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Preface

Mathematics was coined the “queen of sciences” by Carl Friedrich Gauss, one
of the greatest mathematicians of all time. The name of Gauss is associated
with essentially all areas of mathematics. Therefore to him, and most of the
great mathematicians before the end of the nineteenth century, there was
really no clear boundary between “pure mathematics” and “applied math-
ematics.” To ensure financial independence, Gauss choice a stable career in
astronomy, which is one of the oldest sciences and was perhaps the most popu-
lar one during the eighteenth and nineteenth centuries. In his study of celestial
motion and orbits and a diversity of disciplines later in his career, including
(in chronological order): geodesy, magnetism, dioptrics, and actuarial science,
Gauss has developed a vast volume of mathematical methods and tools that
are still instrumental to our current study of applied mathematics.

During the twentieth century, with the exciting development of quantum
field theory, with the prosperity of the aviation industry, and with the bullish
activity in financial market trading, and so forth, the sovereignty of the “queen
of sciences” has turned her attention to the theoretical development and nu-
merical solutions of partial differential equations (PDE’s). Indeed, the non-
relativistic modeling of quantum mechanics is described by the Schrdinger
equation; the fluid flow formulation, as an extension of Newtonian physics by
incorporating motion and stress, is modeled by the Navier-Stokes equation;
and option stock trading with minimum risk can be modeled by the Black-
Scholes equation. All of these equations are PDEs. In general, PDE’s are used
to describe a wide variety of phenomena, including: heat diffusion, sound wave
propagation, electromagnetic wave radiation, vibration, electrostatics, electro-
dynamics, fluid flow, and elasticity, just to name a few. For this reason, the
theoretical and numerical development of PDEs has been considered the core
of applied mathematics, at least in the academic environment.

On the other hand, over the past two decades, we have been facing a rapidly
increasing volume of “information” contents to be processed and understood.
For instance, the popularity and significant impact of the open education
movement (OEM) have contributed to an enormous amount of educational
information in the web that are difficult to sort out, due to unavoidable re-
dundancy, occasional contradiction, extreme variation in quality, and even
erroneous opinions. This motivated the founding of the “Saylor Foundation
courseware” to provide perhaps one of the most valuable, and certainly more
reliable, high-quality educational materials, with end-to-end solutions, that
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are free to all. With the recent advances of various high-tech fields and the
popularity of social networking, the trend of exponential growth of easily ac-
cessible information is certainly going to continue well into the twenty-first
century, and the bottleneck created by this information explosion will def-
initely require innovative solutions from the scientific and engineering com-
munities, particularly those technologists with better understanding of and a
strong background in applied mathematics. In this regard, mathematics ex-
tends its influence and impact by providing innovative theory, methods, and
algorithms to virtually every discipline, far beyond sciences and engineering,
for processing, transmitting, receiving, understanding, and visualizing data
sets, which could be very large or live in some high-dimensional space.

Of course the basic mathematical tools, such as PDE methods and least-
squares approximation introduced by Gauss, are always among the core of
the mathematical toolbox for applied mathematics. But other innovations and
methods must be integrated in this toolbox as well. One of the most essential
ideas is the notion of frequency of the data information. Joseph Fourier, a con-
temporary of Gauss, instilled this important concept to our study of physical
phenomena by his innovation of trigonometric series representations, along
with powerful mathematical theory and methods, to significantly expand the
core of the toolbox for applied mathematics. The frequency content of a given
data-set facilitates the processing and understanding of the data information.
Another important idea is the “multi-scale” structure of data sets. Less than
three decades ago, with the birth of another exciting mathematical subject,
called “wavelets,” the data-set of information can be put in the wavelet do-
main for multi-scale processing as well. On the other hand, it is unfortunate
that some essential basic mathematical tools for information processing are
not commonly taught in a regular applied mathematics course in the uni-
versity. Among the commonly missing ones, the topics that are addressed in
this Saylor course MA304 include: information coding, data dimensionality
reduction, data compression, and image manipulation.

The objective of this course is to study the basic theory and methods
in the toolbox of the core of applied mathematics, with a central scheme
that addresses “information processing” and with an emphasis on manipula-
tion of digital image data. Linear algebra in the Saylor Foundation’s MA211
and MA212 are extended to “linear analysis” with applications to principal
component analysis (PCA) and data dimensionality reduction (DDR). For
data compression, the notion of entropy is introduced to quantify coding effi-
ciency as governed by Shannon’s Noiseless Coding theorem. Discrete Fourier
transform (DFT) followed by an efficient computational algorithm, called fast
Fourier transform (FFT), as well as a real-valued version of the DFT, called
discrete cosine transform (DCT) are discussed, with application to extracting
frequency content of the given discrete data set that facilitates reduction of
the entropy and thus significant improvement of the coding efficiency. DFT
can be viewed as a discrete version of the Fourier series, which will be stud-
ied in some depth, with emphasis on orthogonal projection, the property of
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positive approximate identity of Fejer’s kernels, Parseval’s identity and the
concept of completeness. The integral version of the sequence of Fourier coef-
ficients is called the Fourier transform (FT). Analogous to the Fourier series,
the formulation of the inverse Fourier transform (IFT) is derived by applying
the Gaussian function as sliding time-window for simultaneous time-frequency
localization, with optimality guaranteed by the Uncertainty Principle. Local
time-frequency basis functions are also introduced in this course by discretiza-
tion of the frequency-modulated sliding time-window function at the integer
lattice points. Replacing the frequency modulation by modulation with the
cosines avoids the Balian-Low stability restriction on the local time-frequency
basis functions, with application to elimination of blocky artifact caused by
quantization of tiled DCT in image compression. Gaussian convolution filter-
ing also provides the solution of the heat (partial differential) equation with
the real-line as the spatial domain. When this spatial domain is replaced by
a bounded interval, the method of separation of variables is applied to sepa-
rate the PDE into two ordinary differential equations (ODEs). Furthermore,
when the two end-points of the interval are insulated from heat loss, solu-
tion of the spatial ODE is achieved by finding the eigenvalue and eigenvector
pairs, with the same eigenvalues to govern the exponential rate of decay of
the solution of the time ODE. Superposition of the products of the spatial
and time solutions over all eigenvalues solves the heat PDE, when the Fourier
coefficients of the initial heat content are used as the coefficients of the terms
of the superposition. This method is extended to the two-dimensional rectan-
gular spatial domain, with application to image noise reduction. The method
of separation of variables is also applied to solving other typical linear PDEs.
Finally, multi-scale data analysis is introduced and compared with the Fourier
frequency approach, and the architecture of multiresolution analysis (MRA)
is applied to the construction of wavelets and formulation of the multi-scale
wavelet decomposition and reconstruction algorithms. The lifting scheme is
also introduced to reduce the computational complexity of these algorithms,
with applications to digital image manipulation for such tasks as progressive
transmission, image edge extraction, and image enhancement.

Portions of this manuscript are revised and modified versions of certain
contents extracted from the book, “Applied Mathematics: Data Compression,
Spectral Methods, Fourier Analysis, Wavelets, and Applications,” authored by
Charles K. Chui and Qingtang Jiang. The book is published by Atlantis Press,
and promoted, distributed and sold by Springer, both in print (ISBN 978-94-
6239-008-9) and as e-book (ISBN 978-94-6239-009-6), available on Springers
internet platform http://www.springerlink.com. The author of this text owns
the copyright of the book, with signed agreement from his co-author, for non-
commercial use and publication.

I would like to take this opportunity to acknowledge several individu-
als within the Saylor Foundation organization (http://www.saylor.org) for
their encouragement, generous support, patience, and prompt responses, in
the preparation of these contents. First and foremost, I would like to thank
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Jennifer Shoop, who left Saylor less than a year ago to join MoneyThink
(http://www.moneythink.org). It was Jen who suggested and initiated this
project, which would not have happened without her enthusiastic encourage-
ment and unfailing support. I am also indebted to Steve Phillips, who helped in
finalizing the development contract and oversaw the initiation of this project,
and to Tanner Huggins, who took over the responsibility from Steve a year ago
in overseeing the progress of the content development. Tanners kind under-
standing, patience, and prompt responses certainly had a lot to do in keeping
me going and finally completing this content development project. To my
book publishers and friends, Zeger Karssen and Keith Jones, of Atlantis Press
(http://www.atlantis-press.com), I would like to express my appreciation to
their generous agreement with me to modify some of the contents from our
book they published for the content development of MA 304. Finally, I am
grateful to my wife, Margaret, for her assistance in typing and formatting the
entire manuscript.

Charles Chui
Menlo Park, California
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Unit 1

LINEAR ANALYSIS

The concepts and basic topics in elementary Linear Algebra and Calculus are
reviewed and generalized to Linear Analysis in this first unit. In particular,
the dot product, the vector space of R2 (that is, the x − y plane in Plane
Geometry), and measurement of lengths of vectors in R2, are extended to the
“inner product,” the “inner-product space,” and “norm” measurement, re-
spectively; the notion of eigenvalues and eigenvectors from Linear Algebra is
extended to the “eigenvalue problem” of bounded linear operators; and eigen-
values are replaced by singular values for self-adjoint positive definite linear
operators. Based on this preparation, the concept of principal component anal-
ysis (PCA) is introduced and studied in some detail, along with discussion of
its applications to introduce the inverse of a singular matrix or an arbitrary
rectangular matrix, minimum-norm least-squares estimation, and above all,
to data dimensionality reduction.

1.1 Inner Product and Norm Measurements

The notion of “inner product,” to be introduced in Subunit 1.1.1, is an ex-
tension of the “dot product, studied in beginning Vector Calculus. The most
important property of the inner product is the Cauchy-Schwartz inequality,
to be derived in Subunit 1.1.2. As an immediate application of this inequal-
ity, the notion of “norm,” defined in Subunit 1.1.1, is shown to satisfy the
“triangle inequality in Subunit 1.1.3, which justifies the use of the norm for
measuring the “lengths of elements in an “inner-product space. This allows
us to extend beginning Vector Calculus to Linear Analysis of “Function and
sequence Spaces. In addition, a combination of the inner-product and norm
measurement can be applied to introduce the notion of “angles among ele-
ments (such as functions and sequences) of an inner-product space. This is a
topic of discussion in Subunit 1.1.3. Furthermore, the Gram-Schmidt orthog-
onalization process is introduced and studied in Subunit 1.1.4 for changing a
linearly independent set of elements (called vectors) in an inner-product space
to a mutually orthogonal set of unit vectors.
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2 SAYLOR MA 304

1.1.1 Definition of inner product

The notion of inner product defined on a vector space, as introduced in Subunit
1.1.1, gives a very rich mathematical structure for the vectors in the space.
Endowed with this inner product, the vector space will be called an inner-
product space, as follows.

Definition 1.1.1 Let V be a vector space over the scalar field of complex
numbers C. Then V is called an inner-product space, if there is a function
〈·, ·〉 defined on V×V, with range in C, that satisfies the following conditions:

(a) Conjugate symmetry: 〈x,y〉 = 〈y,x〉 for all x,y ∈ V;

(b) Linearity: 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 for all x,y, z ∈ V, a, b ∈ C;

(c) Positivity: 〈x,x〉 ≥ 0 for all x ∈ V, and 〈x,x〉 = 0⇔ x = 0.

We remark that the above definition remains valid if the scalar field C is
replaced by the scalar field R of real numbers, as demonstrated in the following
example.

Example 1.1.1 Let R denote the set of real numbers and n any positive
integer. Recall that the Euclidean space Rn of n-tuples x = (x1, · · · , xn),
where x1, · · · , xn ∈ R, is a vector space over the scalar field R, and that for
any x = (x1, · · · , xn) and y = (y1, · · · , yn) in Rn, the “dot product” of x and
y is defined by

x · y = x1y1 + · · ·+ xnyn. (1.1.1)

Verify that the Euclidean space Rn with the inner product 〈·, ·〉 defined by the
dot product, namely, 〈x,y〉 = x · y, as in (1.1.1), is an inner-product space.

Solution We verify (a)–(c) of Definition (1.1.1), as follows:

(a) For x,y ∈ Rn, since the complex conjugate of a real number is the real
number itself, we have

〈x,y〉 = x1y1 + · · ·+ xnyn

= y1x1 + · · ·+ ynxn

= y1x1 + · · ·+ ynxn = 〈y,x〉.

(b) For all a, b ∈ R and x,y, z ∈ Rn, with z = (z1, · · · , zn), we have

〈ax + by, z〉 = (ax1 + by1)z1 + · · ·+ (axn + byn)zn

= (ax1z1 + · · ·+ axnzn) + (by1z1 + · · ·+ bynzn)

= a〈x, z〉+ b〈y, z〉.
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(c) For any x ∈ Rn, we have

〈x,x〉 = |x1|2 + · · ·+ |xn|2 ≥ 0,

and that 〈x,x〉 = 0 if and only if |x1|2 + · · ·+ |xn|2 = 0, or x1 =
0, · · · , xn = 0, or x = 0. �

Since the inner product of a vector x with itself is a non-negative real
number, we may use its square-root to define the length of the vector, called
the norm of x, as follows.

Definition 1.1.2 For any vector x in an inner-product space V over the field
of real or complex numbers, the norm of x, induced by the inner product, is
defined by

‖x‖ =
√
〈x,x〉.

1.1.2 Cauchy-Schwarz Inequality

The key property of an inner-product space is the following Cauchy-Schwarz
inequality that governs the size of the inner product of two vectors by the
product of their norms.

Theorem 1.1.1 Let V be an inner-product space over the scalar field F = C

or its subfield R. Then for all x,y ∈ V,

|〈x,y〉| ≤ ‖x‖ ‖y‖, (1.1.2)

where ‖ · ‖ is defined by (1.1.2). Furthermore, equality in (1.1.2) holds, if and
only if

x = cy, or y = cx

for some scalar (also called constant) c ∈ F.

Proof We only prove this theorem for F = R and leave the proof for F = C

as an exercise. Let a ∈ R be any constant. We compute, according to (1.1.1),

0 ≤ ‖x− ay‖2 = 〈x − ay,x− ay〉
= 〈x − ay,x〉+ 〈x− ay,−ay〉
= 〈x,x〉 − a〈y,x〉 − a〈x,y〉+ a2〈y,y〉
= 〈x,x〉 − 2a〈x,y〉+ a2〈y,y〉
= ‖x‖2 − 2a〈x,y〉+ a2‖y‖2. (1.1.3)

If y = 0, then the theorem trivially holds. So we may assume y 6= 0. Then by
setting

a =
〈x,y〉
‖y‖2 ,
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we have

0 ≤ ‖x‖2 − 2
〈x,y〉 〈x,y〉
‖y‖2 +

|〈x,y〉|2‖y‖2
‖y‖4

= ‖x‖2 − |〈x,y〉|
2

‖y‖2

or
0 ≤ ‖x‖2‖y‖2 − |〈x,y〉|2,

which is the same as (1.1.2). Moreover, the equality in (1.1.2) holds if and
only if

0 = ‖x− ay‖2

in (1.1.3) with a =
〈x,y〉
‖y‖2 , or x = ay. �

Next, we extend the Euclidean space Rn to the set ℓ2 of infinite sequences
or bi-infinite sequences defined as follows.

Definition 1.1.3 The set of infinite sequences, x = {xj}, where xj ∈ C and
j runs from 0 to ∞, (or bi-infinite sequences, where j runs from −∞ to ∞),
that satisfy ∑

j

|xj|2 <∞,

will be denoted by ℓ2.

On some occasions, the same notation ℓ2 will also denote the set of real-
valued sequences, with C in the above definition replaced by R. As an ap-
plication of the Cauchy-Schwarz inequality (1.1.2) in the above theorem, we
will show that ℓ2 is a vector space, and in fact an inner-product space, by
extending the dot product of the Euclidean space in Example (1.1.1) to the
inner product, as follows.

Definition 1.1.4 The set ℓ2 of infinite sequences, endowed with the inner
product

〈x,y〉 =
∑

j

xjyj , (1.1.4)

defined for x = {xj} and y = {yj} in ℓ2, is called the ℓ2 inner-product sequence
space.

Observe that since the definition of 〈x,y〉 in (1.1.4) satisfies the three
conditions in Definition 1.1.1, it follows from Theorem 1.1.1 that

|〈x,y〉| =
∣∣∣
∑

j

xjyj

∣∣∣ ≤
( ∑

j

|xj|2
)1/2(∑

j

|yj |2
)1/2

= ‖x‖‖y‖, (1.1.5)
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which is finite. Hence, (1.1.4) is well-defined for all x,y ∈ ℓ2, so that ℓ2
is indeed an inner-product (vector) space. We will call (1.1.5) the Cauchy-
Schwarz inequality for the inner-product (sequence) space ℓ2.

Analogously, we may introduce the inner-product space of functions de-
fined on an interval J , which may be bounded or unbounded, such as the
entire real-line R. In the following, the reader , who might not be familiar
with Lebesgue integration, may consider the integral of piecewise continuous
functions defined on J . As in the above discussion of the sequence space ℓ2,
we first introduce the set L2 of square-integrable functions, as follows.

Definition 1.1.5 The set of functions f, defined on the interval J , that
satisfy ∫

J

|f(x)|2 dx <∞,

will be denoted by L2.

For the set of square-integrable functions f, g, we introduce the operation
〈f, g〉 to be defined below, and observe that it is finite.

Definition 1.1.6 For f, g ∈ L2, set

〈f, g〉 =

∫

J

f(x) g(x) dx. (1.1.6)

Since the definition of 〈f, g〉 in (1.1.6) satisfies the three conditions in Defini-
tion 1.1.1, it follows from Theorem 1.1.1 that

|〈f, g〉| =
∣∣∣
∫

J

f(x)g(x) dx
∣∣∣ ≤

(∫

J

|f(x)|2 dx
)1/2(∫

J

|g(x)|2 dx
)1/2

= ‖f‖‖g‖,
(1.1.7)

which is finite. Hence, (1.1.6) is well-defined for all f, g ∈ L2, so that L2

is indeed an inner-product (vector) space. We will call (1.1.7) the Cauchy-
Schwarz inequality for the L2 inner-product (function) space.

1.1.3 Norm measurement and angle between vectors

References

(1) Marcus Pivato, “Linear Partial Differential Equations and Fourier The-
ory 6A:Inner Products, Cambridge University Press.

(2) Isaiah Lankham, Bruno Nachtergaele, and Anne Schilling, “Linear Al-
gebra: As an Introduction to Abstract Mathematics, University of Cal-
ifornia, Davis.
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(3) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 28. Atlantis Press, ISBN 978-94-6239-009-6, available on
Springer internet platform: www.springerlink.com.

1.1.4 Gram-Schmidt orthogonalization process

References

(1) Gilbert Strang, “Linear Algebra Lecture 17: Orthogonal Matrices and
Gram-Schmidt (YouTube).

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 48–49. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

1.2 Eigenvalue Problems

In Linear Algebra, it is shown that multiplication of an m × n matrix A to
an n-dimensional vector x yields an m-dimensional vector y, for arbitrary
positive integers m and n. This operation has the linearity property, in that

A(a1x1 + a2x2) = a1Ax1 + a2Ax2,

for all arbitrary n-dimensional vectors x1,x2 and constants a1, a2. The op-
eration of matrix-to-vector multiplication is extended to the notion of linear
transformation in this subunit. In particular, the concepts of bounded lin-
ear functionals and bounded linear operators are introduced and discussed
in some details in Subunit 1.2.2. Furthermore, the notion of “adjoints of lin-
ear transformations and that of self-adjoint operators are introduced in this
subunit. An important extension of square matrices to linear operators is the
eigenvalue problem. In Subunit 1.2.3, the topic of eigenvalues and eigenspace
of linear operators is studied; and in Subunit 1.2.4, special properties of the
eigenvalues of self-adjoint operators are derived.

1.2.1 Linear Transformations

Multiplication of an m × n matrix A to a column vector x ∈ Cn results
in a column vector z ∈ Cm. Hence, the matrix A can be considered as a
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transformation from the Euclidean space Cn to the Euclidean space Cm. This
transformation has the important property that

A(ax + by) = aAx + bAy

for all vectors x,y ∈ Cn and all scalars a, b ∈ C. To be called the linearity
property of the matrix A, this concept extends to transformations defined on
finite or infinite-dimensional vector spaces, including fairly general differential
and integral operators on certain appropriate subspaces of the function spaces
L̃2 as studied in Subunit 1.1.2.

Definition 1.2.1 Let V and W be two vector spaces over the scalar field C

(or in some cases the field R of real numbers). A transformation T from V to
W is said to be linear, if it satisfies:

T (ax + by) = aTx + bTy (1.2.1)

for all x,y ∈ V and a, b ∈ C.

It follows from (1.2.1) that a linear transformation T satisfies

T (x + y) = Tx + Ty; (1.2.2)

T (ax) = aTx (1.2.3)

for all x,y ∈ V and a ∈ C. Conversely, (1.2.1) follows from (1.2.2) and (1.2.3)
as well.

1.2.2 Bounded linear functionals and operators

Observe that the scalar field C (or R) can be considered as a vector space
over the field itself. In Definition 1.2.1, if the vector space W is chosen to be
C (or R), the linear transformation T from a vector space V to C (or R) is
called a linear functional. Also, if the vector space W is chosen to be V, then
the linear transformation T from a vector space V to V itself is called a linear
operator. If the vector spaces V and W are both inner-product spaces, such as
the sequence space ℓ2 or the function space L2, then a linear transformation
T from V to W is said to be bounded, provided that the norm of Tx, induced
by the inner product of the inner-product space W, is uniformly bounded for
all unit vectors x ∈ V. For bounded linear transformations, we introduce the
notion of operator norm, as follows.

Definition 1.2.2 Let V and W be two inner-product spaces (over the scalar
field C or R) with norms induced by the inner products and denoted by ‖ · ‖V
and ‖ · ‖W, respectively. Then the norm of a linear transformation T from V

to W is defined by

|||T |||V→W = sup
(‖Tx‖W
‖x‖V

: 0 6= x ∈ V

)
. (1.2.4)
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If |||T |||V→W is finite, then the transformation T is said to be a bounded linear
transformation.

For convenience, if W = C (that is, for bounded linear functionals T ), we
adopt the abbreviated notation

|||T |||= |||T |||V→C.

Also, if W = V (that is, for bounded linear operators T on V), we adopt the
abbreviated notation

|||T |||V = |||T |||V→W.

Example 1.2.1 Let V = Lc2(J) be the subspace of the inner-product space
L2 = L2(J), consisting only of continuous functions on a compact (that is,
closed and bounded) interval J on the real-line R. Then

Tf =

∫

J

f (1.2.5)

is a bounded linear functional on V.

For linear functionals, the following example is very general and useful in
applications.

Example 1.2.2 Let V be an inner-product space with inner product 〈·, ·〉,
and let x0 ∈ V be arbitrarily chosen. Then

Tx = 〈x,x0〉, x ∈ V,

is a bounded linear functional from V to C with |||T ||| = ‖x0‖, where ‖ · ‖ is
the norm induced by the inner product of V.

The linearity of T follows from the second property of the inner product,
and the uniform boundedness of ‖Tx‖ = |〈x,x0〉|, for all vectors x in V with
‖x‖ = 1, is a consequence of the Cauchy-Schwarz inequality. In addition, this
inequality assures that ‖x0‖ is an upper bound of |||T |||. On the other hand,
by choosing x = x0, it follows from Definition 1.2.2 that

‖x0‖2 = |〈x0,x0〉| = ‖Tx0‖ =
(

‖Tx0‖
‖x0‖

)
‖x0‖

≤ sup
(

‖Tx‖
‖x‖ : 0 6= x ∈ V

)
‖x0‖ = (|||T |||)‖x0‖.

Hence, ‖x0‖ is also a lower bound of |||T |||, so that |||T |||= ‖x0‖.

An inner-product space V is said to be complete, if there exists a (finite
or countably infinite) set {vk, k = 1, 2, . . .}, such that every x ∈ V can be
represented as a (finite or countably infinite) linear combination of {vk, k =
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1, 2, . . .}. In addition, if for every x ∈ V, such a linear combination is a unique
representation of x, then the set {vk, k = 1, 2, . . .} is called a basis of V. It
is easy to show that for a complete inner-product space, a basis is a linear
independent set of vectors.

The converse of Example 1.2.2 is also valid by employing a pair of dual
bases (such as an orthonormal basis), defined as follows.

Definition 1.2.3 Let V be a complete inner-product space. Also let {vk, k =
1, 2, . . .} and {ṽk, k = 1, 2, . . .} be two bases of V. Then these two bases are
said to constitute a dual pair (or a pair of dual bases of V), if

〈vk, ṽj〉 = δj−k, j, k = 1, 2, . . . . (1.2.6)

In addition, if {vk, k = 1, 2, . . .} is self-dual (that is, the dual pair can be so
chosen that {vk, k = 1, 2, . . .} = {ṽk, k = 1, 2, . . .}), then {vk, k = 1, 2, . . .} is
called an orthonormal basis of the inner-product space V.

Theorem 1.2.1 Let V be a complete inner-product space with dual bases
{vk} and {ṽk}, and let T be a bounded linear functional on V, such that xT ,
defined by

xT =
∑

j

(Tvj)ṽj, (1.2.7)

is in V. Then T : V→ F can be formulated as:

Tx = 〈x,xT 〉 for all x ∈ V. (1.2.8)

Furthermore, xT in (1.2.7), called the representer of the linear functional T ,
is unique.

Proof To derive the representation (1.2.8) of Tx for each x ∈ V, write

x =
∑

k

ckvk.

Then by the linearity property, we have

Tx =
∑

k

ckTvk. (1.2.9)

On the other hand, again by linearity and the definition of xT in (1.2.7), we
also have

〈x,xT 〉 =
∑

k

〈
ckvk,

∑

j

Tvjṽj

〉

=
∑

k

ck
∑

j

Tvj〈vk, ṽj〉

=
∑

k

ck
∑

j

Tvjδk−j =
∑

k

ckTvk.
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Hence, the representation formula in (1.2.8) is established.
To prove that the representer xT of T in (1.2.7) is unique, let y0 ∈ V be

another representer of T . Then

Tx = 〈x,xT 〉 = 〈x,y0〉, for all x ∈ V

so that
〈x,xT − y0〉 = 0.

By choosing x = xT − y0, we have

‖xT − y0‖2 = 0,

or y0 = xT . �

We next turn our attention to the study of bounded linear operators T
that transform vectors x in an inner-product space V to vectors y in the same
space V. Hence, it should be of great interest (and definitely very useful for
applications) to study the existence and uniqueness of the linear operator T ∗,
corresponding to a given bounded linear operator T , such that T ∗ takes y
back to x, in such a manner that the value of the inner product of Tx with
y, for any x,y ∈ V, is preserved by that of the inner product of x with T ∗y.
This is the concept of adjoints of bounded linear operators. In this regard, it
is important to point out that although any square matrix A is a bounded
linear operator on the Euclidean space V = Cn, the notion of the adjoint A∗

of A, as an operator, is different from the definition of the matrix adjoint of
A, when A is considered as a matrix, for the formulation of matrix inverses in
an elementary course of Matrix Theory.

Theorem 1.2.2 Let V be a complete inner-product space over the scalar
field C (or R), such that at least a dual pair of bases for V exists. Then
corresponding to any bounded linear operator T on V, there exists a linear
operator T ∗, also defined on V, that satisfies the property

〈Tx,y〉 = 〈x, T ∗y〉, for all x,y ∈ V. (1.2.10)

Furthermore, the linear operator T ∗, called the adjoint of T , is uniquely de-
termined by (1.2.10).

Proof In view of Theorem 1.2.1, we observe that for any fixed y ∈ V, the
linear functional L = Ly, defined by

Lyx = 〈Tx,y〉, (1.2.11)

is bounded, and hence, has a unique representer xLy
, in that Lyx = 〈x,xLy

〉
for all x ∈ V. Since xLy

is a function of y, we may write xLy
= F (y), so that

〈Tx,y〉 = 〈x, F (y)〉 (1.2.12)
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for all x ∈ V, where (1.2.12) holds for all y ∈ V. Next, let us verify that F
is a linear operator on V. From its definition, F is a transformation from V

into itself. That F is a linear operator on V follows from the linearity of the
inner product. Indeed, for any fixed y, z ∈ V and fixed a, b ∈ C (or a, b ∈ R),
it follows from (1.2.12) that, for all x ∈ V,

〈x, F (ay + bz)〉 = 〈Tx, ay + bz〉
= 〈Tx, ay〉+ 〈Tx, bz〉
= a〈Tx,y〉+ b〈Tx, z〉
= a〈x, F (y)〉+ b〈x, F (z)〉
= 〈x, aF (y)〉+ 〈x, bF (z)〉,

so that 〈x, F (ay + bz) − (aF (y) + bF (z))〉 = 0 for all x ∈ V. By setting
x = F (ay + bz)− (aF (y) + bF (z)), we have

‖F (ay + bz) − (aF (y) + bF (z))‖2 = 0;

that is, F (ay+bz) = aF (y)+bF (z). Hence, by setting T ∗ = F , we have derived
(1.2.10). Furthermore, since the representer in Theorem 1.2.1 is unique, we
may conclude that T ∗ = F is unique. �

Example 1.2.3 Consider an n × n matrix A ∈ Cn,n as a linear operator on
the vector space V = Cn. Determine the adjoint A∗ of A.

Solution For any x,y ∈ Cn, consider x and y as column vectors:

x =



x1

...
xn


 , y =



y1
...
yn




so that xT = [x1, · · · , xn] and yT = [y1, · · · , yn] are row vectors (where the
superscript T denotes, as usual, the transpose of the matrix). Hence, it follows
from the definition of the inner product for Cn that

〈Ax,y〉 = (Ax)Ty = xTATy

= xT
((
A

)T
y
)

= 〈x,
(
A

)T
y〉,

so that from the uniqueness of the adjoint A∗ of A, we have

A∗ =
(
A

)T
. (1.2.13)

In other words, the adjoint of A, as an operator, is the transpose-conjugate
A∗ of A. �

As pointed out above, the operator adjoint is different from the matrix
adjoint, for the purpose of formulating matrix inverses, as follows.
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Remark 1.2.1 In Matrix Theory, the adjoint (which we may call matrix
adjoint) of a square matrix A =

[
aj,k

]
1≤j,k≤n is the matrix

([
Aj,k

]
1≤j,k≤n

)T
,

where Aj,k denotes the cofactor of aj,k. Hence in general, the matrix adjoint

of A is different from the operator adjoint A∗ =
(
A

)T
, when A is considered

as an operator on the vector space Cn. �

Definition 1.2.4 A linear operator T is said to be self-adjoint if T ∗ = T .

Remark 1.2.2 Recall that in an elementary course on Linear Algebra or

Matrix Theory, a square matrixA ∈ Cn,n is said to be Hermitian, ifA =
(
A

)T
.

Thus, in view of (1.2.13), when considered as a linear operator, a square matrix
A ∈ Cn,n is self-adjoint if and only if it is Hermitian. Henceforth, for linear
operators T , which may not be square matrices, we say that T is Hermitian
if it is self-adjoint. Clearly, if a matrix A ∈ Cn×n is Hermitian, then all the
diagonal entries of A are real. It will be shown in the next two subunits , 1.2.3
and 1.2.4, that all eigenvalues of self-adjoint operators are real in general. �

1.2.3 Eigenvalues and eigenspaces

References

(1) MIT: Department of Computational Science and Engineering’s “Lecture
30: Linear Transformations and Their Matrices (YouTube), presented by
Gilbert Strang.

1.2.4 Self-adjoint positive definite operators

References

(1) MIT: Department of Computational Science and Engineering’s “Lec-
ture 6: Eigen Values (Part 2) and Positive Definite (Part 1) (YouTube),
presented by Gilbert Strang.

(2) MIT: Department of Computational Science and Engineering’s “Lecture
27: Positive Definite Matrices (YouTube), presented by Gilbert Strang.
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1.3 Singular Value Decomposition (SVD)

In elementary Linear Algebra, a square matrix A is diagonalizable if there
exists a nonsingular matrix V such that V −1AV = D, where D is a diagonal
matrix. More precisely, an n × n square matrix A is diagonalizable, if and
only if it has n eigenvalues, counting multiplicities, that constitute a diagonal
matrix D of dimension n, such that A = VDV −1, where the n columns of
V are the eigenvectors of A associated with the corresponding eigenvalues of
A, in the order as listed in the diagonal of D. A more useful decomposition
A = V DV −1 of the given matrix A is achieved, when the matrix V in the
decomposition is an orthogonal matrix, for which V −1 is simply the transpose
V T of the real-valued matrix V ; and more generally, a unitary matrix, for
which V −1 is simply the adjoint (that is, the complex conjugate of V T ) of V ,
denoted by V ⋆. In Subunit 1.3.1, the notion of normal matrices (and in gen-
eral, normal operators) is introduced and studied. In particular, the spectral
decomposition, A = V ⋆DV , for normal operators A, is derived. To general-
ize this concept to matrices that are not necessarily normal, and to arbitrary
m × n matrices, where m and n are allowed to be different, the notion of
singular values is introduced in Subunit 1.3.2. The extension of the spectral
decomposition (of normal matrices) to allow the decomposition of arbitrary
matrices, including all rectangular ones, is the notion of singular value de-
composition (SVD). In Subunit 1.3.3, the reduced SVD (or SVD restricted
to only non-zero singular values) is derived, and in Subunit 1.3.4, the SVD
computation is extended to full SVD, including all singular values.

1.3.1 Normal operators and spectral decomposition

References

(1) MIT: Department of Computational Science and Engineering’s “Lecture
30: Linear Transformations and Their Mtrices” (YouTube), presented by
Gilbert Strang.

(2) MIT: Department of Computational Science and Engineering’s “Lecture
27: Positive Definite Matrices (YouTube), presented by Gilbert Strang.
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1.3.2 Singular values

Let B ∈ Cm,n be any m × n matrix, and consider its corresponding Gram
matrix A, defined by

A = BB∗, (1.3.1)

where B∗ =
(
B

)T
. Then A is self-adjoint and positive semi-definite, and is

therefore normal. Hence, according to the study in Subunit 1.3.1, A admits
the following spectral decomposition:

A = UΛU∗, (1.3.2)

with diagonal matrix Λ = diag{λ1, · · · , λm} and unitary matrix

U = [u1 · · · um],

where for each j = 1, . . . , m, (λj,uj) is an eigenvalue-eigenvector pair of the
matrix A. Furthermore, since A is self adjoint and positive semi-definite, we
may write λj = σ2

j , where

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σm = 0 (1.3.3)

for some r, with 0 ≤ r ≤ m. Hence, the diagonal matrix Λ in the spectral
decomposition (1.3.2) has the more precise formulation

Λ = diag{σ2
1 , · · · , σ2

r , 0, · · · , 0}, (1.3.4)

where we have adopted the standard convention that {σr+1, · · · , σm} is an
empty set if r = m.

Furthermore, from elementary matrix theory, we have

rank(B) = rank(BB∗) = rank(Λ) = r,

so that r ≤ min{m, n}. Let

Σr = diag{σ1, · · · , σr} (1.3.5)

and consider the m× n matrix

S =




Σr
... O

. . . . . . . . .

O
... O


 , (1.3.6)

where O denotes the zero matrix (possibly with different dimensions), so that

S =




Σn
. . .
O


 or S =

[
Σm

... O

]
(1.3.7)
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if r = n < m or r = m < n, respectively. Observe that the diagonal matrix Λ
in (1.3.4) can be written as

Λ = SST = SS∗ , (1.3.8)

and the spectral decomposition of A in (1.3.2) can be re-formulated as

A = USS∗U∗ = (US)(US)∗ . (1.3.9)

In the following, we will study the existence of two unitary matrices U and
V , of dimensions m×m and n× n, respectively, such that

B = USV ∗. (1.3.10)

To understand the factorization in (1.3.10), let us write

U = [u1, · · · ,um], V = [v1, · · · ,vn], (1.3.11)

where {u1, · · · ,um} and {v1, · · · ,vn} are orthonormal bases of Cm and Cn,
respectively. Then it follows from (1.3.10) that BV = US and B∗U = V ST ,
so that

(i) if n < m, then

Bvj = σjuj, B
∗uj = σjvj, for j = 1, . . . , n, (1.3.12)

B∗uj = 0, for j = n+ 1, . . . , m;

(ii) if n ≥ m, then

Bvj = σjuj, B
∗uj = σjvj , for j = 1, . . . , m, (1.3.13)

Bvj = 0, for j = m+ 1, . . . , n.

Definition 1.3.1 In (1.3.10), the diagonal entries σ1, · · · , σr of Σr in (1.3.6)
are called the (non-zero) singular values of the matrix B, and the pair (vj ,uj)
of vectors in (1.3.12) or (1.3.13) is called a singular-vector pair associated with
the singular value σj.

Clearly, if (vj ,uj) is a singular-vector pair of B associated with σj, then
(uj,vj) is a singular-vector pair of B∗ associated with the same σj .

Example 1.3.1 For the matrix

B1 =

[
0 1 0
1 0 −1

]

with m = 2 and n = 3, verify that σ1 =
√

2, σ2 = 1 are singular values of
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B1, with corresponding singular-vector pairs (v1,u1), (v2,u2), and B1v3 = 0,
where

v1 =
[

1√
2

0 − 1√
2

]T
,

v2 =
[
0 1 0

]T
,

v3 =
[

1√
2

0 1√
2

]T
,

u1 =
[
0 1

]T
and u2 =

[
1 0

]T
.

Solution

(i) For σ1 =
√

2,

B1v1 =

[
0 1 0
1 0 −1

] 


1√
2

0
− 1√

2



 =

[
0√
2

]

=
√

2

[
0
1

]
= σ1u1;

B∗
1u1 =




0 1
1 0
0 −1




[
0
1

]
=




1
0
−1





=
√

2




1√
2

0
− 1√

2



 = σ1v1;

(ii) for σ2 = 1,

B1v2 =

[
0 1 0
1 0 −1

] 


0
1
0



 =

[
1
0

]
= σ2u2;

B∗
1u2 =




0 1
1 0
0 −1




[
0
1

]
=




0
1
0



 = σ2v2;

(iii) for v3,

B1v3 =

[
0 1 0
1 0 −1

] 


1√
2

0
1√
2



 =

[
0
0

]
= 0.
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Observe that {v1,v2,v3} is an orthonormal basis of R3 (and of C3), and
{u1,u2} is an orthonormal basis of R2 (and of C2). In addition, in this example
2 = m < n = 3, and (1.3.13) holds with B = B1. �

1.3.3 Reduced singular value decomposition

In this subunit, we formulate and derive the spectral decomposition formula
of any m × n matrix B of complex numbers, only in terms of its non-zero
singular values, as follows.

Theorem 1.3.1 Let B be an m × n matrix with rank(B) = r. Then there
exists an m× r matrix U1 and an n× r matrix V1, with

U∗
1U1 = Ir, V

∗
1 V1 = Ir , (1.3.14)

such that B has the reduced SVD

B = U1ΣrV
∗
1 , (1.3.15)

where Σr = diag{σ1, · · · , σr} with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Furthermore,
if B is a real-valued matrix, then U1 and V1 in (1.3.15) can be chosen to be
real-valued matrices.

Proof To prove Theorem 1.3.1, letA = BB∗. Then A has the spectral decom-
position (1.3.2) for some m×m unitary matrix U and Λ = diag{σ2

1 , · · · , σ2
m}

with
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σm = 0,

where 0 ≤ r ≤ min{m, n}. Furthermore, since rank(B)=rank(BB∗), we have
rank(B) =rank(A)=rank(Λ) = r.

Write U as U = [U1

... U2], with U1 being the m × r matrix consisting of
the first r columns of U . Then U∗

1U1 = Ir and U∗
1U2 = O, where Ir denotes,

as usual, the r × r identity matrix. Observe from (1.3.2), that

U∗
1BB

∗U1 = U∗
1UΛU∗U1 = [Ir O]Λ[Ir O]∗ = (Σr)

2. (1.3.16)

Similarly, it can be shown that U∗
2BB

∗U2 = O, yielding

U∗
2B = O. (1.3.17)

Next, we define V1 by
V1 = B∗U1Σ−1

r . (1.3.18)

Then V1 satisfies (1.3.15). Indeed, from (1.3.17) and the definition of V1 in
(1.3.18), we have

U∗(B − U1ΣrV
∗
1 ) =

[
U∗

1B
U∗

2B

]
−

[
Ir
O

]
ΣrV

∗
1

=

[
U∗

1B −ΣrV
∗
1

O

]
= O.
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Thus, since U∗ is nonsingular, we haveB−U1ΣrV
∗
1 = O; that is, B = U1ΣrV

∗
1 ,

as desired.
Furthermore, for real matrices B, the unitary matrix U in the spectral

decomposition of A = BB∗ = BBT in (1.3.2) can be chosen to be an m×m
orthogonal matrix, and hence the matrix V1 defined by (1.3.18) is also real. �

Example 1.3.2 Let B = B1 in Example 1.3.1; that is,

B =

[
0 1 0
1 0 −1

]
.

Compute the reduced SVD of B.

Solution Since B∗B is 3× 3 and BB∗ is 2× 2, we compute the eigenvalues
of one with lower dimension, namely:

BB∗ = BBT =

[
0 1 0
1 0 −1

] 


0 1
1 0
0 −1



 =

[
1 0
0 2

]
,

by taking the determinant of

[
1− λ 0

0 2− λ

]
, yielding the eigenvalues σ2

1 = 2

and σ2
2 = 1 (since they are arranged in decreasing order). Then the (non-zero)

singular values of B are:

σ1 =
√

2, σ2 = 1.

To compute u1 and u2, note that

BB∗ − σ2
j I2 =

[
1− σ2

j 0
0 2− σ2

j

]
, j = 1, 2;

that is,

[
−1 0
0 0

]
and

[
0 0
0 1

]
. Hence, we may select

u1 = [0 1]T and u2 = [1 0]T ,

yielding

U =

[
0 1
1 0

]
.

Since r = m = 2, in this case U1 = U , and V1 as defined by (1.3.18) is
simply

V1 = B∗U1Σ−1
2 =




0 1
1 0
0 −1




[
0 1
1 0

] [ 1√
2

0

0 1

]
=




1√
2

0

0 1
− 1√

2
0


 .
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Hence, the reduced SVD of B is given by

B = U1Σ2V
∗
1 =

[
0 1
1 0

] [√
2 0

0 1

] [ 1√
2

0 − 1√
2

0 1 0

]
.

�

Example 1.3.3 Compute the reduced SVD of B, where

B =




1 0 i
1 −i 0
−1 0 −1
0 1 i


 .

