Data Structures and Algorithm
Analysis

Edition 3.2 (C++ Version)

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

March 28, 2013
Update 3.2.0.10
For a list of changes, see
http://people.cs.vt.edu/~shaffer/Book/errata.html

Copyright © 2009-2012 by Clifford A. Shaffer.

This document is made freely available in PDF form for educational and
other non-commercial use. You may make copies of this file and
redistribute in electronic form without charge. You may extract portions of
this document provided that the front page, including the title, author, and
this notice are included. Any commercial use of this document requires the
written consent of the author. The author can be reached at
shaffer@cs.vt.edu.

If you wish to have a printed version of this document, print copies are
published by Dover Publications
(see http://store.doverpublications.com/048648582x.html).
Further information about this text is available at
http://people.cs.vt.edu/~shaffer/Book/.

Sec. 4.1 Lists 103

// Singly linked list node
template <typename E> class Link {

public:
E element; // Value for this node
Link *next; // Pointer to next node in list

// Constructors
Link (const E& elemval, Link* nextval =NULL)

{ element = elemval; next = nextval; }
Link (Link* nextval =NULL) { next = nextval,; }

Figure 4.4 A simple singly linked list node implementation.

more than constant time are the constructor, the destructor, and clear. These
three member functions each make use of the system free-storeoperators new and
delete. As discussed further in Section 4.1.2, system free-store operations can
be expensive. In particular, the cost to delete 1istArray depends in part on the
type of elements it stores, and whether the delete operator must call a destructor
on each one.

4.1.2 Linked Lists

The second traditional approach to implementing lists makes use of pointers and is
usually called a linked list. The linked list uses dynamic memory allocation, that
is, it allocates memory for new list elements as needed.

A linked list is made up of a series of objects, called the nodes of the list.
Because a list node is a distinct object (as opposed to simply a cell in an array), it is
good practice to make a separate list node class. An additional benefit to creating a
list node class is that it can be reused by the linked implementations for the stack
and queue data structures presented later in this chapter. Figure 4.4 shows the
implementation for list nodes, called the Link class. Objects in the Link class
contain an element field to store the element value, and a next field to store a
pointer to the next node on the list. The list built from such nodes is called a singly
linked list, or a one-way list, because each list node has a single pointer to the next
node on the list.

The Link class is quite simple. There are two forms for its constructor, one
with an initial element value and one without. Because the Link class is also
used by the stack and queue implementations presented later, its data members are
made public. While technically this is breaking encapsulation, in practice the Link
class should be implemented as a private class of the linked list (or stack or queue)
implementation, and thus not visible to the rest of the program.

Figure 4.5(a) shows a graphical depiction for a linked list storing four integers.
The value stored in a pointer variable is indicated by an arrow “pointing” to some-
thing. C++ uses the special symbol NULL for a pointer value that points nowhere,
such as for the last list node’s next field. A NULL pointer is indicated graphically

104 Chap. 4 Lists, Stacks, and Queues

head curr tiil
20 > 23 |= 12 »>(15
(@)
hfad c:rr tiil
20 > 23 |= 10 12 > 15

(b)

Figure 4.5 Tllustration of a faulty linked-list implementation where curr points
directly to the current node. (a) Linked list prior to inserting element with
value 10. (b) Desired effect of inserting element with value 10.

by a diagonal slash through a pointer variable’s box. The vertical line between the
nodes labeled 23 and 12 in Figure 4.5(a) indicates the current position (immediately
to the right of this line).

The list’s first node is accessed from a pointer named head. To speed access
to the end of the list, and to allow the append method to be performed in constant
time, a pointer named tail is also kept to the last link of the list. The position of
the current element is indicated by another pointer, named curr. Finally, because
there is no simple way to compute the length of the list simply from these three
pointers, the list length must be stored explicitly, and updated by every operation
that modifies the list size. The value ent stores the length of the list.

Class LList also includes private helper methods init and removeall.
They are used by LList’s constructor, destructor, and clear methods.

