-specific risks, the project plan and the software statement of scope are

examined and an answer to the following question is developed:

“What special characteristics of this product may threaten our project plan?”

One method for identifying risks is to create a risk item checklist. The checklist can be used for

risk identification and focuses on some subset of known and predictable risks in the following

generic subcategories:

Product size—risks associated with the overall size of the software to be built or modified.

Business impact—risks associated with constraints imposed by management or the marketplace.

Customer characteristics—risks associated with the sophistication of the customer and the

developer’s ability to communicate with the customer in a timely manner.

Process definition—risks associated with the degree to which the software process has been

defined and is followed by the development organization.

Development environment—risks associated with the availability and quality of the tools to be

used to build the product.

Technology to be built—risks associated with the complexity of the system to be built and the

“newness” of the technology that is packaged by the system.

Software Engineering

104104

Staff size and experience—risks associated with the overall technical and project experience of

the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the topics

can be answered for each software project. The answers to these questions allow the planner to

estimate the impact of risk. A different risk item checklist format simply lists characteristics that

are relevant to each generic subcategory. Finally, a set of “risk components and drivers” are

listed along with their probability of occurrence.

Although generic risks are important to consider, usually the product-specific risks cause the

most headaches. Be certain to spend the time to identify as many product-specific risks as

possible.

Risk Management Categories

Risk management plays an important role in ensuring that the software product is error-free.

Firstly, risk management takes care that the risk is avoided, and if it is not avoidable, then the

risk is detected, controlled, and finally recovered.

Riisk management can be categorized as follows:

Risk Avoidance: involving risk anticipation and risk tools

The first phase is to avoid risk by anticipating and using tools from previous project histories. In

the case where there is no risk, the risk manager stops.

Risk Detection: involving risk analysis, risk category and risk prioritization

In the case of risk, detection is done using various risk analysis techniques and further prioritizing

risks.

Risk Control: involving risk pending, risk resolution and risk not solvable

Risk is then being controlled by pending risks, resolving risks, and in the worst case (if the risk is

not solved), lowering the priority.

Risk Recovery: involving full, partial and extra/alternate feature

Lastly, risk recovery is done fully, partially, or an alternate solution is found.

105105

 Unit V. Maintenance and Project Management

2017 AVU

The African Virtual University
Headquarters

Cape Office Park

Ring Road Kilimani

PO Box 25405-00603

Nairobi, Kenya

Tel: +254 20 25283333

contact@avu.org

oer@avu.org

The African Virtual University Regional
Office in Dakar

Université Virtuelle Africaine

Bureau Régional de l’Afrique de l’Ouest

Sicap Liberté VI Extension

Villa No.8 VDN

B.P. 50609 Dakar, Sénégal

Tel: +221 338670324

bureauregional@avu.org