Solution Since B is 4× 3 with m = 4 > n = 3, we consider the SVD of B∗

first and compute the spectral decomposition of A = (B∗)(B∗)∗ = B∗B:

A =




1 1 −1 0
0 i 0 1
−i 0 −1 −i







1 0 i
1 −i 0
−1 0 −1
0 1 i


 =




3 −i 1 + i
i 2 i

1− i −i 3


 .

To compute the eigenvalues of A, we evaluate the determinant of the matrix
λI3 − A and factorize the characteristic polynomial, yielding

(λ− 2)(λ2 − 6λ+ 5) = (λ − 2)(λ− 5)(λ− 1),

so that λ1 = 5, λ2 = 2, λ3 = 1, when arranged in the decreasing order. Hence,
the (non-zero) singular values of B are

σ1 =
√

5, σ2 =
√

2, σ3 = 1.

To compute the eigenvectors, we simply solve the three homogeneous linear
systems (A − λjI3)x = 0, j = 1, 2, 3. After dividing each solution by its Eu-
clidean norm, we obtain the normalized eigenvectors uj associated with λj,
for j = 1, 2, 3, listed as follows:

u1 =
1

2
√

6




1− 3i

2
−1 − 3i



 , u2 =
1√
3




1
−1
−1



 , u3 =
1

2




1

1− i
i



 .

Let U = [u1,u2,u3]. Since r = 3, we have U1 = U and Σ3 = diag(
√

5,
√

2, 1).



20 SAYLOR MA 304

Applying (1.3.18), we have

V1 = (B∗)∗U1Σ−1
3 = BUΣ−1

3

=




1 0 i
1 −i 0
−1 0 −1
0 1 i







1−3i
2
√

6
1√
3

1
2

1√
6

− 1√
3

1−i
2

−1−3i
2
√

6
− 1√

3
i
2




diag(
1√
5
,

1√
2
, 1)

=




2−2i√
30

1−i√
6

0

1−5i
2
√

30
1+i√

6
− i

2

3i√
30

0 −1+i
2

5−i
2
√

30
−1+i√

6
− i

2




.

Thus, the reduced SVD for B∗ is given by B∗ = UΣ3V
∗
1 , from which we arrive

at the following reduced SVD for B:

B = V1Σ3U
∗.

�

1.3.4 Full singular value decomposition

When the zero singular values are also taken into consideration, we have the
following full spectral decomposition.

Theorem 1.3.2 Let B be an m × n matrix with rank(B) = r. Then there
exist m×m and n× n unitary matrices U and V , respectively, such that

B = USV ∗, (1.3.19)

where S is an m× n matrix introduced in (1.3.6), with Σr in (1.3.5) given by
Σr = diag{σ1, · · · , σr}, σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Furthermore, if B is a real
matrix, then the unitary matrices U and V in (1.3.19) can be chosen to be
orthogonal matrices.

Proof To prove Theorem 1.3.2, let us again write A = BB∗ and consider the

matrix V1 defined by (1.3.18) so that (1.3.15) holds. Also let U = [U1

... U2],
where U1 and U2 are the matrices introduced in the proof of Theorem 1.3.1.
Then by (1.3.18) and (1.3.16), we have

V ∗
1 V1 = Σ−1

r U∗
1BB

∗U1Σ−1
r = Σ−1

r (Σr)
2Σ−1

r = Ir .
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Hence, the columns of V1 constitute an orthonormal family in Cn, and we may

extend V1 to a unitary matrix V = [V1

... V2] by introducing another matrix V2

with orthonormal column vectors. Thus, it follows from (1.3.15) that

B = U1ΣrV
∗
1 = U1[Σr O][V1 V2]∗ = [U1 U2]

[
Σr O
O O

]
V ∗ = USV ∗,

completing the proof of (1.3.19).
Furthermore, for real matrices B, the unitary matrix U in the spectral

decomposition (1.3.2) of A = BBT can be chosen to be an orthogonal matrix.
In addition, as already shown above, the columns of V1 defined by (1.3.18)
constitute an orthonormal family of Rn, so that V1 can be extended to an
orthogonal matrix V ∈ Rn,n that satisfies B = USV T . �

From a full SVD of B in (1.3.19), the construction of a reduced SVD
(1.3.15) of B is obvious, simply by keeping only the first r columns of U and
V to obtain U1 and V1, respectively. Conversely, from a reduced SVD (1.3.15)
of B, it is also possible to recover a full SVD of B in (1.3.19) by extending Σr
to S, defined in (1.3.5), as well as extending U1 and V1 to unitary matrices U
and V , respectively. In the literature, both the reduced SVD (1.3.15) and full
SVD (1.3.19) are called the SVD of B.

Remark 1.3.1 To compute the singular value decomposition (SVD) of a
rectangular matrix B, the first step is to compute the eigenvalues of BB∗.
Then the non-zero singular values of B are the positive square-roots of the
non-zero eigenvalues of BB∗ . The unitary matrix U in the SVD of B is the
unitary matrix in the spectral decomposition of BB∗. It is important to em-
phasize that eigenvectors of BB∗ associated with the same eigenvalue must
be orthogonalized by applying the Gram-Schmidt process, and that all eigen-
vectors must be normalized to have unit norm. Of course U and V are not
unique, although the singular values are unique. �

Remark 1.3.2 To compute the singular value decomposition (SVD) of a
rectangular matrix B of dimension m×n with n < m, the computational cost
can be reduced by computing the spectral decomposition of the n× n matrix
B∗B instead of BB∗, which has larger dimension. To do so, simply replace B
by B∗ and consider A = (B∗)(B∗)∗. Hence, the reduced SVD and full SVD
are given by B∗ = U1ΣrV

∗
1 and B∗ = UΛV ∗, respectively; so that

B = V1ΣrU
∗
1 = V ΛU∗.

�

Example 1.3.4 As a continuation of Example 1.3.2, compute the full SVD
of

B =

[
0 1 0
1 0 −1

]
.
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Solution To obtain a full SVD of B, observe that in the solution of Example
1.3.2, V can be obtained by extending V1 to a 3× 3 orthogonal matrix:

V =




1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2



 .

Therefore the SVD of B is given by

B =

[
0 1
1 0

] [√
2 0 0

0 1 0

] 


1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2



 .

�

Example 1.3.5 As a continuation of Example 1.3.3, compute the full SVD
of the matrix

B =




1 0 i
1 −i 0
−1 0 −1
0 1 i


 .

Solution To obtain the full SVD for B, we must extend

V1 = [v1,v2,v3] ∈ C
4,3

in the solution of Example 1.3.3 to a unitary matrix

V = [v1,v2,v3,v4] ∈ C4,4,

by filling in the missing column vector v4. To do so, we may select any
vector w4 ∈ C4 which is not a linear combination of v1,v2,v3 and apply
the Gram-Schmidt orthogonalization process to the linearly independent set
v1,v2,v3,w4. In this example, we may choose w4 = [1, 0, 0, 0]T , and compute:

w̃4 = w4 − 〈w4,v1〉v1 − 〈w4,v2〉v2 − 〈w4,v3〉v3

= w4 −
2 + 2i√

30
v1 −

1 + i√
6

v2 − 0v3

=
1

5
[2,−1− i, 1− i,−1 + i]

T
,

followed by normalization of w̃4:

v4 =
w̃4

‖w̃4‖
=

1√
20

[2,−1− i, 1− i,−1 + i]
T
.

With this unitary matrix V = [v1,v2,v3,v4], we obtain the full SVD B∗ =
U [Σ3, O]V ∗ of B∗, yielding the full SVD

B = V

[
Σ3

O

]
U∗,

after taking the complex conjugate of the transpose. �



LINEAR ANALYSIS 23

1.4 Principal Component Analysis (PCA) and Its Ap-
plications

The theory and methods of singular value decomposition (SVD) studied in the
previous subunit are instrumental to data organization in terms of the degree
of significance of the data information. To apply SVD, the concept of principal
components is studied in this subunit. In this regard, since data matrices
should not be treated as linear transformations, the notion of operator norm
is not used in our study. Instead, we will introduce the notions of Frobenius
norm and pseudo-inverses of rectangular matrices.

1.4.1 Frobenius norm measurement

To define the Frobenius norm of a matrixB = [bjk] ∈ Cm,n, we simply consider
the matrix B as an mn × 1-vector b ∈ Cmn,1, by arranging all the entries of
B as a finite sequence, such as

b = (b11, · · · , bm1, b12, · · · , bm2, · · · , b1n, · · · , bmn).

Then the Frobenius norm of the matrix B is defined by the Euclidean norm
of the vector b, as follows.

Definition 1.4.1 The Frobenius norm of an m × n matrix B = [bjk] is
defined by

‖B‖F =
( m∑

j=1

n∑

k=1

|bjk|2
)1/2

.

An important property of the Frobenius norm for data analysis is that it is
governed by the ℓ2 norm of the singular values of the (data) matrix, as follows.

Theorem 1.4.1 Let B ∈ Cm,n, with rank(B) = r. Then

‖B‖F =
( r∑

j=1

σ2
j

)1/2

, (1.4.1)

where σ1, · · · , σr are the (non-zero) singular values of B.

Proof To derive (1.4.1), let A = BB∗ and observe that the Frobenius norm
‖B‖F of B agrees with the trace of A = [ajk], j = 1, . . . , n. This fact is a
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simple consequence of the definition of the trace, namely:

Tr(A) =
n∑

k=1

ak,k =
n∑

k=1

( m∑

ℓ=1

bk,ℓbk,ℓ

)

=

n∑

k=1

m∑

ℓ=1

|bℓ,k|2 = ‖B‖2F .

On the other hand, Tr(A) is the sum of the eigenvalues of A, and by the
definition of the singular values of B, these eigenvalues

λ1 = σ2
1 , λ2 = σ2

2 , · · · , λn = σ2
n

ofA are squares of the singular values of the matrix B. Hence, we may conclude
that

‖B‖F =
(
Tr(A)

)1/2
=

( n∑

j=1

σ2
j

)1/2

=
( r∑

j=1

σ2
j

)1/2

,

since σr+1 = · · · = σm = 0. �

Example 1.4.1 Compute the Frobenius norm of the data matrix

B =




0 1 1
3 −1 1
3 1 −1



 .

Solution The Frobenius norm ‖B‖F can be computed directly by applying
the definition, namely:

‖B‖2F =

3∑

j=1

3∑

k=1

|bjk|2 = 02 + 32 + 32 + 12 + 12 + 12 + 12 + 12 + 12 = 24,

so that ‖B‖F =
√

24 = 2
√

6. �

Example 1.4.2 To demonstrate the result derived in Theorem 1.4.1 , apply
the formula (1.4.1) to compute the Frobenius norm of the data matrix B in
Example 1.4.1.

Solution To compute the singular values of B, consider the matrix

A = BBT =




0 1 1
3 −1 1
3 1 −1








0 3 3
1 −1 1
1 1 −1



 =




2 0 0
0 11 7
0 7 11



 ;

whose eigenvalues can be computed from the determinant of λI3−A, namely:

(λ− 2)

∣∣∣∣
λ− 11 −7
−7 λ− 11

∣∣∣∣ = (λ − 2)(λ2 − 22λ+ 72)

= (λ− 2)(λ− 4)(λ− 18),
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so that the eigenvalues of A, or equivalently, the squares of the singular values
of B, are

σ2
1 = 18, σ2

2 = 4, σ2
3 = 2.

Hence, it follows from Theorem 1.4.1, the Frobenius norm of the data matrix
B is given by

‖B‖F =
( 3∑

j=1

σ2
j

)1
2

=
(
18 + 4 + 2

)1
2 = 2

√
6,

which agrees with the answer obtained in Example 1.4.1, computed directly
by applying the definition. �

Another important property of the Frobenius norm is that in view of The-
orem 1.4.1, we may introduce the notion of the Schatten norm, by extending
the ℓ2-norm to the general ℓp-norm of the sequence of singular values of B, as
opposed to the sequence of all of the entries of the matrix, as follows.

Definition 1.4.2 Let B ∈ Cm,n with rank(B) = r. For 1 ≤ p ≤ ∞, the
Schatten p-norm of B is defined by

‖B‖∗,p =
( r∑

j=1

σpj

)1/p

,

where σ1, · · · , σr are the (non-zero) singular values of B.

Remark 1.4.1 The Schatten 1-norm, ‖B‖∗,1 =
∑r

j=1 σj, for p = 1, is called
the nuclear norm (also called the trace norm or Ky Fan norm). Since this
norm is very useful for low-rank matrix approximation and sparse matrix
decomposition, the abbreviated notation

‖B‖∗ = ||B||∗,1 =

r∑

j=1

σj (1.4.2)

is commonly used for simplicity. �

In the following, we establish the unitary invariance property of the Schat-
ten p-norm, that includes the Frobenius norm (with p = 2).

Theorem 1.4.2 For any 1 ≤ p ≤ ∞ and any m× n matrix B, the Schatten
p-norm of an arbitrary unitary transformation of B remains the same as the
Schatten p-norm of B. More generally,

‖WBR‖∗,p = ‖B‖∗,p
for all unitary matrices W and R of dimension m×m and n×n, respectively.
In particular, for p = 2,

‖WBR‖F = ‖B‖F , (1.4.3)
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The proof of this theorem can be accomplished by applying the unitary in-
variant property of singular values. �

The Frobenius norm will be used to assess the exact error in the approx-
imation of matrices B with rank r, by matrices C with rank ≤ d, for any
desired d < r. Approximation by lower-rank matrices is the first step to the
understanding of data dimensionality reduction, a topic of applications to be
discussed in Subunit 1.5.

1.4.2 Principal components for data-dependent basis

Let B denote a data-set of m vectors b1, · · · ,bm in Cn. For convenience,
the notation for the set B is also used for the matrix B ∈ Cm,n, called a
data-matrix, with row vectors:

bTj = [bj,1, · · · , bj,n],

or column vectors bj, where j = 1, . . . , m; that is,

B =




bT1
...

bTm


 = [b1 · · · bm]T .

Observe that the inner product of the jth and kth rows of B, defined by

〈bj,bk〉 =

n∑

ℓ=1

bj,ℓbk,ℓ, (1.4.4)

reveals the “correlation” of the data bj and bk in terms of the ratio of its
magnitude with respect to the product of their norms. Recall from the Cauchy-
Schwarz inequality from Subunit 1.1.2 that, with ‖ · ‖ =

√
〈·, ·〉,

|〈bj,bk〉| ≤ ‖bj‖ ‖bk‖,

and equality holds, if and only if bk is a constant multiple of bj. Hence, bj
and bk are a good “match” of each other if the ratio

|〈bj,bk〉|
‖bj‖ ‖bk‖

(1.4.5)

(which is between 0 and 1) is close to 1, and a poor “match”, if the ratio in
(1.4.5) is close to 0. Since the inner product 〈bj,bk〉 is the (j, k)th entry of
the m×m square matrix A = BB∗, called the Gram matrix of B, the Gram
matrix of a data-set is often used to process the data.

On the other hand, even if bj is a perfect match of bk, with ratio in
(1.4.5) equal to 1, a minor “shift” of bj may be a bad match of bk, with ratio
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in (1.4.5) much smaller than 1. Hence, to provide a better measurement of
data correlation, all data vectors are shifted by their average, as follows. For
b1, · · · ,bm ∈ Cn, their average is defined by

bav =
1

m

m∑

j=1

bj, (1.4.6)

and the centered data-matrix B̃, associated with the given data-matrix
B, is defined by

B̃ =
[
b̃1, · · · , b̃m

]T
= [b1 − bav · · · bm − bav]

T
. (1.4.7)

We remark that the matrix
1

m
B̃(B̃)∗ (1.4.8)

is the covariance matrix of the data-set B, if b1, · · · ,bm are observations
of an n-dimensional random variable. Clearly, both Gram matrices B̃(B̃)∗ and
BB∗ are self-adjoint and positive semi-definite matrices.

When the same notation B for the data-set is used for the data-matrix
B = [b1 · · · bm]

T
, the following notion of principal components of B plays

an essential role in the analysis of the data.

Definition 1.4.3 Let B = USV ∗ be the SVD of an m× n matrix B, where
S is given by (1.3.6) with singular values σ1, · · · , σr of B in the sub-block Σr
of S, arranged in non-increasing order as in (1.3.5). Then the singular vector
pair (v1,u1) associated with the largest singular value σ1 is called the principal
component of B. Furthermore, the singular vector pairs (v2,u2), · · · , (vr ,ur),
associated with the corresponding singular values σ2, · · · , σr, are called the
second, · · · , rth principal components of B, respectively.

Remark 1.4.2 Let B = U1ΣrV
∗
1 be the reduced SVD of an m×n matrix B

in Theorem 1.3.1, where Σr = diag{σ1, · · · , σr} with σ1 ≥ σ2 ≥ · · · ≥ σr > 0
being the singular values of B. Since U∗

1U1 = Ir , V
∗
1 V1 = Ir, we have

BB∗ = U1Σ2
rU

∗
1 , B

∗B = V1Σ2
rV

∗
1 ,

and hence,

BB∗U1 = U1Σ2
r , B

∗BV1 = V1Σ2
r .

Thus, for each j = 1, . . . , r, uj is an eigenvector of BB∗ associated with
eigenvalue σ2

j and vj is an eigenvector of B∗B associated with σ2
j . Therefore,

if σ1 > σ2 > · · · > σs, with 2 ≤ s ≤ r, then σ2
j , 1 ≤ j ≤ s are simple

eigenvalues of BB∗ and B∗B as well, and hence, the normalized corresponding
eigenvectors uj and vj are unique. �
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Remark 1.4.3 In application to data analysis, when the matrix B ∈ Cm,n

is a data-matrix, with the data in Cn given by the m rows b1, · · · ,bm of B,
then the principal components of B provide a new “coordinate system”, with
origin given by the average

bav =
1

m

m∑

j=1

bj.

This coordinate system facilitates the analysis of the data, called princi-
pal component analysis (PCA). All linear methods based on this data-
dependent coordinate system are collectively called methods of principal com-
ponent analysis (PCA).

Observe that for PCA, because

m∑

j=1

b̃j =

m∑

j=1

(bj − bav) = 0,

both the centered matrix B̃ and its Gram B̃(B̃)∗ are centered at 0, in the sense

that the sum of all row vectors (of B̃, and also of B̃B̃∗) is the zero vector 0. In
addition, the geometry and topology of the data set B are unchanged, when
B is replaced by B̃, since for all j, k = 1, . . . , m,

‖b̃j − b̃k‖ = ‖bj − bk‖. (1.4.9)

In view of these nice properties of the centered matrix, when we say that PCA
is applied to B, what we mean is that PCA is applied to the centered matrix
B̃ defined in (1.4.7). Hence, throughout our discussions, all data-matrices are

assumed to be centered, and B̃ is replaced by B.

Definition 1.4.4 Let 1 ≤ d ≤ q be integers. The notation Oq,d will be used
for the collection of all q × d (complex or real) matrices W = [w1 · · · wd]
with mutually orthonormal column vectors; that is W ∗W = Id or

〈wj ,wk〉 = δj−k, all 1 ≤ j, k ≤ d.

For any W = [w1 · · · wd] ∈ On,d, its column vectors constitute an or-
thonormal basis of its algebraic span,

span W = span {w1,w2, · · · ,wd},

which is a d-dimensional subspace of Cn, so that any w ∈ spanW has a unique
representation:

w =

d∑

j=1

cjwj = W



c1
...
cd


 ,
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for some cj ∈ C. The components of the column vector

[c1 · · · cd]∗

will be called the “coordinates” of vector w, in the “coordinate system” with
coordinate axes determined by the unit vectors: w1,w2, · · · ,wd. Recall that
the superscript “∗” is used to denote the transpose of the complex conjugate
of a matrix (or vector). All coordinate systems are restricted to orthogonal
systems, with orthonormal vectors as unit vectors for the coordinate axes.
This notion will be adopted in the study of data dimensionality reduction
based on PCA in Subunit 1.5.

1.4.3 Pseudo-inverses

The notion of the inverse of a non-singular square matrix is generalized to the
pseudo-inverse of any rectangular matrix B, by using its SVD, as follows.

Definition 1.4.5 Let B be an m × n matrix of real or complex numbers
and B = USV ∗ be its SVD, with unitary matrices U, V and S as given by
(1.3.6), with diagonal sub-block Σr = diag {σ1, · · · , σr} defined in (1.3.5). Set

Σ−1
r = diag {σ−1

1 , · · · , σ−1
r } and define the n×m matrix S̃ by

S̃ =




Σ−1
r

... O
. . . . . . . . . . .

O
... O




n×m

.

Then the n×m matrix
B† = V S̃U∗ (1.4.10)

is called the pseudo-inverse of the given matrix B.

Here and throughout, the subscript n × m of a matrix, such as of S̃, is
used to indicate the matrix dimension. Observe that

BB† = (USV ∗)(V S+U∗) = U



Ir

... O
. . . . . . . . .

O
... O




m×m

U∗

and

B†B = (V S+U∗)(USV ∗) = V



Ir

... O
. . . . . . . . .

O
... O




n×n

V ∗

are m×m and n×n square matrices, respectively, with r× r identity matrix
sub-block Ir , where r = rank(B). Hence, for non-singular square matrices, the
pseudo-inverse agrees with the inverse matrix. For this reason, the pseudo-
inverse is also called the generalized inverse.
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1.4.4 Minimum-norm least-squares estimation

In this subunit, we will study the “solution” of the following (possibly over-
determined, under-determined, or even inconsistent) system of linear equa-
tions

Bx = b, (1.4.11)

(to be called a “linear system” for convenience), where B is an m × n coef-
ficient matrix and b an m-dimensional (known) column vector, by applying
the pseudo-inverse B† of B to b to formulate the vector:

x♦ = B†b. (1.4.12)

Throughout this subunit, the norm ‖y‖ of any vector y ∈ Cn is the Eu-
clidean (or ℓ2) norm of y. In the following we will show that taking the pseudo-
inverse of the coefficient matrix B yields the minimum-norm least-squares
solution x♦, as defined in (1.4.12), of the linear system (1.4.11).

Theorem 1.4.3 For the linear system (1.4.11) with coefficient matrix B ∈
Cm,n and (known) b ∈ Cm, the vector x♦ defined in (1.4.12) has the following
properties:

(i) for all x ∈ Cn,

‖Bx♦ − b‖ ≤ ‖Bx − b‖;

(ii) the linear system (1.4.11), with unknown x, has a solution if and
only if the pseudo-inverse B† of B satisfies the condition: BB†b = b,
namely, x = x♦ is a solution;

(iii) if (1.4.11) has a solution, then the general solution of (1.4.11)
x ∈ Cn is given by

x = x♦ + (In − B†B)w,

for all w ∈ Cn;

(iv) if (1.4.11) has a solution, then among all solutions, x♦ is the
unique solution

with the minimal Euclidean norm, namely:

‖x♦‖ ≤ ‖x‖

for any solution x of (1.4.11); and

(v) if (1.4.11) has a unique solution, then rank(B) = n.

The above statements remain valid, when Cm,n,Cn,Cm are replaced by
Rm,n,Rn,Rm, respectively.
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To prove the above theorem, we need the following properties of the
pseudo-inverse.

Theorem 1.4.4 Let B ∈ Cn,m or B ∈ Rn,m. Then

(i) (BB†)∗ = BB† ;

(ii) (B†B)∗ = B†B;

(iii) BB†B = B; and

(iv) B†BB† = B†.

Furthermore, B† as defined by (1.4.10), is the only n×m matrix that satisfies
the above conditions (i)–(iv).

Proof Derivation of the properties (i)–(iv) is an easy exercise. To show that
B† is unique, let A ∈ Cm,n satisfy (i)–(iv); that is,

(i) (BA)∗ = BA;

(ii) (AB)∗ = AB;

(iii) BAB = B; and

(iv) ABA = A.

In view of the definition B† = V S̃U∗ of B† in (1.4.10), we introduce four
matrix sub-blocks A11, A12, A21, A22 of dimensions r× r, r× (n− r), (m− r)×
r, (m− r) × (n− r), respectively, defined by

V ∗AU =



A11

... A12

. . . . . . . . . . . .

A21

... A22

.


 .

Then by the SVD formulation B = USV ∗ of the given matrix B, it follows
from the assumption BAB = B in (iii) that

(U∗BV )(V ∗AU)(U∗BV ) = U∗(BAB)V = U∗BV.

Hence, by the definition (1.3.5) of S, we have

[
Σr O
O O

] [
A11 A12

A21 A22

] [
Σr O
O O

]
=

[
Σr O
O O

]
,

which is equivalent to ΣrA11Σr = Σr. This yields A11 = Σ−1
r . By applying

the assumptions (i) and (ii) on A above, respectively, it is also an easy exercise
to show that A12 = O and A21 = O. Finally, by applying these results along
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with the assumption ABA = A in (iv), a similar derivation yields A22 = O .
Hence, we have

A = V

[
A11 A12

A21 A22

]
U∗ = V

[
Σ−1
r O
O O

]
U∗ = B†.

This completes the proof of the theorem. �

We are now ready to prove Theorem 1.4.3. Write Bx−b = (Bx−Bx♦) +
(Bx♦ − b), and observe that the two vectors Bx − Bx♦ and Bx♦ − b are
orthogonal to each other. The reason is that

(Bx♦ − b)∗(Bx −Bx♦) = (BB†b− b)∗B(x − x♦)

= b∗
(

(BB†)∗ − I
)
B(x − x♦) = b∗

(
BB†B − B)(x − x♦) = 0,

where the last two equalities follow from (i) and (iii) of Theorem 1.4.4, re-
spectively. Thus, it follows from the Pythagorean theorem (see Subunit 3.2.1
on the derivation for an arbitrary inner-product space) that

‖Bx − b‖2 = ‖Bx −Bx♦‖2 + ‖Bx♦ − b‖2 ≥ ‖Bx♦ − b‖2,

establishing statement (i) in Theorem 1.4.3.

Statement (ii) follows immediately from statement (i), since if the system
(1.4.11) has some solution, then x♦ in (1.4.10) is also a solution of (1.4.11).

To derive statement (iii), we first observe, in view of BB†B = B in (iii)
of Theorem 1.4.4, that for any w ∈ Cn, the vector x = x♦ + (In −B†B)w is
a solution of (1.4.11), since (1.4.11) has a solution, namely, x♦. On the other
hand, suppose that x is a solution. Then by setting w = x − x♦, we have
Bw = 0, so that

x♦ + (In − B†B)w = x♦ + w− B†Bw = x♦ + w = x;

which establishes statement (iii).

To prove statement (iv), we apply (ii) and (iv) of Theorem 1.4.4 to show
that in statement (iii) of the theorem, the vector x♦ is orthogonal to (In −
B†B)w, namely:

(
(In − B†B)w

)∗
x♦ = w∗

(
In − (B†B)∗

)
B†b = w∗

(
B† −B†BB†

)
b = 0.

Hence, since every solution x can be written as x = x♦ + (In − B†B)w, we
may apply the Pythagorean theorem to conclude that

‖x‖2 = ‖x♦ + (In − B†B)w‖2

= ‖x♦‖2 + ‖(In − B†B)w‖2 ≥ ‖x♦‖2.
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Thus, x♦ is the unique solution of (1.4.11) with minimal norm.

Finally, to see that statement (v) holds, we simply observe that for the
solution x♦ of (1.4.11) to be unique, the matrix (In − B†B) in the general
solution (in statement (iii)) must be the zero matrix; that is, B†B = In or B†

is the right inverse of B, so that rank(B) = n. �

Example 1.4.3 Compute the pseudo-inverse of the matrix

B =

[
0 1 0
1 0 −1

]
.

Solution Recall from Example 1.3.2 that the SVD of B is given by

B = USV ∗ =

[
0 1
1 0

] [√
2 0 0

0 1 0

] 


1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


 .

Hence, by the definition (1.4.10) of the pseudo-inverse B† of B, we have

B† = V S̃U∗ =




1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2







1√
2

0

0 1
0 0




[
0 1
1 0

]
=




0 1
2

1 0
0 −1

2


 .

�

Example 1.4.4 Write the system of linear equations

{
x2 = 3,

x1 − x3 = −1,

in matrix formulation Bx = b with x = [x1, x2, x3]T and b = [3,−1]T . Apply
the result from Example 1.4.3 to obtain the solution x♦ = B†b and verify
that ||x♦|| ≤ ||x|| for all solutions x of the linear system.

Solution Since the coefficient matrix B is the matrix in Example 1.4.3, we
may apply B† computed above to obtain the solution

x♦ = B†b =




0 1

2
1 0
0 −1

2




[

3
−1

]
=




−1

2
3
1
2



 .

Furthermore, it is clear that the general solution of the system is

x = [a− 1, 3, a]T , for any real number a,
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so that

||x||2 = (a− 1)2 + 32 + a2 = a2 − 2a+ 1 + 9 + a2

= 2(a2 − a) + 10 = 2
(
a2 − a+ 1

4

)
+ 10− 2

4

= 2
(
a− 1

2

)2
+

(
32 +

(−1
2

)2
+

(
1
2

)2
)

= 2
(
a− 1

2

)2
+ ||x♦||2 ≥ ||x♦||2,

with ||x||= ||x♦|| if and only if a = 1
2 , or x = x♦. �

Example 1.4.5 Consider the inconsistent system of linear equations





x2 = 1,

x1 = −1,

−x2 = 1,

with matrix formulation Bx = b, where

B =




0 1
1 0
0 −1



 and b =




1
−1
1



 .

What would be a “reasonable” solution of the system?

Solution From Example 1.4.3 (see Example 1.3.2), since the coefficient
matrix B is the transpose of the matrix B in Example 1.4.3, we have the
SVD, B = USV ∗ with

U =




1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2



 ,

V =

[
0 1
1 0

]
, S =





√
2 0

0 1
0 0



 .

Hence, the pseudo-inverse B† of B is given by

B† = V S̃U∗ =

[
0 1
1 0

] [ 1√
2

0 0

0 1 0

] 


1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


 ;

so that

x♦ = B†b =

[
0 1
1 0

] [ 1√
2

0 0

0 1 0

] 


0
−1√

2



 =

[
0 1
1 0

] [
0
−1

]
=

[
−1
0

]
.
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That is, x1 = −1 and x2 = 0 is the “reasonable” solution of the inconsistent
system. Observe that the average of the inconsistency x2 = 1 and −x2 = 1 is
the “reasonable” solution x2 = 0. �

Next, we apply Theorem 1.4.3 to study the problem of least-squares esti-
mation.

Let V be an inner-product space over the scalar field C or R and Sn =
{v1, · · · ,vn} be a (possibly linearly dependent) set of vectors in V with W

=span{v1, · · · ,vn}. Since the cardinality n of the set Sn can be very large,
to find a satisfactory representation of an arbitrarily given v ∈ V from W,
it is often feasible to acquire only a subset of measurements 〈v,vℓ〉 for ℓ ∈
{n1, · · · , nm} ⊂ {1, . . . , n}. Let

b = [b1, · · · , bm]T = [〈v,vn1
〉, · · · , 〈v,vnm〉]T (1.4.13)

be the data vector in Cm associated with v (where m ≤ n). The least-squares
estimation problem is to identify the “best” approximants

w =

n∑

j=1

xjvj ∈W

of the vector v, based only on the measurement b in (1.4.13). Now, since
〈w,vnℓ〉 =

∑n
j=1〈vj ,vnℓ〉xj is supposed to “match” the data component

〈v,vnℓ〉 = bℓ for ℓ = 1, . . . , m, we consider the system of linear equations

n∑

j=1

〈vj ,vnℓ〉xj = bℓ = 〈v,vnℓ〉, ℓ = 1, . . . , m, (1.4.14)

or in matrix formulation,
Bx = b, (1.4.15)

where x = [x1, · · · , xn]T and

B = [〈vj ,vnℓ〉] , (1.4.16)

with 1 ≤ ℓ ≤ m and 1 ≤ j ≤ n, is the m× n coefficient matrix. Therefore, by
Theorem 1.4.3, the “solution” to (1.4.15) is given by

x♦ = B†b

(where B† is the pseudo-inverse of B) in that

||Bx♦ − b|| ≤ ||Bx− b||

for all x ∈ Cn (or x ∈ Rn) and that ||x♦|| ≤ ||y|| if

||By − b|| = ||Bx♦ − b||.
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Of course, by setting x♦ = (x♦1 , · · · , x♦n ), the (unique) optimal minimum-norm
least-squares representation of v ∈ V is given by

n∑

j=1

x♦j vj. (1.4.17)

Remark 1.4.4 Matching the inner product with the data vector v in (1.4.14)
is a consequence of the variational method, when

∑
j xjvj is required to be the

best approximation of v in the Euclidean (or ℓ2) norm. Indeed, for the quantity
||v −∑

j xjvj ||2 to be the smallest for all choices of coefficients x1, · · · , xn,
the partial derivatives with respect to each of x1, · · · , xn must be zero. For
convenience, we only consider the real-valued setting, so that for each ℓ =
1, . . . , n,

0 = ∂
∂xℓ
||v −∑

j xjvj ||2

= ∂
∂xℓ

(
||v||2− 2

∑n
j=1 xj〈v,vj〉+

∑n
j=1

∑n
k=1 xjxk〈vj ,vk〉

)

= −2〈v,vℓ〉 +
∑n

j=1 xj〈vj,vℓ〉+
∑n

k=1 xk〈vℓ,vk〉,

or
n∑

j=1

xj〈vj ,vℓ〉 = 〈v,vℓ〉, (1.4.18)

which is (1.4.14), when nℓ is replaced by ℓ.

�

Remark 1.4.5 For computational efficiency and stability, the coefficient ma-
trix B in (1.4.15) should be “sparse” by choosing locally supported vectors (or
functions) vj in V. For example, when piecewise polynomials (or splines) are
used, it is best to use B-splines. In particular, when piecewise linear polynomi-
als with equally spaced continuous “turning points” (called simple knots) are
considered, then the linear B-splines are “hat” functions and the full matrix
Bh = [〈vj , vk〉], for 1 ≤ j, k ≤ n, is the banded square matrix

Bh =
1

6h




2 1 0 0 0 · · · 0 0 0 0
1 4 1 0 0 · · · 0 0 0 0
0 1 4 1 0 · · · 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 · · · 0 1 4 1
0 0 0 0 0 · · · 0 0 1 2




, (1.4.19)

where h > 0 is the distance between two adjacent knots.

�
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1.5 Applications to Data Dimensionality Reduction

What is data dimension? To understand this concept, let us consider the
example of “color images”. Since human vision is “trichromatic”, meaning
that our retina contains three types of color cone cells with different absorp-
tion spectra, the three primary color components: R (red), G (green) and B
(blue), are combined, in various ratios, to yield a wide range of (wonderful)
colors that we see. With the rapid technological advancement in high-quality
digital image and video display, more accurate color profiles for consistent
imaging workflow require significantly more sophisticated color calibration,
by using spectro-colorimeters that take narrow-band measurements, even be-
low 10nm (nm = nano meter) increments. Hence, for visible light; that is,
electromagnetic radiation (EMR) with wavelengths that range from 400nm
for the primary color “B” to 700nm for the primary color “R”, even a 10nm
increment requires 31 readings, a 10-fold increase in data dimension over the
3 “RGB” readings. In other words, the “spectral curve” dimension for every
single image pixel goes up from dimension 3 (for RGB) to dimension 31 (for
31 shades of colors), and even higher, if sub 10nm increments are preferred.
In Subunit 1.5.3, we will elaborate the discussion on the EMR range, beyond
visible light, and mention various important application areas.

1.5.1 Representation of matrices by sum of norm-1 matrices

Let B ∈ Rm,n denote the data matrix under consideration, with each of the
m rows of B representing a data vector in the n−dimensional Euclidean space
Rn. The objective of the problem of dimensionality reduction is to reduce
the dimension n for the purpose of facilitating data understanding, analysis
and visualization, without loss of the essential data information, such as data
geometry and topology. Let bTj = [bj,1, · · · , bj,n] denote the row vectors of B,
or equivalently, the column vectors of B are given by bj, where j = 1, . . . , m.
For convenience, as already discussed in Subunit 1.4.2, without loss of data
geometry and topology information, we may, and will, assume that the data
matrix B has been centered; that is,

m∑

j=1

bj = 0.

Suppose that the rank of the matrix B is r ≥ 1. Our approach to the
study of data dimensionality reduction, from dimension n to dimension d < n,
is to decompose the data matrix B into the sum of r matrices, each with
rank equal to 1, called rank-1 matrices in Rm,n, in an “optimal” way and to
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extract d of these r components. For this purpose, we apply the singular value
decomposition (SVD) of B to derive the following (rank-1 decomposition)
formula:

B = U1ΣrV
∗
1 = USV ∗ =

r∑

j=1

σjujv
∗
j , (1.5.1)

where U, V are unitary matrices of dimensions m, n respectively, and U1 =
[u1, · · · ,ur], V1 = [v1, · · · ,vr] are obtained from U, V by keeping only the
first r columns, where σ1 ≥ · · · ≥ σr > 0 are (all of) the non-zero singular
values of B (with multiplicities being listed), and v∗

j denotes the complex

conjugate of the transpose of the jth column vj of the matrix V1 in (1.3.15)
or V in (1.3.19). To derive (1.5.1), we simply apply the reduced SVD of B in
(1.3.15), studied in Subunit 1.3.3, to re-formulate the two matrix components
U1Σr and V ∗

1 , and finally multiply the corresponding column and row sub-
blocks, as follows:

B = U1ΣrV
∗
1 = [σ1u1 · · · σrur]



v∗

1
...

v∗
r


 = σ1u1v

∗
1 + · · ·+ σrurv

∗
r .

Of course for real-valued matrix V1, we have v∗
j = vTj . In addition, for each

j = 1, . . . , r, observe that ujv
∗
j is an m × n matrix with rank = 1. Such

matrices are called rank-1 matrices. We remark that an m× n matrix B is a
rank-1 matrix, if and only if

B = vw∗,

where v and w are m-dimensional and n-dimensional column vectors, respec-
tively. It is also easy to verify that the rank of the sum of r rank-1 m × n
matrices does not exceed r.

1.5.2 Approximation by matrices of lower ranks

In this subunit, we will apply the rank-1 decomposition formula (1.5.1),
namely:

B = σ1u1v
∗
1 + · · ·+ σrurv

∗
r

of the data-matrix B into the sum of r rank-1 matrices, derived in the above
subunit, to formulate the following best approximation result by matrices with
rank d < r. The Frobenius norm, introduced and studied in Subunit 1.4.1, is
used for the measurement of best approximation.

Theorem 1.5.1 Let B be any m× n matrix with rank(B) = r ≥ 1 and with
singular values σ1 ≥ · · · ≥ σr > σr+1 = · · · = 0. Then for any integer d, with
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1 ≤ d < r, the dth partial sum

B(d) =

d∑

j=1

σjujv
∗
j , (1.5.2)

of the rank-1 matrix series representation of B provides the best approximation
of B by all matrices of rank ≤ d under the Frobenius norm, with precise error
given by σ2

d+1 + · · ·+ σ2
r ; that is,

‖B −B(d)‖2F =
r∑

j=d+1

σ2
j , (1.5.3)

and
‖B −B(d)‖2F ≤ ‖B − C‖2F (1.5.4)

for all m× n matrices C with rank ≤ d. Furthermore, B(d) in (1.5.2) is the
unique best approximant of B, again under the Frobenius norm.

Proof Let Sd denote the matrix obtained from the matrix S ∈ Rm,n, in-
troduced in (1.3.6)–(1.3.7), by replacing each of σ1, · · · , σd by 0. Then we
have

B −B(d) = USdV
∗.

Hence, it follows from (1.4.3) that

‖B −B(d)‖2F = ‖USdV ∗‖2F = ‖Sd‖2F =

r∑

j=d+1

σ2
j ,

completing the derivation of (1.5.3).
To prove (1.5.4), assume that C ∈ Cm,n with rank = k ≤ d provides the

best approximation to B under the Frobenius norm ‖·‖F , so that ‖B−C‖2F ≤
‖B −B(d)‖2F . Hence, it follows from (1.5.3) that

‖B − C‖2F ≤
r∑

j=d+1

σ2
j . (1.5.5)

Let U, V be the unitary matrices in the SVD of B in (1.5.1) and set G =
U∗CV , so that G has the same rank k as C and that C = UGV ∗. Hence, by
applying (1.4.3), we have

‖B − C‖F = ‖USV ∗ − UGV ∗‖F
= ‖U(S −G)V ∗‖F = ‖S −G‖F .

Set G = [gj,ℓ] and S = [sj,ℓ], where in view of (1.3.6)–(1.3.7), we have sj,ℓ = 0
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for all j different from ℓ and sj,j = 0 for j > r. Since the Frobenius norm
‖ S−G‖F is defined by the ℓ2 sequence norm of the sequence consisting of all
the entries sj,ℓ−gj,ℓ of the matrix S−G, it should be clear that for ‖S−G‖F
to be minimum among all G ∈ Cm,n, this optimal G is given by

G =

[
Σ′
r 0

0 0

]
,

where Σ′
r = diag (g1, g2, · · · , gr), with each gj ≥ 0, so that

‖S −G‖2F =

r∑

j=1

|sj,j − gj|2 =

r∑

j=1

|σj − gj|2.

Now, since the rank of G is k ≤ d ≤ r, only k of the r diagonal entries
g1, g2, · · · , gr of Σ′

r are non-zero, and the minimum of the above sum is
achieved only when these k non-zero entries match the largest k values of
σ1, · · · , σr. In other words, we have g1 = σ1, · · · , gk = σk, and gj = 0 for
j > k, and that

‖B −C‖2F = ‖S −G‖2F =

r∑

j=k+1

σ2
j . (1.5.6)

Hence, by combining (1.5.5) and (1.5.6), we may conclude that k = d,

‖B − C‖2F =

r∑

j=d+1

σ2
j ,

and C = UGV ∗, with

G =

[
Σ′
r 0

0 0

]
,

where Σ′
r = diag(σ1, · · · , σd). This implies that C = B(d) in (1.5.2), complet-

ing the proof of the theorem. �

1.5.3 Motivation to data-dimensionality reduction

Probably the most interesting examples of high-dimensional data are those
generated by the electromagnetic (EM) waves, which can be described by
their wavelengths (denoted by λ), their frequencies (denoted by ν), or by
their energies (denoted by E). However, though it is important to know that
energy is directly proportional to frequency, namely:E = hν , where h is called
Planck’s constant, the energies generated by EM waves do not play any role
in our discussion of data dimension in this subunit. In other words, we will be
only concerned with the study of wavelengths and frequencies, which are, of
course, inversely proportional to each other, namely: νλ = v, where v denotes
the velocity of the traveling EM wave, measured in meters per second (m/s).
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For example, since light travels at the speed c = 299, 792, 458m/s in vacuum,
we will use the formula

νλ = 299, 792, 458

in the following discussion for convenience. This assumption is quite accurate
in the consideration of traveling EM waves emitted by our Sun.