Note that LList’s constructor maintains the optional parameter for minimum
list size introduced for Class AList. This is done simply to keep the calls to the
constructor the same for both variants. Because the linked list class does not need
to declare a fixed-size array when the list is created, this parameter is unnecessary
for linked lists. It is ignored by the implementation.

A key design decision for the linked list implementation is how to represent
the current position. The most reasonable choices appear to be a pointer to the
current element. But there is a big advantage to making curr point to the element
preceding the current element.

Figure 4.5(a) shows the list’s curr pointer pointing to the current element. The
vertical line between the nodes containing 23 and 12 indicates the logical position
of the current element. Consider what happens if we wish to insert a new node with
value 10 into the list. The result should be as shown in Figure 4.5(b). However,
there is a problem. To “splice” the list node containing the new element into the
list, the list node storing 23 must have its next pointer changed to point to the new

Sec. 4.1 Lists 105

head curr tail
= 20 (23 I: 12 15
(a)
head curr tail
=20 =23 |=10 =12 =15
(b)

Figure 4.6 Insertion using a header node, with curr pointing one node head of
the current element. (a) Linked list before insertion. The current node contains 12.
(b) Linked list after inserting the node containing 10.

node. Unfortunately, there is no convenient access to the node preceding the one
pointed to by curr.

There is an easy solution to this problem. If we set curr to point directly to
the preceding element, there is no difficulty in adding a new element after curr.
Figure 4.6 shows how the list looks when pointer variable curr is set to point to the
node preceding the physical current node. See Exercise 4.5 for further discussion
of why making curr point directly to the current element fails.

We encounter a number of potential special cases when the list is empty, or
when the current position is at an end of the list. In particular, when the list is empty
we have no element for head, tail, and curr to point to. Implementing special
cases for insert and remove increases code complexity, making it harder to
understand, and thus increases the chance of introducing a programming bug.

These special cases can be eliminated by implementing linked lists with an
additional header node as the first node of the list. This header node is a link
node like any other, but its value is ignored and it is not considered to be an actual
element of the list. The header node saves coding effort because we no longer need
to consider special cases for empty lists or when the current position is at one end
of the list. The cost of this simplification is the space for the header node. However,
there are space savings due to smaller code size, because statements to handle the
special cases are omitted. In practice, this reduction in code size typically saves
more space than that required for the header node, depending on the number of
lists created. Figure 4.7 shows the state of an initialized or empty list when using a
header node.

Figure 4.8 shows the definition for the linked list class, named LList. Class
LList inherits from the abstract list class and thus must implement all of Class
List’s member functions.

106 Chap. 4 Lists, Stacks, and Queues

curr tail

head — »

Figure 4.7 Initial state of a linked list when using a header node.

Implementations for most member functions of the 1ist class are straightfor-
ward. However, insert and remove should be studied carefully.

Inserting a new element is a three-step process. First, the new list node is
created and the new element is stored into it. Second, the next field of the new
list node is assigned to point to the current node (the one after the node that curr
points to). Third, the next field of node pointed to by curr is assigned to point to
the newly inserted node. The following line in the insert method of Figure 4.8
does all three of these steps.

curr—->next = new Link<E> (it, curr->next);

Operator new creates the new link node and calls the Link class constructor, which
takes two parameters. The first is the element. The second is the value to be placed
in the list node’s next field, in this case“curr—>next.” Figure 4.9 illustrates
this three-step process. Once the new node is added, tail is pushed forward if the
new element was added to the end of the list. Insertion requires ©(1) time.

Removing a node from the linked list requires only that the appropriate pointer
be redirected around the node to be deleted. The following lines from the remove
method of Figure 4.8 do precisely this.

Link<E>* ltemp = curr->next; // Remember link node
curr->next = curr->next->next; // Remove from list

We must be careful not to “lose” the memory for the deleted link node. So, tem-
porary pointer 1temp is first assigned to point to the node being removed. A call
to delete is later used to return the old node to free storage. Figure 4.10 illus-
trates the remove method.Assuming that the free-store delete operator requires
constant time, removing an element requires ©(1) time.