The radiation of EM waves is called electromagnetic radiation (EMR),
which has a wide spectrum from very low frequency-range (measured in Hertz,
with one Hertz, or 1Hz, equal to 1 cycle per second), to very high frequency-
range, or equivalently very small wavelengths (measured in nanometers). The
notation for nanometer is nm, with 1nm = 10−9 meter. On the other hand, the
tradition in the measurement of very low-frequency EMR, such as radio waves,
is in terms of Hertz, such as 1kHz (for one kilo Hz) or 1MHz (for one mega
Hz). For example, in the United States, while typical AM radio frequencies
range from 1, 610kHz to 1, 710kHz (and not exceeding 5, 000kHz), FM radio
broadcast is in the frequency range from 88MHz to 108MHz. Observe that
at 100MHz = 108Hz, the wavelength of the FM radio signal is approximately
3 meters. Hence, since our discussion in this subunit is limited to the “visual”
aspect of EMR, of which the very large wavelengths of the EM spectrum has
not yet found its place in “visual” applications, we are only concerned with
the EMR spectrum well below one-hundredth of a meter, and will use the
nanometer, nm, unit for wavelength measurement.

As mentioned in the introduction of Subunit 1.5, the human vision is
“trichromatic”, meaning that our retina contains three types of color cone
cells for absorption of the three spectra: blue (B), green (G) and red (R). In
other words, visible light to the human eye is in the EMR spectrum range of
approximately 380nm to 750nm. More precisely, the rainbow colors, in terms
of wavelengths, are given by:

red (620–750nm),

orange (590–620nm),

yellow (570–590nm),

green (495–570nm),

blue (450–495nm),

indigo (between blue and violet, but not specific), and

violet (380–450nm).

Although the human eye is not capable of “seeing” EMR beyond the rain-
bow spectrum, there are other creatures that can “see” different EMR spec-
tra, though mostly narrower. For example, the majority of the compound
eyes of insects are “bichromatic”, with narrow spectral vision, but can see
EMR of higher-frequencies or shorter wavelengths in the 340− 380nm range
of the ultraviolet (UV) spectrum. On the other hand, creatures such as snakes
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can “see” EMR of the lower-frequencies or longer wavelengths, even in the
5, 000− 30, 000nm range of the infrared (IR) spectrum. Of course, since the
IR spectrum is completely “dark”, the meaning of “vision” is actually “ther-
mal sensing”, in terms of temperature differencing. The most advanced eyes of
the entire animal kingdom are those of the mantis shrimp family, with visual
capability up to the 200 − 800nm range of the EMR spectrum, well beyond
both ends of the (human) visible light spectrum of 380− 750nm.

So why is it so important to be able to “see” beyond our visible light
spectrum? The truth is that all spectral bands with frequencies higher than
the radio-frequency range are currently used for various image acquisition,
with important applications to our daily lives. Before going further into this
topic, let us first list all the spectral bands of the EMR that are relevant to
imaging, as follows:

(i) Gamma rays (with wavelengths less than 0.02nm),

(ii) X-rays (with wavelengths in the 0.01–10nm range),

(iii) Ultraviolet, UV ( with wavelengths in the 10–380nm range),

(iv) Visible light (with wavelengths in the 380–750 range),

(v) Infrared, IR (with wavelengths 750nm–1 millimeter; or frequencies
300GHz–400THz),

(vi) Microwave (with wavelengths 1 millimeter–1 meter; or frequencies
300MHz–300GHz).

Since the Gamma ray spectrum is the one with frequencies over 1019Hz,
Gamma rays produce the highest energy. For radiation therapy, gamma rays
are used to kill cancerous cells. In the area of imaging, since gamma rays
can penetrate through thick metal walls, they are used for taking pictures of
illegal weapons and other suspicious objects hidden inside steel containers.
In addition, gamma rays are used in astronomy research as well as in many
manufacturing sectors, of which we can only compile the following short list:

(i) for the automobile industry – test steel quality in the manufacture of
cars and to obtain the proper thickness of tin and aluminum;

(ii) for the aircraft industry – to check for flaws in jet engines;

(iii) for road construction – to gauge the density of road surfaces and sub-
surfaces;

(iv) for pipeline companies – to test the strength of welds;

(v) for the oil, gas, and mining industries – to map the contours of test wells
and mine bores; and

(vi) for cable manufacturers – to check ski lift cables for cracks.



LINEAR ANALYSIS 43

As to medical applications mentioned above, due to their lower frequency
(and hence smaller energy), X-rays are much less invasive than Gamma rays.
Thanks to the discoverer, Wilhelm Roentgen, X-rays have been essential to
various imaging applications in our daily lives, including: medical imaging,
crystallography, and security screening. Here, medical X-ray imaging includes
but is definitely not limited to: computed tomography (CT), fluoroscopy, ra-
diography, and “conventional X-ray” such as mammography. As to crystallog-
raphy, since the principle is to characterize atomic structures, crystallography
is fundamental to many scientific fields, including: DNA matching and can-
cer drug research. The most noticeable application of X-ray image screening
is probably inspection of airline carry-on bags and checked luggage for air-
port and air travel security. However, whole-body X-ray screening machines
in major U.S. airports have recently been replaced by non-invasive “millimeter
scanners”, to be discussed below, under the topic of thermal imaging.

Ultraviolet image acquisition is usually called forensic imaging, with ap-
plications that include but are not limited to:

(i) authentication of original oil paintings by revealing brush strokes;

(ii) verification of credit cards and important personal identities;

(iii) detection of counterfeit (paper money);

(iv) criminal identification by using finger-print image to match and by using
forensic pictures to discover removed blood stains; and

(v) separation of minerals to identify precious metals or gems.

More recently, UV imaging is also applied to enable automated systems
to detect scratches and digs on optical surfaces such as lenses or windows. In
the semiconductor industry, photolithography applies to inspection of photo-
masks with very fine lines and features to locate defects that may be of submi-
cron size. Confocal microscopy, operating at wavelength of 248nm (generated
by krypton fluoride) and at wavelength of 266nm (generated by frequency-
quadrupled lasers) is used to detect such image features. As an important
application, this process can be applied to detect tiny defects in silicon wafers
before carrying out semiconductor device (or silicon chip) fabrication in big
volumes.

Infrared (IR) imaging, also called “thermal imaging”, is another popular
image acquisition area, by using EMR outside the visible spectrum. In fact, IR
cameras, also called “thermographic cameras”, have been used to take pictures
in the dark many years ago. In general, the basic principle of thermographic
cameras is to detect heat radiation in the infrared wavelength range between
9, 000nm and 14, 000nm, of the EMR spectrum, to produce images of the radi-
ation, called “thermograms”. Since infrared radiation is emitted by all objects
with heat content above absolute zero (according to the “black body radiation
law” in physics), thermography makes it possible for us to “see” any environ-
ment with or without visible illumination. The reason is that the amount of
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radiation emitted by an object increases with temperature, so that thermog-
raphy allows us to see variations in temperature. When viewed through a
thermal imaging camera, warm objects stand out well against cooler back-
grounds. For example, humans and other warm-blood animals become easily
visible against the environment, in bright daylight or pitch darkness. As a
result, thermography has been particularly useful to military and other users
of surveillance cameras. Other applications include seeing through smoke for
the firefighters, seeing through light fog for the enthusiastic out-door athletes,
locating overheating joints of power lines for electrical maintenance techni-
cians, finding heat leaks (called thermal signatures) in faulty heat insulation
for building construction, monitoring of physiological changes in people at
home or hospital care, and monitoring of patients during clinical diagnostics.
More recently, IR imaging plays a vital role in the auto industry, due to the
increasing large number of electronic and mechanical components, in the areas
of product assurance and driving reliability.

As mentioned above, the whole-body X-ray screening machines in the ma-
jor U.S. airports have recently been replaced by “millimeter scanners”, by
using radiation of EM waves with wavelengths that range from 0.1 millime-
ter (i.e. 105nm) to 1 millimeter (i.e. 106nm); or equivalently with frequencies
ranging from 3× 1011Hz (i.e. 0.3 terahertz) to 3× 1012Hz (i.e. 3 terahertz).
In physics, radiation of EM waves with frequencies in this range is called “ter-
ahertz radiation”. Observe that this “terahertz frequency band” is a narrow
band in the EMR spectrum that consists of small portions of the far IR and
near microwave spectra. Hence, in view of lower frequencies, millimeter scan-
ning is even less invasive than scanning by thermographic cameras, in terms
of radiation energy.

With the technological advancement of image sensors and other image ac-
quisition devices, it was already feasible over three decades ago to capture im-
ages of the same scene simultaneously at several different desired wavelengths
of the EMR spectrum, selected from visible light to long-wave infrared. The
captured images constitute an image stack, called a “multispectral image”.
Hence, a multispectral image can reveal the same scene both in bright day-
light and in pitch darkness, when both the visible and infrared spectra are
used in taking the picture. In this regard, multispectral imaging only deals
with discrete and somewhat narrow (spectral) bands. Being “discrete and
narrow” is what distinguishes multispectral imaging from color photography
(which is accomplished by analyzing the spectrum of colors into three channels
of information, one dominated by red, one by green, and the third by blue, in
imitation of the way the normal human eye senses color).

While multispectral images have narrow bands, “hyperspectral” imaging
is the popular choice for such applications that can benefit from using a vast
portion of the electromagnetic spectrum, anywhere between ultraviolet and
the terahertz band (if desired). Just like multispectral imaging, hyperspectral
sensors simultaneously collect image data as a stack of images (of the same
scene), but usually at equally spaced wavelengths called “spectral resolution”
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(with small wavelength spacing for finer spectral resolution). These images are
then combined to form a three-dimensional image stack, called an “HSI cube”
(though it is only a right parallelepiped, rather than a cube, in general), for
processing, analysis, and visualization. However, since a wide spectral band is
used, if equal spacing is preferred, as in most applications, the spectral reso-
lution cannot be too fine, with common choices of only 5nm and 10nm. More
recently, spectral imaging with finer spectral resolution (i.e. smaller wave-
length spacing between two consecutive images) is used for various specific
applications. Such spectral images are called “ultraspectral” images, captured
by using interferometer-type imaging sensors designed for very fine spectral
resolution imaging. Unfortunately, these sensors have fairly low spatial reso-
lution, due to high data-rate requirement for the desired spectral resolution.

For convenience, the totality of multispectral imaging, hyperspectral imag-
ing, and ultraspectral imaging, will be called “spectral imaging” in our dis-
cussion. For each of these three types of imaging, a spectral image is a stack
of digital images (of the same scene), captured at various desired wavelengths,
to be called spectral bands, labeled by ℓth band, for ℓ = 1, . . . , n, where n is
the number of (spectral) bands (or number of images in the stack). Hence,
corresponding to each spatial pixel location (ih, jh), where h > 0 denotes the
spatial distance between adjacent pixels, we may consider a pixel value bℓih,jh
in the ℓth band. For the sake of mathematical development and analysis, we
use the roster ordering of the pixel locations; that is, horizontally from left to
right, and line by line, starting from the first row. In other words, we consider
the one-one map of the sequence

{(h, h), · · · , (h,m2h), (2h, h), · · · , (2h,m2h), · · · , · · · , (m1h, h), · · · ,
(m1h,m2h)}

to the sequence {1, . . . , m}, where m = m1×m2. Hence, the pixel values bℓih,jh
are re-labeled as bℓk, where k = 1, . . . , m and ℓ = 1, . . . , n. Now consider the
row-vector

bTk = [b1k · · · bnk ]

as a data-vector in Rn. Then the matrix B ∈ Rm,n, defined by

B =




bT1
...

bTm


 = [b1 · · · bm]T ,

is the corresponding data-matrix of the spectral image under consideration.
Therefore, we have formulated a spectral image as a data-set B of m points
in the n−dimensional Euclidean space Rn. Recall that the data-set notation
is also used as the data-matrix notation.

Returning to our discussion of multispectral imaging, we remark that the
most well-known and most accomplished application of multispectral image



46 SAYLOR MA 304

acquisition is the on-going spectral image capture by remote sensing (RS) ra-
diometers from Landsat satellites. For over forty years since 1972, the Landsat
Program of NASA is a series of Earth-observing satellite missions of taking
multispectral images of Earth’s continents and surrounding coastal regions to
facilitate and enable scientists to study various aspects of our planet and to
evaluate the dynamic changes caused by both natural processes and human
practices, with immediate applications to monitoring water quality, glacier
recession, sea ice movement, invasive species encroachment, coral reef health,
land use change, deforestation rates and population growth, and so forth. In
addition, Landsat has helped in assessing damages from natural disasters such
as fires, floods, and tsunamis, and subsequently, planning disaster relief and
flood control programs. Even some fast-food restaurants have used popula-
tion information to estimate community growth sufficient to warrant a new
franchise. There were a total of eight Landsat satellites. The pioneering Land-
sat #1 was launched in 1972 and lasted till 1978, followed by Landsat #2
(1975-1982), Landsat #3 (1978-1983), and Landsat #4 (1982-2001). Landsat
#5 (1984 - ) and Landsat #7 (1999 - ) are still busily sending imagery data
to the ground stations for processing and storage. Unfortunately, Landsat #6
was lost at launch in 1993, but the good news is that Landsat #8, launched
on February 11, 2013, is most successful. Orbiting the Earth every 99 min-
utes, Landsat #8 takes pictures of the entire Earth every 16 days, with 400
gigabytes (or 400 billion bytes) of most valuable imagery data downlinked to
ground stations everyday for processing and archived in the U.S. Geological
Survey (USGS). Since Landsat #8 includes additional bands, the combina-
tions used to create RGB composites differ from Landsat #7 and Landsat
#5. For instance, while bands #4,#3,#2 are used to create a color infrared
(CIR) image by using data from Landsat #7 or Landsat #5, CIR compos-
ites are created by using Landsat #8 bands #5,#4,#3 instead. All Landsat
data in the USGS archive are free and can be ordered from the USGS website
(www.usgs.gov). In the following, we list the spectral bands being used by
Landsat #8:

Band 1 - Coastal aerosol 430nm–450nm (visible light)

Band 2 - Blue 450nm–510nm (visible light)

Band 3 - Green 530nm–590nm (visible light)

Band 4 - Red 640nm–670nm (visible light)

Band 5 - Infrared 850nm–880nm (near Infrared)

Band 6 - Infrred 1, 570nm–1, 650nm (short-wavelength IR)

Band 7 - Infrared 2, 110nm–2, 290nm (short-wavelength IR)

Band 8 - Panchromatic 500nm–680nm (visible light)

Band 9 - Cirrus 1, 360nm–1, 380nm (short-wavelength Infrared)
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Band 10 - Infrared 10, 600nm–11, 190nm (long-wavelength-Infrared)

Band 11 - Infrared 11, 500nm–12, 510nm (long-wavelength-Infrared)

While multispectral sensors record discrete wavelengths of light, essentially
sampling sections of the electromagnetic spectrum; a hyperspectral instru-
ment, such as the Hyperion system, records many adjacent wavelengths to
image most of the spectrum within a set range. In other words, in contrast
to multispectral imaging that uses less than 10 (spectral) bands in general,
the hyperspectral sensors look for objects by using hundreds (or occasion-
ally even over a thousand) spectral bands to find and detect objects with
traces of unique “fingerprints” across the electromagnetic spectrum. These
“fingerprints” are known as spectral signatures and enable identification of
the materials that make up a scanned object. Again for remote sensing (RS),
the Hyperion sensor on Earth Observing #1 resolves 220 bands from 400nm
to 2, 500nm, with a spectral resolution (i.e. distance between adjacent bands)
of 10 nm. Hyperspectral remote sensing is used in a wide array of applications.
Although originally developed for mining and geology (the ability of hyper-
spectral imaging to identify various minerals makes it ideal for the mining
and oil industries, where it can be used to look for ore and oil), it has now
spread into fields as widespread as ecology and surveillance, as well as histor-
ical manuscript research, such as the imaging of the Archimedes Palimpsest.
This technology is continually becoming more available to the public. Organi-
zations such as NASA and the USGS have catalogues of various minerals and
their spectral signatures, and have posted them online to make them read-
ily available for researchers. According to a NASA Deputy Director, Bryant
Cramer, “Hyperion is probably the future of remote sensing”. “Hyperion is
a hyperspectral instrument, a change in technology that is like going from
black-and-white to color television”, Mandel adds. Chemists have long used
spectroscopy to identify substances because everything reflects electromag-
netic energy (including light) at specific wavelengths and in ways that are as
unique as a fingerprint. By measuring the energy that comes from a material,
scientists can figure out what the material is. Hyperion measures reflected
light like many other satellite imagers, but since it is recording more than 200
wavelengths, it can detect the fingerprints of the materials on Earth’s surface.
Just as iron and copper look different in visible light, iron- and copper-rich
minerals reflect varying amounts of light in the infrared spectrum.

“Hyperion has really opened up a whole new avenue of analysis that we
hadn’t even explored before, and I can tell you where in the area the ore
is coming from, which parts of the site were used for smelting and which
were not; and that different parts of the site were drawing ore from different
regions,” says NASA Contractor Sabrina Savage. Such information would be
prohibitively expensive to gather in field research, but Hyperion provides an
UCSD distinguished professor, Thomas Evan Levy, with the most valuable
data for his Archaeology research, including better target excavation at likely
smelting sites and mines.



48 SAYLOR MA 304

HSI data have also assisted in the interpretation of ancient papyri, such
as those found at Herculaneum, by imaging the fragments in the infrared
range (1000nm). Often, the text on the documents appears to be as black
ink on black paper to the naked eye. At 1000 nm, the difference in light
reflectivity makes the text clearly readable. It has also been used to image the
Archimedes palimpsest by imaging the parchment leaves in bandwidths from
365 − 870nm, and then using advanced digital image processing techniques
to reveal the under-text of Archimedes’ work. Besides NASA’s satellite image
Hyperion, HSI cubes are also generated from airborne sensors like the NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In fact, over the
past decade, HSI images are taken by ground troops. The list of applications
of HSI is too long to list. Let us compile a short list as follows.

(i) Agriculture: Although the cost of acquiring hyperspectral images is typ-
ically high, yet for specific crops and in specific climates, hyperspectral
remote sensing use is increasing for monitoring the development and
health of crops. In Australia, work is under way to use imaging spec-
trometers to detect grape variety and develop an early warning system
for disease outbreaks. Furthermore, work is underway to use hyperspec-
tral data to detect the chemical composition of plants, which can be used
to detect the nutrient and water status of wheat in irrigated systems.
Another application in agriculture is the detection of animal proteins
in compound feeds to avoid bovine spongiform encephalopathy (BSE),
also known as mad-cow disease. Different studies have been done to
propose alternative tools to the reference method of detection (classical
microscopy). One of the first alternatives is near infrared microscopy
(NIR), which combines the advantages of microscopy and NIR. In 2004,
the first study relating this problem with hyperspectral imaging was
published. Hyperspectral libraries that are representative of the diver-
sity of ingredients usually present in the preparation of compound feeds
were constructed. These libraries can be used together with chemometric
tools to investigate the limit of detection, specificity and reproducibility
of the NIR hyperspectral imaging method for the detection and quan-
tification of animal ingredients in feed.

(ii) Mineralogy: A set of stones is scanned with a Specim LWIR-C imager
in the thermal infrared range from 7.7 m to 12.4 m. The quartz and
feldspar spectra are clearly recognizable. Geological samples, such as
drill cores, can be rapidly mapped for nearly all minerals of commercial
interest with hyperspectral imaging. Fusion of SWIR and LWIR spec-
tral imaging is standard for the detection of minerals in the feldspar,
silica, calcite, garnet, and olivine groups, as these minerals have their
most distinctive and strongest spectral signature in the LWIR regions.
Hyperspectral remote sensing of minerals is well developed. Many min-
erals can be identified from airborne images, and their relation to the
presence of valuable minerals, such as gold and diamonds, is well un-
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derstood. Currently, progress is towards understanding the relationship
between oil and gas leakages from pipelines and natural wells, and their
effects on the vegetation and the spectral signatures.

(iii) Surveillance: In hyperspectral thermal infrared emission measurement,
an outdoor scan in winter conditions, with ambient temperature of 15,
relative radiance spectra from various targets in the image are shown
with arrows. The infrared spectra of the different objects such as the
watch glass have clearly distinctive characteristics. The contrast level
indicates the temperature of the object. This image was produced with
a Specim LWIR hyperspectral imager. Hyperspectral surveillance is
the implementation of hyperspectral scanning technology for surveil-
lance purposes. Hyperspectral imaging is particularly useful in military
surveillance because of countermeasures that military entities now take
to avoid airborne surveillance. Aerial surveillance was used by French
soldiers using tethered balloons to spy on troop movements during the
French Revolutionary Wars, and since that time, soldiers have learned
not only to hide from the naked eye, but also to mask their heat signa-
tures to blend into the surroundings and avoid infrared scanning. The
idea that drives hyperspectral surveillance is that hyperspectral scan-
ning draws information from such a large portion of the light spectrum
that any given object should have a unique spectral signature in at least
a few of the many bands that are scanned. The SEALs from DEV-
GRU who killed Osama bin Laden in May 2011 used this technology
while conducting the raid (Operation Neptune’s Spear) on Osama bin
Laden’s compound in Abbottabad, Pakistan.

On the other hand, for many applications, such as medical imaging and
homeland security screening, it is highly recommended to use the EMR in the
range between 1nm (long X-ray) and 106nm (for long-wave infrared), with
spectral resolution of 10nm. The purpose is that for each pixel location, there
is an almost continuous curve b (called spectral curve) consisting of 105 points

(i.e. b ∈ R105

), with one point from each band of the HSI cube. Therefore,
to detect abnormal growth or calcification, the radiologist can compare the
spectral curves of a patient with a library of compilations from previous can-
cer patients; and for homeland security screening, the spectral curves can be
compared with a library of curves of suspicious illegal substances, such as
chemicals and biological poison, for screening carry-on bags and checked lug-
gage for airports security and for entering other public buildings, etc. To meet
this specification, the high data-dimension of 105 cannot be processed without
a super computer. Therefore, to facilitate computational efficiency, memory
usage, data understanding and visualization, it is necessary to reduce the
data dimension, while preserving data similarities (and dis-similarities), data
geometry, and data topology.
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1.5.4 Principal components as basis for dimension-reduced
data

Recall from the discussion in Subunit 1.4.2 that to provide a better mea-
surement of data correlation, the data vectors b1, · · · ,bm ∈ Cn, should be
shifted by their average; that is, by replacing bj with b̃j = bj −bav, for each
j = 1, . . . , m, where

bav =
1

m

m∑

k=1

bk. (1.5.7)

In other words, the data-matrix

B = [b1, · · · ,bm]
T

(1.5.8)

is replaced by the centered data-matrix

B̃ =
[
b̃1, · · · , b̃m

]T
= [b1 − bav · · · bm − bav]

T
. (1.5.9)

For convenience, the data-matrix B in the following discussion is assumed
to have been centered; that is, we will assume that B = B̃. Now, consider the
rank-1 decomposition formula

B = U1ΣrV
∗
1 = USV ∗ =

r∑

j=1

σjujv
∗
j

of the centered data-matrix B in (1.5.1). Recall that the m rows of B (before
subtracting the average) are the m data-vectors. By applying the above rank-1
decomposition formula, the data-dimension n is already reduced to dimension
r (which is the rank of the data matrix), provided that r < n. To achieve
steeper dimension reduction, r is further reduced to any desirable dimension
d, with 1 ≤ d ≤ r. To do so, we first recall the notation On,d, in Definition
1.4.4, for the collection of all n× d matrices W = [w1 · · · wd] with mutually
orthonormal column vectors (that is, W ∗W = Id ), and we will consider the
matrix W = Wd, defined by

Wd = [v1 . . . vd],

which is inOn,d. Hence, as mentioned in Subunit 1.4.2, the coordinate system,
with the orthonormal unit vectors v1, · · · ,vd as coordinate axes, is the optimal
coordinate system, in the sense of PCA, for reducing the data dimension from
n to d. To be more precise, we return to the SVD of the data matrix B (that
has been centered), namely

B = [b1 · · · bm]
T

= USV ∗, (1.5.10)

where
U = [u1 · · · um], V = [v1 · · · vn],



LINEAR ANALYSIS 51

are unitary matrices, with orthonormal column vectors uj and vj , respec-
tively. The first idea in the PCA dimensionality reduction approach is to re-
place the matrices U , V , S in the SVD of the data-matrix B, by the truncated
matrices

Ud = [u1 · · · ud], Vd = [v1 · · · vd], Σd = diag{σ1, · · · , σd}, (1.5.11)

respectively. Then, in view of the SVD of B in (1.5.10), or equivalently BV =
US, we may consider the m× d matrix representation:

BVd = UdΣd,

and apply this m × d matrix Yd = BVd = UdΣd to introduce the notion of
dimension-reduced data, as follows.

Definition 1.5.1 Let 0 ≤ d < r. The column vectors y1, · · · ,ym of the ma-
trix Y Td = (BVd)T = (UdΣd)

T ; or equivalently,




yT1
...

yTm


 = Yd = BVd = UdΣd, (1.5.12)

are said to constitute the dimension-reduced data of the given data-set B =
{b1, · · · ,bm} ⊂ Cn.

The main result on dimensionality reduction is the following theorem which
states that the dimension-reduced data-set {y1, · · · ,ym} of the given data
B = {b1, · · · ,bm} ⊂ Cn is the optimal choice, in the sense that when mea-
sured in the “coordinate system”, with coordinate axes determined by the unit
vectors: v1, · · · ,vd ∈ Cn, this set provides the best ℓ2-approximation of the
given data-set B among all possible choices q1, · · · ,qm ∈ Cd and all possible
“coordinate systems” Wd of Cd.

Theorem 1.5.2 Let B = [b1 · · · bm]
T

be an arbitrary m × n data-matrix
with SVD representation given by (1.5.10). Then the dimension-reduced data
y1, · · · ,ym of B, defined by (1.5.12), lie in a d-dimensional subspace of Cn

and satisfy the following best approximation property:

m∑

j=1

‖V dyj − bj‖2 ≤
m∑

j=1

‖Wdqj − bj‖2, (1.5.13)

for all Wd = [w1 · · · wd] ∈ On,d and all {q1, · · · ,qm} ⊂ Cd, where Vd,Σd
are defined by (1.5.11) with V d ∈ On,d.

In (1.5.13), for each j = 1, . . . , m, the vector V dyj lies in a d-dimensional
subspace of Cn with basis {v1, · · · ,vd}, and the set {V dy1, · · · , V dym} is
an approximation of the given dataset B = {b1, · · · ,bm}. Observe that
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y1, · · · ,ym are the coordinates of the approximants V dy1, · · · , V dym in the
coordinate system v1, · · · ,vd. Hence, the inequality (1.5.13) guarantees that
the first d principal components v1, · · · ,vd of B provide the best coordi-
nate system (in hierarchal order), for optimal dimensionality reduction of the
dataset B ⊂ Cn to a d-dimensional subspace, for any choice of dimension
d < n. In particular, to reduce B to a 1-dimensional subspace, the first princi-
pal component v1 ofB should be used to give the generator of this subspace for
computing and representing the best 1-dimensional reduced data; to reduce B
to a 2-dimensional subspace, the first and second principal components v1,v2

of B should be used for computing and representing the best 2-dimensional
reduced data; and so forth. In general, to reduce the dimension of a given
dataset B = {b1, · · · ,bm} ⊂ Cn to a d-dimensional subspace of Cn, for any
d < n, the best replacement of B is given by:




(V dy1)T

...
(V dym)T


 = YdV

∗
d = UdΣdV

∗
d = BVdV

∗
d . (1.5.14)

To prove the above theorem, we first observe that in view of (1.5.12) and
the above dimension-reduced data representation formula (1.5.14), we may
apply the formulation of B(d) in (1.5.2) to write




(V dy1)T

...

(V dym)T


−B = YdV

∗
d − B = [u1 · · · ud]Σd[v1 · · · vd]∗ −B

= B(d) −B.

Hence, since the left-hand side of (1.5.13) can be written as

m∑

j=1

‖yTj V ∗
d − bTj ‖2,

which is precisely the square of the Frobenius norm of YdV
∗
d −B (see (1.4.1)),

we have
m∑

j=1

‖V dyj − bj‖2 = ‖B(d) −B‖2F .

Let Q be the m× d matrix with the jth row given by qTj for 1 ≤ j ≤ m. Then
the right-hand side of (1.5.13) can also be written as

m∑

j=1

‖Wdqj − bj‖2 =

m∑

j=1

‖qTj WT
d − bTj ‖2 = ‖R− B‖2F ,

where
R = QWT

d . (1.5.15)
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Since Wd ∈ On,d, the rank of the matrix R in (1.5.15) does not exceed d.
Therefore, the desired inequality (1.5.13) follows from (1.5.4) in Theorem 1.5.1
on p.38. Furthermore, again by this theorem, (the square of) the error of the
dimensionality reduction from B ⊂ Cn to y1, · · · ,ym ⊂ Cn is given by

m∑

j=1

‖V dyj − bj‖2 = ‖B(d) −B‖2F =

r∑

j=d+1

σ2
j . (1.5.16)

�

Example 1.5.1 Let B = [b1 b2 b3]
T ⊂ R2, where

b1 =

[
2.5
4.5

]
, b2 =

[
9
4

]
, b3 =

[
−1
−1

]
.

Compute the dimension-reduced data {y1,y2,y3} of B, which lie in a 1-
dimensional subspace of R2, by considering the dimension-reduced data

{ỹ1, ỹ2, ỹ3} of the corresponding centered dataset B̃ =
[
b̃1; b̃2; b̃3

]T
of B.

In addition, compute the 2 × 1 (real) matrix transformation V1 = [v1] in
(1.5.11), for which

3∑

j=1

‖ỹjv1 − b̃j‖2 ≤
3∑

j=1

‖qjw1 − b̃j‖2

for any unit vector w1 ∈ R2 and all q1, q2, q3 ∈ R.

Solution Since the average bav of B is

bav =

[
3.5
2.5

]
,

we have

b̃1 = b1 − bav =

[
−1
2

]
,

b̃2 = b2 − bav =

[
5.5
1.5

]
,

b̃3 = b3 − bav =

[
−4.5
−3.5

]
;

so that the centered dataset is given by

B̃ =




b̃T1

b̃T2

b̃T3




=



−1 2
5.5 1.5
−4.5 −3.5


 .
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Since B̃ has more rows than columns, we may consider the spectral decom-
position of B̃∗B̃ (instead of B̃B̃∗) to obtain V1 in the reduced SVD of B̃

and apply Ỹ1 = B̃V1 to obtain the reduced data for B̃, as follows. By direct
calculation, we have

B̃∗B̃ =

[
51.5 22
22 18.5

]
,

with eigenvalues 125/2 and 15/2 and corresponding eigenvectors given by

v1 =




2/
√

5

1/
√

5



 , v2 =




−1/
√

5

2/
√

5



 .

Hence, it follows from (1.5.12) that

Y1 = B̃V1 = B̃v1 =




0

5
√

5
2

−5
√

5
2



.

That is, the dimension-reduced dataset for B̃ is

{ỹ1, ỹ2, ỹ3} = {0, 5
√

5

2
,−5
√

5

2
}.

Hence, the dimension-reduced dataset y1,y2,y3 of B can be obtained by
adding bav to ỹ1v1, ỹ2v1, ỹ3v1, namely:

y1 =

[
3.5
2.5

]
, y2 =

[
8.5
5

]
, y3 =

[
−1.5

0

]
.

In the above discussion, the matrix Yd=B̃Vd is applied to obtain the
dimension-reduced data. If the reduced SVD of B̃ is applied, we may use
Yd=UdΣd to obtain the reduced data instead. �



Unit 2

DATA COMPRESSION

This unit is a comprehensive study of data compression, with emphasis on the
compression of digital images. The discrete Fourier transform (DFT) and a
fast implementation, called FFT, of the DFT for Rn or Cn, with n = 2m, are
studied in some detail, and applied to introduce the discrete cosine transform
(DCT) and a fast computation of the DCT. The basic topics of information
representation and information coding, including the notion of histograms,
entropy of probability distributions, and binary codes, are discussed. For data
compression, Shannon’s Noiseless Coding Theorem is derived, based on Kraft’s
inequality and in terms of the entropy; and the Huffman coding scheme is
presented. When applied to digital image compression, the methods for lossless
(or reversible) compression are briefly discussed, but an indepth study of lossy
compression is presented, with quantization of the DCT coefficients as the key
component of the lossy compression scheme. In addition, the study of digital
image compression is extended to digital video compression, and the current
image and video compression standards are also discussed in this unit.

2.1 Discrete and Fast Fourier Transform (FFT)

Fourier series representation of functions on a bounded interval is a basic tool
in applied mathematics. The study of this important topic requires some depth
of mathematical analysis and will be delayed to the next unit, with the con-
cept to be introduced in Subunit 3.1. On the other hand, the discrete version
of the Fourier coefficients of a Fourier series, to be called the discrete Fourier
transform (DFT) of some finite dimensional vector vn, is simply a matrix-
to-vector multiplication operation Fnvn, where Fn is some square matrix of
dimension n, and the operation is considered as a linear transformation from
Cn to Cn. This notion of DFT is introduced and studied in Subunit 2.1.1. For
even integers n, the Lanczos matrix factorization of Fn is derived in Subunit
2.1.2. This matrix factorization result will be applied in Subunit 2.1.3 to de-
compose a DFT matrix Fn for n = 2m, yielding the fast Fourier transform
(FFT) computational scheme.

55
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2.1.1 Definition of DFT

References

(1) MIT: Department of Computational Science and Engineering’s “Lecture
8: Discrete Time Fourier Transform (YouTube), presented by Gilbert
Strang.

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions,” pages 171–179. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

2.1.2 Lanczos matrix factorization

To study the fast Fourier transform (FFT) computational scheme, we need
the following result due to Cornelius Lanczos to reduce a 2n-point discrete
Fourier transform (DFT) to an n-point DFT via multiplication by certain
sparse matrices.

Denote

Dn = diag{1, e−iπ/n, · · · , e−i(n−1)π/n},

and let

P en = [δ2j−k] =




1 0 0 0 · · · 0
0 0 1 0 · · · 0

· · ·
0 0 0 · · · 1 0


 ;

P on = [δ2j−k+1] =




0 1 0 0 · · · 0
0 0 0 1 · · · 0

· · ·
0 0 · · · 0 1


 ,

where 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ 2n− 1, be n × (2n) matrices. Also, let In
denote the n× n identity matrix and

E2n =



In

... Dn
. . . . . . . . . . . .

In
... −Dn


 . (2.1.1)
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For example, with the above notations, we have

D1 = [1], P e1 = [1 0], P o1 = [0 1], E2 =

[
1 1
1 −1

]
,

D2 =

[
1 0
0 −i

]
, P e2 =

[
1 0 0 0
0 0 1 0

]
, P o2 =

[
0 1 0 0
0 0 0 1

]
,

E4 =




1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i


 .

Theorem 2.1.1 The 2n-point DFT F2n can be factored out in terms of two
diagonal blocks of the n-point DFT Fn as follows:

F2n = E2n



Fn

... O
. . . . . . . . . .

O
... Fn







P en
. . .

P on


 , (2.1.2)

where O denotes the n × n zero matrix.

Proof To derive (2.1.2), consider x = [x0, · · · , x2n−1]
T ∈ C2n, with DFT

given by x̂ = F2nx = [x̂0, · · · , x̂2n−1]
T , where

x̂ℓ =
2n−1∑

k=0

xk e
−i2πkℓ/(2n)

=

n−1∑

j=0

x2je
−i2π(2j)ℓ/(2n) +

n−1∑

j=0

x2j+1 e
−i2π(2j+1)ℓ/(2n)

=

n−1∑

j=0

x2je
−i2πjℓ/n + e−iπℓ/n

n−1∑

j=0

x2j+1 e
−i2πjℓ/n. (2.1.3)

Set
xe = [x0, x2, · · · , x2n−2]T , xo = [x1, x3, · · · , x2n−1]

T .

Then
xe = P enx, xo = P onx.

Upon using the notation (v)ℓ for the ℓth component of the vector v, the result
in (2.1.3) is simply

x̂ℓ = (Fnxe)ℓ + e−iπℓ/n(Fnxo)ℓ

= (FnP
e
nx)ℓ + e−iπℓ/n(FnP

o
nx)ℓ

=






(FnP
e
nx)ℓ + e−iπℓ/n(FnP

o
nx)ℓ, for 0 ≤ ℓ ≤ n− 1,

(FnP
e
nx)ℓ − e−iπ(ℓ−n)/n(FnP

o
nx)ℓ, for n ≤ ℓ ≤ 2n− 1.

(2.1.4)
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In (2.1.4), we have used the fact that e−iπℓ/n = −e−iπ(ℓ−n)/n. Thus,

(F2nx)ℓ =






((FnP
e
n +DnFnP

o
n)x)ℓ, for 0 ≤ ℓ ≤ n− 1,

((FnP
e
n −DnFnP on)x)ℓ, for n ≤ ℓ ≤ 2n− 1,

which yields (2.1.2). �

Let n = 2m with m ≥ 1. For each k, 0 ≤ k ≤ m−1, let Gmk be the 2m×2m

matrix defined by

Gmk = diag{E2m−k , · · · , E2m−k︸ ︷︷ ︸
2k copies

} =



E2m−k O

. . .

O E2m−k


 , (2.1.5)

where, according to (2.1.1), E2m−k is a 2m−k × 2m−k matrix:

E2m−k =



I2m−k−1

... D2m−k−1

. . . . . . . . . . . . . . . . . . . . . . .

I2m−k−1

... −D2m−k−1


 .

Furthermore, let

P2m =




P e2m−1

. . .

P o2m−1




denote the 2m×2m “permutation matrix” in (2.1.2) with n = 2m; and define,

inductively, the permutation matrices P̃1 = P̃20, P̃2 = P̃21, P̃4 = P̃22 , · · · , P̃2m

by

P̃1 = [1], · · · , P̃2ℓ =

[
P̃2ℓ−1 O

O P̃2ℓ−1

]
P2ℓ ,

where ℓ = 1, 2, . . . , m.

Example 2.1.1 Consider n = 4, m = 2. We have

G2
0 = E22 = E4,

G2
1 = diag{E2, E2} =

[
E2 O
O E2

]
=




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 ,
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and

P2 =

[
P e1
P o1

]
=

[
1 0
0 1

]
,

P̃2 =

[
P̃1 0

0 P̃1

]
P2 =

[
1 0
0 1

]
P2 = P2 =

[
1 0
0 1

]
,

P4 =

[
P e2
P o2

]
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

P̃4 =

[
P̃2 O

O P̃2

]
P4 =

[
I2 O
O I2

]
P4 = P4.

�

2.1.3 FFT for fast computation

In view of the Lanczos matrix factorization result established in Subunit 2.1.2,
we can now derive the following fast Fourier transform (FFT) computational
scheme.

Theorem 2.1.2 Let n = 2m, where m ≥ 1 is an integer. Then the n-point
DFT has the formulation

Fn = F2m = Gm0 G
m
1 · · ·Gmm−1P̃2m . (2.1.6)

Proof Proof of the FFT scheme (2.1.6) can be carried out by mathematical
induction on m = 1, 2, . . . .

For m = 1, since

G1
0 = E2 =

[
1 1
1 −1

]

and P̃2 = I2 as shown in Example 2.1.1, it follows that

G1
0P̃2 = G1

0 =

[
1 1
1 −1

]
= F2,

which is (2.1.6) for m = 1.
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In general, by Theorem 2.1.1 and the induction hypothesis, we have

F2m = E2m

[
F2m−1 O
O F2m−1

]
P2m

= E2m

[
Gm−1

0 · · ·Gm−1
m−2P̃2m−1 O

O Gm−1
0 · · ·Gm−1

m−2P̃2m−1

]
P2m

= E2m

[
Gm−1

0 O
O Gm−1

0

]
· · ·

[
Gm−1
m−2 O
O Gm−1

m−2

] [
P̃2m−1 O

O P̃2m−1

]
P2m

= E2mGm1 G
m
2 · · ·Gmm−1P̃2m

= Gm0 G
m
1 · · ·Gmm−1P̃2m ,

since Gm0 = E2m by (2.1.5), and

[
Gm−1
k−1 O

O Gm−1
k−1

]
= Gmk , (2.1.7)

for 1 ≤ k ≤ m− 1. �

Example 2.1.2 Verify (2.1.6) for n = 4, n = 8.

Solution For n = 4, we have, from Theorem 2.1.1, that

F4 = E4

[
F2 O
O F2

] [
P e2
P o2

]
= E4




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


P4 = G2

0G
2
1P̃4,

where the last equality follows from G2
0 = E4, the expression of G2

1 and P4 =

P̃4 as shown in Example 2.1.1. This is (2.1.6) for n = 4.

Similarly, for n = 8, we have

F8 = E8

[
F4 O
O F4

] [
P e4
P o4

]
= E8

[
G2

0G
2
1P̃4 O

O G2
0G

2
1P̃4

]
P8

= E8

[
G2

0 O
O G2

0

][
G2

1 O
O G2

1

] [
P̃4 O

O P̃4

]
P8

= G3
0G

3
1G

3
2P̃8,

where the last equality follows from (2.1.7). �
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2.2 Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) of a vector is the discrete version of the
coefficients of the Fourier cosine series of a function on a bounded interval (to
be studied in Subunit 3.1.1, with formula given in (3.1.8)). In Subunit 2.2.1,
the DCT is derived from the DFT, and in Subunit 2.2.2, the example of 8-
point DCT is given. The DCT is then extended to two dimensions in Subunit
2.2.3 to define the DCT of a matrix. This is important for applications to
image compression, since a digital image block is nothing but a rectangular
matrix, and the 2-dimesional DCT of this image block reveals its frequency
content (for applying quantization to decrease its entropy) to be studied in
Subunit 2.2.5.

2.2.1 Derivation of DCT from DFT

References

(1) Stanford University: Department of Electrical Engineering‘s “Lecture 1:
The Fourier Transforms and Its Applications (YouTube).