Method next simply moves curr one position toward the tail of the list,
which takes O(1) time. Method prev moves curr one position toward the head
of the list, but its implementation is more difficult. In a singly linked list, there is
no pointer to the previous node. Thus, the only alternative is to march down the list
from the beginning until we reach the current node (being sure always to remember
the node before it, because that is what we really want). This takes O(n) time in
the average and worst cases. Implementation of method moveToPos is similar in
that finding the 7th position requires marching down ¢ positions from the head of
the list, taking O(7) time.

Implementations for the remaining operations each require ©(1) time.

Sec. 4.1 Lists 107

// Linked list implementation
template <typename E> class LList: public List<E> ({
private:

Link<E>* head; // Pointer to list header

Link<E>* tail; // Pointer to last element

Link<E>* curr; // Access to current element

int ent; // Size of list

void init () { // Intialization helper method
curr = tail = head = new Link<E>;
cnt = 0;

}

void removeall() ({ // Return link nodes to free store

while (head !'= NULL) {
curr = head;
head = head->next;
delete curr;
}
}

public:
LList (int size=defaultSize) { init(); } // Constructor
“"LList () { removeall(); } // Destructor
void print () const; // Print list contents
void clear() { removeall(); init(); } // Clear list

// Insert "it" at current position

void insert (const E& it) {
curr->next = new Link<E> (it, curr->next);
if (tail == curr) tail = curr->next; // New tail
cnt++;

}

void append(const E& it) { // Append "it" to list
tail = tail->next = new Link<E>(it, NULL);
cnt++;

}

// Remove and return current element
E remove () {

Assert (curr—->next != NULL, "No element");

E it = curr->next->element; // Remember value
Link<E>* ltemp = curr->next; // Remember link node
if (tail == curr->next) tail = curr; // Reset tail
curr—->next = curr->next->next; // Remove from list
delete ltemp; // Reclaim space
cnt——; // Decrement the count

return it;

Figure 4.8 A linked list implementation.

108 Chap. 4 Lists, Stacks, and Queues

};

void moveToStart () // Place curr at list start
{ curr = head; }

void moveToEnd () // Place curr at list end
{ curr = tail; }

// Move curr one step left; no change if already at front
void prev() {
if (curr == head) return; // No previous element
Link<E>* temp = head;
// March down list until we find the previous element
while (temp->next!=curr) temp=temp->next;
curr = temp;

}

// Move curr one step right; no change if already at end
void next ()
{ if (curr != tail) curr = curr—->next; }

int length() const { return cnt; } // Return length
// Return the position of the current element

int currPos() const {
Link<E>* temp = head;

int i;

for (i=0; curr != temp; i++)
temp = temp->next;

return 1i;

}

// Move down list to "pos" position

void moveToPos (int pos) {
Assert ((pos>=0)&& (pos<=cnt), "Position out of range");
curr = head;
for (int i=0; i<pos; i++) curr = curr->next;

}

const E& getValue() const { // Return current element
Assert (curr—->next != NULL, "No value");
return curr->next->element;

}

Figure 4.8 (continued)

Sec. 4.1 Lists 109

curr
e — 23 I: 12| —— oo
Insert 10: (10
(a)
curr
oo — | 23| ~_ 12| —F— oo
A i
10| -~

(b)
Figure 4.9 The linked list insertion process. (a) The linked list before insertion.
(b) The linked list after insertion. marks the element field of the new link
node. marks the next field of the new link node, which is set to point to what

used to be the current node (the node with value 12). marks the next field of
the node preceding the current position. It used to point to the node containing 12;
now it points to the new node containing 10.

curr
o |
eoe —»[23 |= 10 12| —— o
(a)

—{23 -—-/(10 12| ——
it

(b)

Figure 4.10 The linked list removal process. (a) The linked list before removing
the node with value 10. (b) The linked list after removal. marks the list node
being removed. it is set to point to the element. marks the next field of
the preceding list node, which is set to point to the node following the one being
deleted.

110 Chap. 4 Lists, Stacks, and Queues

Freelists

TheC++ free-store management operators new and delete are relatively expen-
sive to use. Section 12.3 discusses how general-purpose memory managers are
implemented. The expense comes from the fact that free-store routines must be ca-
pable of handling requests to and from free store with no particular pattern, as well
as memory requests of vastly different sizes. Thismakes them inefficient compared
to what might be implemented for more controlled patterns of memory access.