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 179–189. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform:www.springerlink.com

2.2.2 8-Point DCT
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(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data
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Applications, pages 197–199 and pages 203–204. Atlantis Press,
ISBN 978-94-6239-009-6, available on Springer internet platform:
www.springerlink.com.
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2.2.3 2-Dimensional DCT

To apply the DCT to data sets in higher dimensions, we may consider one
dimension at a time. For example, to apply an n-point DCT to 2-dimensional
data sets, such as digital images, we may first apply the transform in the
horizontal direction, followed by the same transform in the vertical direction,
as follows.

Definition 2.2.1 Let A be an m × n data matrix. The 2-dimensional DCT
of A is defined by the n-point DCT Cn of the transpose AT of A, followed by
the m-point DCT Cm of the transpose of CnA

T ; so that the DCT of the data
matrix A is defined by

Â = Cm(CnA
T )T = CmAC

T
n . (2.2.1)

Furthermore, the corresponding inverse 2D-DCT is given by

A = CTmÂCn. (2.2.2)

The reason for the need of taking matrix transposes in (2.2.1) is that
in implementation, the 1-dimensional DCT is operated on rows of the data
matrix.

Example 2.2.1 Compute the 2-dimensional DCT of the 2× 2 matrix

A =

[
1 2
−1 0

]
.

Solution First, it can be easily shown that the 2-point DCT is given by

C2 =
1√
2

[
1 1
1 −1

]
.

Hence, it follows from (2.2.1) of Definition 2.2.1 that the 2-dimensional DCT
of A is given by

Â = C2AC
T
2 =

1

2

[
1 1
1 −1

] [
1 2
−1 0

] [
1 1
1 −1

]

=
1

2

[
1 1
1 −1

] [
3 −1
−1 −1

]

=
1

2

[
2 −2
4 0

]
=

[
1 −1
2 0

]
.

�
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Example 2.2.2 Compute the 2-dimensional DCT of the rectangular matrix

A =

[
−1 0 1
1 1 0

]
.

Solution From the definition of the n-point DCT for n = 3, it can be shown
by direct computation that

C3 =




1√
3

1√
3

1√
3

1√
2

0 −1√
2

1√
6
−

√
2
3

1√
6



.

Hence, it follows from (2.2.1) of Definition 2.2.1 that the 2-dimensional DCT
of A is given by

Â = C2AC
T
3 =

1√
2

[
1 1
1 −1

] [
−1 0 1
1 1 0

]
CT3

=
1√
2

[
0 1 1
−2 −1 1

]



1√
3

1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

−1√
2

1√
6




=
1√
2

[
2√
3

−1√
2

−1√
6

−2√
3

−3√
2

1√
6

]
=





√
2
3

−1
2

−1
2
√

3

−
√

2
3

−3
2

1
2
√

3



 .

�

To formulate the 2-dimensional DCT and inverse DCT in terms of sums
of products (without matrix-to-matrix multiplications), we may write out the
jth row of the DCT, namely:

cTj = dj

√
2

n

[
cos

jπ

2n
cos

j3π

2n
· · ·cos

j(2n− 1)π

2n

]

for j = 0, . . . , n− 1, where

d0 =
1√
2

; d1 = · · · = dn−1 = 1.

Then for a given n×n square matrix A, with 2-dimensional DCT denoted by

Â = CnAC
T
n ,

as defined in (2.2.1), we have, by using the notation:

A =
[
aj,k

]
0≤j,k≤n−1

; Â =
[
âℓ,s

]
0≤ℓ,s≤n−1

,
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that

âj,k =
2

n

n−1∑

ℓ=0

n−1∑

s=0

(
dj cos

j(2ℓ − 1)π

2n

)
aℓ,s

(
dk cos

k(2s− 1)π

2n

)

=
2

n
djdk

n−1∑

ℓ=0

n−1∑

s=0

(
cos

j(2ℓ − 1)π

2n
cos

k(2s− 1)π

2n

)
aℓ,s, (2.2.3)

for j, k = 0, 1, . . . , n− 1; and

aℓ,s =
2

n

n−1∑

j=0

n−1∑

k=0

(
dj cos

j(2ℓ − 1)π

2n

)
âj,k

(
dk cos

k(2s− 1)π

2n

)

=
2

n

n−1∑

j=0

n−1∑

k=0

(
djdk cos

j(2ℓ − 1)π

2n
cos

k(2s− 1)π

2n

)
âj,k, (2.2.4)

for ℓ, s = 0, . . . , n− 1.

2.3 Information Coding

The difference between data reduction, including data dimensionality reduc-
tion studied in Subunit 1.5, and the topic of data compression studied in the
present Unit 2 is that compressed data must be recoverable, at least approx-
imately. The most commonly used representation of data (particularly com-
pressed data) for communication and storage is a string of numbers consisting
only of zeros, 0’s, and ones, 1’s, without using any punctuation. This string
of 0’s and 1’s is called a “binary code” of the data. For the recovery of the
data, the binary code must be decipherable by referring to the corresponding
codetable. The length of the binary code depends on coding efficiency, which
is governed by the “entropy” of the source data, a notion to be introduced
and studied in Subunit 2.3.3, in terms of the probability distribution of the
data.

2.3.1 Probability distributions

Probability is a measure of the chance of success or failure of an “outcome”
(such as a bet) from empirical evidence, resulting from inductive reasoning and
statistical inference. It is an estimation of how likely (or unlikely) it is for the
outcome to happen. For some situations, this estimation could be measured
quantitatively by some real number between 0 and 1, called the “probability”
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(or probability value) of occurrence of the outcome. If the probability (value)
is 0, the chance for the outcome to happen is 0%. On the other hand, if the
probability is 1, then there is a 100% chance for the outcome to take place. The
larger the probability value (between 0 and 1), the more likely the outcome is
to happen.

In some situations, probability values can be computed, at least under
the “fairness” condition. For example, when a fair coin is tossed twice, the
probability value for each of the four different outcomes: HH, HT, TH and
TT (where H stands for head, and T stands for tail), is 1/4, because the chance
for each of the four (and only four) outcomes to happen is the same, or 25%.
More generally, again under the “fairness” assumption, the probability value
can be computed by dividing the number of desired outcomes with the total
number of all possible outcomes.

As another example, let us consider the outcomes of rolling fair dice. To be
specific, we assume that each of the fair dice is a rounded cube with six faces,
engraved with different numbers of dots, that range from 1 dot to 6 dots.
For instance, when two dice are rolled and come to rest, a pair of random
numbers is generated, as given by the number of dots on each of the two top
faces. This pair is called an “outcome”, and there are precisely 21 possible
different outcomes in total, namely:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5),

(2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6).

For a gambler to bet on a certain number (of the dots), he/she places a bet on
the sum of the pair of two numbers randomly generated by rolling the dice.
This is a positive integer n, with n = 2, . . . , 12. It is not difficult to tabulate
the number, cn, of outcomes that generate the number n. Precisely, we have

c2 = c3 = 1, c4 = c5 = 2, c6 = c7 = c8 = 3, c9 = c10 = 2, c11 = c12 = 1.

The reason is that the only possibilities to achieve n by adding two numbers
between 1 and 6 are:

2 = 1 + 1, 3 = 1 + 2, 4 = 1 + 3 = 2 + 2, 5 = 1 + 4 = 2 + 3,
6 = 1 + 5 = 2 + 4 = 3 + 3, 7 = 1 + 6 = 2 + 5 = 3 + 4,
8 = 2 + 6 = 3 + 5 = 4 + 4, 9 = 3 + 6 = 4 + 5,
10 = 4 + 6 = 5 + 5, 11 = 5 + 6, 12 = 6 + 6,

and there are no other combinations. Hence, the probability (value), pn, of
winning the bet on the number n is given by

pn =
number of desired outcomes

total number of possible outcomes
=
cn
21

; (2.3.1)

so that

p1 = 0, p2 = p3 = p11 = p12 = 1
21
, p4 = p5 = p9 = p10 = 2

21
,

p6 = p7 = p8 = 3
21
.
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Hence, if the payoff would be the same for the bet of any random number n,
the gambler is advised to bet on one of the three numbers: 6, 7, 8. Only a fool
would bet on the number 1, with probability p1 = 0.

In the above example, we have listed 12 probability values,

p1, · · · , p12.

Observe that each value is between 0 and 1, and the sum of these values is
precisely equal to 1. The set {p1, · · · , p12} is called a probability distribution,
and more precisely, a discrete probability distribution, as follows.

Definition 2.3.1 Let n be any positive integer, and p1, · · · , pn be real num-
bers that satisfy both 0 ≤ p1, · · · , pn ≤ 1 and

p1 + · · ·+ pn = 1. (2.3.2)

Then the set Sn = {p1, · · · , pn} is called a (discrete) probability distribution.

We remark that although the index set In = 1, . . . , n can be replaced by
any set x1, · · · , xn of real numbers, we prefer to simplify notations by only
using In. After all, the main purpose of this index set In is to represent the
set of n outcomes, with probability distribution Sn. For example, in the above
discussion of tossing a fair coin twice, the integers 1, 2, 3, 4 of the index set
I4 represent the outcomes HH, HT, TH, TT, respectively, with probability
distribution S4 = {p1, p2, p3, p4}, where p1 = p2 = p3 = p4 = 1/4. Also,
in our discussion of rolling two fair dice at the same time to arrive at the
outcomes c1, · · · , c12, the integer j ∈ I12 represents the outcome cj for each
j = 1, . . . , 12. The importance of the discrete probability distribution is that
it is used to quantify how likely (or unlikely) any outcome is to take place.
This is described by using the notion of a random variable X governed by the
discrete probability distribution, with range in In, as follows.

Definition 2.3.2 Let n be any positive integer, and Sn = {p1, · · · , pn} be a
probability distribution with the index set In = {1, · · · , n}. A non-deterministic
function X is called a random variable governed by Sn, if the range of X is
the index set In, so defined that the probability of X equal to j is pj, for all
j ∈ In, namely:

P{X = j} = pj , (2.3.3)

for j = 1, . . . , n.

We emphasize that the random variable X has no specific function values.
There is some uncertainty for X to be equal to j ∈ In, in that the chance
for X = j to hold is 100 × pj%. There are many useful discrete probability
distributions dictated by certain rules. For example, tossing a fair coin k times
yields a sequence of H and T of length equal to k. Each sequence is an outcome,
and there are n = 2k different outcomes, with the same probability for each
outcome. In other words, the discrete probability distribution is the following
notion of uniform distribution.
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Definition 2.3.3 Discrete uniform probability distribution:

Sn = {p1, · · · , pn}, p1 = · · · = pn =
1

n
. (2.3.4)

Note that the ordering of H and T is taken into consideration in the def-
inition of each outcome in arriving at the discrete uniform probability dis-
tribution. On the other hand, if only the number of heads (H) and num-
ber of tails (T ) are counted without concern of the order of occurrence (e.g.
HHT = HTH = THH), then the number of outcomes reduces to n = k + 1,
with the so-called

Definition 2.3.4 Binomial probability distribution:

Sn = {p1, · · · , pn}, pj+1 =
1

2n−1

(
n− 1

j

)
, (2.3.5)

for j = 0, . . . , n− 1.

In general, if the coin is not necessarily fair, with probability s for the
occurrence of H , where 0 < s < 1, then we have the following

Definition 2.3.5 Bernoulli probability distribution:

S2 = {p1 = s, p2 = 1− s}, (2.3.6)

with 0 < s < 1.

When this unfair coin is tossed k = n−1 times and each outcome is defined
by the number of heads (H) without consideration of the order of H and T in
the sequence; that is, when the so-called Bernoulli trial is performed, we have
the following

Definition 2.3.6 General binomial probability distribution:

Sn = {p1, · · · , pn}, pj+1 =

(
n− 1

j

)
sj(1− s)n−j−1, (2.3.7)

where j = 0, . . . , n− 1 and 0 < s < 1.

However, in many applications there are no rules to govern the discrete
probability distribution, which could be tabulated by performing many tireless
experiments. For instance, for lossless (or reversible) compression of 8−bit
digital gray-scale images, each pixel of an image, with resolution m× n, is an
integer j ∈ {0, · · · , 255}. The kth row of the image, with pixel values given by

xk,0, · · · , xk,n,

is mapped to the sequence
yk,0, · · · , yk,n,
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with
yk,0 = xk,0, yk,1 = xk,1 − xk,0, · · · , yk,n = xk,n − xk,n−1.

This mapping is called DPCM (differential pulse code modulation). The key
properties of DPCM are: firstly, it is reversible, and secondly, the discrete
probability distribution of the outcomes yk,0, · · · , yk,n is much less uniform
than that of the original sequence xk,0, · · · , xk,n and with smaller integers
(though some are negative). Such probability distributions can be encoded
with shorted average code-lengths, to be studied in Subunits 2.3, 2.3.4, and
2.4.4. The probability distributions can be tabulated by using the histogram
of the DPCM encoded sequences, to be discussed in the next subunit.

We conclude this subunit by introducing the notions of the expected value
and variance of a random variable governed by a discrete probability distri-
bution.

Definition 2.3.7 Let Sn = {p1, · · · , pn} be a discrete probability distribution
with the index set In = {1, · · · , n}. The expected value of the random variable
X defined in (2.3.3) is defined by

µ = E[X] =

n∑

j=1

jpj , (2.3.8)

and the variance of X by

V ar[X] = E[(X − µ)2]. (2.3.9)

In view of (2.3.8), the definition of variance can be re-formulated as

V ar[X] = E[X2]− 2µE[X] + µ2 = E[X2]− µ2.

For example, the expected value of the random variable for the probability
distribution in (2.3.4) is µ = n+1

2
, while that for the probability distribution

in (2.3.7) is µ = s(n − 1). In particular, by setting s = 1
2
, it follows that the

expected value of the random variable for the binomial distribution in (2.3.5)
is µ = n−1

2 .
In addition, the variance of X for the probability distributions in (2.3.7)

is given by
V ar[X] = (n − 1)s(1 − s) (2.3.10)

and hence, by setting s = 1
2 , the variance of X for the probability distribu-

tions in (2.3.5) is given by V ar[X] = n−1
4 . The above results can be verified

by applying the binomial expansion of (1 + x)n−1 and taking appropriate
derivatives.

2.3.2 Histogram

Information Theory is an area of Applied Mathematics which is concerned
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with such topics as the quantification, coding, communication, and storage
of information. Here, the term “information” should not be confused with
the word “meaning”, since in Information Theory, “pure nonsense” could be
considered as an information source. In other words, “information” should
not be measured in terms of “what is to be said”, but only of “what could
be said”. As Claude Shannon, the father of Information Theory, emphasized
in his 1948 pioneering paper, the semantic aspects of the communication of
information are irrelevant to mathematical and engineering considerations.

On the other hand, coding of an information source is essential for com-
munication and storage of the information. Here, the term “coding” consists
of two operations: “encoding” of the information source to facilitate effective
communication and storage, and “decoding” to recover the original informa-
tion source. In other words, decoding is the inverse operation of encoding. In
Subunits 2.3.4 and 2.4.4, we will consider “binary coding”, meaning that the
encoded information, called a binary code, is a (finite) “sequence” of num-
bers consisting only of zeros, 0’s, and ones, 1’s; and that all “code-words” and
“instructions” that constitute this so-called sequence can be identified from
some “code-table”, even though no punctuation are used in this “sequence” to
separate them. Furthermore, all elements of the set of the information source
are represented as code-words in the code-table. Here again, the term “se-
quence” is in quotation, since no “commas” are allowed, as opposed to the
usual mathematical definition of sequences.

Hence, if each element of the given set of information source is assigned
some non-negative integer, all of such integers can be, in turn, assigned some
“code-words” contained in a “code-table”, then decoding to receive and re-
cover the original information source from the binary code is possible by using
the code-table. To quantify the integer representation of (the elements of the
set of) the information source, the unit “bit”, coined by John Tukey, as the
abbreviation of “binary digits”, is used. For example, if the largest (non-
negative) integer used in the integer representation of the information source
is 255, we say that the source is an 8-bit information source (since the binary
representation of 255 is 11111111, a string of 8 ones). In other words, one 0 or
one 1 is one bit (or 1 b). In addition, the measurement in the unit of “bytes”
is also used. One byte (1B) is equal to 8 bits (1B = 8b). In practice, the unit
“bit” is used for transmission of the encoded data, and the unit “byte” is used
for storage of the encoded data.

When a binary code is stored in some memory device (such as hard disk,
flash memory, or server), the length of the “sequence” of 0’s and 1’s is called
the “file size” of the encoded data. When the binary code is transmitted (such
as in broadcasting or video streaming), the length of the sequence of 0’s and
1’s is called the length of the bit-stream, and the speed of transmission is
called the “bit-rate”. While file sizes are measured in kilo-bytes, mega-bytes,
giga-bytes, and tera-bytes (or kB, MB, GB, and TB, respectively), bit-rates
are measured in kilo-bits per second, mega-bits per second, and giga-bits per
second (or kb/s, Mb/s, Gb/s, respectively).
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A typical example is an 8-bit gray-scale digital image as discussed in the
previous subunit, with the “intensity” of each pixel (considered as an element
of the set of the information source, which is the image) being calibrated in
increasing integer steps from 0 to 255, with 0 representing “black” (or no
light) and 255 representing “white”, while for j = 1, . . . , 254, the increase in
intensity yields increasingly lighter shades (of gray). Another example is a 24-
bit color digital image. But instead of using 24 bits in the binary expression
of the largest integer used in the integer representation of the information
source (which is a color image), the convention is to assign 8-bits to each of
the three primary color components, “red” (R), “green” (G), and “blue” (B),
in that a triple (i, j, k) of integers, with each of i, j, and k, ranging from 0 to
255, for (R, G, B) represents increasing intensities of the red, green, and blue
(visible) lights, respectively. Recall that as primary additive colors, addition
of different intensities for R, G, B (that is, different values of i, j, k) yield
28 × 28 × 28 = 224 colors of various shades, as discussed in Subunit 1.5.3. In
particular, a gray-scale digital image is obtained by setting i = j = k, where
0 ≤ i ≤ 255. Therefore, the term “24-bit color” is justified.

It must be understood that the meaning of a 12-bit novel only indicates
an upper bound of the number of different words being used in the novel.
The actual encoded file size is significantly larger, and often quantified in
megabytes. A typical compressed file size of a novel is about 1 MB. Similarly,
by a 24-bit color picture, we only mean that the quality (in terms of shades of
color) is limited to 24 bits. The file size of a JPEG compressed image usually
exceeds several kilo-bytes and occasionally even over 1 MB, depending on the
image resolution (that is, the number of pixels).

In the above examples, it should be clear that the notion of probability,
as studied in the previous subunit (in the sense of percentages of equal pixel
values for a digital image and percentages of the same word being used in
the novel), plays an important role in information coding. For instance, in a
picture with blue sky and blue water in the background, the percentages of
RGB pixels with values of (0, 0, k), where 50 ≤ k ≤ 150, are much higher than
those with (i, j, 0) for all 0 ≤ i, j ≤ 255. Also, for the novel example mentioned
above, the frequency of occurrence of the word “the” is much higher than just
about all of the other words in the novel. In fact, according to some study,
less than half of the vocabulary used in a typical novel constitutes over 80%
of all the words in the book.

Furthermore, it should be emphasized that the notion of “entropy” of the
information source (defined in terms of the probabilities of occurrence as dis-
cussed above) often decreases when some suitable mathematical transforma-
tion is applied to the integer representation of the information source. Typical
transforms include RLE (run-length encoding) and DPCM (differential pulse
code modulation, as already mentioned in the previous subunit, and to be
discussed briefly in Example 2.3.1 in this sub-section. Since the encoded file
size and length of an encoded bit-stream are governed by the entropy, it is
important to understand this concept well.



DATA COMPRESSION 71

Definition 2.3.8 Let Xn = {x1, · · · , xn} be an information source (or some
mathematical transformation of a given information source), and let Z =
{z1, · · · , zm} be the subset of all distinct elements of the set Xn. Correspond-
ing to each zj ∈ Z, j = 1, . . . , m, let pj denote some probability value asso-
ciated with zj ∈ Zn, such that Sm = {p1, · · · , pm} is a discrete probability
distribution, as defined in (2.3.2) of the previous subunit. Then the function

H(Sm) = H(p1, · · · , pm) =

m∑

j=1

pj log2

1

pj
(2.3.11)

is called the entropy of the probability distribution Sm for the information
source Xn.

The theory of entropy will be studied in Subunit 2.3.3.

Remark 2.3.1 For most applications, since the #Xn = n is very large and
since many (or even most) information sources of the same application are
quite similar, the same discrete probability distribution Sm is often used for
all such information sources. This Sm is usually obtained from large volumes
of previous experiments.

Of course, the precise values of p1, · · · , pm that constitute Sm can be de-
fined and computed in terms of the “histogram” of Xn, to be defined be-
low. This specific Sm will be called the optimal discrete probability distri-
bution for Xn. For example, consider a digital gray-scale image with pixels
xj, j = 1, . . . , n, where n is the resolution of the image. Hence, for a 10-Mega
pixel digital image, n = 107. On the other hand, most of these pixels are the
same, since each xj ∈ {0, · · · , 255}. Hence, the subset Zm of distinct pixel
values of Xn has at most 256 elements; or 0 < m ≤ 256. We will formulate
the “optimal” probability Sm = {p1, · · · , pm} for the information source Xn
in terms of its histogram, defined as follows.

Definition 2.3.9 Let Xn = {x1, · · · , xn} be an information source, and Z =
{z1, · · · , zm} be the subset of all distinct elements of the set Xn. For each
j = 1, . . . , m, let gj denote the cardinality (that is, the count of number of
elements) of the set {xi ∈ Xn : xi = zj}. Then the histogram of the data-set
Xn is defined by

Gm = {g1, · · · , gm}. (2.3.12)

Hence, the histogram of Xn is a set of positive integers. To formulate the
optimal probability distribution for the information source Xn, we simply set

pj =
gj
n
, (2.3.13)

for each j = 1, . . . , m. It is clear that Sm = {p1, · · · , pm}, with p1, · · · , pm
defined in (2.3.13) satisfies (2.3.2), and is therefore a probability distribution.
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Example 2.3.1 Consider the information source X = {0, 1, · · · , 255}. Dis-
cuss its histogram and the corresponding probability distribution. Also, intro-
duce a reversible transformation of X to another set Y , with a much more
compact histogram, that facilitates significant reduction of the encoded bit-
stream.

Solution The set X can be written as X = {x0, · · · , x255} with xj = j
for j = 0, . . . , 255. Observe that since the elements of X are distinct, the
histogram is simply {1, . . . , 1}, so that the discrete probability distribution is
uniform, in that

p1 = · · · = pn =
1

n
.

This is extremely costly to code. The reason is that if no commas are used
to separate the code-words, then we need to use all 8 bits to encode each xj,
namely: x0 = 00000000, x1 = 00000001, · · · , x255 = 11111111. Therefore the
encoded bit-stream is 00000000000000010 · · ·011111111, which has a length
of 256× 8 = 2048 bits.

On the other hand, if we set y0 = 0 and

yj = xj − xj−1 − 1, for j = 1, . . . , 255, (2.3.14)

then we have yj = 0, for all j = 0, . . . , 255. Therefore, the histogram becomes
a singleton G1 = {256}, with corresponding discrete probability distribution,
S1 = {p1} = {1}. Observe that the histogram is most compact, yielding the
one-value probability distribution. The encoded bit-stream is a string of 256
zeros. This code can be further shortened by coding the size of the block of
256 zeros, by applying “run-length encoding (RLE)”, to be discussed later in
Subunit 2.5.3, in the study of digital image compression. Also, observe that
the transformation from X to Y is reversible, since

xj = yj + xj−1 + 1, j = 1, . . . , 255, (2.3.15)

for yj = 0, j = 0, . . . , 255, with initial condition x0 = 0. Of course the formula
(2.3.15) along with the initial value x0 = 0 must be coded, but this requires
only a few bits. We remark that the code of the transformation in (2.3.14) is
called DPCM (differential pulse code modulation), as already mentioned in
the previous subunit. Both RLE and DPCM are commonly used, and are part
of the JPEG coding scheme for image compression, to be studied in Subunit
2.5.3. �

2.3.3 Entropy
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2.3.4 Binary codes

Before the study of binary codes, we give a brief review of binary
representations of non-negative integers. In other words, we will use
base 2, instead of using base 10, to represent the natural numbers:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, · · · , n, · · · . For any natural number n, the subscript
10 is used to indicate that it is the customary base-ten representation, namely:
n = n10. Similarly, the subscript 2 will be used to indicate it is the binary
representation n. For example,

1 = 110 = 12, 2 = 210 = 102, 3 = 310 = 112, 4 = 410 = 1002,
5 = 510 = 1012, 6 = 610 = 1102, 7 = 710 = 1112, 8 = 810 = 10002,
9 = 910 = 10012, · · · , 255 = 25510 = 111111112,
256 = 25610 = 1000000002, · · · .

Remark 2.3.2 When it is clear that binary representation is used for all
natural numbers, the subscript 2 is dropped for convenience. Observe firstly,
that the first bit of the binary representation of any natural number is always
1; and secondly, in adding two binary representations, there is a carry of 1
to the next column (i.e., the column to the left), when adding two 1s on the
same column. For example, 11 + 10 = 101, since 0 + 1 = 1 on the first column
(i.e. the column on the right), and 1 + 1 = 10, with a carry of 1, when adding
the two 1s in the second column.

In the following, we present a method for converting any positive number n
to its binary representation n2. The method is an instruction for step-by-step
computations. Such instructions are called algorithms.

Remark 2.3.3 Let k be any natural number. Suppose that k is even.
Step 1. Write k = a02j0 , where a0 is an odd number.

Step 2 . If a0 = 1, stop. If a0 > 1, since a0− 1 is even, we repeat Step 1 to
write

a0 − 1 = a12j1 ,

where a1 ∈ N is odd.

Step 3. If a1 = 1, stop. For ℓ = 1, 2, . . . , if aℓ > 1, repeat Step 2 by writing

aℓ − 1 = aℓ+12jℓ+1 ,

where aℓ+1 is odd, and stop if aℓ+1 = 1.
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Suppose that after carrying out Step 2 for n times, we have an = 1. Then
k can be written as

k = 2j0 [1 + (a0 − 1)] = 2j0[1 + a12j1 ] = 2j0 + a12j0+j1 = · · ·
= 2j0 + 2j0+j1 + · · ·+ 2j0+···+jn−1 + an2j0+···+jn

= 2j0 + 2j0+j1 + · · ·+ 2j0+···+jn−1 + 2j0+···+jn .

Therefore the binary representation of the even integer k is given by

k = (k)10 = (1 0 · · ·0︸ ︷︷ ︸
jn−1

1 · · ·1 0 · · ·0︸ ︷︷ ︸
jℓ−1

10 · · ·01 0 · · ·0︸ ︷︷ ︸
j0

)2.

On the other hand, suppose that k > 1 is odd. Then the same procedure
as described above applies to k = a0 in Step 2. Hence, the representation in
Step 2 holds for j0 = 0; that is, we have

k = 1 + 2j1 + · · ·+ 2j1+···+jn ,

so that the binary representation of the odd integer k is given by

k = (k)10 = (1 0 · · ·0︸ ︷︷ ︸
jn−1

1 · · ·1 0 · · ·0︸ ︷︷ ︸
jℓ−1

10 · · ·01 0 . . .0︸ ︷︷ ︸
j1−1

1)2.

Remark 2.3.4 In practice, we emphasize again that if it is clear that the
representation is binary, then the subscript 2 is omitted for convenience. For
example,

254 = 111111102 = 11111110.

Let us now turn to the study of binary codes. The term codes (or coding)
may mean different things, including: encryption, channel coding, and source
coding. In this unit, we will be concerned only with source coding, meaning: en-
coding a given information source, that can be de-coded, uniquely, without any
ambiguity, and unnecessary delay. An information source may be represented
by a finite set Xn = {x1, x2, · · · , xn} of symbols, which may be a message, a
novel, a digital image, a digital video, and so forth. As discussed in Subunit
2.3.2, we may consider the subset Zm = {z1, · · · , zm} of all distinct elements
of Xn and some probability value pj associated with zj for all j = 1, . . . , m,
such that Sm = {p1, · · · , pm} is a discrete probability distribution, as defined
in (2.3.2). This set Zm will be called the “source alphabet” of the source
information Xn. Recall from Subunit 2.3.1 that the source alphabet Zm =
{z1, · · · , zm} can be represented by the index set Im = {1, · · · , m}, and each
j ∈ Im may be considered as an outcome. Hence, when xk ∈ Xn, where
1 ≤ k ≤ n, is considered as a random variable, then the probability for xk to
be equal to zj ∈ Zm is given by

P{xk = j} = pj,
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as defined in (2.3.3). To construct a binary code for the source informationXn,
we will use the “code alphabet” {0, 1}. Before doing so, let us first motivate
our discussion by considering the “code alphabet” {0, 1, 2}. For this alphabet,
observe that the set of “words”

C1 = {01, 12, 010, 012}

constructed by using this alphabet does not provide a code-table. The rea-
son is that there could be different messages that can be represented by the
same sentence. For example, 01012 could mean 01, 012 or 010, 12. So if the
source alphabet is Z4 ={go, no, way, ahead}, then by using the words 01, 12,
010, 012 to represent “go”, “no”, “way”, “ahead”, respectively, the sentence
01012 conveys two contradictory messages, namely: 01, 012 =“Go ahead” and
010, 12 =“No way”. Observe that the above table C1 can be easily modified
to yield a code-table, simply by deleting the “word” 01. That is, the set

C2 = {12, 010, 012}

is now a code-table, in the sense that every sentence made up by using the
words in C2 is uniquely decodable. For example,

0100100121201201012

represents one and only one sentence:

010, 010, 012, 12, 012, 010, 12,

even without using commas to separate the words. So if the source al-
phabets are “that”= 010, “is”= 012, and “good”= 12, then the sentence
0100100121201201012 reads “That that is good is that good”.

Also, observe that the “word” 01, in the table C1 is a “prefix” of the
“word” 010. By deleting all prefix words, we obtain a code-table, called a
“prefix code”. On the other hand, not all code-tables are prefix codes. For
example,

C3 = {0, 01, 11}
is a code-table, but not a prefix code, since the codeword 0 is a prefix of the
codeword 01. It is easy to see that C3 is a code-table. However, this is not a
desirable code. Indeed, the sentence

0111 . . .1

cannot be decoded till the entire sentence is read. The reason is that if there
is an even number of 1’s, then the sentence reads:

0, 11, 11, 11, · · · , 11,

but if there is an odd number of 1’s, then the sentence reads:

01, 11, 11, 11, · · · , 11.
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On the other hand, by replacing the codeword 01 with 10, the new codetable

C4 = {0, 10, 11}

is “instantaneous”, in that every sentence can be read without any delay. For
example, the same sentence 0111 . . .1 must be 0, 11, 11, 11, · · · , 11 and the
number of 1’s in this sentence must be even. Also, the sentence 1 . . .101 . . .1
must be one of the two sentences

11, · · ·11, 0, 11, · · · , 11

and
11, · · · , 11, 10, 11, · · · , 11,

depending on whether the number of 1’s before the 0 is even or odd. In any
case, the number of 1’s following the 0 must be even, without any ambiguity.

Observe that the code alphabet for the codes C3 and C4 is {0, 1}. Codes
constructed by using the code alphabet {0, 1} are called “binary codes”, while
codes, such as C2, constructed by using the code alphabet {0, 1, 2} are called
“ternary codes”. Since binary codes are much more commonly used in appli-
cations, we only study binary codes in this course.

Definition 2.3.10 Let Cn be a code-table, with index set In = {1, . . . , n} and
with code-words c1, · · · , cn. Then the code-table Cn is called a prefix-code, if
for each (fixed) j ∈ In, any code-word ck ∈ Cn is a not a prefix of cj, for
k 6= j. It is called an instantaneous code-table, if every code-word cℓk ,
1 ≤ k ≤M, in an arbitrary bit-stream

cℓ1cℓ2cℓ3cℓ4 · · · cℓM (2.3.16)

can be decoded, as soon as this code-word cℓk is read, even before the first bit
of the next code-word cℓk+1

of the bit-stream (2.3.16) arrives.

The following result, which assures that every prefix code is instantaneous
and vise versa, can be easily established.

Theorem 2.3.1 A code-table C is a prefix code, if and only if it is instanta-
neous.

2.4 Data Compression Schemes

When an information volume is too large, the most sensible way is to compress
it before sending it to a receiver or a storage device. Of course the compressed
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information has to be recovered by the receiver or from the storage. The most
common way of representing an information source is to use a string of 0’s and
1’s, called a bit-stream. Therefore, a bit-stream is a binary code, consisting of
a sequence of code words, along with certain punctuations, to constitute such
information as phases, sentences, paragraphs, chapters, etc.. A code table is
needed to represent the actual words and punctuations in a unique way. Hence,
both encoding the information into a binary code and decoding from the
binary code to recover the original information requires the same code table.
Data compression can be classified into two types: lossless compression and
lossy compression. When a lossless compression scheme is applied to encode
an information source, the same information can be recovered perfectly from
the compressed bit-stream. In other words, a lossless compression scheme is
reversible. On the other hand, when certain portions of the information source
are less important or even irrelevant, they can be ignored by applying a lossy
compression scheme to achieve a much shorter compressed bit-stream. For
example, since noise is irrelevant, it should be separated and removed before
encoding. This subunit is devoted to a discussion of data compression, with
formulation of Kraft’s inequality in Subunit 2.4.2 that governs the minimum
lengths of admissible code words and presentation of the Huffman coding
scheme in Subunit 2.4.3, with average code word length not exceeding 1 plus
the entropy of the information source, as governed by the Noiseless coding
theorem (to be discussed in Subunit 2.4.4), provided that the probability
distribution pj of the information source satisfies pj = 2−mj for some positive
integers mj .

2.4.1 Lossless and lossy compression
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2.4.2 Kraft inequality
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2.4.3 Huffman coding scheme
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2.4.4 Noiseless coding theorem

As already studied in Subunit 2.4.3, a necessary condition for a binary table
(or dictionary) Cn = {c1, . . . , cn} to be qualified as a binary code-table is that
the lengths of the code-words are governed by Kraft’s inequality.

Definition 2.4.1 The length of a code-word cj in a code-table C1 =
{c1, · · · , cn} is the number of code alphabets; that is, the number of digits
0 and/or 1 in cj . The notation for the length of the code-word cj to be used
in our discussions is:

ℓj = length (cj). (2.4.1)

A restriction for a given table Cn, consisting of n words c1, · · · , cn, to
be qualified as a code-table is that the lengths ℓ1, . . . , ℓn of c1, · · · , cn, re-
spectively, satisfy the following Kraft’s inequality (or more precisely, Kraft-
McMillan’s inequality):

n∑

j=1

2−ℓj ≤ 1. (2.4.2)

Observe that if we choose c1 = 0 and c2 = 1 and include both of them in
a table Cn, then for the table Cn to be a code-table, the size of Cn must be
n = 2. The reason is that

2−ℓ1 + 2−ℓ2 =
1

2
+

1

2
= 1,
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which is already the upper bound in (2.4.2).

Remark 2.4.1 Kraft only proved (2.4.2) for instantaneous (or prefix) codes
in his 1949 MIT Master’s Thesis in Electrical Engineering. Several years later,
in 1956, McMillan removed the “instantaneous” restriction, by showing that
all (decodable or decipherable) codes must satisfy (2.4.2).

Remark 2.4.2 To assess the suitability of code-tables for encoding a given
information source X = {x1, · · · , xN} with a relatively shorter bit-stream (or
smaller file size), recall the notion of discrete probability distributions Sn =
{p1, · · · , pn} associated with X. Assuming that a code-table Cn is constructed
for encoding X, then since each code-word cj ∈ Cn is constructed according
to the frequency of occurrence of the source data xk ∈ X, the value of each
corresponding pj ∈ Sn is positive and increases according to the increase of
frequency of the occurrence of the same xk ∈ X (see, for example, (2.3.13)).
Therefore, to achieve a shorter encoded bit-stream, the length ℓj of the code-
word cj ∈ Cn should be chosen to be relatively shorter for larger values of pj.
For this reason, the values p1, · · · , pn ∈ Sn are chosen to be the weights to
define the following weighted average of the lengths of code-words:

avglength (Cn) = avglength {c1, · · · , cn} =

n∑

j=1

pjℓj , (2.4.3)

called “average code-word length” of Cn, where ℓj = length (cj) as intro-
duced in (2.4.1).

Remark 2.4.3 In applications, the same probability distribution Sn, and
hence, the same code-table Cn, is constructed for a large class of information
sources X, with different cardinalities N = #X. In particular, N is usually
much, much larger than n = #Sn, where Sn is used as a discrete probability
distribution associated with all such X. For example, the same code-table Cn,
called the “Huffman table”, to be discussed in Subunit 2.4.3, is used for most
(if not all) JPEG compressed digital images and MPEG compressed videos, a
topic of investigation in Subunit 2.5.

Let us return to Kraft’s inequality (2.4.2) and observe that it governs the
necessity of fairly long code-word lengths, when the number of code-words
must be sufficiently large for many practical applications. However, it does not
give a quantitative measurement of the code-word lengths. In the following, we
first show that the entropy H(Sn) of a given discrete probability distribution
Sn = {p1, · · · , pn}, with n being the size of the desired code-table Cn =
{c1, · · · , cn}, provides a useful measurement stick.

Theorem 2.4.1 Let Cn = {c1, · · · , cn} be a code-table with code-word lengths
ℓj = length {cj}, j = 1, . . . , n. Then the average code-word length of Cn is
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bounded below by the entropy of the desired discrete probability distribution
that governs the construction of the code-table; namely,

H(Sn) ≤ avglength (Cn), (2.4.4)

where avglength (Cn) is defined in (2.4.3). Furthermore, equality in (2.4.4) is
achieved if and only if both of the following conditions are satisfied:

pj =
1

2kj
, j = 1, . . . , n, (2.4.5)

for some positive integers k1, · · · , kn; and

ℓj = kj, j = 1, . . . , n, (2.4.6)

so that Kraft’s inequality becomes equality.

Proof The proof of this theorem is an application of Kraft’s inequality
(2.4.2). Indeed, by setting

qj =
1

C
2−ℓj , j = 1, . . . , n,

where

C =

n∑

j=1

2−ℓj ,

it is clear that q1+· · ·+qn = 1 and 0 ≤ qj ≤ 1 for all j. Now, by an application
of the variational method of Lagrange multipliers, it is not difficult to show
that for all discrete probability distributions, including Qn = {q1, · · · , qn},
the quantity G(Qn), defined by

G(Qn) =

n∑

j=1

pj log2

1

qj
,

satisfies

G(Qn) ≥ G(Sn) = H(Sn), (2.4.7)

and that equality holds, if and only if qj = pj for all j = 1, . . . , n. Hence, it
follows from (2.4.7) that

H(Sn) ≤ G(Qn) =

n∑

j=1

pj log2

(
C 2ℓj

)

=

n∑

j=1

pj
(
ℓj + log2C

)

= avglength (Cn) + log2 C,
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since
∑n

j=1 pj = 1. In view of Kraft’s inequality, we have log2 C ≤ 0, com-
pleting the derivation of (2.4.4). Furthermore, equality in (2.4.7) holds if and
only if log2C = 0, or C = 1 and

H(Sn) = G(Qn),

which is equivalent to q1 = p1, · · · , qn = pn, or

p1 =
1

2ℓ1
, · · · , pn =

1

2ℓn
.

This completes the proof of (2.4.5)–(2.4.6), with kj = ℓj, which is an integer,
being the length of the code-word cj , j = 1, . . . , n. �

Remark 2.4.4 Since discrete probability distributions are seldom positive
integer powers of 1

2 , one cannot expect to achieve a code-table with minimum
average code-word lengths in general. On the other hand, there are fairly
complicated coding schemes, such as “arithmetic coding”, that could reach
the entropy lower bound as close as desired.

In introducing the notion of entropy, Claude Shannon also showed that
the entropy can be used as a measuring stick in that there exist instantaneous
code-tables with average code-word lengths bounded above by the entropy
plus 1. In other words, we have the following result, called “noiseless coding”
by Shannon.

Theorem 2.4.2 For any discrete probability distribution Sn = {p1, · · · , pn},

H(Sn) ≤ min
Cn

avglength (Cn) < H(Sn) + 1,

where the minimum is taken over all instantaneous code-tables Cn.

Proof Let Sn = {p1, . . . , pn} be an arbitrarily given discrete probability
distribution. In view of Theorem 2.4.1, it is sufficient to construct a certain
instantaneous code Cn = {c1, . . . , cn}, with length (cj) = ℓj, as defined in
(2.4.1), for j = 1, . . . , n, that satisfies:

n∑

j=1

pjℓj < H(Sn) + 1.

Without loss of generality, we may, and do, assume that

1 > p1 ≥ p2 ≥ · · · ≥ pn > 0.

Indeed, while the zero probability value can be omitted in our discussion, the
value p1 = 1 implies that p2 = · · · = pn = 0, or n = 1, so that the required
code-table is simply Cn = C1 = {0}, which is trivial. Now consider the set
of positive integers ℓ1, · · · , ℓn, with ℓj defined by the smallest integer which
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is greater than or equal to − log2 pj , for each j = 1, . . . , n. Hence, under the
assumption on the given discrete probability distribution Sn, we have

1 ≤ ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn.

It is sufficient to prove that there exists an instantaneous code Cn =
{c1, . . . , cn}, with length (cj) = ℓj , for j = 1, . . . , n.

Indeed, on one hand, we have

n∑

j=1

2−ℓj ≤
n∑

j=1

pj = 1,

which assures that {ℓ1, · · · , ℓn} satisfies (2.4.2). On the other hand, we also
have

n∑

j=1

pjℓj <

n∑

j=1

pj(− log2 pj) + 1 =

n∑

j=1

pj(− log2 pj) +

n∑

j=1

pj = H(Sn) + 1,

which satisfies (2.4.4) as desired. To construct the desired instantaneous code-
table (or prefix code) Cn, we first consider the set of integers, {w1, . . . , wn},
defined by

w1 = 0, w2 = 2ℓ2−ℓ1 , . . . , wn = 2ℓn−ℓ1 + 2ℓn−ℓ2 + · · ·+ 2ℓn−ℓn−1 . (2.4.8)

Also, let aj = (aj)2 denote the binary representation of wj for each j =
1, . . . , n; that is, aj is a string of 0’s and/or 1’s, with wj = (aj)2. For j ≥ 1,
the algorithm for computing aj from wj = (wj)10 is given in Remark 2.3.3;
and as mentioned in Remark 2.3.4, the subscript 2 of the binary representation
(aj)2 is omitted for convenience. Let us first observe that the length of aj is
less than or equal to ℓj for all j = 1, . . . , n. Indeed, while the length of a1 is
1 (since a1 = 0), we have, for 2 ≤ j ≤ n,

log2(wj) = ℓj + log2(

j−1∑

k=1

2−ℓk ≤ ℓj + log2

( j−1∑

k=1

pk

)
< ℓj .

Hence, we can introduce the code

c1 = 0 . . .0, c2 = (a2)20 · · ·0, · · · , cn = (an)20 · · ·0,

where the number of 0’s attached to the right of each aj is to ensure that the
length of the code-word cj, as defined in (2.4.1), is precisely ℓj , namely:

length (cj) = ℓj ,

for each j = 1, . . . , n. What is left in the proof of the Noiseless Coding The-
orem, or Theorem 2.4.2, is to verify that Cn = {c1, · · · , cn}, as defined in
(2.4.4), is a prefix code. To do so, we first recall from Remark 2.3.2 that for
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each j ≥ 2, wj is a positive integer, and hence, the first bit of its binary
representation aj is always equal to 1. This implies that c1 = 0 · · ·0 is not a
prefix of all ck for k ≥ 2. To show that cj is not a prefix of ck for all k 6= j and
j, k ≥ 2, let us assume, on the contrary, that it is. Then the length ℓj of cj
is less than the length ℓk, and the first ℓj bits of ck is precisely (cj)2. Hence,
in terms of the integers wk and wj, we may conclude that wj is equal to the
largest integer, not exceeding wk

2ℓk−ℓj
, so that

wj ≤
wk

2ℓk−ℓj
(2.4.9)

On the other hand, from its definition (2.4.8), we have

wk

2ℓk−ℓj
=

∑k−1
i=1 2(ℓk−ℓi)−(ℓk−ℓj)

=
∑k−1

i=1 2ℓj−ℓi =
∑j−1
i=1 2ℓj−ℓi +

∑k−1
i=j 2ℓj−ℓi

= wj +
∑k−1

i=j 2ℓj−ℓi = wj + 1 +
∑k−1

i=j+1 2ℓj−ℓi > wj + 1.

(2.4.10)

Hence, combining the results in (2.4.9) and (2.4.10), we arrive at the absurd
conclusion, wj+1 < wj. This contradiction completes the proof of the theorem.
�

2.5 Image and Video Compression Schemes and Stan-
dards

In this current era of “information revolution”, data compression is a neces-
sity rather than convenience or luxury. Without the rapid advancement of the
state-of-the-art compression technology, not only the internet highway is un-
bearably over-crowded, but data management would be a big challenge also.
In addition, data transmission would be most competitive and data storage
would be very costly.

On the other hand, for various reasons, including strict regulations (such
as storage of medical images), industry standards (for the capability of data
retrieval by non-proprietary hardware and software installed in PC’s or hand-
held devices), and the need for a user-friendly environment, the more complex
and/or proprietary solutions are not used by the general public, though they
usually have better performance. For instance, ASCII is the preferred text
format for word processors and Huffman coding is the most popular binary
coding scheme, even though arithmetic coding is more optimal.

In general, there are two strategies in data compression, namely: lossless
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compression and lossy compression. Lossless compression is reversible, mean-
ing that the restored data file is identical to the original data information.
There are many applications that require lossless compression. Examples in-
clude compression of executable codes, word processing files, and to some
extent, medical records, and medical images. On the other hand, since lossless
compression does not satisfactorily reduce file size in general, lossy compres-
sion is most widely used.

Lossy compression is non-reversible, but allows insignificant loss of the
original data source, in exchange for significantly smaller compressed file size.
Typical applications are image, video, and audio compressions. For compres-
sion of digital images and videos, for instance, compressed imagery is often
more visually pleasing than the imagery source, which inevitably consists of
(additive) random noise due to perhaps insufficient lighting and non-existence
of “perfect sensors” for image capture. Since random noise increases entropy,
which in turn governs the lower bound of the compressed file size according
to the Noiseless Coding Theorem (or Theorem 2.4.2), lossy compression via
removing a fair amount of such additive noise is a preferred approach. The
topic of noise removal will be studied in Unit 5, and in more detail in Subunit
5.5.2.

2.5.1 Image compression scheme

There are three popular methods for lossless data compression: (i) run-
length encoding (RLE), (ii) delta encoding, and (iii) entropy coding. RLE
simply involves encoding the number of the same source word that appears
repeatedly in a row. For instance, to encode a one-bit line drawing along each
scan-line, only very few dots of the line drawing are on the scan-line. Hence,
if “1” is used for the background and “0” for the line drawing, there are
long rows of repeating “1” before a “0” is encountered. Therefore, important
applications of RLE include graphic images (cartoons) and animation movies.
It is also used to compress Windows 3.x bitmap for the computer startup
screen. In addition, RLE is incorporated with Huffman encoding for the JPEG
compression standard to be discussed in some details later in this unit.

Delta encoding is a simple idea for encoding data in the form of differences.
In Example 2.3.1, the notion of differential pulse code modulation (DPCM)
is introduced to create long rows of the same source word for applying RLE.
In general, delta encoding is used only as an additional coding step to further
reduce the encoded file size. In video compression, “delta frames” can be used
to reduce frame size and is therefore used in every video compression standard.
We will also mention DPCM in JPEG compression in the next section.

Perhaps the most powerful stand-alone lossless compression scheme is LZW
compression, named after the developers A. Lempel, J. Ziv, and T. Welch.
Typical applications are compression of executable codes, source codes, tabu-
lated numbers, and data files with extreme redundancy. In addition, LZW is



DATA COMPRESSION 85

used in GIF image files and as an option in TIFF and PostScript. However,
LZW is a proprietary encoding scheme owned by Unisys Corporation.

2.5.2 Quantization

Let us now focus on the topic of lossy compression, to be applied to the
compression of digital images and video, the topic of discussion in this unit.
The general overall lossy compression scheme consists of three steps:

(i) Transformation of source data,

(ii) Quantization,

(iii) Entropy coding.

Both (i) and (iii) are reversible at least in theory, but (ii) is not. To recover
the information source, the three steps are:

(i) De-coding by applying the code-table,

(ii) De-quantization,

(iii) Inverse transformation.

We have briefly discussed, in Example 2.3.1 in Subunit 2.3.1, that an ap-
propriate transformation could be introduced to significantly reduce the en-
tropy of certain source data, without loss of any data information. This type
of specific transformations is totally data-dependent and therefore not very
practical. Fortunately, there are many transformations that can be applied
for sorting data information without specific knowledge of the data content,
though their sole purpose is not for reduction of the data entropy. When data
information is properly sorted out, the less significant content can be sup-
pressed and the most insignificant content can be eliminated, if desired, so as
to reduce the entropy. As a result, shortened binary codes, as governed by the
Noiseless Coding Theorem studied in Subunit 2.4.4, can be constructed.

The most common insignificant data content is (additive) random noise,
with probability values densely distributed on the (open) unit interval (0, 1).
Hence, embedded with such noise, the source data has undesirably large en-
tropy. Fortunately, partially due to the dense distribution, random noise lives
in the high-frequency range. Therefore, all transformations that have the ca-
pability of extracting high-frequency contents could facilitate suppressing the
noise content by means of “quantization”, to be discussed in the next para-
graph. Such transformations include DCT and DFT studied in Chapter 4,
DST (discrete sine transform), Hardamard transform, and DWT (discrete
wavelet transform), which will be introduced and studied in some depth in
Unit 6. Among all of these transformations, DCT, and particularly DCT-II,
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is the most popular for compression of digital images, videos, and digitized
music.

The key to the feasibility of significant file size reduction for lossy com-
pression is the “quantization” process that maps a “fine” set of real numbers
to a “coarse” set of integers. Of course such mappings are irreversible. For any
real numbers x, sgn x (called the sign of x) is defined by

sgn x =






1, for x > 0,

0, for x = 0,

−1, for x < 0.

Also, for any non-negative real number x, ⌊x⌋ will denote the largest integer
not exceeding x. Then the most basic quantization process is the mapping of
x ∈ R to an integer x̃, defined by

x̃ = round
( x
Q

)
= (sgn x)

⌊ |x|
Q

⌋
, (2.5.1)

where Q is a positive integer, called the “quantizer” of the “round-off” function
defined in (2.5.1). Hence, x̃ is an integer and Qx̃ is an approximation of x, in
that

|x−Qx̃| < 1.

A better approximation of the given real number x could be achieved by Qx̂,
with x̂ defined by

x̂ = (sgn x)
⌊∣∣x± ⌊Q

2
⌋
∣∣

Q

⌋
, (2.5.2)

where the “+” sign or “−” sign is determined by whichever choice yields the
smaller |x − Qx̂|. In any case, it is clear that the binary representation of x̃
(or of x̂) requires fewer bits for larger integer values of the quantizer Q. In
applications to audio and image compressions, since the human ear and human
eye are less sensitive to higher frequencies, larger values of the quantizer Q can
be applied to higher-frequency DCT terms to save more bits. Moreover, since
additive random noise lives in the higher frequency range, such noise could be
suppressed, often resulting in more pleasing audio and imagery quality.

In summary, lossy compression is achieved by binary encoding (such as
Huffman coding) of the quantized values of the transformed data; and recovery
of the source data is accomplished by applying the inverse transformation to
the de-quantized values of the decoded data. Since the quantization process
is irreversible, the compression scheme is lossy.

2.5.3 Huffman, DPCM, and run-length coding

For compression of digital images, the industry standard is called JPEG,
which is the acronym for “Joint Photographic Experts Group”. The com-
pression scheme has been described above, with the transformation being the
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two-dimensional DCT-II (studied in Subunit 2.2.3) applied to 8×8 tiles of the
digital image. In other words, we apply (2.2.3)–(2.2.4) to 8× 8 data matrices,
as follows.

Theorem 2.5.1 For each 8× 8 sub-block

A =




a0,0 · · · a0,7

...
· · ·
a7,0 · · · a7,7


 (2.5.3)

of a digital image, the DCT

Â =




â0,0 · · · â0,7

...
· · ·
â7,0 · · · â7,7




of A is given by

âj,k =
djdk

4

7∑

ℓ=0

7∑

s=0

(
cos

j(2ℓ − 1)π

16
cos

k(2s− 1)π

16

)
aℓ,s, (2.5.4)

for j, k = 0, . . . , 7; and the IDCT of Â is given by

aℓ,s =
1

4

7∑

j=0

7∑

k=0

(
djdk cos

j(2ℓ− 1)π

16
cos

k(2s− 1)π

16

)
âj,k, (2.5.5)

for ℓ, s = 0, . . . , 7. In (2.5.4) and (2.5.5), d0 = 1√
2

and d1 = · · · = d7 = 1.

Remark 2.5.1 For 8-bit images, the entries aℓ,s of the 8 × 8 image block
A in (2.5.3) are integers that range from 0 to 255 (that is, 0 ≤ aℓ,s ≤ 255).
Hence, it follows from (2.5.4) that the dc (direct current) term â0,0 of the
DCT of A is given by

â0,0 =
1

8

7∑

ℓ=0

7∑

s=0

aℓ,s,

which is some integer between 0 and 2040 and therefore is an 11-bit integer.
In addition, all the other DCT coefficients âj,k may oscillate in signs and are
called ac (alternate current) terms.

Remark 2.5.2 To reduce the size of the dc term â0,0, DPCM is used in
JPEG by taking the difference with the dc term of the previous 8× 8 block.
On the other hand, to achieve much higher compression ratio, the ac terms âj,k
(for (j, k) 6= (0, 0)) are to be “quantized”. This is the lossy (or non-reversible)
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encoding component of the JPEG encoder. The quantization process is to
divide each âj,k by some positive integer qj,k, followed by rounding off the
quotient to the nearest integer, to be denoted by (âj,k/qj,k). For instance, for
large values of qj,k, the round-off integers (âj,k/qj,k) are equal to 0, yielding
a long row of consecutive zeros (0’s) for high-frequency ac terms (that is,
relatively larger values of j + k). The division by positive integers qj,k also
yield smaller numbers (and hence, less bits) to encode. When decoding the
(encoded) compressed image file, the integers qj,k are multiplied to the round-
off integers (âj,k/qj,k) before the inverse DCT (denoted by IDCT) is applied.

2.5.4 Encoder - Decoder (Codec)

The schematic diagrams of the JPEG encoder and decoder are shown in
Fig. 2.1 and Fig. 2.2.

FIGURE 2.1: Encoder: Q = quantization; E = entropy encoding

FIGURE 2.2: Decoder: Q−1 = de-quantization; E−1 = de-coding

In Figs.2.3–2.4, we give two examples of the 8× 8 quantizers, with one for
achieving low compression ratio and one for achieving high compression ratio.

1 1 1 1 1 2 2 4
1 1 1 1 1 2 2 4
1 1 1 1 2 2 2 4
1 1 1 1 1 2 4 8
1 1 2 2 2 2 4 8
2 2 2 2 2 4 8 8
2 2 2 4 4 8 8 16
4 4 4 4 8 8 16 16

FIGURE 2.3: Quantizers: low compression ratio
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1 2 4 8 16 32 64 128
2 4 4 8 16 32 64 128
4 4 8 16 32 64 128 128
8 8 16 32 64 128 128 256
16 16 32 64 128 128 256 256
32 32 64 128 128 256 256 256
64 64 128 128 256 256 256 256
128 128 128 256 256 256 256 256

FIGURE 2.4: Quantizers: high compression ratio

The round-off integers, denoted by

bj,k = (aj,k/qj,k),

for j, k = 0, . . . , 7, are arranged as a sequence of 64 integers by following the
zig-zag ordering as shown in Fig. 2.5 and written out precisely as in (2.5.6).

FIGURE 2.5: Zig-zag ordering

B = {b0,0, b0,1, b1,0, b2,0, b1,1, b0,2, b0,3, b1,2, b2,1, b3,0, b4,0,

b3,1, b2,2, b1,3, b0,4, b0,5, b1,4, b2,3, b3,2, b4,1, b5,0, b6,0,

b5,1, b4,2, b3,3, b2,4, b1,5, b0,6, b0,7, b1,6, b2,5, b3,4, b4,3,

b5,2, b6,1, b7,0, b7,1, b6,2, b5,3, b4,4, b3,5, b2,6, b1,7, b2,7,

b3,6, b4,5, b5,4, b6,3, b7,2, b7,3, b6,4, b5,5, b4,6, b3,7, b4,7,

b5,6, b6,5, b7,4, b7,5, b6,6, b5,7, b6,7, b7,6, b7,7}.

(2.5.6)
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Then B is considered as an information source to be encoded. The follow-
ing modification is specified when the Huffman table, provided by the JPEG
standard, is applied.

(i) The dc term b0,0 in (2.5.6) is subtracted from the dc term of the previous

8× 8 (DCT-quantized) block, and the result b̃0,0 replaces b0,0 of (2.5.6)
as the modified information source. (Recall that this differencing step is
called DPCM.)

(ii) Two code-words from the Huffman table are reserved for encoding rows
of 0’s in the sequence B in (2.5.6):

(a) EOB (end-of-block) with code-word 00000000 (of 8 zeros) means
that the remaining source words in B are zeros and there is no
need to encode them. For example, in (2.5.6), if b7,1 6= 0 but all the
27 source words in the sequence B after b7,1 are equal to 0, then
after encoding b7,1 by applying the Huffman table, tack eight 0’s
to indicate b7,1 is the last word to be encoded in this 8× 8 block;

(b) ZRL (zero run length) with code-word 11110000 (of four 1’s fol-
lowed by four 0’s) means that there are words of consecutive zeros
in B before the last non-zero source word. We will not go into
details of this process.

In the above discussion, we only considered compression of 8-bit gray-
scale images, for convenience. For 24-bit RGB color images, with 8-bit R
(red), 8-bit G (green), and 8-bit B (blue), it is recommended to apply the
color transform from RGB to Y CbCr, where Y stands for luminance (that is,
light intensity, which by itself can be used to display the gray-scale image).
The other two color components Cb and Cr, called chrominance (more pre-
cisely, chrominance blue and chrominance red, respectively), convey the color
information by carrying the difference in intensities from the intensity of the
luminance.

During the composite (analog) TV era, the Y IQ color coordinates were
introduced by RCA in the 1950’s for broadcast bandwidth saving by “chroma-
subsampling” of the IQ color components. It was later adopted by the NTSC
standard, with the luminance Y specified to be

Y = 0.299R+ 0.587G+ 0.114B, (2.5.7)

and chrominance I and Q to be

I = 0.736(R− Y )− 0.268(B− Y ),
Q = 0.478(R− Y ) + 0.413(B− Y ).

(2.5.8)

To overcome certain shortcomings, particularly in up-sampling, Germany in-
troduced the PAL standard in the 1960’s with Y UV color transform given
by

Y = 0.3R+ 0.6G+ 0.1B, (2.5.9)
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and the chrominance components U and V given simply by

U = B − Y, V = R− Y. (2.5.10)

Meanwhile, France also introduced another standard called SECAM. The im-
portance of the luminance - chrominance formats (as opposed to the RGB
color coordinates) is that human vision is much more sensitive to light intensity
(or brightness) than color differences, particularly for scenes in motion. Ob-
serve that both I, Q in (2.5.8) and particularly U, V in (2.5.10) are defined by
taking color differences. Consequently, chroma-subsampling by down-sampling
the chrominance components is hardly noticeable in digital TV broadcast-
ing. Currently, the so-called 4:1:1 and 4:2:0 formats allow an additional 33%
increase in compression ratio. Furthermore, if noise removal is applied ap-
propriately to the chrominance components, the Y component maintains the
sharpness of the video imagery.

To adopt the Y IQ and Y UV color coordinates for color image compression,
the Y CbCr format was developed by the JPEG image compression standard,
by specifying

Cb = 1
2 U + 0.5;

Cr = 1
1.6 V + 0.5,

(2.5.11)

for the chrominance components, where the values of the colors R,G,B are ex-
pressed by a relative scale from 0 to 1, with 0 indicating no phosphor excitation
and 1 indicating maximum phosphor excitation. Hence, the additive factor of
0.5, with the decrease in the color differences U = B − Y and V = R − Y ,
facilitates a better preservation of the blue and red colors, even after down-
sampling of Cb and Cr to achieve higher compression ratio.

2.5.5 I, P, and B video frames

2.5.6 Macro-blocks

2.5.7 Motion search and compensation

We end this unit by giving a very brief introduction to (digital) video
compression.

While the image compression standard JPEG was developed by the “Joint
Photographic Experts Group” under the auspices of the three major inter-
national standard organizations ISO, CCITT, and IEC, the video compres-
sion standard MPEG was developed by the “Moving Pictures Expert Group”
of ISO. The first standard completed in 1991 is known as MPEG-1 for the
first-generation digital video compression. The second-generation digital video
standard, known as MPEG-2, is currently adopted for HDTV broadcasting.
In addition, MPEG-4 was developed in the late 1990’s for low bit-rate video



92 SAYLOR MA 304

compression. More recently, the new video standard H.264, also called MPEG-
4 Part 10 and AVC (for Advanced Video Coding), was successfully developed
in 2003 for up to an additional 50% compression saving over MPEG-2 and
MPEG-4 Part 1, while maintaining comparable video quality. H.264 is the
video compression standard for Blu-ray discs, and is widely used for internet
video streaming by such giants as YouTube (of Google) and iTune stores (of
Apple). In addition, it is embedded in the web software Adobe Flash Player,
and is the preferred video format for most cable and satellite television service
providers, including Direct TV.

In any case, all effective video compression schemes are similar, with I-
pictures (or I-frames), P -pictures (or P -frames, and B-pictures (or B-frames).
With the exception of H.264, all MPEG and other H.26x standards adopt the
JPEG image compression standard for I-picture (or intra-frame) compression.
To meet the mandate of 2× compression efficiency over MPEG-2, I-frame
image compression for H.264 departs from the JPEG standard by introducing
“I-slices” that include 4×4 DCT blocks, with applications to frame-by-frame
video such as “iFrame video”, developed by Apple in 2009 to facilitate video
editing and high-quality video camcorder recording, particularly in iMovie’09
and iMovie’11. It is also adopted by camera manufacturers to capture HD
video in 1920 × 1080 resolution, such as the AVC-Intra video codec (that
is, encoding and decoding), developed by Panasonic in 2007 for HD video
broadcasting.

On the other hand, to facilitate video frame prediction (for P -frames and
B-frames), the I-frame format for video encoding is slightly different from
JPEG in that the I-frames are partitioned into macroblocks of sizes 8× 8 or
16×16. In other words, DPCM encoding of the dc coefficients is limited to at
most four 8× 8 blocks. To encode a P -frame (or prediction frame), adjacent
macroblocks of the current P -frame (called intra-macroblocks) are compared
with macroblocks of previous I or P frames (called inter-macroblocks) by
“motion search”. If an inter-macroblock (from some previous frame) is suitable
to replace an adjacent intra-macroblock, then compression of this adjacent
macroblock is eliminated simply by coding the “motion vector” that tells the
decoder which inter-macroblock is used to replace the adjacent macroblock
of the current frame. Bi-directional frame prediction is an extension of the
P -frame prediction to allow searching of inter-macroblock replacement (for
replacing adjacent macroblocks of the current frame) from both previous video
frames and future video frames. Such prediction frames are called B-frames
(or bi-directional prediction frames).
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Unit 3

FOURIER METHODS

The subject of Fourier series is one of the most important topics in Applied
Mathematics. For example, the matrix transformation DFT studied in Unit 2
is only a discrete version of the Fourier coefficients of the Fourier series. The
theory of Fourier series is very rich and well documented in the mathematics
literature, with numerous existing textbooks and research monographs. The
objective of this unit is to study the most basic topics of this subject and to
prepare for its applications to solving partial differential equations (PDEs) in
Unit 5. In Subunit 3.2, it is shown that the partial sums of a Fourier series
of some function f are the orthogonal projections of f to the corresponding
subspaces of trigonometric polynomials. In addition, these partial sums can
be formulated as convolution of the function with the Dirichlet kernels, to be
introduced in Subunit 3.3. Since averaging of the Dirichlet kernels yields the
Fejér kernels (introduced in Subunit 3.3) that constitute a positive approx-
imate identity (to be shown in Subunit 3.4), it follows that convergence of
the sequence of trigonometric polynomials, resulting from convolution of the
function f with the Fejér kernels, to the function f itself is assured in the
mean-square sense. Consequently, being orthogonal projections, the partial
sums of the Fourier series also converge to the function represented by the
Fourier series, again in the mean-square sense. The topic of point-wise and
uniform convergence, under a differentiability assumption on the function f
is studied in Subunit 3.4, where the concept of completeness is also discussed.
An interesting observation is that L2-completeness is equivalent to Parsevals
identity for Fourier series, with such interesting applications as solving the fa-
mous Basel problem. Based on the Bernoulli polynomials, we will also derive
Euler’s formula (in terms of the Bernoulli numbers) as solution of the general
Basel problem (for all even powers) in Subunit 3.5. The completeness property
of Fourier series will also be applied to solving boundary value problems of
PDE in Unit 5.

3.1 Fourier Series

The continuous version of the notions of DFT and DCT (for finite sequences,

95
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such as digital signals, studied in Subunits 2.1 and 2.2, respectively) is the
concept of “Fourier-coefficients”, defined for piecewise continuous functions
on bounded intervals J , such as analog signals, and more generally, for func-
tions in L2(J). To facilitate the theoretical development and computational
simplicity, we will first study the complex-valued setting, before deriving the
real-valued formulation, in terms of the cosine and/or sine basis functions.
The analogy of the inverse DFT (IDFT) and inverse DCT (IDCT) for finite
sequences is the “Fourier series” representation (or expansion) of the given
piecewise continuous functions (or more generally, functions in L2(J) for infi-
nite sequences), in that the Fourier series can be applied to recover the given
function from the infinite sequence of its Fourier coefficients.

For this study, a piecewise continuous function f(x) defined on some
bounded interval J = [a, b] is extended to a periodic function on R = (−∞,∞),
with period = (b− a), by setting

f
(
x+ ℓ(b − a)

)
= f(x), x ∈ [a, b],

for all ℓ = ±1,±2, · · · , after replacing the values f(a) and f(b) by their average
value

(
f(a) + f(b)

)
/2; and the sequence of its Fourier coefficients ck = ck(f)

is defined by

ck = ck(f) =
1

b− a

∫ b

a

f(x)e−i2πk(x−a)/(b−a) dx, k ∈ Z.

Observe that the sequence {ck} = {ck(f)} is an infinite (and more precisely,
a bi-infinite) sequence. Furthermore, in view of Euler’s formula,

e−i2πk(x−a)/(b−a) = cos
2πk(x− a)

b− a − i sin 2πk(x− a)

b− a ,

the sequence {ck} reveals the frequency content of the given analog signal
f ∈ PC[a, b], in a similar manner as the DFT and DCT reveal the frequency
content of a digital signal.

As mentioned above, the Fourier series of the given function f ∈ PC[a, b],
defined by

(Sf)(x) =
∞∑

k=−∞
ck(f)ei2πk(x−a)/(b−a),

is used to recover f(x) from the sequence of its Fourier coefficients. In this
regard, the study of Fourier series is much more sophisticated than that of
IDFT and IDCT, since it requires the study of the convergence of an infinite
series Sf ; or equivalently, the convergence of the sequence {Snf} of its “partial
sums”, defined by

(Snf)(x) =

n∑

k=−n
ck(f)ei2πk(x−a)/(b−a)
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for n = 0, 1, . . ..
The topic of convergence of Fourier series will be discussed in some depth

in Subunit 3.4.1. To develop the mathematical tools for the study of point-
wise and uniform convergence, the notions of Dirichlet’s and Fejér’s kernels
will be introduced in Subunits 3.3.1 and 3.3.2, respectively. In particular,
Fejér’s kernels, defined by averaging Dirichlet’s kernels, provide the important
property of “Positive Approximate Identity” to be investigated in Subunit
3.3.3. We remark that the property of positive approximate identity is the
key ingredient in the proof of uniform convergence, to be discussed in Subunit
3.4.1.

3.1.1 Fourier series representations

For convenience, we only consider the interval J = [a, b] = [−π, π]. There is
certainly no loss of generality for such restriction, in view of the simple change
of variables:

x←→ 2π

b− a (x− a)− π;

namely, the functions f̃ ∈ PC[a, b] and f ∈ PC[−π, π] are interchangeable by
considering

f(x) = f̃
(
a +

b− a
2π

(x + π)
)

and

f̃(x) = f
( 2π

b− a (x− a)− π
)
.

As mentioned above, each function f ∈ PC[−π, π] can be extended to a 2π-
periodic function, as follows:

Definition 3.1.1 Let f(x) be a function defined on an interval [−π, π]. The
2π-periodic extension F (x) of f(x) is a function defined on R, by

{
F (x) = f(x), x ∈ (−π, π),
F (−π) = F (π) = 1

2

(
f(π) + f(−π)

)
,

and F (x+2ℓπ) = F (x) for all ℓ ∈ Z. For convenience, F (x) is re-named by the
given function f(x), to avoid unnecessarily additional notation. In addition,
the notation PC⋆2π = PC⋆[−π, π] is used to denote the inner-product space
of such 2π-periodic piecewise continuous functions, with inner product 〈〈 , 〉〉,
defined by

〈〈f, g〉〉 =
1

2π

∫ π

−π
f(x)g(x) dx. (3.1.1)

Observe that the only difference between the inner product 〈〈·, ·〉〉 and the
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inner product 〈·, ·〉, as introduced in Subunit 1.1, is the additional normaliza-
tion constant of (2π)−1 in (3.1.1), namely:

〈〈f, g〉〉 =
1

2π
〈f, g〉.

Let us first consider the infinite sequence {ck} = {ck(f)} (of Fourier co-
efficients) for a given function f(x) in the vector space V = PC⋆2π, defined
by

ck = ck(f) = 〈〈f, ek〉〉 =
1

2π

∫ π

−π
f(x)ek(x) dx,

where ek(x) = eikx = cos kx+ i sin kx, or

ck = ck(f) =
1

2π

∫ π

−π
f(x)e−ikx dx; (3.1.2)

and the corresponding infinite (Fourier) series:

(Sf)(x) =

∞∑

k=−∞
ck(f)ek(x) =

∞∑

k=−∞
cke

ikx. (3.1.3)

Definition 3.1.2 Let f ∈ PC⋆2π. The infinite series in (3.1.3), with ck =
ck(f), defined by (3.1.2), is called the Fourier series representation (or expan-
sion) of f(x), and ck = ck(f) is called the kth Fourier coefficient of f(x).

Example 3.1.1 Let f1(x) be defined by

f1(x) =

{
1, for 0 ≤ x ≤ π,
−1, for −π ≤ x < 0,

and extended 2π-periodically to all x ∈ R (see Definition 3.1.1). Compute the
Fourier coefficients and Fourier series expansion of f1(x).

Solution By (3.1.2), we have

ck = ck(f1) =
1

2π

{ ∫ 0

−π
(−1)e−ikx dx+

∫ π

0

e−ikx dx
}

=
1

2π

∫ π

0

(
− eikx + e−ikx

)
dx

=
−i
π

∫ π

0

sin kx dx.

Hence, c0 = 0 and for k 6= 0,

ck =
[ i
π

cos kx

k

]π
0

=
i

πk

(
(−1)k − 1

)
.
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In other words, the Fourier coefficients of f1(x) are given by

c2ℓ = 0, c2ℓ+1 =
−2i

π(2ℓ + 1)
, for all ℓ = 0,±1,±2, · · · (3.1.4)

(where we consider k = 2ℓ and k = 2ℓ + 1 separately), and the Fourier series
expansion of f1(x) is given by

(Sf1)(x) =
2

iπ

∞∑

ℓ=−∞

ei(2ℓ+1)x

2ℓ+ 1

=
2

iπ

( ∞∑

ℓ=0

ei(2ℓ+1)x

2ℓ+ 1
+

−1∑

ℓ=−∞

ei(2ℓ+1)x

2ℓ + 1

)

=
2

iπ

{
(eix − e−ix) +

ei3x − e−i3x
3

+
ei5x − e−i5x

5
+ · · ·

}

=
4

π

∞∑

k=0

sin(2k + 1)x

2k + 1
.

�

Example 3.1.2 Let g1(x) be defined on [−π, π] by

g1(x) =

{
1, for |x| ≤ π

2 ,

0, for π
2 < |x| ≤ π,

and extended periodically to R. Compute the Fourier coefficients and Fourier
series representation of g1(x).

Solution By (3.1.2), we have

ck = ck(g1) =
1

2π

∫ π

−π
g1(x)e−ikx dx =

1

2π

∫ π/2

−π/2
e−ikx dx,

so that c0 = 1
2 and for k 6= 0,

ck =
1

2π

∫ π/2

−π/2

(
cos kx− i sin kx

)
dx

=
1

2π

∫ π/2

−π/2
cos kx dx =

1

π

∫ π/2

0

cos kx dx

=
[ 1

π

sin kx

k

]π/2
0

=
1

π

sinkπ/2

k
.

Again, since ck = 0 for all even k 6= 0, we only consider odd k = 2ℓ + 1, for
which

sin
(2ℓ+ 1)π

2
= sin

(
ℓπ +

π

2

)
= (−1)ℓ.
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Therefore, we have c0 = 1
2 , c2ℓ = 0 for all ℓ = ±1,±2, · · · , and

c2ℓ+1 =
(−1)ℓ

(2ℓ + 1)π
, ℓ = 0,±1,±2, · · · ;

and the Fourier series representation of g1(x) is given by

(Sg1)(x) =
1

2
+

∞∑

ℓ=−∞

(−1)ℓ

(2ℓ+ 1)π
ei(2ℓ+1)x

=
1

2
+

1

π

{
(eix + e−ix)− ei3x + e−i3x

3
+ · · ·

}

=
1

2
+

2

π

∞∑

k=0

(−1)k
cos(2k + 1)x

2k + 1
.

�

For various important reasons, particularly for more effective implemen-
tation in applications, it is necessary to convert the Fourier series expansion
of functions f ∈ PC⋆2π to a cosine/sine series (that is, in terms of cosines and
sines) by getting rid of the imaginary unit, i, in Euler’s formula, as follows.

Theorem 3.1.1 The Fourier series expansion Sf of f ∈ PC⋆2π in (3.1.3) can
be re-formulated as

(Sf)(x) =
a0

2
+

∞∑

k=1

(
ak cos kx+ bk sin kx

)
, (3.1.5)

called the (Fourier) trigonometric (or cosine and sine) series expansion, where

ak =
1

π

∫ π

−π
f(x) cos kx dx, k = 0, 1, 2, . . . ,

and

bk =
1

π

∫ π

−π
f(x) sin kx dx, k = 1, 2, . . . .

Proof Observe that

a0

2
=

1

2π

∫ π

−π
f(x) dx = c0,

where c0 is defined in (3.1.2) for k = 0. For k = 1, 2, . . .,

ck =
1

2π

∫ π

−π
f(x)e−ikx dx =

1

2
(ak − ibk);

c−k =
1

2π

∫ π

−π
f(x)eikx dx =

1

2
(ak + ibk),
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so that

(Sf)(x) = c0 +

∞∑

k=1

cke
ikx +

−1∑

k=−∞
cke

ikx

= c0 +

∞∑

k=1

cke
ikx +

∞∑

k=1

c−ke
−ikx

=
a0

2
+

∞∑

k=1

1

2
(ak − ibk)eikx +

1

2
(ak + ibk)e−ikx

=
a0

2
+

∞∑

k=1

1

2
ak(eikx + e−ikx) +

1

2
(−ibk)(eikx − e−ikx)

=
a0

2
+

∞∑

k=1

ak cos kx+ bk sin kx.

This proves (3.1.5). �

In general, the interval [−π, π] can be replaced by [−d, d] for any d > 0, as
follows.

Theorem 3.1.2 Let d > 0. Then the Fourier series expansion of Sf of any
function f ∈ PC[−d, d], extended periodically to R, is given by

(Sf)(x) =
a0

2
+

∞∑

k=1

(
ak cos

kπx

d
+ bk sin

kπx

d

)
, (3.1.6)

called the (Fourier) trigonometric (or cosine and sine) series expansion, where

ak =
1

d

∫ d

−d
f(x) cos

kπx

d
dx, k = 0, 1, 2, . . . ,

and

bk =
1

d

∫ d

−d
f(x) sin

kπx

d
dx, for k = 1, 2, . . .. (3.1.7)

Example 3.1.3 Let f(x) = 1 for −d ≤ x ≤ 0, and f(x) = 0 for 0 < x ≤ d.
Compute the Fourier cosine and sine series representation Sf of f in (3.1.6).

Solution For k = 0,

a0 =
1

d

∫ d

−d
f(x) dx =

1

d

∫ 0

−d
1 dx =

d

d
= 1,
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and for k ≥ 1,

ak =
1

d

∫ d

−d
f(x) cos

kπx

d
dx =

1

d

∫ 0

−d
1 · cos

kπx

d
dx

=
[1

d

sin kπx
d

kπ
d

]0

−d
=

1

kπ

(
sin 0− sin(−kπ)

)
= 0;

bk =
1

d

∫ d

−d
f(x) sin

kπx

d
dx =

1

d

∫ 0

−d
1 · sin kπx

d
dx

=
[
− 1

d

cos kπxd
kπ
d

]0

−d
= − 1

kπ

(
cos 0− cos(−kπ)

)

= − 1

kπ

(
1− (−1)k

)
.

Thus, the Fourier cosine and sine series expansion of f is given by

(Sf)(x) =
1

2
−

∞∑

k=1

1

kπ
(1− (−1)k) sin

kπx

d

=
1

2
−

∞∑

n=0

2

(2n+ 1)π
sin

(2n+ 1)πx

d
.

�

For the Fourier series expansion (Sf)(x) in terms of both cosines and
sines in (3.1.5) of Theorem 3.1.1 or in (3.1.6) in Theorem 3.1.2, observe that
the computational complexity can be reduced by eliminating either the sine
series component, or the cosine series component. To this end, recall that any
function f(x), defined on an interval [a, b], can be treated as a function defined
on the interval [0, d], by the change of variables t = d

b−a(x−a). In other words,

we may consider the Fourier trigonometric series of f̃(t) (with f̃(t) = f(x))
on [0, d] (instead of f(x) on [a, b]), while recovering both f(x) and its Fourier
cosine and sine series by the change of variables x = b−a

d t+ a.
Without loss of generality, let us consider functions f(x) in L2[0, d], d > 0.

For such functions f , we extend f to an even function fe on [−d, d] by setting

fe(x) =

{
f(x), for 0 ≤ x ≤ d,
f(−x), for −d ≤ x < 0.

Then, since sin(kπxd ) is an odd function on [−d, d], we have bk(fe) = 0 in
(3.1.7), so that

(Sfe)(x) =
a0(fe)

2
+

∞∑

k=1

ak(fe) cos
kπx

d
, (3.1.8)

where

ak(fe) =
1

d

∫ d

−d
fe(x) cos

kπx

d
dx =

2

d

∫ d

0

f(x) cos
kπx

d
dx
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for k = 0, 1, 2, . . . . But since the given function f(x) is the same as fe(x)
for x ∈ [0, d], we have Sf = Sfe, and therefore have eliminated the sine
series component of the Fourier series representation Sf of f on [0, d]. For the
Fourier cosine series representation, we will use the notation Scf for Sf , for
clarity.

Example 3.1.4 Find the Fourier cosine series representation Sf (to be re-
labeled by (Scf) to emphasize a Fourier series without the sine terms) of
f(x) = 1 + 2 cos2 x, 0 ≤ x ≤ π.

Solution By the trigonometric identity cos2 x = 1
2
(1+cos 2x), we may write

f(x) as

f(x) = 1 + 2 · 1

2
(1 + cos 2x) = 2 + cos 2x.

Hence, by direct application of the definition, we can also compute

a0 =
2

π

∫ π

0

(2 + cos 2x) dx = 4;

a2 =
2

π

∫ π

0

(2 + cos 2x) cos 2x dx

=
2

π

∫ π

0

cos2 2x dx =
2

π

π

2
= 1,

and for k = 3, 4, . . ., ak = 0, since cos kx is orthogonal to 1 and cos 2x. Thus,
the cosine series expansion Scf = Sf of f(x) = 1 + 2 cos2 x is

(Scf)(x) =
a0

2
+ a2 cos 2x = 2 + cos 2x.

Observe that there is really no need to compute ak, since the cosine polynomial
2 + cos 2x is already a Fourier cosine series in terms of cos kx, k = 0, 1, . . .. �

In general, for integer powers of the cosine and sine functions, we may
apply Euler’s formula to avoid the task of integration.

Example 3.1.5 Find the Fourier cosine series expansion (Scf)(x) = (Sf)(x)
of f(x) = cos5 x, 0 ≤ x ≤ π.

Solution By Euler’s formula, we have

cos5 x =
(eix + e−ix

2

)5

=
1

32

(
ei5x + 5ei3x + 10eix + 10e−ix + 5e−i3x + e−i5x

)

=
1

32

(
ei5x + e−i5x + 5(ei3x + e−i3x) + 10(eix + e−ix)

)

=
1

16

(
cos 5x+ 5 cos 3x+ 10 cosx

)
.
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Since the above trigonometric polynomial is already a “series” in terms of
the cosine basis functions cos kx, k = 0, 1, . . ., we know that its Fourier cosine
series expansion is itself. Thus, the cosine series expansion Scf of f(x) = cos5 x
is given by

(Scf)(x) =
5

8
cosx+

5

16
cos 3x+

1

16
cos 5x,

where the terms are arranged in increasing order of “frequencies”. �

Similarly, a function f ∈ L2[0, d] can be expanded as a (Fourier) sine series.
The trick is to consider the odd extension fo of f to [−d, d], namely:

fo(x) =






f(x), for 0 < x ≤ d,
−f(−x), for −d ≤ x < 0,
0, for x = 0.

Then, since cos kπx
d

is an even function on [−d, d], for each k = 0, 1, . . ., we
have ak(fo) = 0 and

bk(fo) =
1

d

∫ d

−d
fo(x) sin

kπx

d
dx =

2

d

∫ d

0

f(x) sin
kπx

d
dx

for k = 1, 2, . . .. In other words, we have eliminated the cosine series compo-
nent of the Fourier series representation Sf of f on [0, d]. For clarity, we will
use the notation Ssf for Sf for the Fourier sine series representation.

Example 3.1.6 Compute the Fourier sine series representation (Ssf)(x) of
f(x) = x, 0 ≤ x ≤ 1.

Solution For d = 1, we have

bk = 2

∫ 1

0

f(x) sin kπx dx = 2

∫ 1

0

x sin kπx dx

= 2

∫ 1

0

x

(− cos kπx

kπ

)′
dx =

−2

kπ

∫ 1

0

x (cos kπx)
′
dx

=
−2

kπ

{[
x cos kπx

]1

0
−

∫ 1

0

cos kπx dx
}

=
−2

kπ

{
cos kπ − 0−

[ sin kπx

kπ

]1

0

}

=
−2

kπ

{
(−1)k − sin kπ

kπ
+

sin 0

kπ

}
=
−2

kπ

{
(−1)k − 0 + 0

}

=
2

kπ
(−1)k+1 =

2

π

(−1)k+1

k
.

Thus, the Fourier sine series representation of f(x) = x is given by

2

π

∞∑

k=1

(−1)k+1

k
sin kπx.

�
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3.1.2 Orthogonality and computation

References

(1) MIT: Department of Computational Science and Engineering’s “Lecture
28: Fourier Series (Part 1) (YouTube), presented by Gilbert Strang.

(2) MIT: Department of Computational Science and Engineering’s “Lecture
29: Fourier Series (Part 2) (YouTube), presented by Gilbert Strang.

3.2 Orthogonal Projection

In Subunit 1.1, the extension of the dot product to the inner product, and
that of the Euclidean space R2 (or x− y plane) to the general inner-product
(vector) spaces, such as the ℓ2 sequence space and  L2 function space, allow
us to generalize the well-known geometric properties of the Pythagorean the-
orem and the Parallelogram law, studied in pre-college Plane Geometry, to
an arbitrary inner-product space. The derivations of these two properties are
presented in Subunits 3.2.1 and 3.2.2, respectively, simply by applying the
Cauchy-Schwarz inequality, studied in Subunit 1.1.2. In addition, the method
of orthogonal projection, discussed in Subunit 1.1.4, is applied to the function
space  L2 to show that for every function f ∈ PC∗

2π, the n − th partial sum
Snf of the Fourier series of f provides the best mean-square approximation
of f from the subspace V2n+1, with basis functions eikx = cos(kx) + isin(kx),
where −n ≤ k ≤ n. This will be proved, with illustrative examples, in Subunit
3.2.3.