List nodes are created and deleted in a linked list implementation in a way
that allows the Link class programmer to provide simple but efficient memory
management routines. Instead of making repeated calls to new and delete, the
Link class can handle its own freelist. A freelist holds those list nodes that are not
currently being used. When a node is deleted from a linked list, it is placed at the
head of the freelist. When a new element is to be added to a linked list, the freelist
is checked to see if a list node is available. If so, the node is taken from the freelist.
If the freelist is empty, the standard new operator must then be called.

Freelists are particularly useful for linked lists that periodically grow and then
shrink. The freelist will never grow larger than the largest size yet reached by the
linked list. Requests for new nodes (after the list has shrunk) can be handled by
the freelist. Another good opportunity to use a freelist occurs when a program uses
multiple lists. So long as they do not all grow and shrink together, the free list can
let link nodes move between the lists.

One approach to implementing freelists would be to create two new operators
to use instead of the standard free-store routines new and delete. This requires
that the user’s code, such as the linked list class implementation of Figure 4.8, be
modified to call these freelist operators. A second approach is to use C++ operator
overloading to replace the meaning of new and delete when operating on Link
class objects. In this way, programs that use the LList class need not be modified
at all to take advantage of a freelist. Whether the Link class is implemented with
freelists, or relies on the regular free-store mechanism, is entirely hidden from the
list class user. Figure 4.11 shows the reimplementation for the Link classwith
freelist methods overloading the standard free-store operators. Note how simple
they are, because they need only remove and add an element to the front of the
freelist, respectively. The freelist versions of new and delete both run in ©(1)
time, except in the case where the freelist is exhausted and the new operation must
be called. On my computer, a call to the overloaded new and delete operators
requires about one tenth of the time required by the system free-store operators.

There is an additional efficiency gain to be had from a freelist implementation.
The implementation of Figure 4.11 makes a separate call to the system new oper-
ator for each link node requested whenever the freelist is empty. These link nodes
tend to be small — only a few bytes more than the size of the element field. If at
some point in time the program requires thousands of active link nodes, these will

Sec. 4.1 Lists 111

// Singly linked list node with freelist support
template <typename E> class Link {

private:

static Link<E>* freelist; // Reference to freelist head
public:

E element; // Value for this node

Link*x next; // Point to next node in list

// Constructors
Link (const E& elemval, Link* nextval =NULL)

{ element = elemval; next = nextval; }
Link (Link* nextval =NULL) { next = nextval; }

voidx operator new(size_t) { // Overloaded new operator

if (freelist == NULL) return ::new Link; // Create space
Link<E>x temp = freelist; // Can take from freelist
freelist = freelist->next;

return temp; // Return the link

}

// Overloaded delete operator
void operator delete (voidx ptr) ({
((Link<E>*)ptr)->next = freelist; // Put on freelist
freelist = (Link<E>x)ptr;
}
};

// The freelist head pointer is actually created here
template <typename E>
Link<E>* Link<E>::freelist = NULL;

Figure 4.11 Implementation for the Link class with a freelist. Note that the
redefinition for new refers to : :new on the third line. This indicates that the
standard C++ new operator is used, rather than the redefined new operator. If
the colons had not been used, then the Link class new operator would be called,
setting up an infinite recursion. The statiec declaration for member freelist
means that all Link class objects share the same freelist pointer variable instead
of each object storing its own copy.

have been created by many calls to the system version of new. An alternative is to
allocate many link nodes in a single call to the system version of new, anticipating
that if the freelist is exhausted now, more nodes will be needed soon. It is faster to
make one call to new to get space for 100 1ink nodes, and then load all 100 onto
the freelist at once, rather than to make 100 separate calls to new. The following
statement will assign ptr to point to an array of 100 link nodes.

ptr = ::new Link[100];

The implementation for the new operator in the 1ink class could then place each
of these 100 nodes onto the freelist.