3.2.1 Pythagorean theorem

Recall, from Subunit 1.1, the definition of the inner product and the notion
(1.1.2) of the corresponding norm measurement

‖x‖ =
√
〈x,x〉,

for any vector x in an inner-product space V. Also recall that two vectors
x,y ∈ V are said to be orthogonal to each other, if 〈x,y〉 = 0. Hence, for any
two vectors x and y that are orthogonal to each other, we have

‖x + y‖2 = 〈x + y,x + y〉
= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= 〈x,x〉+ 〈y,y〉 = ‖x‖2 + ‖y‖2.

(3.2.1)
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Observe that the three vectors x, y and z = x + y constitute a right
triangle, with x and y as the two legs, and z as the hypotenuse. Hence, the
identity (3.2.1) says that the square of the length (i.e. norm) of the hypotenuse
is equal to the sum of squares on the two legs of a right triangle. For the
special case where the vector space V is the Euclidean space R2, this is called
the Pythagorean Theorem. We have therefore extended the statement of the
Pythagorean Theorem from the Euclidean space R2 to any inner-product space
V, which includes both sequence and function spaces, that could be infinite
dimensional spaces. For convenience, the identity (3.2.1) is also called the
Pythagorean Theorem.

To apply the Pythagorean Theorem to our study of Fourier series, let us
again use the notation

ek(x) = eikx = cos kx+ i sin kx, (3.2.2)

and consider the subspace

V2n+1 = span{ek(x) : −n ≤ k ≤ n} (3.2.3)

of the inner-product space PC⋆2π, with inner product 〈〈·, ·〉〉 introduced in
(3.1.1). Since

〈〈ej , ek〉〉 =
1

2π

∫ π

−π
ej(x)ek(x) dx =

1

2π

∫ π

−π
ei(j−k)x dx = δj−k

for all j, k = −n, . . . , n, V2n+1 is a (2n + 1)-dimensional vector space with
orthonormal basis {e−n(x), · · · , en(x)}.

Now for any function f ∈ PC⋆2π, recall from Subunit 1.1.4 that the
orthogonal projection g2n+1 = P2n+1f of f ∈ PC⋆2π onto the subspace
V2n+1 is the function g2n+1 ∈ V2n+1, determined by the orthogonality of
f − g2n+1 to the entire space V2n+1; or equivalently, to its basis {e−n(x), · · · ,
en(x)} of V2n+1. This, in turn, is equivalent to the condition:

1

2π

∫ π

−π
[f(x) − g2n+1(x)]e−ikx dx = 0;

or equivalently,

1

2π

∫ π

−π
g2n+1(x)e−ikx dx =

1

2π

∫ π

−π
f(x)e−ikx dx = ck(f), (3.2.4)

for all k = −n, . . . , n. To draw the conclusion of the above derivation, we need
the following notation of the partial sums of a Fourier series.

Definition 3.2.1 Let f ∈ PC⋆2π. Then for n = 0, 1, . . . , the nth partial sum
of its Fourier series Sf is defined by

(Snf)(x) =

n∑

k=−n
cke

ikx. (3.2.5)
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Hence, in view of the fact that both functions, g2n+1 and Snf , are in
the same vector space V2n+1 with basis {e−n(x), · · · , en(x)}, it follows from
(3.2.4) that g2n+1 = Snf , as follows.

Theorem 3.2.1 Let f ∈ PC⋆2π. Then for each n = 0, 1, . . . , the orthogonal
projection P2n+1f of f from PC⋆2π to its subspace V2n+1 is the nth partial
sum of the Fourier series Sf of f, namely:

(P2n+1f)(x) = (Snf)(x). (3.2.6)

3.2.2 Parallelogram law

The Pythagorean Theorem studied in Subunit 3.2.1 has a natural gen-
eralization from a right triangle to a parallelogram. Indeed, if a rectangle is
partitioned into two right triangles by using one of the two diagonals, then
applying the Pythagorean Theorem to each of the two right triangles, we may
conclude that the sum of the squares on the two diagonals is the same as the
sum of the squares on the four sides of the rectangle. The reason is that the
two diagonals of a rectangle have the same length. The generalization from a
rectangle to an arbitrary parallelogram is to allow the two diagonals to have
different lengths. In the following, we will show, by using the inner product,
that the above statement (that the sum of the squares on the two diagonals is
equal to the sum of the squares on the four sides) holds for all parallelograms.

As in Subunit 3.2.1, let V be any inner-product space with inner product
〈x,y〉 and norm ‖x‖ =

√
〈x,x〉, for any vectors x,y ∈ V. Then assuming that

x and y are not parallel, we can formulate a parallelogram, with two opposite
sides given by x and the other two opposite sides given by y. The two diagonal
vectors are then given by x + y and x− y. Therefore, the sum of the squares
on the two diagonals is precisely ‖x+y‖2 + ‖x−y‖2, which can be expanded
and simplified as follows:

‖x + y‖2 + ‖x − y‖2 = 〈x + y,x + y〉+ 〈x− y,x− y〉
= (〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉)

+(〈x,x〉 − 〈x,y〉 − 〈y,x〉+ 〈−y,−y〉)
= 2〈x,x〉+ 2〈y,y〉 = 2‖x‖2 + 2‖y‖2,

(3.2.7)

where the right-hand side is the sum of the squares on the four sides of the
parallelogram. Therefore, the identity in (3.2.7) is called the Parallelogram
Law. Of course, the identity (3.2.7) is an extension from the Euclidean space
R2 to an arbitrary inner-product space V, which includes both sequence and
function spaces, that may be infinite dimensional.

In the following example, we use the inner product 〈·, ·〉 introduced in
Subunit 1.1, instead of the normalized inner product 〈〈·, ·〉〉 defined in (3.1.1).
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Example 3.2.1 Consider the inner-product space L2[0, 1], with inner prod-
uct defined in Subunit 1.1. Verify the validity of the Parallelogram Law by
using the function f(x) = x + 1 as two opposite sides, and the function
g(x) = x− 1 as the other two opposite sides, of a parallelogram.

Solution The areas of the squares on two adjacent sides of the parallelogram
are given by

‖f‖2 =

∫ 1

0

(f(x))2 dx = 1 + 1 +
1

3
;

and

‖g‖2 =

∫ 1

0

(g(x))2 dx = 1− 1 +
1

3
,

respectively. Hence, the sum of the squares on the four sides of the parallelo-
gram is given by 2[(1 +1 + 1

3) +(1−1 + 1
3 )] = 4 + 4

3 . On the other hand, since
the two diagonals are represented by f(x) + g(x) = 2x and f(x) − g(x) = 2,
the sum of the squares on the two diagonals is given by

‖f + g‖2 + ‖f − g‖2 =

∫ 1

0

(2x)2 dx+

∫ 1

0

(2)2 dx = 4× 1

3
+ 4 = 4 +

4

3
;

which agrees with the sum of the squares on the four sides of the parallelogram.
�

3.2.3 Best mean-square approximation

To prepare for our study of convergence of Fourier series in Subunit 3.4.1,
we recall the notion of the nth partial sums (Snf)(x), introduced in (3.2.13),
of the Fourier series (Sf)(x) in (3.1.3), and apply the Pythagorean Theorem
in Subunit 3.2.1 to Theorem 3.2.1 to derive the following result on best mean-
square approximation.

Theorem 3.2.2 Let f ∈ PC⋆2π. Then for each n = 0, 1, . . . , the best L2−
approximation of f from the subspace V2n+1 is achieved by the nth partial
sum Snf ∈ V2n+1, namely:

‖f − Snf‖2 ≤ ‖f − g‖2, for all g ∈ V2n+1. (3.2.8)

Proof; Let g ∈ V2n+1 be arbitrarily chosen, and observe that the function
h(x), defined by

h = Snf − g

is also in the space V2n+1. Hence, according to (3.2.6) in Theorem 3.2.1, the
function f − Snf is orthogonal to the function h = (Snf − g). This allows
us to apply the Pythagorean Theorem to the right triangle, with the two legs



FOURIER METHODS 109

(f−Snf) and h, and hypotenuse (f−Snf)+h = (f−Snf)+(Snf−g) = f−g,
to conclude that

‖f − Snf‖22 + ‖h‖22 = ‖f − g‖22,
which implies (3.2.8) and completes the proof of Theorem 3.2.2. �

Example 3.2.2 As an application of Theorem 3.2.2 to Example 3.1.1 in
Subunit 3.1, let f1(x) be defined by

f1(x) =

{
1, for 0 ≤ x ≤ π,
−1, for −π ≤ x < 0.

Determine the values of a and b, for which the norm measurement

‖f1(x)− (a cosx+ b sinx)‖2
is minimum.

Solution According to the solution of Example 3.1.1, the Fourier series ex-
pansion Sf1 of f1 is given by

(Sf1)(x) =
4

π

∞∑

k=0

sin(2k + 1)x

2k + 1
.

Hence, the first-order partial sum S1f1 of the Fourier series Sf1 is

(S1f1)(x) =
4

π
sinx,

by considering only the term with k = 0 in the above series expan-
sion. Therefore it follows from Theorem 3.2.2 that the smallest value of
‖f1(x)− (a cos x+ b sinx)‖2 is achieved by choosing a = 0 and b = 4

π
. �

Example 3.2.3 As another application of Theorem 3.2.2 to Example 3.1.2
in Subunit 3.1, let g1(x) be defined on [−π, π] by

g1(x) =

{
1, for |x| ≤ π

2 ,

0, for π
2 < |x| ≤ π.

Determine the values of a, b, and c, for which the norm measurement

‖g1(x) − (a+ b cosx+ c sinx)‖2

is minimum.

Solution According to the solution of Example 3.1.2, the Fourier series
expansion Sg1 of g1 is given by

(Sg1)(x) =
1

2
+

2

π

∞∑

k=0

(−1)k
cos(2k + 1)x

2k + 1
.
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Hence, the partial sum S1g1 of Sg1 is (S1g1)(x) = 1
2 by considering only

the term with k = 0 in the above series expansion. Therefore it follows from
Theorem 3.2.2 that the smallest value of ‖g1(x) − (a + b cosx + c sinx)‖2 is
achieved by choosing a = 1

2
, b = 0, and c = 0. �

3.3 Dirichlet’s and Fejér’s Kernels

Two important families of (integral) convolution kernels are introduced and
studied in this subunit. Firstly, the family of Dirichlets kernels, derived in
Subunit 3.3.1, is used as convolution kernels (with a given function f inPC∗

2π)
to yield the n − th partial sums Snf of the Fourier series of f , for all n =
0, 1, . . .. In Subunit 3.3.2, the family of Fejérs kernels is introduced as averages
of Dirichlets kernels. An elegant expression of Fejérs kernels is also derived in
this subunit, showing that Fejérs kernels are non-negative. Furthermore, it is
shown in Subunit 3.3.3 that the family of Fejérs kernels constitutes a positive
approximate identity. This important property is also applied in Subunit 3.3.3
to show that all continuous functions on the closed interval [−π, π] can be
uniformly approximated by trigonometric polynomials on the interval.

3.3.1 Partial sums as convolution with Dirichlet’s kernels

For any f ∈ PC⋆2π, the nth partial sum (Snf)(x) of the Fourier series expansion
(3.1.3) can be formulated as

(Snf)(x) =

n∑

k=−n
cke

ikx =

n∑

k=−n

( 1

2π

∫ π

−π
f(t)e−ikt dt

)
eikx

=

n∑

k=−n

1

2π

∫ π

−π
f(t)eik(x−t) dt

=
1

2π

∫ π

−π
f(t)Dn(x− t) dt, (3.3.1)

where

Dn(x) =
n∑

k=−n
eikx (3.3.2)

is called Dirichlet’s kernel of order n.

In other words, the nth partial sum Snf of the Fourier series expansion of
any function f ∈ PC⋆2π can be obtained by applying the (integral) convolution
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operation with the kernel Dn in (3.3.2), where the convolution operation is
defined as follows.

Definition 3.3.1 For the inner-product space PC⋆2π with inner product de-
fined in (3.1.1), the operation

(f ∗ g)(x) =
1

2π

∫ π

−π
f(t)g(x − t) dt (3.3.3)

is called the (integral) convolution of f, g ∈ PC⋆2π.

Remark 3.3.1 We remark that the convolution operation defined by (3.3.3)
is commutative, since

1

2π

∫ π

−π
f(t)g(x − t) dt =

1

2π

∫ π

−π
f(x − t)g(t) dt,

which can be easily verified by applying the 2π-periodicity property of f(x)
and g(x) in the change of the variable from (x− t) to t in the integration. �

Theorem 3.3.1 For n = 1, 2, 3, . . ., the Dirichlet kernel Dn(x), as defined in
(3.3.2), is given by

Dn(x) =
sin(n+ 1

2 )x

sin x
2

. (3.3.4)

To derive (3.3.4), we may apply the well-known summation formula for
finite geometric series, as follows:

Dn(x) = e−inx
2n∑

k=0

eikx = e−inx
1− ei(2n+1)x

1− eix

=
e−inx − ei(n+1)x

ei
x
2 (e−i

x
2 − ei x

2 )
=
e−i(n+ 1

2
)x − ei(n+ 1

2
)x

e−i
x
2 − ei x

2

=
(−2i) sin

(
n+ 1

2

)
x

(−2i) sin x
2

=
sin

(
n+ 1

2

)
x

sin x
2

. �

Remark 3.3.2 From the definition in (3.3.2), it is clear that Dn(0) = 2n+1.
Hence, the formula in (3.3.4) of Dn(x) for x 6= 0 also applies to x = 0 by
applying L’Hospital’s rule, namely:

lim
x→0

sin(n + 1
2
)x

sin x
2

= lim
x→0

(n+ 1
2
) cos(n+ 1

2
)x

1
2

cos x
2

= (2n+ 1)
cos 0

cos 0
= 2n+ 1.
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�

The graph of y = Dn(x), for n = 16, is displayed in Fig. 3.1. Observe the
sign changes of this graph at x = 2jπ

33 for j = 1, . . . , 32 and j = −32, . . . ,−1.
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FIGURE 3.1: Dirichlet’s kernel D16(x)

3.3.2 Césaro means and derivation of Fejér’s kernels

In this subunit, we introduce the notion of Césaro means (that is, arith-
metic averages) of Dirichlet’s kernels Dj(x) to formulate the following notion
of Fejér’s kernels σn of order n = 0, 1, 2, . . . , namely:

σn(x) =
1

n+ 1

n∑

j=0

Dj(x). (3.3.5)

To derive a useful formula for σn(x), we set z = eix and observe that

Dj(x) =
1− z2j+1

zj(1− z) =
1

z − 1
(zj+1 − 1

zj
),
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so that

(n+ 1)σn(x) = D0(x) + D1(x) + · · ·+ Dn(x)

=
1

z − 1
(z − 1) +

1

z − 1
(z2 − 1

z
) + · · ·+ 1

z − 1
(zn+1 − 1

zn
)

=
1

z − 1

(
z + z2 + · · ·+ zn+1 − 1− 1

z
− · · · − 1

zn
)

=
1

z − 1
(z − 1

zn
)
(
1 + z + z2 + · · ·+ zn

)

=
1

(z − 1)2
(z − 1

zn
)(zn+1 − 1)

=
(zn+1 − 1)2

zn(z − 1)2
=

(z
n+1

2 − z−n+1

2 )2

(z
1
2 − z− 1

2 )2

=
( sin (n+1)x

2

sin x
2

)2

.

Hence, Fejér’s kernels can be formulated as follows.

Theorem 3.3.2 For n = 1, 2, . . ., the nth order Fejér kernel σn(x), as defined
in (3.3.5), can be written as

σn(x) =
1

n+ 1

( sin (n+1)x
2

sin x
2

)2

. (3.3.6)

The graph of y = σn(x), for n = 16, is displayed in Fig. 3.2. Observe that
σn(x) ≥ 0, for all x ∈ R. This positivity property of Fejér’s kernels is the
key ingredient for them to constitute a positive approximate identity. This
property will be applied to prove that the set of trigonometric polynomials is
dense in the space of periodic continuous functions. This study is delayed to
the next subunit.
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FIGURE 3.2: Fejér’s kernel σ16(x)
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Next observe that since the nth partial sum Snf of the Fourier series
expansion of any function f ∈ PC⋆2π is precisely the (integral) convolution
of f with Dirichlet’s kernel Dn(x), we should be motivated to study the nth

Césaro means of the partial sums {(Sjf)(x) : j = 0, 1, . . .} and expect the
result to be the (integral) convolution of f with Fejér’s kernel σn(x), as in
(3.3.8) to be formulated below. But first let us write out the Césaro means
(Cnf)(x), as follows.

Definition 3.3.2 The nth-order Césaro means (Cnf)(x) of any function f ∈
PC⋆2π is defined by

(Cnf)(x) =
(S0f)(x) + · · ·+ (Snf)(x)

n+ 1
. (3.3.7)

Recall that V2n+1, as defined by (3.2.3), is a subspace of PC⋆2π. Hence,
since (Cnf)(x) is a linear combination of {(Sjf)(x) : 0 ≤ j ≤ n} which is a
subset of V2n+1, the Césaro means (Cnf)(x) is a function in V2n+1.

Remark 3.3.3 Let σn(x) be Fejér’s kernel of order n. It follows from (3.3.1)
and (3.3.5) that the Césaro means of the partial sums of the Fourier series
representation of any function f ∈ PC⋆2π is the following nth− degree trigono-
metric polynomial

(Cnf)(x) =
1

2π

∫ π

−π
f(t)σn(x− t) dt = (f ∗ σn)(x). (3.3.8)

�

3.3.3 Positive approximate identity

In this subunit, we introduce the concept of “positive approximate iden-
tity” and show that the sequence {σn(x)} of Fejér’s kernels has this important
property.

Theorem 3.3.3 The sequence {σn(x)} of Fejér’s kernels constitutes a “pos-
itive approximate identity”, meaning that it has the following properties:

(a) σn(x) ≥ 0, for all x;

(b)
1

2π

∫ π

−π
σn(x) dx = 1;

(c) for any positive number δ with 0 < δ < π,

sup
δ≤|x|≤π

σn(x)→ 0, as n→∞. (3.3.9)
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The first property is evident from (3.3.6), and the second property follows
from the definitions of Dk(x) and σn(x), while the third property follows from
the fact that | siny| ≤ 1 for all y ∈ R and | sin x

2 | ≥ | sin δ
2 | > 0 for δ ≤ |x| ≤ π.

�

The importance of the property of positive approximate identity of the
sequence {σn(x)} is the following theorem on uniform approximation of con-
tinuous periodic functions by trigonometric polynomials

Theorem 3.3.4 Let f be a continuous function on the closed interval [−π, π]
that satisfies f(−π) = f(π). Then the sequence of trigonometric polynomials
(Cnf)(x) = (f ∗ σn)(x) ∈ V2n+1, as defined in (3.3.8), converges uniformly to
f(x) for all x ∈ R; that is,

‖f −Cnf‖∞ → 0, as n→∞,

where

‖f −Cnf‖∞ = max{|f(x)− (Cnf)(x)| : x ∈ R} (3.3.10)

is called the uniform error of approximation of f by Cnf ∈ V2n+1.

Proof Let ǫ > 0 be arbitrarily given, and set M = ‖f‖∞. Then since
f is continuous on the closed and bounded interval [−π, π], it is uniformly
continuous on [−π, π], and therefore uniformly continuous on the real line R,
by the assumption f(−π) = f(π). Let δ > 0 be so chosen, that

|f(x) − f(t)| < ǫ

2
(3.3.11)

for all x, t with |x− t| < δ. On the other hand, by the third property of Fejér’s
kernels σn(x) in Theorem 3.3.3, there exists a positive integer N, such that

sup
δ≤|x−t|≤π

σn(x− t) ≤ ǫ

4M
(3.3.12)

for all n ≥ N . In addition, by consecutive application of the properties (b)
and (a) of σn(x) in the same theorem, we have

∣∣f(x) − (Cnf)(x)
∣∣ =

∣∣∣
1

2π

∫ π

−π
(f(x) − f(t)) σn(x− t) dt

∣∣∣

≤ 1

2π

∫ π

−π
|f(x)− f(t)| σn(x− t) dt.

Hence, when the integral over [−π, π] is partitioned into two integrals, with
one over 0 ≤ |t− x| < δ, and the other over δ ≤ |t − x| ≤ π, it follows from
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(3.3.11) and (3.3.12) that

|f(x)− (Cnf)(x)| ≤ 1

2π

∫

|x−t|<δ
|f(x) − f(t)| σn(x− t) dt

+
1

2π

∫

|x−t|≥δ
|f(x)− f(t)| σn(x− t) dt

<
ǫ

2

( 1

2π

∫ π

−π
σn(x− t) dt

)
+

1

2π

∫ π

−π
2M · ǫ

4M
dt

=
ǫ

2
+
ǫ

2
= ǫ.

That is, ‖f −Cnf‖∞ < ǫ for all n ≥ N , or equivalently,

‖f − Cnf‖∞ → 0, as n→∞.

This completes the proof of (3.3.10). �

Remark 3.3.4 Of course the interval [−π, π] can be replaced by any closed
and bounded interval [a, b] and the above theorem assures that any continu-
ous periodic function can be uniformly approximated as close as desired by
trigonometric polynomials with sufficiently high degrees. This result will be
applied in Subunit 3.4.1 to derive the result on the convergence of Fourier
series in the L2− norm.

3.4 Completeness

The main objective of this subunit is to establish both the pointwise and uni-
form convergence results of Fourier series, as well as the result on the density
of trigonometric polynomials in the L2 space of square-integrable functions.
Since there exist continuous 2π−periodic functions whose Fourier series di-
verge everywhere, the objective of Subunit 3.4.1 is to show that under the
condition of existence of one-sided derivatives, the Fourier series do converge.
On of the other hand, we will prove in Subunit 3.4.2 that trigonometric polyno-
mials are dense in L2(−π, π). Hence, since the partial sums Snf of the Fourier
series of f are orthogonal projections of f , and thus provide best trigonomet-
ric polynomial approximation of f in L2(−π, π), it follows that Fourier series
do converge in the L2(−π, π)−norm without any restriction at all.
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3.4.1 Pointwise and uniform convergence

Although the partial sums of the Fourier series expansion (Sf)(x) of any
square-integrable function f(x) provide the best approximation of f(x) in the
L2 norm, among all trigonometric polynomials of the same degree, as proved
in Theorem 3.2.2 in Subunit 3.2.3, it is not clear whether the Fourier series
(Sf)(x) would converge pointwise to f(x) (that is, at each fixed x ∈ (−π, π]).
The fact is that pointwise convergence is not assured, unless some smoothness
condition is imposed on the given function f(x). For example, there exists a
continuous 2π−periodic function whose Fourier series diverges at every x =
rπ, where r is any rational number. In this subunit, we will show that under
the assumption that if both one-sided derivatives of f(x) ∈ L2(−π, π] exist
for all x ∈ (−π, π], then the Fourier series Sf of f indeed converges pointwise.
Furthermore, we will also show that if the given 2π−periodic function f(x) is
continuous on (−π, π] and is almost everywhere differentiable, with derivative
f ′(x) ∈ L2(−π, π), then its Fourier series (Sf)(x) converges absolutely and
uniformly to f(x) for all x ∈ R. To facilitate the proof of the result on pointwise
convergence of Fourier series, we first derive the following inequality for any
orthonormal family, called Bessel’s inequality.

Theorem 3.4.1 Let {φk}, where k = 1, 2, . . . , n, be an orthonormal family
in an inner-product space V. Then for any f ∈ V and ck = 〈f, φk〉,

n∑

k=1

|ck|2 =

n∑

k=1

|〈f, φk〉|2 ≤ ‖f‖2.

The proof of the above theorem follows from the identity (3.2.1) in Subunit
3.2.1 for the derivation of the Pythagorean Theorem, namely:

0 ≤ ‖x − y‖2 = 〈x− y,x− y〉

= 〈x,x〉 − 〈x,y〉 − 〈y,x〉+ 〈−y,−y〉

= 〈x,x〉+ 〈y,y〉 = ‖x‖2 + ‖y‖2,
(3.4.1)

simply by setting x = f(x) and

y =

n∑

k=1

〈f, φk〉φk(x),

while observing that for such x and y, we have

〈x,y〉 = 〈y,x〉 = 〈y,y〉.
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Indeed, while

〈x,y〉 =

n∑

k=1

〈f, 〈f, φk〉φk〉

=

n∑

k=1

〈f, φk〉 〈f, φk〉

=

n∑

k=1

∣∣∣〈f, φk〉
∣∣∣
2

= 〈y,x〉

it follows from the property:

〈φk, φj〉 = δk−j

of the orthonormal family {φk} that

〈y,y〉 =

n∑

k=1

n∑

j=1

〈
〈f, φk〉φk, 〈f, φj〉φj

〉

=

n∑

k=1

n∑

j=1

〈f, φk〉 〈f, φj〉 〈φk, φj〉

=
n∑

k=1

n∑

j=1

〈f, φk〉 〈f, φj〉 δk−j

=

n∑

k=1

∣∣∣〈f, φk〉
∣∣∣
2

as well. �

Example 3.4.1 Verify that the family of functions

φk(x) = ei2πkx, −n ≤ k ≤ n,

constitute an orthonormal family of their algebraic span V2n+1 in V = L2(0, 1].
Then compute 〈f, φk〉 and ||f ||2, where f(x) = x, and determine the error:

En = ||f ||2 −
n∑

k=−n
|〈f, φk〉|2.
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Solution For k 6= j,

〈φk, φj〉 =

∫ 1

0

ei2πkx e−i2πjx dx

=

∫ 1

0

ei2π(k−j)x dx

=
1

i2π(k − j) e
i2π(k−j)x

∣∣∣
1

0

=
1

i2π(k − j) (1− 1) = 0.

For k = j,

〈φk, φj〉 = 〈φk, φk〉 =

∫ 1

0

ei2π(k−k)x dx =

∫ 1

0

dx = 1.

Hence, the family of functions φk, k = −n, . . . , n, is orthonormal.

Next,

||f ||2 =

∫ 1

0

x2 dx =
1

3
;

and for k 6= 0,

〈f, φk〉 =

∫ 1

0

xe−i2πkx dx

= x
e−i2πkx

−i2πk

∣∣∣∣
1

0

−
∫ 1

0

1

−i2πk e−i2πkx dx

=
i

2πk
− i

2πk
· 0 =

i

2πk
;

while for k = 0,

〈f, φk〉 =

∫ 1

0

x dx =
1

2
.
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Hence, the error is given by:

En = ||f ||2 −
n∑

k=−n

∣∣∣〈f, φk〉
∣∣∣
2

= 1
3 −

(
2

n∑

k=1

( 1

2πk

)2
+ (

1

2
)2

)

=
1

3
− 1

2π2

n∑

k=1

1

k2
− 1

4

=
1

12
− 1

2π2

n∑

k=1

1

k2
.

�

We remark that
∞∑

k=1

1

k2
=
π2

6

is the solution of the Basel problem to be discussed in Subunit 3.5.2. Hence,

En >
1

12
− 1

2π2

∞∑

k=1

1

k2
=

1

12
− 1

2π2

π2

6
= 0.

We are now ready to establish the following pointwise convergence result.

Theorem 3.4.2 Let f ∈ L2(−π, π] be extended periodically to R. Then for
any x0 ∈ R, if both of the one-sided derivatives of f(x) exist and are finite at
x = x0; that is, if

f ′(x+
0 ) = lim

h→0+

f(x0 + h) − f(x+
0 )

h
,

f ′(x−0 ) = lim
h→0+

f(x0 − h)− f(x−0 )

−h
exist, then the Fourier series (Sf)(x) of f(x) converges to 1

2

(
f(x−0 ) + f(x+

0 )
)

at x = x0. Here, f(x+
0 ) and f(x−0 ) denote the right-hand and left-hand limits

of f at x0.

To prove this theorem, we first observe that in view of the 2π-periodic
extension of f(x),






f(π+) = f(−π+), f(−π−) = f(π−);

f ′(π+) = f ′(−π+), f ′(−π−) = f ′(π−).

(3.4.2)
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Secondly, recall from (3.3.1) of Subunit 3.3.1 that the partial sums Snf of
the Fourier series Sf of the 2π-periodic extension of f can be formulated as
follows:

(Snf)(x) =
1

2π

∫ π

−π
f(x − t)Dn(t) dt

=
1

2π

( ∫ 0

−π
+

∫ π

0

)(
f(x − t)Dn(t)

)
dt

=
1

2π

∫ π

0

(
f(x + t) + f(x − t)

)
Dn(t) dt,

where the change of the variables of integration u = −t for the integral over
[−π, 0] and the fact that Dn(−t) = Dn(t) have been applied. Since

1

2π

∫ π

0

Dn(t) dt =
1

2
,

by (3.3.2), we have, for any x = x0,

(Snf)(x0)− 1

2

(
f(x−0 ) + f(x+

0 )
)

=
1

2π

∫ π

0

(
f(x0 + t) + f(x0 − t)

)
−

(
f(x−0 ) + f(x+

0 )
)
Dn(t) dt

=

∫ π

0

h1(t) sinnt dt+

∫ π

0

h2(t) cosnt dt.

Here, in view of the formula of Dn(x) in (3.3.4), we have introduced the two
functions:

h1(t) =
cos t

2

2π sin t
2

(
f(x0 + t)− f(x+

0 ) + f(x0 − t)− f(x−0 )
)
;

h2(t) =
sin t

2

2π

(
f(x0 + t)− f(x+

0 ) + f(x0 − t)− f(x−0 )
)
.

It is clear that since | sin t
2 | ≤ 1 and f ∈ L2[0, π], we have h2 ∈ L2[0, π]. Also,

by the assumption that f ′(x+
0 ) and f ′(x−0 ) exist and the fact that t

π ≤ sin t
2

for all 0 ≤ t ≤ π, we may conclude that h1(t) is bounded on [0, π], so that
h1 ∈ L2[0, π] as well.

Next, observe that the two families
{

1√
π

sin t, · · · , 1√
π

sinnt

}

and {
1√
2π
,

1√
π

cos t, · · · , 1√
π

cosnt

}
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are orthonormal families in L2[−π, π]. So, if we extend h1 ∈ L2[0, π] to an odd
function in L2[−π, π] and h2 ∈ L2[0, π] to an even function in L2[−π, π], we
may simplify the Fourier coefficients of the extended functions as follows:






a0(h1) =

∫ π

−π
h1(x)

1√
2π

dx = 0,

ak(h1) =
1√
π

∫ π

−π
h1(x) cos kx dx = 0. k = 1, . . . , n;

bk(h1) =
1√
π

∫ π

−π
h1(x) sin kx dx =

2√
π

∫ π

0

h1(x) sin kx dx,

and






a0(h2) =

∫ π

−π
h2(x)

1√
2π

dx =

√
2

π

∫ π

0

h2(x) dx,

ak(h2) =
1√
π

∫ π

−π
h2(x) cos kx dx =

2√
π

∫ π

0

h2(x) cos kx dx, k = 1, . . . , n;

bk(h2) =
1√
π

∫ π

−π
h2(x) sin kx dx = 0.

Therefore, it follows from the above Theorem 3.4.1 that the sequences
{an(h2)} and {bn(h1)} converge to zero. The reason is that for the infinite
series

∑ |an(h2)|2 to converge, the sequence {|an(h2)|2} must tend to zero.
This implies that {an(h2)} converges to zero. Similarly, {bn(h1)} also con-
verges to zero. That is, we have

lim
n→∞

(Snf)(x0)− 1
2

(
f(x−0 ) + f(x+

0 )
)

= limn→∞
( ∫ π

0
h1(t) sinnt dt+

∫ π
0
h2(t) cosnt dt

)
= 0. (3.4.3)

�

As a continuation of the pointwise convergence result in Theorem 3.4.2,
we will show that if f ′(x) is also in L2(−π, π], then the 2π-periodic extension
of f(x), also denoted by f(x), must be a continuous function in R, and that
its Fourier series (Sf)(x) converges uniformly in R.

Theorem 3.4.3 Let f(x) be a continuous function in L2[−π, π] with f(−π) =
f(π), such that its derivative f ′(x), defined almost everywhere, is in L2(−π, π].
Then the Fourier series (Sf)(x) converges absolutely and uniformly to f(x).
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For the proof of Theorem 3.4.3, we will show that the sequence of partial
sums (Snf)(x) of (Sf)(x) is a uniformly convergent Cauchy sequence, in that
for an arbitrarily given ǫ > 0, there exists some natural number N , such that
for all n > m ≥ N ,

|(Snf)(x) − (Smf)(x)| ≤
∑

m≤|k|<n
|ck(f)| < ǫ (3.4.4)

for all x ∈ R. Indeed, if (3.4.4) holds for all x, then the convergence of
{(Snf)(x)} is uniform; and since each (Snf)(x) is a 2π-periodic continuous
function, the uniform limit is also 2π-periodic continuous. Hence, in view of
the point-wise convergence result from Theorem 3.4.2, the limit function is
f(x). Note that the last inequality in (3.4.4) implies absolute convergence as
well.

In the following, since we will consider the Fourier series of both f(x) and
its derivative f ′(x), we must use the notations ck(f) and ck(f ′) to distinguish
the Fourier coefficients of the two functions. Now, applying integration by
parts, we have, for k 6= 0,

ck(f) =
1

2π

∫ π

−π
f(x) e−ikx dx

=
i

2πk

(
e−ikπ f(π) − eikπ f(−π)

)
− i

2πk

∫ π

−π
f ′(x)e−ikx dx

=
−i
2πk

ck(f ′),

where we have assumed that f(π) = f(−π) by the 2π-periodic extension of
f(x). Therefore by the Cauchy-Schwarz inequality from Subunit 1.1.2, we have

∑

k 6=0

|ck(f)| ≤ 1

2π

( ∑

k 6=0

1

k2

)1

2
(∑

k 6=0

|ck(f ′)|2
) 1

2

.

On the other hand, since f ′ ∈ L2(−π, π], it follows from the Bessel inequality
from Theorem 3.4.1 that

∑

k 6=0

|ck(f ′)|2 ≤ ||f ′||2 <∞.

Hence, since
∞∑

k=1

1

k2
<∞,

the infinite series
∑

k 6=0 |ck(f)| converges, so that the sequence {∑|k|<n ck(f)}
is a Cauchy sequence. That is, given ǫ > 0, there exists a natural number N ,
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such that ∑

m≤|k|<n
|ck(f)| < ǫ,

for all integers m and n with n > m ≥ N . This yields

|(Snf)(x) − (Smf)(x)| = |∑m<|k|≤n ck(f)eikx|

≤
∑

m<|k|≤n |ck(f)| < ǫ,

as desired. �

Example 3.4.2 Let f(x) be a continuous function on the closed interval
[−π, π]. Construct a linear polynomial p(x), such that the function

f̃(x) = f(x) − p(x)

has continuous 2π-periodic extension to R. Show that if f ′(x) exists almost

everywhere with f ′ ∈ L2(−π, π], then the Fourier series (Sf̃ )(x) converges

uniformly to f̃(x) on [−π, π].

Solution The linear polynomial

p(x) =
f(π) − f(−π)

2π
(x+ π) + f(−π)

clearly satisfies p(−π) = f(−π) and p(π) = f(π). Hence,

f̃(−π) = f(−π) − p(−π) = 0,

and
f̃(π) = f(π) − p(π) = 0;

so that f̃(−π) = f̃(π) = 0, and f̃ has continuous 2π-periodic extension to R.
Furthermore, since

f̃ ′(x) = f ′(x) + c

where c = −((f(π) − f(−π))/2π) is a constant, f̃ ′ ∈ L2(−π, π]. By Theorem

3.4.3, the Fourier series (Sf̃ )(x) of f̃(x) converges uniformly to f̃(x) on [−π, π].
�

3.4.2 Trigonometric approximation

In this subunit, we will apply Theorem 3.3.4 from Subunit 3.3.3 to show that
the family of trigonometric polynomials is dense in the space L2[−π, π], mean-
ing that for any function f ∈ L2[−π, π], there exists a sequence of trigono-
metric polynomials pn, such that

‖f − pn‖22 =

∫ π

−π
|f(x) − p(x)|2 dx



FOURIER METHODS 125

converges to 0, as n tends to infinity.

Without requiring any knowledge of the Lebesgue integration theory, we
only consider piecewise continuous functions in L2[−π, π]. Hence, to apply
Theorem 3.3.4 from Subunit 3.3.3, it is sufficient to show that every piecewise
continuous function can be approximated as closely as we wish by continuous
functions in the L2[−π, π] norm.

Since a piecewise continuous 2π-periodic function has at most finitely many
jump discontinuities, we may assume that f(x) has m jump discontinuities at
x1, · · · , xm in (−π, π], where −π < x1 < · · · < xm ≤ π, and set

xm+1 = x1 + 2π.

Let η > 0 be so chosen that the intervals

Ik = [xk − η, xk + η], k = 1, . . . , m

do not overlap. This allows us to introduce a 2π-periodic continuous function
f̃(x), defined by:

f̃(x) = f(x), for x /∈ ∪mk=1Ik, (3.4.5)

and

f̃(x) =
f(xk + η) − f(xk − η)

2η
(x− xk + η) + f(xk − η), (3.4.6)

for x ∈ Ik and k = 1, . . . , m.
For each k = 1, . . . , m, extend the function f(x) from the open interval

(xk, xk+1) to a continuous function on the closed interval [xk, xk+1], by taking
the one-sided limits; that is,

f(xk) = f(x+
k ) = lim

0<x−xk→0
f(x),

and
f(xk+1) = f(x−k+1) = lim

0<xk+1−x→0
f(x).

Then the extended function, being continuous on a compact interval, is
bounded. Set

Mk = max
kk≤x≤xk+1

|f(x)|. (3.4.7)

Hence, in view of (3.4.5)–(3.4.7), we have

||f − f̃ ||22 =

∫ π

−π
|f(x)− f̃(x)|2 dx

=

m∑

k=1

∫

Ik

|f(x) − f̃(x)|2 dx

≤ 4η

m∑

k=1

M2
k .
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Given η > 0. By choosing η so small that

0 < η < ǫ2
/(

4

m∑

k=1

M2
k

)
,

we have

||f − f̃ ||2 < ǫ.

Next, since f̃ ∈ C[−π, π] with f̃(−π) = f̃(π), we may apply Theorem 3.3.4
of Subunit 3.3.3 to conclude that the trigonometric polynomials

p̃n(x) =
(
Cnf̃

)
(x),

defined by the Césaro means of the nth partial sums Snf̃ of the Fourier series
of f̃ , satisfy

||f̃ − p̃n||∞ → 0,

for n→∞. Hence, by introducing the trigonometric polynomials

pn(x) =
(
Cnf

)
(x),

we have

||f − pn||2 = ||(f − f̃) + (f̃ −Cnf̃) + (Cnf̃ − Cnf)||2

≤ ||f − f̃ ||2 + ||f̃ − p̃n||2 + ||Cn(f̃ − f)||2

≤ 2 ||f − f̃ ||2 + ||f̃ − p̃n||2

≤
√

2π
(

2||f − f̃ ||∞ + ||f̃ − p̃n||∞
)

< 6
√

2π ǫ+
√

2π ||f̃ − p̃n||∞,

where the result (3.3.8) of Subunit 3.3.2 has been applied to conclude that

||Cn(f̃ − f)||2 = ||σn ⋆ (f̃ − f)||2
≤ ||f̃ − f ||2.

Hence, since ||f̃ − p̃n||∞ → 0 and ǫ > 0 is arbitrary, we have established the
following result.

Theorem 3.4.4 For any f ∈ L2(−π, π], there exist trigonometric polynomi-
als pn(x), such that

||f − pn||2 → 0.
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The result in Theorem 3.4.4 implies that the family {eikx}, k = 0,±1,±2, . . . ,
is complete in L2(−π, π].

As an immediate application of Theorem 3.4.4, we may conclude from the
best mean-square approximation result for partial sums of Fourier series in
Theorem 3.2.2 of Subunit 3.2.3 the following.

Theorem 3.4.5 Let f ∈ L2(−π, π] and Snf be the nth partial sum of its
Fourier series Sf. Then

||f − Snf ||2 → 0

as n→∞. That is, the Fourier series Sf of f converges to f in the L2-norm.

3.5 Parseval’s Identity

As a consequence of the “completeness” property, studied in Subunit 3.4, we
will show that Bessel’s inequality, as derived in Theorem 3.4.1 of Subunit
3.4.1, becomes an equality, when the orthonormal family is complete. In other
words, if {φk} is a complete orthonormal family in an inner-product space V,
then we have the following equality, called Parseval’s identity:

∑

k

|〈f, φk〉|2 = ||f ||2

for all f ∈ V. A complete orthonormal family will be called an orthonormal
basis.

The objective of this subunit is to derive such identities for various or-
thonormal bases in Subunit 3.5.1, and to apply Parseval’s identity to solving
the Basel problem in Subunit 3.5.2. Furthermore, we will introduce the no-
tions of Bernoulli numbers and Bernoulli polynomials to study the extension
of Basel problem by L. Euler to all even powers, and to derive Euler’s exten-
sion by applying the Fourier series of Bernoulli polynomials. Euler’s solution
of the general Basel problem will be called Euler’s formula, shown in (3..5.5).

3.5.1 Derivation of Parseval’s identities

Let {φk} be an orthonormal family in an inner-product space V, such that
{φk} is complete in V, in the sense that every f ∈ V can be approximated as
closely as we wish, by finite linear combinations of {φk}. More precisely, for
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an given ǫ > 0, there exist constants d1, · · · , dn such that

||f −
n∑

k=1

dkφk|| < ǫ.

Then by the same derivation of Theorem 3.2.2 of Subunit 3.2.3, we may con-
clude that

||f −
n∑

k=1

〈f, φk〉φk|| ≤ ||f −
n∑

k=1

dkφk||

for all choices of {d1, · · · , dn}, so that

lim
n→∞

||f −
n∑

k=1

〈f, φk〉φk|| = 0. (3.5.1)

For this reason, a complete orthonormal family {φk} of V is called an or-
thonormal basis of V. In Theorem 3.4.1 of Subunit 3.4.1, if the orthonormal
family {φk} is an orthonormal basis, then Bessel’s inequality becomes Parse-
val’s identity as follow.