112 Chap. 4 Lists, Stacks, and Queues

The freelist variable declaration uses the keyword static. This creates
a single variable shared among all instances of the Link nodes. We want only a
single freelist for all Link nodes of a given type. A program might create multiple
lists. If they are all of the same type (that is, their element types are the same), then
they can and should share the same freelist. This will happen with the implemen-
tation of Figure 4.11. If lists are created that have different element types, because
this code is implemented with a template, the need for different list implementa-
tions will be discovered by the compiler at compile time. Separate versions of the
list class will be generated for each element type. Thus, each element type will
also get its own separate copy of the Link class. And each distinct Link class
implementation will get a separate freelist.

4.1.3 Comparison of List Implementations

Now that you have seen two substantially different implementations for lists, it is
natural to ask which is better. In particular, if you must implement a list for some
task, which implementation should you choose?

Array-based lists have the disadvantage that their size must be predetermined
before the array can be allocated. Array-based lists cannot grow beyond their pre-
determined size. Whenever the list contains only a few elements, a substantial
amount of space might be tied up in a largely empty array. Linked lists have the
advantage that they only need space for the objects actually on the list. There is
no limit to the number of elements on a linked list, as long as there is free-store
memory available. The amount of space required by a linked list is ©(n), while the
space required by the array-based list implementation is €2(n), but can be greater.

Array-based lists have the advantage that there is no wasted space for an in-
dividual element. Linked lists require that an extra pointer be added to every list
node. If the element size is small, then the overhead for links can be a significant
fraction of the total storage. When the array for the array-based list is completely
filled, there is no storage overhead. The array-based list will then be more space
efficient, by a constant factor, than the linked implementation.

A simple formula can be used to determine whether the array-based list or
linked list implementation will be more space efficient in a particular situation.
Call n the number of elements currently in the list, P the size of a pointer in stor-
age units (typically four bytes), E the size of a data element in storage units (this
could be anything, from one bit for a Boolean variable on up to thousands of bytes
or more for complex records), and D the maximum number of list elements that
can be stored in the array. The amount of space required for the array-based list is
DE, regardless of the number of elements actually stored in the list at any given
time. The amount of space required for the linked list is n(P + E). The smaller
of these expressions for a given value n determines the more space-efficient imple-
mentation for n elements. In general, the linked implementation requires less space

Sec. 4.1 Lists 113

than the array-based implementation when relatively few elements are in the list.
Conversely, the array-based implementation becomes more space efficient when
the array is close to full. Using the equation, we can solve for n to determine
the break-even point beyond which the array-based implementation is more space
efficient in any particular situation. This occurs when

n> DE/(P + E).

If P = E, then the break-even point is at D /2. This would happen if the element
field is either a four-byte int value or a pointer, and the next field is a typical four-
byte pointer. That is, the array-based implementation would be more efficient (if
the link field and the element field are the same size) whenever the array is more
than half full.

As a rule of thumb, linked lists are more space efficient when implementing
lists whose number of elements varies widely or is unknown. Array-based lists are
generally more space efficient when the user knows in advance approximately how
large the list will become.

Array-based lists are faster for random access by position. Positions can easily
be adjusted forwards or backwards by the next and prev methods. These opera-
tions always take ©(1) time. In contrast, singly linked lists have no explicit access
to the previous element, and access by position requires that we march down the
list from the front (or the current position) to the specified position. Both of these
operations require ©(n) time in the average and worst cases, if we assume that
each position on the list is equally likely to be accessed on any call to prev or
moveToPos.

Given a pointer to a suitable location in the list, the insert and remove
methods for linked lists require only ©(1) time. Array-based lists must shift the re-
mainder of the list up or down within the array. This requires ©(n) time in the aver-
age and worst cases. For many applications, the time to insert and delete elements
dominates all other operations. For this reason, linked lists are often preferred to
array-based lists.

When implementing the array-based list, an implementor could allow the size
of the array to grow and shrink depending on the number of elements that are
actually stored. This data structure is known as a dynamic array. Both the Java and
C++/STL Vector classes implement a dynamic array. Dynamic arrays allow the
programmer to get around the limitation on the standard array that its size cannot
be changed once the array has been created. This also means that space need not
be allocated to the dynamic array until it is to be used. The disadvantage of this
approach is that it takes time to deal with space adjustments on the array. Each time
the array grows in size, its contents must be copied. A good implementation of the
dynamic array will grow and shrink the array in such a way as to keep the overall
cost for a series of insert/delete operations relatively inexpensive, even though an

114 Chap. 4 Lists, Stacks, and Queues

occasional insert/delete operation might be expensive. A simple rule of thumb is
to double the size of the array when it becomes full, and to cut the array size in
half when it becomes one quarter full. To analyze the overall cost of dynamic array
operations over time, we need to use a technique known as amortized analysis,
which is discussed in Section 14.3.

4.1.4 Element Implementations

List users must decide whether they wish to store a copy of any given element on
each list that contains it. For small elements such as an integer, this makes sense.
If the elements are payroll records, it might be desirable for the list node to store a
pointer to the record rather than store a copy of the record itself. This change would
allow multiple list nodes (or other data structures) to point to the same record,
rather than make repeated copies of the record. Not only might this save space, but
it also means that a modification to an element’s value is automatically reflected
at all locations where it is referenced. The disadvantage of storing a pointer to
each element is that the pointer requires space of its own. If elements are never
duplicated, then this additional space adds unnecessary overhead.

The C++ implementations for lists presented in this section give the user of the
list the choice of whether to store copies of elements or pointers to elements. The
user can declare E to be, for example, a pointer to a payroll record. In this case,
multiple lists can point to the same copy of the record. On the other hand, if the
user declares E to be the record itself, then a new copy of the record will be made
when it is inserted into the list.

Whether it is more advantageous to use pointers to shared elements or separate
copies depends on the intended application. In general, the larger the elements and
the more they are duplicated, the more likely that pointers to shared elements is the
better approach.

A second issue faced by implementors of a list class (or any other data structure
that stores a collection of user-defined data elements) is whether the elements stored
are all required to be of the same type. This is known as homogeneity in a data
structure. In some applications, the user would like to define the class of the data
element that is stored on a given list, and then never permit objects of a different
class to be stored on that same list. In other applications, the user would like to
permit the objects stored on a single list to be of differing types.

For the list implementations presented in this section, the compiler requires
that all objects stored on the list be of the same type. In fact, because the lists are
implemented using templates, a new class is created by the compiler for each data
type. For implementors who wish to minimize the number of classes created by
the compiler, the lists can all store a void* pointer, with the user performing the
necessary casting to and from the actual object type for each element. However, this

Sec. 4.1 Lists 115

approach requires that the user do his or her own type checking, either to enforce
homogeneity or to differentiate between the various object types.

Besides C++ templates, there are other techniques that implementors of a list
class can use to ensure that the element type for a given list remains fixed, while
still permitting different lists to store different element types. One approach is to
store an object of the appropriate type in the header node of the list (perhaps an
object of the appropriate type is supplied as a parameter to the list constructor), and
then check that all insert operations on that list use the same element type.

The third issue that users of the list implementations must face is primarily of
concern when programming in languages that do not support automatic garbage
collection. That is how to deal with the memory of the objects stored on the list
when the list is deleted or the clear method is called. The list destructor and the
clear method are problematic in that there is a potential that they will bemisused,
thus causing a memory leak. The type of the element stored determines whether
there is a potential for trouble here. If the elements are of a simple type such as an
int, then there is no need to delete the elements explicitly. If the elements are of a
user-defined class, then their own destructor will be called. However, what if the list
elements are pointers to objects? Then deleting listArray in the array-based
implementation, or deleting a link node in the linked list implementation, might
remove the only reference to an object, leaving its memory space inaccessible.
Unfortunately, there is no way for the list implementation to know whether a given
object is pointed to in another part of the program or not. Thus, the user of the list
must be responsible for deleting these objects when that is appropriate.