Theorem 3.5.1 Let {φk} be an orthonormal basis of an inner-prodcut space
V. Then for every f ∈ V,

∑

k

|〈f, φk〉|2 = ||f ||2. (3.5.2)

This is called Parseval’s identity.

The proof of (3.5.2) is an extension of that of Theorem 3.4.1 in Subunit
3.4.1. Indeed, for x = f(x) and

yn = −
∑

|k|≤n
〈f, φk〉φk,

recall that
〈f,yn〉 = 〈yn, f〉 = −||yn||2,

so that it follows from Bessel’s inequality in Theorem 3.4.1 that

0 ≤ ||f ||2−
∑

|k|≤n
|〈f, φk〉|2

= ||f ||2− ||yn||2

= ||f ||2 + 〈f,yn〉+ 〈yn, f〉+ ||yn||2

= ||f + yn||2 =
∣∣∣
∣∣∣f −

∑

|k|≤n
〈f, φk〉

∣∣∣
∣∣∣
2

→ 0,
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by applying (3.5.1). �

In the following, we apply Theorem 3.5.1 to various orthonormal bases
of the L2 spaces, with the first being the Fourier expansion of functions in
L2(π, π].

Theorem 3.5.2 Let f ∈ L2(−π, π] and {ck} be the sequence of Fourier coef-
ficients of f, namely: ck = 1

2π 〈f, ck〉 where ek(x) = eikx. Then

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑

k=−∞
|ck|2. (3.5.3)

Parseval’s identity in (3.5.3) assures that the “energy” of the sequence {ck}
of the Fourier coefficients of f ∈ L2(−π, π] preserves the energy of f .

When the interval [−π, π] is replaced by [−d, d] for any value d > 0, then
Parseval’s identity can be formulated as follows:

1

2d

∫ d

−d
|f(x)|2 dx =

∞∑

k=−∞
|ck|2, for all f ∈ L2[−d, d].

For the cosine and/or sine series, we have the following versions of Parse-
val’s identity:

(1) For the interval [−π, π]:

The Fourier cosine and sine coefficients in (3.1.5) of Subunit 3.1.1 satisfy
Parseval’s identity:

|a0|2
4

+
1

2

∞∑

k=1

(
|ak|2 + |bk|2

)
=

1

2π

∫ π

−π
|f(x)|2 dx,

for all f ∈ L2(−π, π].

(2) In general, for any d > 0, the Fourier cosine and sine coefficients in
(3.1.7) of Subunit 3.1.1 satisfy Parseval’s identity:

|a0|2
4

+
1

2

∞∑

k=1

(
|ak|2 + |bk|2

)
=

1

2d

∫ d

−d
|f(x)|2 dx.

To derive Parseval’s identity for cosine/sine series, we observe that since
c0 = a0/2 and

|ck|2 + |c−k|2 =
1

4
|ak − ibk|2 +

1

4
|ak + ibk|2

=
1

2

(
|ak|2 + |bk|2

)
, k = 1, 2, . . . ,
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where we have applied the identity that

|a− ib|2 + |a+ ib|2 = 2
(
|a|2 + |b|2),

which is valid for all complex numbers a and b. �

3.5.2 The Basel problem and Fourier method

Before the birth of Calculus in the 17th century, P. Mengoli proposed the
problem of finding the exact value of the infinite sum

∞∑

k=1

1

k2

in 1644. This so-called Basel Problem became one of the most popular prob-
lems since Calculus was introduced, and such outstanding mathematicians, as
the Bernoulli brothers, Jacob and Johan, tried but failed in meeting the chal-
lenge. It was not till the year 1735, when Johan Bernoulli’s student, L. Euler
solved the problem by using Taylor’s series expansion. In this subunit, we will
compute the infinite series

∞∑

k=1

1

k2n

for n = 1, 2, 3, by applying Parseval’s identity to certain appropriate function.
It must be pointed out that the notion of Fourier series was introduced many
years later by J. Fourier (1768-1830).

First Solution Let f1(x) be the function introduced in Example 3.1.1 of
Subunit 3.1.1. Then it is clear that ‖f1‖22 = 2π. Hence, it follows from (3.1.4)
in the same example that

1 =

∞∑

ℓ=−∞

∣∣∣
−2i

π(2ℓ+ 1)

∣∣∣
2

=
4

π2

( ∞∑

ℓ=0

1

(2ℓ+ 1)2
+

−1∑

ℓ=−∞

1

(2ℓ + 1)2

)

=
4

π2

( ∞∑

ℓ=0

1

(2ℓ+ 1)2
+

∞∑

ℓ=1

1

(2ℓ− 1)2

)

=
4

π2

( ∞∑

ℓ=0

1

(2ℓ+ 1)2
+

∞∑

ℓ=0

1

(2ℓ+ 1)2

)

=
8

π2

∞∑

ℓ=0

1

(2ℓ + 1)2
,
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or ∞∑

ℓ=0

1

(2ℓ + 1)2
=
π2

8
. (3.5.4)

To complete the solution, we simply partition the sum over k into two
sums, with one over even k’s and the other over odd k’s, namely:

∞∑

k=1

1

k2
=

∞∑

ℓ=1

1

(2ℓ)2
+

∞∑

ℓ=0

1

(2ℓ+ 1)2

=
1

4

∞∑

ℓ=1

1

ℓ2
+
π2

8
,

by applying (3.5.4), so that

∞∑

k=1

1

k2
=

(
1− 1

4

)−1 π2

8
=

4

3

π2

8
=
π2

6
.

�

Second Solution We may also select the function f(x) = x on the interval
[0, 1] in Example 3.4.1 of Subunit 3.4.1 to solve the Basel problem. Indeed,
from the error formula in Example 3.4.1, we have

0 < En =
1

12
− 1

2π2

n∑

k=1

1

k2
→ 0

as n→∞, yielding
∞∑

k=1

1

k2
=

2π2

12
=
π2

6
,

where En → 0 in view of Parseval’s identity. �

In the following two examples, we further explore the application of Par-
seval’s identity for Fourier series to computing higher-order infinite sums.

Example 3.5.1 Apply Parseval’s identity to compute
∑∞

k=1
1
k4 by selecting

an appropriate function f2 ∈ L2(−π, π].

Solution We choose f2(x) = |x| for x ∈ (−π, π] and extend this function
from (−π, π] to R by setting f2(x) = f2(x+ 2π), so that f2 ∈ PC⋆2π. Observe
that f ′2(x) = f1(x) in Example 3.1.1 of Subunit 3.1.1. Hence, by integration
by parts, we have, for k 6= 0,

ck(f2) =
1

2π

[
f2(x)

e−ikx

−ik
]π
−π
− 1

2π

∫ π

−π
f1(x)

e−ikx

−ik dx

=
−i
k
ck(f1),
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where the first term vanishes due to the fact that f2(−π) = f2(π). Since
c0(f2) = π

2 and c2ℓ(f1) = 0 for all ℓ 6= 0, we have

∞∑

k=−∞
|ck(f2)|2 =

π2

4
+

∞∑

ℓ=−∞

4

π2(2ℓ + 1)4

=
π2

4
+

8

π2

∞∑

ℓ=0

1

(2ℓ+ 1)4

=
π2

4
+

(
1− 1

24

)−1 8

π2

∞∑

k=1

1

k4
.

Therefore, by Parseval’s identity, we have

∞∑

k=1

1

k4
=

( 1

2π
‖f2‖22 −

π2

4

) 24

24 − 1

π2

8

=
(π2

3
− π2

4

) 24

24 − 1

π2

23
=
π4

90
.

�

Example 3.5.2 Select an appropriate function f3 ∈ PC⋆2π to compute the
exact value of

∑∞
k=1

1
k6 .

Solution We choose the odd function extension of

f3(x) =
π2

8
− 1

2
(x− π

2
)2, 0 ≤ x ≤ π,

by setting f3(x) = −f3(−x) for −π ≤ x < 0. Then extend f3(x) from (−π, π]
periodically to f3 ∈ PC⋆2π. Observe that

f ′3(x) =
π

2
− f2(x),

f3(−π) = f3(π) = 0, and that

1

2π
‖f3‖22 =

π4

120
.

Hence, by applying Parseval’s identity and by following the same method of
derivation in Example 3.5.1, we have

∞∑

k=1

1

k6
=

26

26 − 1

π2

8

1

2π
‖f3‖22

=
8π2

63
· π

4

120
=

π6

945
.

�
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3.5.3 Bernoulli numbers and Euler’s formula

As mentioned in Subunit 3.5.2, the Basel problem posed by P. Mengoli in
the year 1644, which created a lot of excitement among mathematicians, was
solved by L. Euler in 1735, before the introduction of Fourier series by J.
Fourier in the early 1800’s.

In fact, Euler not only solved the Basel problem, but also derived the exact
formula ∞∑

k=1

1

k2n
=

(−1)n−1 22n−1 π2n

(2n)!
b2n, (3.5.5)

for all n = 1, 2, . . . , where the b2n’s are the Bernoulli numbers, whose exact
values can be easily computed recursively. We will call (3.5.5) Euler’s formula.
The first three Bernoulli numbers b2n are:

b2 =
1

6
, b4 =

−1

30
, b6 =

1

42
.

On the other hand, the problem of finding the exact values of

∞∑

k=1

1

k2n+1
, n = 1, 2, . . .

remains unsolved, although Euler was able to compute the infinite sums for
at least n = 1, and n = 2 fairly accurately, of course without the computer
(in the 18th century).

In general, the Bernoulli numbers b0, b1, b2, · · · were introduced by Jacob
Bernoulli by using the Taylor series expansion of the function t/(et − 1), as
follows:

t

et − 1
=

∞∑

j=0

bj
j!
tj. (3.5.6)

Hence, it is clear that
b0 = 1. (3.5.7)

Now, apply the Taylor series expansion of et to write

t =

( ∞∑

j=0

bj
j!
tj

)
(et − 1)

=

( ∞∑

j=0

bj
j!
tj

)( ∞∑

k=1

1

k!
tj

)

=

∞∑

ℓ=1

ℓ∑

k=1

bℓ−k
(ℓ− k)! k!

tℓ.
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Hence, by applying (3.5.7), we have

∞∑

ℓ=2

ℓ∑

k=1

bℓ−k
(ℓ − k)! k!

tℓ = 0,

or equivalently,

ℓ∑

k=1

bℓ−k
(ℓ− k)! k!

= 0, ℓ = 2, 3, . . . .

By a change of indices, we may conclude that

j∑

k=0

bj−k
(j − k)! (k + 1)!

= 0, j = 1, 2, . . . .

Hence, b1, b2, . . . can be computed recursively, by applying the formula

bj = −
j∑

k=1

bj−k
(j − k)! (k + 1)!

(3.5.8)

for j = 1, 2, . . ., with initial value b0 = 1 as given in (3.5.7).

The function t/(et − 1) in (3.5.6) is called the generating function of the
Bernoulli numbers, which are the values bj = Bj(0) of the Bernoulli polyno-
mials Bn(x) evaluated at x = 0. Here, the Bernoulli polynomials are defined
by using the generating function:

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
, (3.5.9)

again by applying the Taylor series expansion. From (3.5.9), it is not difficult
to show that Bj(x) is a monic polynomial (that is, with 1 as its leading
coefficient), given by

Bn(x) =

n∑

k=0

(n
k

)
bk x

n−k. (3.5.10)

To derive the formula (3.5.10), we apply (3.5.6) and the Taylor series ex-
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pansion of ext to (3.5.9), yielding:

∞∑

n=0

Bn(x)
tn

n!
=

(
ext

) t

et − 1

=

( ∞∑

k=0

xk tk

k!

)( ∞∑

j=0

bj
j!
tj

)

=

∞∑

n=0

[ n∑

j=0

bj
(n − j)! j! x

n−j
]
tn

=

∞∑

n=0

[
n!

n∑

j=0

bj
(n− j)! j! x

n−j
]
tn

n!
.

Hence, equating the coefficients of tn/n!, we obtain

Bn(x) =

n∑

j=0

n! bj
(n − j)! j! x

n−j

=

n∑

j=0

(
n
j

)
bjx

n−j

Among the other important properties of the Bernoulli numbers and
Bernoulli polynomials, we only mention (but without proof) that

b1 = −1

2
and b2k+1 = 0, k = 1, 2, . . . (3.5.11)

and 




B0(x) = 1

B1(x) = x− 1
2

B′
n(x) = nBn−1(x)

Bn(1 − x) = (−1)nBn(x).

(3.5.12)

for n = 1, 2, . . ..

Let n be fixed, and consider the Bernoulli polynomial Bn(x) as a function
in L2[0, 1] to compute its Fourier coefficients ck = ck(Bn), k = 0,±1, . . .,
defined by

ck =

∫ 1

0

Bn(x) e−i2πkx dx. (3.5.13)
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To do so, we simply apply (3.5.12) to integrate (3.5.13) by parts, yielding

ck =
(−1)n−1 n!

(−2πik)n
, for k 6= 0,

while

c0 =

∫ 1

0

Bn(x) =
1

n+ 1

∫ 1

0

B′
n+1(x) dx

=
1

n+ 1

(
Bn+1(1) −Bn+1(0)

)

= 0,

because B2k+1 (1) = −b2k+1 = 0 and B2k (1) = B2k (0) for all k = 1, 2, . . ..
Since {ei2πk}, k = 0,±1,±2, . . ., is an orthonormal basis of L2[0, 1], we may
apply Parseval’s identity to conclude that

∫ 1

0

(
Bn(x)

)2
dx =

2(n!)2

(2π)2n

∞∑

k=1

1

k2n
. (3.5.14)

To compute the integral on the left of the equality (3.5.14), we again apply
(3.5.12) in the following computation of integration by parts, namely:

∫ 1

0

(
Bn(x)

)2
dx = Bn

Bn+1(x)

n+ 1

∣∣∣∣
1

0

−
∫ 1

0

n

n + 1
Bn−1(x)Bn+1(x) dx = · · ·

= (−1)n−1 n!
(n+1)···(2n−1)

∫ 1

0

B1(x) B2n−1(x) dx

= (−1)n−1 n!
(n+1)···(2n) B1(x) B2n(x)

∣∣∣∣
1

0

−(−1)n−1 n!
(n+1)···(2n)

∫ 1

0

B2n(x) dx

= (−1)n−1 n!

(n + 1) · · · (2n)

(
1
2B2n(1)− (−1

2 )B2n(0)
)

= (−1)n−1 (n!)2

(2n)!
b2n,

where we have applied the properties in (3.5.12), specifically B1(x) = x− 1
2 and

B2n+1(1) = −B2n+1(0) = −b2n+1 = 0. Hence, by putting this into (3.5.14),
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we obtain

∞∑

k=1

1

k2n
= (−1)n−1 (n!)2

(2n)!
b2n

(2π)2n

2(n!)2

=
(−1)n−122n−1 π2n

(2n)!
b2n

which agrees with Euler’s formula in (3.5.5).





Unit 4

TIME-FREQUENCY ANALYSIS

The Fourier transform (FT) introduced in this unit is an analogue of the se-
quence of Fourier coefficients of the Fourier series discussed in Unit 3, in that
the normalized integral over the circle in the definition of Fourier coefficients is
replaced by the integral over the real line to define the FT. While the Fourier
series is used to recover the given function it represents from the sequence
of Fourier coefficients, it is non-trivial to justify the validity of the seemingly
obvious formulation of the inverse Fourier transform (IFT) for the recovery of
a function from its FT. In this unit, the notions of localized FT (LFT) and
localized inverse FT (LIFT) will be introduced, and an identity that governs
the relationship between LFT and LIFT is also established, with the Gabor
transform, with certain Gaussian time window, as an example. The impor-
tance of the Gabor transform is due to the fact that the Fourier transform
of a Gaussian function remains to be a Gaussian function. The identity that
governs the relation between LFT and LIFT is also applied to verify the va-
lidity of the IFT formulation, by using the Gaussian function with variance
σ2 as the time localization window, and taking the limit, with σ2 approaching
to zero. Another important consequence of this identity is the Uncertainty
Principle, which states that the Gaussian is the only window function that
provides optimal simultaneous time-frequency localization with area of the
time-frequency window equal to 2. Discretization of any frequency-modulated
sliding time-window of the LFT at the integer lattice yields a family of local
time-frequency basis functions. Unfortunately, the Balian-Low restriction ex-
cludes any of such sliding time-window functions, including the Gaussian, to
attain finite area of the time-frequency window, while providing stability for
the family of local time-frequency basis functions, called a frame. This unit
ends with a discussion of a way for avoiding the Balian-Low restriction by
replacing the frequency-modulation of the sliding time-widow function with
modulation by certain cosine functions. More precisely, a family of stable lo-
cal cosine basis functions, sometimes called Malvar “wavelets, is introduced
to achieve good time-frequency localization.

139
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4.1 Fourier Transform

In this first subunit, after introducing the definition of the Fourier transform
and the motivation of the transform in Subunit 4.1.1, the basic properties are
derived in Subunit 4.1.2. Application to deriving the Sampling Theorem is
given in Subunit 4.1.3, and other applications in Subunit 4.1.4.

4.1.1 Definition and essence of the Fourier transform

The notion of Fourier transform is introduced in this subunit. When a
non-periodic function f is considered as an analog signal with time-domain
(−∞,∞), the Fourier transform of f , defined by

f̂(ω) =

∫ ∞

−∞
f(x)e−ixω dx (4.1.1)

is used to reveal the frequency content of f . An important application of the
Fourier transform is that it takes the convolution filtering of the analog signal
f(t) to multiplication of its Fourier transform f̂(ω) by the Fourier transform of
the convolution filter. Precisely, if h denotes the filter with Fourier transform
ĥ, then while the filtering output is given by the convolution operation:

(f ⋆ h)(x) =

∫ ∞

−∞
f(t)h(x − t) dt, (4.1.2)

the Fourier transform of this output is simply the product of f̂(ω) and ĥ(ω);
that is,

(
f̂ ⋆ h

)
(ω) = ĥ(ω)f̂(ω). (4.1.3)

Hence, in applications to signal processing, the filtering objective can be met
by properly designing the filter characteristic, |ĥ(ω)|. For example, to suppress
or remove low-frequency contents, the filter function h should be so chosen
that the magnitude of its Fourier transform, |ĥ(ω)|, is small for the frequency
variable ω in some neighborhood of the zero frequency 0, called the stop-band.
For the choice of such high-pass (or more generally, band-pass) filters h, the
convolution operation of the input signal f with h reduces (or even removes)
the low-frequency content of f . On the other hand, if the low-frequency content
is to be retained and the high-frequency content to be suppressed, then the
low-pass filter h(t) should have the property |ĥ(ω)| .= 1 for small values of |ω|,
while |ĥ(ω)| .= 0 for larger values of |ω|.
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4.1.2 Properties of the Fourier transform

References

(1) Stanford University: Department of Electrical Engineering‘s “Lecture 1:
The Fourier Transforms and Its Applications (YouTube), “Lecture 6:
The Fourier Transforms and Its Applications (YouTube), and “Lecture
8: The Fourier Transforms and Its Applications (YouTube).

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 319–329. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

4.1.3 Sampling Theorem

References

(1) MIT: Department of Computational Science and Engineering’s “Lecture
36: Sampling Theorem (YouTube), presented by Gilbert Strang.

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 336–338. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

4.2 Convolution Filter and Gaussian Kernel

In this subunit, convolution filtering with a filter function h(t), as defined in
(4.1.2) of Subunit 4.1.1, is elaborated. Since the Gaussian function provides
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a lowpass filter with the optimal time-frequency localization property, we will
compute its Fourier transform in Subunit 4.2.2. By applying the Gaussian,
the inverse Fourier transform is introduced and studied in Subunit 4.2.3.

4.2.1 Convolution filter

References

(1) Gilbert Strang’s Computational Science and Engineering: “Lecture 32:
Convolution (Part 2), Filtering (YouTube).

4.2.2 Fourier transform of the Gaussian

The Gaussian function is the only function whose Fourier transform remains to
be a Gaussian function, or more precisely, another Gaussian function. Hence,
since the Gaussian is a low-pass filter function, it is theoretically the optimal
filter for simultaneous time-frequency localization. The Gaussian function is
defined by

gσ(x) =
1

2σ
√
π
e−( x

2σ )2 , (4.2.1)

where σ > 0. The division by 2σ
√
π in (4.2.1) is to assure the integral to be

equal to 1, namely:

∫ ∞

−∞
gσ(x) dx = 1, all σ > 0. (4.2.2)

To prove (4.2.2), observe that by changing the Cartesian coordinates to polar
coordinates, we have

( ∫ ∞

−∞
e−x

2

dx
)2

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

=

∫ ∞

0

∫ π

−π
e−r

2

rdrdθ = 2π

∫ ∞

0

e−r
2

rdr = π,

which yields ∫ ∞

−∞
e−x

2

dx =
√
π (4.2.3)

after taking the square-root. Hence, for any parameter α > 0, by the change
of variables of integration from

√
α x to x, we have

∫ ∞

−∞
e−αx

2

dx =

√
π

α
, (4.2.4)
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which implies that (4.2.2) holds, by choosing α = 1/(4σ2).

To compute the Fourier transform of gσ(x), we first consider v(x) = e−x
2

and formulate its Fourier transform as

G(ω) = v̂(ω) =

∫ ∞

−∞
e−x

2

e−iωx dx

=

∫ ∞

−∞
e−(x2+iωx) dx.

Then for y ∈ R, we have

G(−iy) =

∫ ∞

−∞
e−(x2+yx) dx

= ey
2/4

∫ ∞

−∞
e−(x+y/2)2 dx =

√
πey

2/4. (4.2.5)

Hence, when the function

H(z) = G(z) −√πe−z2/4 (4.2.6)

is considered as a function of a complex variable z, H(z) is analytic for all
z ∈ C (or H(z) is called an entire function) and H(−iy) = 0 for all y ∈ R.
Recall that if an analytic function vanishes on a set with at least a finite
accumulation point in the domain of analyticity, then the function vanishes
identically in this domain. Hence, H(z) = 0 for all z ∈ C, so that

G(ω)−
√
πe−ω

2/4 = 0, ω ∈ R;

or

v̂(ω) =

∫ ∞

−∞
e−x

2

e−iωx dx =
√
πe−ω

2/4. (4.2.7)

This enables us to compute the Fourier transform ĝσ(ω) of gσ(x); namely,
in view of (4.2.1) and (4.2.7), we have

ĝσ(ω) =
1

2σ
√
π

∫ ∞

−∞
e−( x

2σ )2 e−iωx dx

=
1

2σ
√
π

∫ ∞

−∞
e−y

2

e−i(2σω)y (2σ) dy

=
1√
π

√
π e−(2σω)2/4 = e−(σω)2 .

In other words, we have established the following result.
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Theorem 4.2.1 The Fourier transform of the Gaussian function gσ(x),
where σ > 0, defined in (4.2.1), is given by

ĝσ(ω) = e−σ
2ω2

. (4.2.8)

Remark 4.2.1 By (4.2.7) and the change of variables of integration, we also
have ∫ ∞

−∞
e−σ

2ω2

eixω dω =

√
π

σ
e−

(
x
2σ

)
2

= 2πgσ(x). (4.2.9)

This formula will be used to the study of the inversion of the Fourier transform
in the next subunit. �

4.2.3 Inverse Fourier transform

An immediate application of the Guassian function is to introduce the inverse
Fourier transform. Let us first consider the companion transform F# of the
Fourier transform F, defined by

(F#g)(x) =
1

2π

∫ ∞

−∞
g(ω)eixωdω (4.2.10)

for g ∈ L1(R).

Remark 4.2.2 Observe that F# introduced in (4.2.10) is related to the
Fourier transform F by

(F#g)(x) =
1

2π
(Fg)(−x) =

1

2π
(Fḡ)(x). (4.2.11)

�

Let f̂ denote the Fourier transform of a given function f ∈ L1(R). Then

under the additional assumption that f̂ ∈ L1(R), we can recover f from f̂(ω)
by applying F#, as in the following theorem.

Theorem 4.2.2 Let f be in L1(R) or L2(R), and let f̂(ω) denote its Fourier

transform. Then under the assumption that f̂ ∈ L1(R), the given function f
can be recovered by applying the formula:

f(x) =
(
F#f̂

)
(x) =

1

2π

∫ ∞

−∞
f̂(ω)eixω dω. (4.2.12)

That is, F# = F−1 is the inverse Fourier transform (or IFT).



TIME-FREQUENCY ANALYSIS 145

Remark 4.2.3 The assumption f ∈ L1(R) in Theorem 4.2.2 is not necessary
and can be replaced by f ∈ L2(R). To remove this assumption, let us consider
the following truncation of f

fN (x) =

{
f(x), for |x| ≤ N,
0, for |x| > N,

(4.2.13)

for N = 1, 2, . . .. Observe that each fN is compactly supported. Thus, from
the assumption that f ∈ L2(R), we have fN ∈ (L2∩L1)(R), so that f̂N is well-
defined. In addition, since {fN} converges to f in L2(R), {fN} is a Cauchy
sequence in L2(R). In the following, by applying the Gaussian function and
its Fourier transform, it will be shown that for N = 1, 2, . . .,

‖f̂N‖22 = 2π‖fN‖22. (4.2.14)

It then follows from (4.2.14) and the fact that {fN} is a Cauchy sequence

in L2(R), that the sequence {f̂N (ω)}N is also a Cauchy sequence in L2(R),
and its limit, being a function in L2(R), can be used as the definition of the
Fourier transform of f .

Let us now give a precise definition of the Fourier transform of L2 functions.

Definition 4.2.1 Let f ∈ L2(R) and fN (x) be the truncations of f defined

by (4.2.13). Then the Fourier transform f̂(ω) of f is defined as the limit of

{f̂N (ω)}N in L2(R).

Remark 4.2.4 The Fourier transform f̂ for f ∈ L2(R) defined in Definition
4.2.1 is independent of the choice of {fN} in the sense that if {gN} with
gN ∈ (L2 ∩L1)(R) converges to f in L2(R), then {ĝN} has the same limit as

{f̂N}. Indeed, by (4.2.14), we have

‖ĝN − f̂N‖2 = 2π‖gN − fN‖2
≤ 2π‖gN − f‖2 + 2π‖f − fN‖2 → 0

as N →∞. Thus, {ĝN} and {f̂N} have the same limit. �

Before we are ready to prove the above theorem on the Inverse Fourier
transform, we need to establish the following two results.

Theorem 4.2.3 Let f̂(ω) be the Fourier transform of f ∈ L2(R). Then

‖f̂‖22 = 2π‖f‖22. (4.2.15)

The identity (4.2.15) is called Plancherel’s formula.

To prove the theorem, we observe that by the definition of the Fourier
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transform for functions in L2(R), it is sufficient to derive the identity (4.2.15)
for the truncated functions; and in view of Remark 4.2.4, we may assume that
f ∈ (L1 ∩ L2)(R) and consider its corresponding “autocorrelation function”
F (x), defined by

F (x) =

∫ ∞

−∞
f(t)f(t − x)dt. (4.2.16)

By setting
f−(x) = f(−x),

the autocorrelation can be viewed as the convolution of f and f−, namely:

F (x) = (f ∗ f−)(x),

so that it can be seen that F (x) is in both L∞ and L1(R). Furthermore, it is
also easy to see that

F̂ (ω) = f̂(ω)f̂(ω) = |f̂(ω)|2 (4.2.17)

Therefore, by applying (4.2.17) together with (4.2.8), we obtain
∫ ∞

−∞
|f̂(ω)|2e−σ2ω2

dω =

∫ ∞

−∞
f̂(ω)f̂(ω) ĝσ(ω)dω

=

∫ ∞

−∞

{ ∫ ∞

−∞
f(y)e−iωy

∫ ∞

−∞
f(x)eiωxĝσ(ω) dx dy

}
dω

=

∫ ∞

−∞
f(y)

∫ ∞

−∞
f(x)

{ ∫ ∞

−∞
ĝσ(ω)ei(x−y)ωdω

}
dx dy

= 2π

∫ ∞

−∞
f(y)

∫ ∞

−∞
f(x)gσ(x− y) dx dy

= 2π

∫ ∞

−∞
f(y)

∫ ∞

−∞
f(y + t)gσ(t) dt dy

= 2π

∫ ∞

−∞
F (−t)gσ(t) dt = 2π(F ∗ gσ)(0),

where the 4th equality follows from (4.2.9) in Remark 4.2.1 and the change
of variables of integration t = x − y is applied to derive the last second
line. In addition, since F (x) is a continuous function and {gσ} constitutes a
convolution identity, meaning that {gσ} converges to the delta distribution,
it follows from Theorem 4.2.1 with x0 = 0 that by taking the limit as σ→ 0,

‖f̂‖22 = 2πF (0) = 2π‖f‖22. (4.2.18)

This completes the proof of Theorem 4.2.3. �

As a consequence of Theorem 4.2.3, we have the following result, also called
Plancherel’s formula.
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Theorem 4.2.4 Let f, g ∈ L2(R). Then

〈f, g〉 =
1

2π
〈f̂ , ĝ〉. (4.2.19)

We only derive (4.2.19) for real-valued functions, since the complex-valued
setting is similar, though requires more calculation. For real-valued f(x) and
g(x), since

‖f ± g‖22 = ‖f‖22 ± 2〈f, g〉+ ‖g‖22,
we have

〈f, g〉 =
1

4

(
‖f + g‖22 − ‖f − g‖22

)
.

Hence, it follows from (4.2.15) (with f replaced by (f + g) and (f − g), re-
spectively) that

〈f, g〉 =
1

4

1

2π

(
‖f̂ + ĝ‖22 − ‖f̂ − ĝ‖22

)

=
1

2π
〈 f̂ , ĝ 〉.

�

The following result, though similar to the formulation of (4.2.19), is more
elementary and can be proved by a straight-forward change of order of inte-
grations.

Theorem 4.2.5 Let f, g ∈ L2(R). Then

〈 f̂ , g 〉 = 〈 ĝ, f 〉. (4.2.20)

To prove this theorem, it is sufficient to derive (4.2.20) for f, g ∈ (L1 ∩
L2)(R), since the completion of (L1 ∩ L2)(R) in L2(R) is L2(R). Under this
additional assumption, we may apply Fubini’s theorem to interchange the
order of integrations. Thus, we have

〈f̂ , g〉 =

∫ ∞

−∞

{∫ ∞

−∞
f(x) e−iyx dx

}
g(y) dy

=

∫ ∞

−∞
f(x)

{∫ ∞

−∞
g(y) e−ixy dy

}
dx

=

∫ ∞

−∞
f(x) ĝ(x) dx = 〈 ĝ, f 〉.

�

We are now ready to prove the result on the Inverse Fourier transform.
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Proof of Theorem 4.2.2 To prove Theorem 4.2.2, we set g = f̂ and apply
(4.2.11), Theorem 4.2.5, and Theorem 4.2.4, consecutively, to compute

‖f − F#g‖22 = ‖f‖22 − 〈f,F#g〉 − 〈F#g, f〉 + ‖F#g‖22

= ‖f‖22 −
1

2π
〈f,F g〉 − 1

2π
〈F ḡ, f〉 + (

1

2π
)2‖F g‖22

= ‖f‖22 −
1

2π
〈F g, f〉 − 1

2π
〈F ḡ, f̄〉+ (

1

2π
)2(2π)‖g‖22

= ‖f‖2 − 1

2π
〈f̂ , g〉 − 1

2π
〈f̂ , g〉 +

1

2π
‖g‖22

= ‖f‖22 −
1

2π
〈f̂ , f̂〉 − 1

2π
〈f̂ , f̂〉 +

1

2π
‖f̂‖22

= ‖f‖22 −
1

2π
‖f̂‖22 −

1

2π
‖f̂‖22 +

1

2π
‖f̂‖22

= ‖f‖22 −
1

2π
‖f̂‖22 = ‖f‖22 − ‖f‖22 = 0.

Here, we have used the fact that ‖h̄‖2 = ‖h‖2 and g = f̂ . Hence,

(f − F#g)(x) = 0

for almost all x, which implies the validity of (4.2.12). �

Remark 4.2.5 Since the operator F# can be used to recover f from its
Fourier transform f̂ , as long as f̂ ∈ L1(R), we will replace this notation by
F−1, or

F
−1 = F

#, (4.2.21)

called the inverse Fourier transform, IFT.

4.3 Localized Fourier Transform

In this subunit, the Fourier transform studied in Subunit 4.1 is localized by
introducing a (sliding) time-window function. As an example, the Gabor trans-
form, formulated by selecting a certain Gaussian function as the time-window,
is discussed in some detail. In addition, it will be shown that the original func-
tion can be recovered by using a suitable corresponding (sliding) frequency-
window function to localize the inverse Fourier transform. In Subunit 4.3.1,
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the notion of short-time Fourier transform (STFT) is introduced as an ex-
ample of the general localized Fourier transform (LFT) with time-window
u(t), along with its corresponding localized inverse Fourier transform (LIFT)
with frequency window v(ξ). The relationship between the time and frequency
window functions u(t) and v(ξ) is derived in Subunit 4.3.3 to assure perfect
recovery by the LIFT from the LFT. This result is an extension to the general
setting from the Gabor transform studied in Subunit 4.3.2.

4.3.1 Short-time Fourier Transform (STFT)

To compute the Fourier transform of a given function f(x), if it is truncated
by some characteristic function χ(a,b)(x), then computation of

(
fχ(a,b)

)∧
(ω) =

∫ b

a

f(x)e−iωx dx

is certainly simpler than that of f̂(ω). In general, a more desirable window
function u(x) could be used in place of the characteristic function χ(a,b)(x),
and this window should be allowed to slide (continuously) along the x-axis,
instead of partitioning the x-axis into disjoint intervals. This is the key idea
of the so-called “short-time” Fourier transform (STFT). Since this transform
localizes the function f(x) before the Fourier transform is applied, we will also
call it localized Fourier transform (LFT), as follows.

Definition 4.3.1 Let u ∈
(
L1 ∩L2

)
(R) and x ∈ R. Then for any f ∈ L2(R),

the integral transform

(
Fuf

)
(x, ω) =

∫ ∞

−∞
f(t)u(t − x)e−iωt dt (4.3.1)

is called the localized Fourier transform (LFT) or short-time Fourier transform
(STFT) of the function f(x) at the time-frequency (or space-frequency) point
(x, ω) ∈ R2.

Remark 4.3.1 In contrast with the Fourier transformation F that takes a
function f(x) from the time (or spatial) domain R to f̂(ω) in the frequency
domain R, the LFT Fu, with “time-window” function u(x), takes f(x) from the
time (or spatial) domain R to the time-frequency domain R2. For this reason,
we use t (instead of x) as the dummy variable for the integration in (4.3.1),
while reserving the variable x as the time component of the time-frequency
coordinate (x, ω) ∈ R2. �

To localize the inverse Fourier transform, a topic to be studied in Subunit
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4.3.3 later, we will use another window function v to define the localized
inverse Fourier transform of the function f̂(ω), as follows.

Definition 4.3.2 Let v ∈
(
L1 ∩ L2

)
(R) and ω ∈ R. Then for any f(x) ∈

L2(R) with Fourier transform f̂(ω), the integral transform

(
F#
v f̂

)
(x, ω) =

1

2π

∫ ∞

−∞
f̂(ξ)v(ξ − ω)eixξdξ (4.3.2)

is called the localized inverse Fourier transform (LIFT) of f̂(ω) at the time-
frequency (or spatial-frequency) point (x, ω) ∈ R2.

Here, the notation F# from (4.2.12) is adopted, since we will be interested
in recovering the given function f from its LFT or STFT. This result will be
derived in Subunit 4.3.3, by choosing a suitable frequency-window function v
associated with the time-window function u. In the next Subunit 4.3.2, we will
use the Gaussian function gσ(x) defined in (4.2.1), with certain specific choice
of σ > 0, as the window function u to demonstrate the power of the LFT.
More precisely, by selecting the value σ = 1/(2

√
π), we will introduce the

so-called Gabor transform which has the important property that the given
function f can be recovered from its Gabor transform, simply by taking the
inverse Fourier transform.

4.3.2 Gabor transform

If the Gaussian function gσ(x) defined in (4.2.1) of Subunit 4.2.2, with σ =
1/(2
√
π), is used as the function u(x) in (4.3.1), then since gσ is certainly in

(L1 ∩ L2)(R), it can be used as a time-window for the LFT (or STFT). This
particular LFT is called the Gabor transform, defined as follows.

Definition 4.3.3 The integral transform

(Gf)(x, ω) =

∫ ∞

−∞
f(t)e−π(t−x)2 e−itω dt (4.3.3)

of functions f ∈ L1(R) is called the Gabor transform of f(x) at the (x, ω)
position of the time-frequency domain R2.

The reason for the choice of σ = 1/(2
√
π) is that to recover f(x) from

its Gabor transform (Gf)(x, ω), we may simply apply the inverse Fourier
transformation F−1 = F# as defined in (4.2.10) and (4.2.20), with the integral
over the frequency domain, namely:

f(x) =
1

2π

∫ ∞

−∞
(Gf)(x, ω)eixωdω. (4.3.4)
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This formula holds even for measurable functions f(x) with at most poly-
nomial growth in R, since by using the Gaussian as the window function, both
of the integrals in LFT and the inverse Fourier transform always exist and are
finite. The formula is an application of Theorem 4.3.2 to be established in
the next Subunit 4.3.3, by using the following three properties of the window
function u(x) = e−π(x)2 :

(a) u(0) = 1 ;

(b) û(ω) = e−
1
4π (ω)2 ;

(b) û(−ω) = û(ω).

The first two properties hold for the window function u(x) = gσ(x) with

σ = 1/(2
√
π), since u(x) = e−σ

2x2

and û(σ) = ĝσ(ω) = e−σ
2ω2

for σ =
1/(2
√
π) as well, by applying Theorem 4.2.1 of Subunit 4.2.2.

4.3.3 Inverse of localized Fourier transform

In this subunit, we will first show that if u ∈
(
L1 ∩ L2

)
(R) with Fourier

transform û(ω) also in
(
L1 ∩ L2

)
(R), then by choosing v(ω) = (Fū)(ω) =

û(−ω) for the LIFT F#
v in (4.3.2), we have simultaneous time and frequency

localization, as follows.

Theorem 4.3.1 Let u ∈
(
L1 ∩ L2

)
(R) with Fourier transform Fu = û ∈(

L1 ∩ L2

)
(R). Then for any f ∈ L1(R),

(
Fuf

)
(x, ω) = e−ixω

(
F

#
u⋆ f̂

)
(x, ω), (4.3.5)

for (x, ω) ∈ R2, when u⋆ is defined by

u⋆(ξ) = û(−ξ), for ξ ∈ R.

Proof The proof of (4.3.5) follows by applying Plancherel’s formula (4.2.19)
in Theorem 4.2.4 of Subunit 4.2.3. Indeed, by considering the function

g(t) = u(t− x)eiωt,

it follows from (4.2.19) that

ĝ(ξ) = ̂̄u(ξ − ω)e−ix(ξ−ω) = û(ω − ξ)e−ix(ξ−ω),
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so that for fixed (x, ω),

(
Fuf

)
(x, ω) = 〈f, g〉 =

1

2π
〈f̂ , ĝ〉

=
1

2π

∫ ∞

−∞
f̂(ξ)û(ω − ξ) eix(ξ−ω) dξ

= e−ixω
1

2π

∫ ∞

−∞
f̂(ξ)u⋆(ξ − ω)eixξdξ

= e−ixω
(

F
#
u⋆ f̂

)
(x, ω).

�

As an application of the above theorem, we derive the following formula
for recovering the given function f from its LFT.

Theorem 4.3.2 Let u ∈
(
L1 ∩ L2

)
(R) with Fourier transform û ∈

(
L1 ∩

L2

)
(R), such that u(0) 6= 0. Then for any f ∈

(
L1 ∩ L2

)
(R) with f̂ ∈ L1(R),

f(x) =
1

u(0)

1

2π

∫ ∞

−∞
(Fuf)(x, ω) eixωdω. (4.3.6)

The derivation of (4.3.6) follows from Theorem 4.3.1 by multiplying both
sides of (4.3.5) with eixω and then taking the integral; namely,

1

2π

∫ ∞

−∞
(Fuf)(x, ω)eixωdω =

1

2π

∫ ∞

−∞
(F#
u⋆ f̂)(x, ω)dω

=
1

2π

∫ ∞

−∞
f̂(ξ)eixξ

( 1

2π

∫ ∞

−∞
û
(
− (ξ − ω)

)
dω

)
dξ

=
1

2π

∫ ∞

−∞
f̂(ξ)eixξ

( 1

2π

∫ ∞

−∞
û(y)dy

)
dξ

=
1

2π

∫ ∞

−∞
f̂(ξ)eixξ

( 1

2π

∫ ∞

−∞
û(y)ei0y dy

)
dξ

=
1

2π

∫ ∞

−∞
f̂(ξ)eixξu(0)dξ

= u(0)
( 1

2π

∫ ∞

−∞
f̂(ξ)eixξdξ

)
= u(0)f(x),

where Theorem 4.2.2 is applied to both û and f̂ which are assumed to be in
L1(R). �
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4.4 Uncertainty Principle

The main objective of this subunit is to introduce the notions of center and
width of window functions for the purpose of quantifying the localization
property of any given function and its Fourier transform. As already shown
in the previous subunit, for simultaneous time and frequency localization,
and hence for function recovery, the frequency localization window function
is essentially the Fourier transform of the time localization window function.
Hence, there is always a balance between localization in the time and frequency
domains, in that to achieve better localization in the time-domain, localization
in the frequency-domain must be sacrificed by a corresponding amount; and
vise versa. In this regard, it is natural to consider the product of the widths
of the time-window and frequency-window. We will derive the lower bound of
this product for all choices of window functions and show that the Gaussian
function is the only window function that achieves this lower bound. This
result, called the uncertainty principle, will also be derived in this subunit.

4.4.1 Time-frequency localization window measurement

To quantify the localization properties of the LFT and LIFT, we introduce
the notion of “window center” and “window width” in the following.

Definition 4.4.1 Let u ∈
(
L1 ∩ L2

)
(R) be a nonzero function such that

xu(x) ∈ L2(R). Then

x⋆ =
1

‖u‖22

∫ ∞

−∞
x|u(x)|2 dx (4.4.1)

is called the center of the window function u(x), and

∆u =
{ 1

‖u‖22

∫ ∞

−∞
(x− x⋆)2|u(x)|2 dx

}1/2

(4.4.2)

is called the radius of u(x). In addition, the window width of u(x) is defined
by 2∆u.