4.1.5 Doubly Linked Lists

The singly linked list presented in Section 4.1.2 allows for direct access from a
list node only to the next node in the list. A doubly linked list allows convenient
access from a list node to the next node and also to the preceding node on the list.
The doubly linked list node accomplishes this in the obvious way by storing two
pointers: one to the node following it (as in the singly linked list), and a second
pointer to the node preceding it. The most common reason to use a doubly linked
list is because it is easier to implement than a singly linked list. While the code for
the doubly linked implementation is a little longer than for the singly linked version,
it tends to be a bit more “obvious” in its intention, and so easier to implement
and debug. Figure 4.12 illustrates the doubly linked list concept. Whether a list
implementation is doubly or singly linked should be hidden from the List class
user.

Like our singly linked list implementation, the doubly linked list implementa-
tion makes use of a header node. We also add a tailer node to the end of the list.
The tailer is similar to the header, in that it is a node that contains no value, and it
always exists. When the doubly linked list is initialized, the header and tailer nodes

116 Chap. 4 Lists, Stacks, and Queues

head curr tail

\

<1 |20l 771 |23 < 12|77 [15] =

-

Figure 4.12 A doubly linked list.

are created. Data member head points to the header node, and tail points to
the tailer node. The purpose of these nodes is to simplify the insert, append,
and remove methods by eliminating all need for special-case code when the list
is empty, or when we insert at the head or tail of the list.

For singly linked lists we set curr to point to the node preceding the node that
contained the actual current element, due to lack of access to the previous node
during insertion and deletion. Since we do have access to the previous node in a
doubly linked list, this is no longer necessary. We could set curr to point directly
to the node containing the current element. However, I have chosen to keep the
same convention for the curr pointer as we set up for singly linked lists, purely
for the sake of consistency.

Figure 4.13 shows the complete implementation for a Link class to be used
with doubly linked lists. This code is a little longer than that for the singly linked list
node implementation since the doubly linked list nodes have an extra data member.

Figure 4.14 shows the implementation for the insert, append, remove,
and prev doubly linked list methods. The class declaration and the remaining
member functions for the doubly linked list class are nearly identical to the singly
linked list version.

The insert method is especially simple for our doubly linked list implemen-
tation, because most of the work is done by the node’s constructor. Figure 4.15
shows the list before and after insertion of a node with value 10.

The three parameters to the new operator allow the list node class constructor
to set the element, prev, and next fields, respectively, for the new link node.
The new operator returns a pointer to the newly created node. The nodes to either
side have their pointers updated to point to the newly created node. The existence
of the header and tailer nodes mean that there are no special cases to worry about
when inserting into an empty list.

The append method is also simple. Again, the Link class constructor sets the
element, prev, and next fields of the node when the new operator is executed.

Method remove (illustrated by Figure 4.16) is straightforward, though the
code is somewhat longer. First, the variable it is assigned the value being re-
moved. Note that we must separate the element, which is returned to the caller,
from the link object. The following lines then adjust the list.

Sec. 4.1 Lists 117

// Doubly linked list link node with freelist support
template <typename E> class Link {
private:

static Link<E>* freelist; // Reference to freelist head

public:
E element; // Value for this node
Link* next; // Pointer to next node in list
Link* prev; // Pointer to previous node

// Constructors

Link (const E& it, Linkx prevp, Link* nextp) {
element = it;
prev = prevp;
next = nextp;

}

Link (Linkx prevp =NULL, Link* nextp =NULL) {
prev = prevp;
next = nextp;

}

voidx operator new(size_t) { // Overloaded new operator

if (freelist == NULL) return ::new Link; // Create space
Link<E>* temp = freelist; // Can take from freelist
freelist = freelist—->next;

return temp; // Return the link

}

// Overloaded delete operator
void operator delete (voidx ptr) ({
((Link<E>*)ptr)->next = freelist; // Put on freelist
freelist = (Link<E>x)ptr;
}
}i
// The freelist head pointer is actually created here
template <typename E>
Link<E>* Link<E>::freelist = NULL;

Figure 4.13 Doubly linked list node implementation with a freelist.

118 Chap. 4 Lists, Stacks, and Queues

// Insert "it" at current position
void insert (const E& it) {

curr—>next = curr->next->prev =
new Link<E> (it, curr, curr—->next);
cnt++;

}

// Append "it" to the end of the list.
void append(const E& it) {
tail->prev = tail->prev—>next =
new Link<E>(it, tail->prev, tail);
cnt++;
}

// Remove and return current element
E remove () {

if (curr—>next == tail) // Nothing to remove
return NULL;

E it = curr->next->element; // Remember value

Link<E>* ltemp = curr—->next; // Remember link node

curr—>next->next->prev = curr;

curr->next = curr->next->next; // Remove from list

delete ltemp; // Reclaim space

cnt——; // Decrement cnt

return it;

}

// Move fence one step left; no change if left is empty
void prev() {
if (curr != head) // Can’t back up from list head
curr = curr->prev;

Figure 4.14 Implementations for doubly linked list insert, append,
remove, and prev methods.

Link<E>* ltemp = curr->next; // Remember link node
curr—>next->next->prev = curr;

curr->next = curr->next->next; // Remove from list
delete ltemp; // Reclaim space

The first line sets a temporary pointer to the node being removed. The second
line makes the next node’s prewv pointer point to the left of the node being removed.
Finally, the next field of the node preceding the one being deleted is adjusted. The
final steps of method remove are to update the listlength, return the deleted node
to free store, and return the value of the deleted element.

The only disadvantage of the doubly linked list as compared to the singly linked
list is the additional space used. The doubly linked list requires two pointers per
node, and so in the implementation presented it requires twice as much overhead
as the singly linked list.

Sec. 4.1 Lists 119

curr
o Lleo|TmL 23| T (12| T ™ =

Insert 10: 10

(a)
curr
N
- - —+—
- o 1|20 :‘:\ 0 /‘:/ 23| Tl |12

(o)

Figure 4.15 Insertion for doubly linked lists. The labels |1 |, , and cor-
respond to assignments done by the linked list node constructor. marks the

assignment to curr—>next. marks the assignment to the prev pointer of
the node following the newly inserted node.

- - -
< [20] < 23| T |12
(a)

cg\rr
JE | . 4
I I (0] B R 12
it 23

Figure 4.16 Doubly linked list removal. Element it stores the element of the
node being removed. Then the nodes to either side have their pointers adjusted.

120 Chap. 4 Lists, Stacks, and Queues

Example 4.1 There is a space-saving technique that can be employed to
eliminate the additional space requirement, though it will complicate the
implementation and be somewhat slower. Thus, this is an example of a
space/time tradeoff. It is based on observing that, if we store the sum of
two values, then we can get either value back by subtracting the other. That
is, if we store a + b in variable ¢, then b = ¢ — a and a = ¢ — b. Of course,
to recover one of the values out of the stored summation, the other value
must be supplied. A pointer to the first node in the list, along with the value
of one of its two link fields, will allow access to all of the remaining nodes
of the list in order. This is because the pointer to the node must be the same
as the value of the following node’s prev pointer, as well as the previous
node’s next pointer. It is possible to move down the list breaking apart
the summed link fields as though you were opening a zipper. Details for
implementing this variation are left as an exercise.

The principle behind this technique is worth remembering, as it has
many applications. The following code fragment will swap the contents
of two variables without using a temporary variable (at the cost of three
arithmetic operations).

a + b;
a - b; // Now b contains original value of a

a
b
a a - b; // Now a contains original value of b

A similar effect can be had by using the exclusive-or operator. This fact
is widely used in computer graphics. A region of the computer screen can
be highlighted by XORing the outline of a box around it. XORing the box
outline a second time restores the original contents of the screen.

4.2 Stacks

The stack is a list-like structure in which elements may be inserted or removed
from only one end. While this restriction makes stacks less flexible than lists, it
also makes stacks both efficient (for those operations they can do) and easy to im-
plement. Many applications require only the limited form of insert and remove
operations that stacks provide. In such cases, it is more efficient to use the sim-
pler stack data structure rather than the generic list. For example, the freelist of
Section 4.1.2 is really a stack.

Despite their restrictions, stacks have many uses. Thus, a special vocabulary
for stacks has developed. Accountants used stacks long before the invention of the
computer. They called the stack a “LIFO” list, which stands for “Last-In, First-