Observe that for u ∈ L2(R), if xu(x) ∈ L2(R), then xu(x)2 ∈ L1(R).
Thus, the center x⋆ is well-defined. In view of the simultaneous time-frequency
localization identity (4.3.5) of Subunit 4.3.3, it is imperative to come up with
window functions u(x) such that both xu(x) and ωû(ω) are in L2(R) in order
to achieve finite window widths 2∆u and 2∆u⋆, as defined in (4.4.3)–(4.4.4).
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Example 4.4.1 The window function

u(x) = χ(− 1
2
, 1
2
)(x)

with

∫ ∞

−∞
u(x) dx =

∫ 1
2

− 1
2

1 dx = 1

and center x⋆ = 0 has finite ∆u, but ∆u⋆ =∞.

Solution Clearly, with

‖u‖22 =

∫ 1
2

− 1
2

12 dx = 1,

we have

x⋆ =
1

||u||22

∫ ∞

−∞
xu(x)2 dx =

∫ 1
2

− 1
2

x dx = 0

and

∆2
u =

1

||u||22

∫ ∞

−∞
x2u(x)2 dx =

∫ 1
2

− 1
2

x2 dx =
1

12

is finite. On the other hand,

û(ω) =

∫ 1

2

− 1

2

e−iωx dx =
e−iω/2 − eiω/2

−iω

=
sin(ω/2)

ω/2
.

Hence, u⋆(ω) = û(−ω) = û(ω), the center of the frequency window function
u⋆ is ω⋆ = 0, and the window radius is ∆ω⋆ =∞, since

∫ ∞

−∞

∣∣ωû(ω)
∣∣2 dω = 4

∫ ∞

−∞
sin2(

ω

2
)dω =∞.

�

4.4.2 Gaussian as optimal time-frequency window

The most commonly used time-window function is the Gaussian function

gα(x) = e−αx
2

with parameter α > 0. Recall from (4.2.4) of Subunit 4.2.2 that

∫ ∞

−∞
gα(x) dx =

√
π

α
.
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Hence, to compute its window width, we differentiate both sides of the above
equation with respect to α, and then set α = 1/(2σ2), to yield

∫ ∞

−∞
x2e−2( x

2σ )2 dx =
1

2

√
π
( 1

2σ2

)−3/2

,

so that ∫ ∞

−∞
x2g2

σ(x) dx =
1

(2σ
√
π)2

√
π

2
23/2σ3,

where gσ(x) is the normalized Gaussian defined in (4.2.1). Since gσ is an even
function, the center x∗ of gσ is 0. In addition, since

∫ ∞

−∞
g2
σ(x) dx =

1

(2σ
√
π)2

∫ ∞

−∞
e−2( x

2σ )2 dx

=
1

(2σ
√
π)2

(√
2σ

)√
π,

we also have

(
∆gσ

)2
=

∫ ∞

−∞
x2g2

σ(x) dx
/∫ ∞

−∞
g2
σ(x) dx

=

√
π

2
23/2σ3

/
(
√

2σ
√
π) = σ2,

so that the radius of the window function gσ is

∆gσ = σ. (4.4.3)

Hence, the window width of gσ is 2σ.

To compute the window width of the Fourier transform ĝσ of gσ, we re-
write the Fourier transform ĝα(ω) in (4.2.8) as

ĝσ(ω) = e−(ω/2η)2 with η =
1

2σ
,

so that ĝσ(ω) = cgη(ω) for some suitable normalization constant c. This allows

us to conclude, by applying the result ∆gη = η in (4.4.3), that ∆
bgσ

= η =
1

2σ
;

so that the width of the window function ĝσ is 2∆
bgσ

=
1

σ
. We summarize the

above results in the following theorem.

Theorem 4.4.1 The radii of the window functions of the Gaussian function
gσ(x) and its Fourier transform ĝσ(ω) are given by

∆gσ = σ, ∆
bgσ

=
1

2σ
; (4.4.4)
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so that the area of the time-frequency localization window in R2, defined by

[
−∆gσ , ∆gσ

]
×

[
−∆

bgσ
, ∆

bgσ

]
(4.4.5)

is always the same value 2, independent of σ, namely:

(
2∆gσ

)(
2∆

bgσ

)
= 2. (4.4.6)

It turns out that the area = 2 is the smallest among all time-frequency
localization windows

[
−∆u, ∆u

]
×

[
−∆

bu, ∆
bu

]
, where u ∈ (L1 ∩L2)(R), as

asserted by the following so-called “uncertainty principle”.

Theorem 4.4.2 Let u ∈
(
L1 ∩ L2

)
(R) with Fourier transform û(ω). Then

∆u∆
bu ≥

1

2
, (4.4.7)

where ∆u or ∆
bu may be infinite. Furthermore, equality in (4.4.7) holds if and

only if

u(x) = cgσ(x− b) (4.4.8)

for any σ > 0, b ∈ R, and c 6= 0.

In other words, the Gaussian function is the only time-window function that
provides optimal time-frequency localization. The proof of Theorem 4.4.2 will
be given in the next subunit.

4.4.3 Derivation of the Uncertainty Principle

To prove Theorem 4.4.2 in the previous subunit, we may assume, without
loss of generality, that the centers of u(x) and û(ω) are x⋆ = 0 and ω⋆ = 0,
respectively. Hence,

(
∆u∆

bu

)2

=
1

‖u‖22 ‖û‖22

(∫ ∞

−∞
x2|u(x)|2 dx

) ( ∫ ∞

−∞
ω2|û(ω)|2dω

)
. (4.4.9)

In (4.4.9), we may apply Plancherel’s formula to conclude that

∫ ∞

−∞
ω2|û(ω)|2dω = ‖û′‖22 = 2π‖u′‖22. (4.4.10)

Here, we remark that if the integral on the left of (4.4.10) is finite, then both

û′ and u′ exist almost everywhere. In addition, in the denominator of (4.4.9),
we have ‖û‖22 = 2π‖u‖22, again by the Plancherel formula. Therefore, applying
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the Cauchy-Schwarz inequality, we obtain

(
∆u∆

bu

)2

= ‖u‖−4
2

∫ ∞

−∞
|xu(x)|2 dx

∫ ∞

−∞
|u′(x)|2 dx

≥ ‖u‖−4
2

( ∫ ∞

−∞
|xu(x)u′(x)| dx

)2

≥ ‖u‖−4
2

∣∣∣
∫ ∞

−∞
Re {xu(x)u′(x)} dx

∣∣∣
2

. (4.4.11)

But since

x
d

dx
|u(x)|2 = x

d

dx
u(x)u(x)

= x
(
u(x)u′(x) + u′(x)u(x)

)

= 2Re {xu(x)u′(x)},

the right-hand side of (4.4.11) can be written as

‖u‖−4
2

{1

2

∫ ∞

−∞

(
x
d

dx
|u(x)|2

)
dx

}2

=
1

4
‖u‖−4

2

{[
x|u(x)|2

]∞
−∞
−

∫ ∞

−∞
|u(x)|2 dx

}2

=
1

4
‖u‖−4

2 ‖u‖42 =
1

4
, (4.4.12)

and hence, ∆u∆
bu ≥ 1

2 . In both (4.4.11) and (4.4.12), we have assumed that
u ∈ PC(R). In addition, since u ∈ L2(R) or |u|2 ∈ L1(R), the function |u(x)|2
must decay to 0 faster than 1

x
, when |x| → ∞. That (4.4.7) and (4.4.9) are

valid for any u ∈ (L1 ∩L2)(R) follows from a standard “density” argument of

closureL2

(
PC(R)

)
= L2(R).

Finally, if the inequality in (4.4.7) becomes equality, we recall from the
derivation of the Cauchy-Schwarz inequality that

|xu(x)| = r|u′(x)| (4.4.13)

for some constant r > 0 and

±Re xu(x)u′(x) = |xu(x)u′(x)|. (4.4.14)

From (4.4.13), we have
xu(x) = ru′(x)eiθ(x) (4.4.15)



158 SAYLOR MA 304

for some real-valued function θ(x). Hence, by (4.4.14) together with (4.4.15),
we may conclude that

±Re r|u′(x)|2eiθ(x) = r|u′(x)|2.

Thus ±Re(eiθ(x)) = 1, which implies that ±eiθ(x) is the constant function 1.
Therefore, (4.4.15) becomes

u′(x)

u(x)
=

1

r
x or

u′(x)

u(x)
=
−1

r
x,

or equivalently,

u(x) = c̃ex
2/2r or u(x) = c̃e−x

2/2r.

But since r > 0 and u(x) ∈ L1(R), u(x) cannot be c̃ex
2/2r and must be the

Gaussian function
u(x) = c̃e−α

2x2

with α2 = 1
2r > 0. In the above argument, we have assumed that the center

x⋆ of the time-window function u(x) is x⋆ = 0. Therefore, in general, u(x) can
be formulated as

u(x) = cgσ(x− b)
for σ = 1

2α and some c 6= 0, x⋆ = b ∈ R. This completes the proof of the
uncertainty principle. �

4.5 Time-Frequency Bases

Since computation of the LFT (or STFT) and its corresponding inverse, or
LIFT, is very costly, particularly when the Gaussian is used as the window
function, this subunit is devoted to the study of time-frequency analysis by
considering sampling of the LFT (Fūf)(x, ω) of f ∈ (L1 ∩ L2)(R), where the
complex conjugate u(x) of u ∈ (L1 ∩L2)(R) is used as the time-window func-
tion. Again, for the sake of low computational cost, only uniform discretization
is considered. Let a > 0 be the spacing between two neighboring sample points
in the time-domain, and let b > 0 denote the sampling scale in frequency space;
that is, by sampling the frequency domain R at the discrete set of points 2πkb,
for integers k. Analogous to the uncertainty principle studied in Subunit 4.4,
we will study the Balian-Low restriction on the product of sampling rate a and
sampling scale b, namely: 0 < ab ≤ 1. This is the restriction for the sampled
basis-functions to constitute a complete family of functions in the space L2(R),
regardless of the choice of the window functions. A detailed discussion is given
in Subunit 4.5.2, in terms of the “frame” condition. We will also demonstrate
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a way of getting around the Balian-Low restriction by replacing the LFT with
the localized cosine transform, by introducing the notion of localized cosine
basis in Subunit 4.5.3, and introduce a class of admissible window functions in
Subunit 5.5.4 with the so-called Malvar wavelets as a class of demonstrative
examples. .

4.5.1 Balian-Low restriction

Let Z denote the set of all integers. By sampling the LFT (Fūf)(x, ω) of f at
(x, ω) = (m, 2πk), with m, k ∈ Z, we may formulate the discrete LFT as the
inner product of the given function f with a family of basis-functions hm,k(x),
namely:

(Fūf)(m, 2πk) =

∫ ∞

−∞
f(x)u(x −m)e−i2πkx dx

=

∫ ∞

−∞
f(x)hm,k(x) dx = 〈f, hm,k〉

where the basis functions hm,k(x) are defined by

hm,k(x) = u(x−m)ei2πkx. (4.5.1)

Remark 4.5.1 Since e−i2πkx = e−i2πk(x−m), the functions hm,k(x) in (4.5.1)
can be formulated as

hm,k(x) = Hk(x−m) (4.5.2)

with Hk(x) defined by
Hk(x) = u(x)ei2πkx.

While Hk(x) localizes the frequency k ∈ Z of f(x) only at the time sample
point m = 0, hm,k(x) = Hk(x −m) localizes the same frequency of f(x) at
any time instant m ∈ Z. �

Remark 4.5.2 On the other hand, if the frequency k ∈ Z in the definition
(4.5.1) is not an integer, such as

hm,kb = u(x−m) ei2πbkx,

where b 6∈ Z, then (4.5.2) does not apply. Later, we will also consider

(Fūf)(ma, 2πkb) = 〈f, hma,kb〉

with a, b > 0 and
hma,kb(x) = u(x−ma) ei2πkbx. (4.5.3)

�
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Example 4.5.1 Let u(x) be the characteristic function of [−1
2 ,

1
2); that is,

u(x) = χ[− 1
2
, 1
2
) (x) =

{
1, for −1

2 ≤ x < 1
2 ,

0, otherwise.

Then the family {hm,k(x)}, m, k ∈ Z defined by (4.5.1) with this particular
time-window function u(x), constitutes an orthonormal basis of L2(R).

Solution For each m ∈ Z,

〈hm,k, hm,ℓ〉 =

∫ m+ 1
2

m− 1
2

ei2π(k−ℓ)x dx = δk−ℓ.

For all k, ℓ ∈ Z and m 6= n,

〈hm,k, hn,ℓ〉 = 0,

since the supports of hm,k and hn,ℓ do not overlap. Hence,

〈hm,k, hn,ℓ〉 = δm−nδk−ℓ;

or {hm,k(x)}, m, k ∈ Z, is an orthonormal family.

In addition, for any f ∈ L2(R), by setting fm(x) = f(x + m), where
−1

2 ≤ x ≤ 1
2 , namely:

fm(x) = u(x)f(x+ m) = χ[− 1

2
, 1
2
) (x)f(x +m), −1

2
≤ x ≤ 1

2
,

and extending it to R periodically such that fm(x+1) = fm(x), then for each
fixed m ∈ Z, the Fourier series

(Sfm)(x) =

∞∑

k=−∞
ak(fm) ei2πkx

of fm(x) converges to fm(x) in L2[−1
2 ,

1
2 ], where

ak(fm) =

∫ 1

2

−1

2

fm(t) e−i2πkt dt =

∫ 1

2

− 1

2

f(t + m) e−i2πkt dt

=

∫ m+ 1
2

m− 1
2

f(y) e−i2πk(y−m) dy

=

∫ ∞

−∞
f(t)u(t −m) e−i2πkt dt = 〈f, hm,k〉.
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Thus, for each m ∈ Z, we have

f(x)u(x−m) = fm(x−m)u(x −m) =
(
(Sfm)(x−m)

)
u(x−m)

=

∞∑

k=−∞
ak(fm) ei2πk(x−m)u(x−m) =

∞∑

k=−∞
〈f, hm,k〉hm,k(x).

Hence, summing both sides over all m ∈ Z yields

∞∑

m=−∞
f(x)u(x−m) =

∞∑

m=−∞

∞∑

k=−∞
〈f, hm,k〉hm,k(x),

so that

f(x) =

∞∑

m=−∞
f(x)χ[m− 1

2
,m+ 1

2
)(x) =

∞∑

m=−∞
f(x)χ[− 1

2
, 1
2
)(x−m)

=

∞∑

m=−∞
f(x)u(x −m) =

∞∑

m=−∞

∞∑

k=−∞
〈f, hm,k〉hm,k(x),

where the convergence is in the L2(R)-norm. �

Remark 4.5.3 The limitation of the window function u(x) = χ[− 1
2
, 1
2
) (x)

in the above example is that it provides very poor frequency localization.
Unfortunately, the formulation of hm,k(x) in (4.5.1) cannot be improved by
too much, as dictated by the so-called “Balian-Low” restriction to be stated
in Theorem 4.5.1 in the the next Subunit 4.5.2 �

However, before we could fully understand the Balian-Low restriction, we
need to recall the notion of completeness, as studied in Subunit 3.4. In the
next subunit, we will see that the completeness property is guaranteed by any
family of functions in L2(R) that constitute a frame of L2(R).

4.5.2 Frames

Definition 4.5.1 A family of functions {hα(x)} in L2(R), α ∈ J , where J
denotes an infinite index set, such as Z and Z2, is called a frame of L2(R), if
there exist some constants A and B, with 0 < A ≤ B <∞, such that

A‖f‖22 ≤
∑

α∈J
|〈f, hα〉|2 ≤ B‖f‖22, (4.5.4)

for all f ∈ L2(R). Here, A and B are called frame bounds. Furthermore, if
A and B can be so chosen that A = B in (4.5.4), then {hα} is called a tight
frame.
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This definition of a complete family extends the notion of complete or-
thonormal family studied in Subunit 3.4.2 and Subunit 3.5.1.

Remark 4.5.4 If {hα}, α ∈ J , is a tight frame with frame bound A = B,

then the family {h̃α(x)}, defined by

h̃α(x) =
1√
A
hα(x), α ∈ J,

satisfies Parseval’s identity:

‖f‖22 =
∑

α∈J
|〈f, h̃α〉|2, f ∈ L2(R). (4.5.5)

�

Recall that an orthonormal basis of L2(R) also satisfies Parseval’s identity

(4.5.5). To understand the identity (4.5.5) for the tight frame {h̃α}, let us

consider the function f(x) = h̃α0
(x) for any fixed index α0 ∈ J , so that

‖h̃α0
‖22 =

∑

α∈J
|〈h̃α0

, h̃α〉|2

= ‖h̃α0
‖42 +

∑

α 6=α0

|〈h̃α0
, h̃α〉|2

or
‖h̃α0

‖22
(

1− ‖h̃α0
‖22

)
=

∑

α 6=α0

|〈h̃α0
, h̃α〉|2.

Since the right-hand side is non-negative, we see that

‖h̃α0
‖22 ≤ 1.

In addition, if ‖h̃α0
‖2 = 1, then the right-hand side vanishes, or 〈h̃α0

, hα〉 = 0

for all α 6= α0. Thus if ‖h̃α‖2 = 1 for each α ∈ J , then {h̃α}α∈J is an
orthonormal family.

Furthermore, observe that any frame {hα} of L2(R) is a complete family
in L2(R). To prove this claim, assume, on the contrary, that {hα} is not
complete in L2(R). Then there would exist some non-trivial f ∈ L2(R) which
is orthogonal to all hα. This violates the lower-bound frame condition, in that

0 < A‖f‖22 ≤
∑

α∈J
|〈f, hα〉|2 = 0.

Therefore, we have shown that any frame of L2(R) is a complete family in
L2(R).
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Let us summarize the above derivations, applied to tight frames, in the
following theorem.

Theorem 4.5.1 Let {hα}, α ∈ J , be a tight frame of L2(R) with frame bound
A = B = 1. Then

(a) ‖hα‖2 ≤ 1 for all α ∈ J ;

(b) the L2(R) closure of span{hα : α ∈ J} is the entire L2(R) space;

(c) if ‖hα‖2 = 1 for all α ∈ J , then {hα} is an orthonormal basis of L2(R).

We now return to the study of time-frequency analysis by stating the
following Balian-Low restriction, a concept introduced in the Subunit 4.5.1.

Theorem 4.5.2 Let {hm,k(x)}, (m, k) ∈ Z2, be defined by (4.5.1) with win-
dow function u(x) ∈ (L1 ∩L2)(R). Then a necessary condition for {hm,k(x)}
to be a frame of L2(R) is that at least one of the two integrals

∫ ∞

−∞
|xu(x)|2 dx and

∫ ∞

−∞
|ωû(ω)|2dω

is equal to ∞.

Remark 4.5.5 Since the Fourier transform of the derivative of a function
is iω multiple of the Fourier transform of the function, it follows from the
Plancherel formula that

∫ ∞

−∞
|ωf̂(ω)|2dω =

∫ ∞

−∞
|(Ff ′)(ω)|2dω

= 2π

∫ ∞

−∞
|f ′(x)|2 dx.

Hence, if u(x) is the window function in {hm,k(x)} with finite window width
(that is, ∆u <∞), then for {hm,k(x)} to be a frame of L2(R), it is necessary
that ∫ ∞

−∞
|u′(x)|2 dx =∞

according to the Balian-Low restriction in Theorem 4.5.2. Consequently, any
continuous differentiable function u(x), that vanishes outside a finite interval,
cannot be used as the window function u(x) in (4.5.1) to achieve good time-
frequency localization. �
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Observe that the family in (4.5.1) is obtained from the family in (4.5.3)
by setting a = b = 1, so that ab = 1. Hence, in view of the above remark,
in order to use a smooth function with finite support as the time-window to
achieve good time-frequency localization, the only chance is to choose a and
b in (4.5.3) with ab < 1, and this is indeed assured by the following theorem.

Theorem 4.5.3 Let a, b > 0 and {hma,kb(x)}, (m, k) ∈ Z2, be defined by
(4.5.3) with window function u ∈ (L1 ∩L2)(R). Then the following statements
hold.

(a) For ab > 1, there does not exist any window function u(x) for which the
family {hma,kb(x)}, (m, k) ∈ Z2, is complete in L2(R).

(b) For ab = 1 (such as the family of functions in (4.5.1)), there exists
u(x) ∈ (L1 ∩ L2)(R) such that {hma,kb(x)} is a frame (such as an or-
thonormal basis in Example 4.5.1), but the time-frequency window

[−∆u,∆u]× [−∆
bu,∆bu]

necessarily has infinite area, namely:

∆u∆
bu =∞.

(c) For 0 < ab < 1, there exists u ∈ (L1 ∩ L2)(R) such that ∆u∆
bu < ∞

and the corresponding family {hma,kb(x)}, (m, k) ∈ Z2, is a tight frame
of L2(R).

Remark 4.5.6 Let a and b in (4.5.3) be restricted by 0 < ab < 1 to achieve
good time-frequency localization, as guaranteed by Theorem 4.5.3(c). Then
the frame {hma,kb(x)} of L2(R), with window function u(x) (that satisfies
∆u∆

bu <∞) cannot be formulated as the translation (by ma,m ∈ Z) of some
localized function

Hkb(x) = u(x)ei2πkbx

as in (4.5.2) for hm,k(x), where a = b = 1. Indeed, for 0 < ab < 1, computation
of Hkb(x−ma) requires additional computation of the phase modulation:

Aab(km) = e−i(2πkm)ab,

which is no longer equal to 1 in general (for k,m ∈ Z). The reason is that

Hkb(x −ma) =

(
u(x−ma)ei2πkbx

)
Aab(km).

Consequently, the computational aspect of time-frequency analysis is much
less effective. �
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4.5.3 Localized cosine basis

The good news is that by replacing ei2πkx with the sine and/or cosine functions
to formulate a frequency basis, such as

ck(x) =
√

2 cos(k +
1

2
)πx, k = 0, 1, . . . , (4.5.6)

as the orthonormal basis of L2[0, 1], then localization by window functions
u(x) with finite time-frequency windows (that is, ∆u∆

bu < ∞ ) is feasible,
even by formulating the local basis functions hcmn(x) as integer translates,
such as

hcm,k(x) = Hc
k(x−m) = u(x−m) ck(x−m), m, k ∈ Z,

of the localized frequency basis

Hc
k(x) = u(x) ck(x), k ∈ Z.

In other words, it is possible to get around the Balian-Low restriction
by replacing ei2πkx by sine and/or cosine functions. However, to accomplish
this goal, we must spend some effort to construct the localization window
functions u. This topic will be studied in the next subunit, where we give a
precise formulation of the commonly used localized cosine basis functions, the
so-called Malvar wavelets.

4.5.4 Malvar wavelets

In this subunit, we are only concerned with window functions u(x) that satisfy
the following admissible conditions.

Definition 4.5.2 A function u(x) is said to be an admissible window func-
tion, if it satisfies the following:

(i) there exists some positive number δ, with 0 < δ < 1
2 , such that

u(x) = 1, for x ∈ [δ, 1− δ],

and
u(x) = 0, for x 6∈ [−δ, 1 + δ];

(ii) 0 ≤ u(x) ≤ 1;

(iii) u(x) is symmetric with respect to x = 1
2 ; that is,:

u(
1

2
− x) = u(

1

2
+ x), for all x;
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(iv) both u(x) and u′(x) are at least piecewise continuous on [−δ, 1 + δ]; and

(v) u2(x) + u2(−x) = 1, for x ∈ [−δ, δ].

Remark 4.5.7 It follows from (i), (ii), and (iv) that any admissible window
function u satisfies:

∫ ∞

−∞
x2 u2(x) dx <∞ and

∫ ∞

−∞
|u′(x)|2 dx <∞,

so that by the Plancherel formula, we have

∫ ∞

−∞
ω2|û(ω)|2dω =

∫ ∞

−∞

∣∣(Fu′
)∣∣2dω =

1

2π

∫ ∞

−∞
|u′(x)|2 dx <∞.

Hence, u(x) provides good time-frequency localization, meaning that ∆u∆
bu <

∞. Furthermore, conditions (i), (iii) and (v) for an admissible window function
also imply that

∞∑

m=−∞
u2(x−m) = 1, for all x ∈ R. (4.5.7)

�

Example 4.5.2 Let 0 < δ < 1
2 . Then the function u(x) defined by

u(x) =





0, x < −δ or x > 1 + δ;

1√
2

(
1 + sin

π

2δ
x
)
, −δ ≤ x < 0;

√
1− 1

2

(
1− sin

π

2δ
x
)2
, 0 ≤ x < δ;

1, δ ≤ x ≤ 1− δ;

√
1− 1

2

(
1− sin

π

2δ
(1− x)

)2
, 1− δ < x ≤ 1;

1√
2

(
1 + sin

π

2δ
(1− x)

)
, 1 < x ≤ 1 + δ,

(4.5.8)

is an admissible window function.
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Solution Since verification of (i), (ii), (iii) and (v) for u(x) is straightforward,
we only verify that u′(x) exists for any x ∈ R, and this is reduced to the points
x0 = −δ, 0, δ, 1 − δ, 1, 1 + δ. Since it is also clear that u(x) is continuous, to
verify that u′(x0) exists, it is enough to show that the left-hand and right-hand
limits of u′(x) at x0 exist and are equal.

For x0 = −δ, clearly

lim
x→−δ−

u′(x) = lim
x→−δ−

0 = 0.

On the other hand,

lim
x→−δ+

u′(x) = lim
x→−δ+

1√
2

cos(
π

2δ
x)
π

2δ
=

1√
2

π

2δ
cos(−π

2
) = 0.

Thus u′(−δ) exists.

For x0 = 0, we have

lim
x→0−

u′(x) = lim
x→0−

1√
2

cos(
π

2δ
x)
π

2δ
=

1√
2

π

2δ
cos 0 =

π

2
√

2δ
;

lim
x→0+

u′(x) = lim
x→0+

π

4δ

(
1− 1

2

(
1− sin

π

2δ
x
)2

)− 1
2 (

1− sin
π

2δ
x
)

cos
π

2δ
x

=
π

4δ

(1

2

)− 1
2

=
π

2
√

2δ
.

Therefore u′(0) exists. Verification of the existence of u′(x) at x0 = δ is similar.
Finally, the existence of u′(x) at x0 = 1−δ, 1, 1+δ follows from the symmetry
of u(x). In fact, both u(x) and u′(x) are continuous for all x. �

We end this subunit by formulating the so-called Malvar wavelets, as fol-
lows.

Theorem 4.5.4 Let u(x) be an admissible window function that satisfies the
conditions (i)–(v) in Definition 4.5.3. Then u(x) has the property

∆u∆
bu <∞, (4.5.9)

and the family {ψm,k(x)} of functions defined by

ψm,k(x) = u(x−m)ck(x −m)

=
√

2u(x−m) cos
(
(k + 1

2
)π(x −m)

)
, m ∈ Z, k ≥ 0,

where ck(x) is defined in (4.5.6), constitutes an orthonormal basis of L2(R).





Unit 5

PDE METHODS

When the variance σ2 of the Gaussian convolution filter is replaced by ct,
where c is a fixed positive constant and t is used as the time parameter, then
the convolution filtering of any input function f describes the heat diffusion
process with initial temperature given by f(x) at the spatial position x ∈ R.
More precisely, if the function u(x, t) of two variables is used to represent the
heat content (or temperature) at the position x and time t > 0, then u(x, t),
obtained by the Gaussian convolution of the given function f , is the solution of
the heat diffusion PDE with initial condition u(x, 0) = f(x), where the positive
constant c is called the heat conductivity constant. However, this elegant
example has little practical value, because the spatial domain is the entire x-
axis, but it serves the purpose as a convincing motivation for the study of linear
PDE methods, to be studied in this unit. To solve the same heat diffusion
PDE as described in this example, but with initial heat source f given on a
bounded interval instead, and with perfect insulation at the two end-points
to avoid any heat loss, the method of “separation of variables is introduced
in this unit. This method is applied to separate the PDE into two ordinary
differential equations (ODE’s) that can be easily solved by appealing to the
eigenvalue problem, studied in Subunit 1.2, for linear differential operators,
with eigenfunctions given by the cosine function in x, and with frequency
governed by the eigenvalues, which also dictate the rate of exponential decay
in the time variable t. Superposition of the product of these corresponding
eigenfunctions with coefficients given by the Fourier coefficients of the Fourier
series representation of the initial heat content, studied in Unit 3, solves this
heat equation. Extension of the method of separation of variables to the study
of boundary value problems on a bounded rectangular domain in Rs for any
s > 2 as well as the solution of other popular linear PDE’s, is also studied
in this unit. In addition, the linear diffusion PDE, called isotropic diffusion,
is generalized to a non-linear PDE that describes anisotropic diffusion; and
the solution in terms of eigenvalue problems is studied, by introducing the
notion of lagged anisotropic diffusion. Application of the diffusion process is
applied, in Subunit 5.5, to image noise reduction that facilitates the efficiency
of digital image and video compression, as studied in Unit 2.

169
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5.1 From Gaussian Convolution to Diffusion Process

As an application of the Gaussian function, the solution of the (heat) diffusion
partial differential equation (PDE)






∂

∂t
u(x, t) = c▽2u(x, t), x ∈ Rs, t ≥ 0,

u(x, 0) = u0(x), x ∈ Rs.

(5.1.1)

in the Euclidean space Rs, for any dimension s ≥ 1, is studied this subunit.
Here and throughout, c is a positive constant, called heat diffusion conductiv-
ity.

Our mathematical tool is the convolution operation with the Gaussian
function

gσ(x) = gσ(x1) · · · gσ(xs), (5.1.2)

where x = (x1, · · · , xs) ∈ Rs. We will first consider the one spatial-dimension
with initial heat source given by the delta function, and then apply it to
consider any initial heat source. Finally, we extend the one-dimensional result
to an arbitrarily high spatial dimensional space Rs.

5.1.1 Gaussian as solution for delta heat source

For the one spatial-dimensional space, the Laplacian ▽
2 in (5.1.1) becomes the

second partial derivative with respect to the spatial variable x. Recall that for
any constant σ > 0, the Gaussian function gσ(x), defined by

gσ(x) =
1

2σ
√
π
e−( x

2σ )2

as in (4.2.1) of Subunit 4.2.2, satisfies

∫ ∞

−∞
gσ(x) dx = 1, all σ > 0

(see (4.2.2)), and its Fourier transform is given by

ĝσ(ω) = e−σ
2ω2

, (5.1.3)

as shown in (4.2.8) of Theorem 4.2.1. Again, let c > 0 denote the heat diffusion
conductivity constant in the PDE (5.1.1). We introduce the “time” parameter

t =
σ2

c
or σ2 = ct (5.1.4)
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to define the time-spatial Gaussian function G(x, t) (of two variables) as fol-
lows:

G(x, t) = gσ(x) = g√ct(x) =
t−

1

2

2
√
πc

e−
x2

4c t
−1

, (5.1.5)

with x ∈ R to be called the spatial variable, and t ≥ 0 to be called the time
variable. Then G(x, t) satisfies the PDE (5.1.1) in that

∂

∂t
G(x, t) = c

∂2

∂x2
G(x, t), x ∈ R, t > 0. (5.1.6)

Indeed, by taking the first partial derivatives of G(x, t) in (5.1.5), we have

∂

∂t
G(x, t) =

1

2
√
πc

e−
x2

4c t
−1

{
− 1

2
t−

3
2 + t−

1
2 (
x2

4c
)t−2

}
;

∂

∂x
G(x, t) =

t−
1
2

2
√
πc

e−
x2

4c t
−1

{
− t−1

2c
x
}
,

so that the second spatial partial derivative is given by

∂2

∂x2
G(x, t) =

t−
1
2

2
√
πc

e−
x2

4c t
−1

{
− t−1

2c
+ (− t

−1

2c
x)2

}

=
1

c

1

2
√
πc

e−
x2

4c t
−1

{
− 1

2
t−

3

2 + (
x2

4c
)t−

1

2 · t−2
}

=
1

c

∂

∂t
G(x, t),

which proves that G(x, t) satisfies the PDE in (5.1.6). To study the initial
condition u(x, 0) in (5.1.1), observe that gσ(x) → 0 as σ → 0, for all x 6= 0.
But since the integral of gσ(x) over (−∞,∞) is 1 for all σ, gσ(x) does not
converge to the zero function, but instead to the delta distribution. Hence,

G(x, 0) = δ(x), x ∈ R,

where δ(x) denotes the “Dirac delta” distribution (also commonly called
the “delta function”). In other words, the time-spatial Gaussian function
G(x, t) = gσ(x) = g√ct(x) is the solution of the heat diffusion partial dif-
ferential equation with unit point-heat source at x = 0.

5.1.2 Gaussian convolution as solution of heat equation for
the real-line

Next, we consider the one-dimensional heat diffusion process again, but with
arbitrary initial heat content u0(x),−∞ < x <∞.
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Recall that if f ∈ L2(R) is continuous at x, then f(x) is “reproduced” by
convolution with the delta function, meaning that

f ∗ δ(x) = f(x),

or more precisely,

lim
t→0+

∫ ∞

−∞
f(y)G(x − y, t) dy = f(x), x ∈ R. (5.1.7)

Remark 5.1.1 Although we usually assume that f ∈ L∞(R) for (5.1.7)
to hold, yet it is only for simplicity. In fact, since for any fixed t > 0,
f(y)G(x − y, t) is integrable for all f ∈ PC(R) with “at most polynomial
growth”, meaning that

f(x)x−n ∈ L∞(R)

for some integer n > 0, (5.1.7) is valid for all f ∈ PC(R) with at most
polynomial growth.

�

In other words, we have the following result.

Theorem 5.1.1 Let u0 ∈ PC(R) with at most polynomial growth. Then the
solution of the initial value PDE






∂

∂t
u(x, t) = c

∂2

∂x2
u(x, t), x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R,

(5.1.8)

is given by

u(x, t) =

∫ ∞

−∞
u0(y)G(x − y, t) dy. (5.1.9)

The proof of the claim that u(x, t) in (5.1.9) satisfies the initial condition
in (5.1.8) has already been discussed in (5.1.7) with f(x) = u0(x) and Remark
5.1.1. The idea is that if the heat source (i.e. initial heat content) is the delta
function δ(x), then the heat distribution for t > 0 is the Gaussian function
G(x, t), as shown at the top of Fig. 5.1.
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FIGURE 5.1: Diffusion with delta heat source (top) and arbitrary heat source

(bottom)

To show that the function u(x, t) defined in (5.1.9) is the solution of the
initial PDE in (5.1.8), we simply apply (5.1.6) to obtain

∂

∂t
u(x, t) =

∂

∂t

∫ ∞

−∞
u0(y)G(x− y, t) dy

=

∫ ∞

−∞
u0(y)

∂

∂t
G(x− y, t) dy

=

∫ ∞

−∞
u0(y)

{
c
∂2

∂x2
G(x− y, t)

}
dy

= c
∂2

∂x2

∫ ∞

−∞
u0(y)G(x − y, t) dy

= c
∂2

∂x2
u(x, t).

Hence, u(x, t) as defined by (5.1.9) is the solution of the heat diffusion PDE
(5.1.8) with heat source u0(x). That is, u(x, t) is the output as shown in the
bottom of Fig. 5.1, with input u0(x). �

Example 5.1.1 Compute the solution u(x, t) of the initial value (heat diffu-
sion) PDE in (5.1.8), with initial (or input) function

u0(x) = aα cosαx+ bα sinαx,

where α is any real number and aα, bα are arbitrary constants.

Solution By Theorem 5.1.1, the solution is obtained by computing the
convolution of u0(x) with the Gaussian function G(x, t) with respect to the
spatial variable x, where t ≥ 0 is fixed while the convolution operation is
performed. Although there is no need to consider the following three separate
cases, we will do so in this first example to show the computational steps more
transparently.

Case 1. For α = 0, the input function u0(x) = a0 is a constant. Hence,
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u0(x− y) = a0 and

u(x, t) =
(
u0 ∗G(·, t)

)
(x) =

∫ ∞

−∞
a0gσ(y) dy = a0,

since the Gaussian gσ(x) is normalized with integral over (−∞,∞) equal to
1, as shown in (4.2.2) of Subunit 4.2.

Case 2. For bα = 0, the initial function is

u0(x) = aα cosαx =
aα
2

(
eiαx + e−iαx

)
.

Hence, for fixed σ2 = ct, the convolution becomes

u(x, t) =
(
u0 ∗ gσ

)
(x)

=
aα
2

( ∫ ∞

−∞
eiα(x−y) gσ(y) dy +

∫ ∞

−∞
e−iα(x−y) gσ(y) dy

)

=
aα
2

(
eiαxĝσ(α) + e−iαxĝσ(−α)

)

=
aα
2

(
eiαxe−σ

2α2

+ e−iαxe−σ
2(−α)2

)

=
aα
2

(
eiαx + e−iαx

)
e−σ

2α2

by (5.1.3). Since σ2 = ct, we have

u(x, t) = aαe
−cα2t cosαx.

Case 3. For aα = 0, the initial function is

u0(x) = bα sinαx =
bα
2i

(
eiαx − e−iαx

)
.

Therefore, the same computation as above yields

u(x, t) =
bα
2i

(
eiαx − e−iαx

)
e−σ

2α2

= bαe
−cα2t sinαx,

since σ2 = ct.

Combining the above computational results, we obtain the solution of the
initial value PDE (5.1.8):

u(x, t) = e−cα
2t

(
aα cosαx+ bα sinαx

)
= e−cα

2tu0(x)
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for all x ∈ R and t ≥ 0. �

In general, if the initial (input) function u0(x) is a 2π-periodic piecewise
continuous function, the same computational steps apply to yield the solution
u(x, t) of the initial value PDE (5.1.8), as follows.

Example 5.1.2 Let u0 ∈ PC[−M,M ], M > 0, such that the partial sums
(Snu0)(x) of the Fourier series of u0(x) are uniformly bounded. Show that the
solution u(x, t) of the initial value PDE (5.1.8) with initial heat content u0(x)
is given by

u(x, t) =
a0

2
+

∞∑

k=1

e−c(
kπ
M )2t

(
ak cos

kπ

M
x+ bk sin

kπ

M
x
)
, (5.1.10)

where

ak =
1

M

∫ M

−M
u0(x) cos

kπ

M
x dx, k = 0, 1, 2, . . .

bk =
1

M

∫ M

−M
u0(x) sin

kπ

M
x dx, k = 1, 2, . . . .

Solution Consider the Fourier cosine and sine series expansion of u0(x) in
Theorem 3.1.1 of Subunit 3.1.1, with d = M . Since (Snu0)(x) are uniformly
bounded, we may apply Lebesgue’s dominated convergence theorem to inter-
change summation and integration, namely:

u(x, t) =
(
u0 ∗G(·, t)

)
(x)

=
a0

2
+

∞∑

k=1

(ak − ibk
2

∫ ∞

−∞
ei

kπ
M (x−y)G(y, t) dy

+
ak + ibk

2

∫ ∞

−∞
e−i

kπ
M (x−y)G(y, t) dt

)

=
a0

2
+

∞∑

k=1

(ak − ibk
2

ei
kπ
M xĝσ(k) +

ak + ibk
2

e−i
kπ
M xĝσ(−k)

)

=
a0

2
+

∞∑

k=1

(
ak
ei

kπ
M x + e−i

kπ
M x

2
+ bk

ei
kπ
M x − e−i kπ

M x

−2i

)
ĝσ(k)

=
a0

2
+

∞∑

k=1

e−σ
2( kπ

M )2
(
ak cos

kπ

M
x+ bk sin

kπ

M
x
)

=
a0

2
+

∞∑

k=1

e−( kπ
M )2ct

(
ak cos

kπ

M
t+ bk sin

kπ

M
t
)
,
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since σ2 = ct, where again the formula ĝσ(ω) = e−σ
2ω2

in (5.1.3) is applied.
�

Example 5.1.3 Find the solution u(x, t) of the initial value (heat diffusion)
PDE (5.1.8) with initial heat content u0(x) = xn, for n = 1 and 2.

Solution Since the PDE (5.1.8) describes the heat diffusion process, let us
consider u0(x) as the initial temperature at x ∈ R. Hence, the solution u(x, t)
is the temperature at the time instant t > 0, at the same position x ∈ R.

For n = 1, the temperature at t > 0 and location x ∈ R is given by

u(x, t) =

∫ ∞

−∞
(x− y)gσ(y) dy

= x

∫ ∞

−∞
gσ(y) dy −

∫ ∞

−∞
ygσ(y) dy,

where σ2 = ct. Since the first integral is equal to 1 and the second integral is
0 (with odd function ygσ(y)), we have

u(x, t) = x, for all t ≥ 0.

That is, the temperature does not change with time; or there is no diffusion
at all.

For n = 2, since (x − y)2 = x2 − 2xy + y2, the same argument as above
yields

u(x, t) =

∫ ∞

−∞
(x− y)2gσ(y) dy = x2 +

∫ ∞

−∞
y2gσ(y) dy,

where σ2 = ct. Observe that because
∫ ∞

−∞
y2e−αy

2

dx = − ∂

∂α

∫ ∞

−∞
e−αy

2

dy

= − ∂

∂α

√
π

α
=

1

2

√
πα−3/2,

we obtain
∫ ∞

−∞
y2gσ(y) dy =

1

2σ
√
π

∫ ∞

−∞
y2e−( y

2σ )2 dy

=
1

2σ
√
π

1

2

√
π(2σ)3 = 2σ2 = 2ct,

and this yields:
u(x, t) = x2 + 2ct, for all t > 0.

Observe that the temperature at x increases from u(x, 0) = x2 to u(x, c) =
x2 + 2ct as t > 0 increases. This is truly “global warming” everywhere! �
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5.1.3 Gaussian convolution as solution of heat equation in
the Euclidean space

We now extend our discussion from one spatial variable x ∈ R to s spatial
variables x = (x1, · · · , xs) ∈ Rs. Let |x| denote the Euclidean norm of x ∈ Rs;
that is

|x|2 = x2
1 + · · ·+ x2

s,

and observe that the Gaussian function gσ(x), x ∈ Rs, defined by

gσ(x) =
1

(4πσ2)s/2
e−

|x|2

4σ2 , (5.1.11)

can be written as the product of the 1-dimensional Gaussian functions; namely

gσ(x) = gσ(x1, · · · , xs) = gσ(x1) · · ·gσ(xs).

Hence, when the time variable t is defined by (5.1.4); that is σ2 = ct, the
extension of G(x, t) in (5.1.5) to Rs, s ≥ 2, is given by

G(x, t) = G(x1, · · · , xs, t) = gσ(x) =
t−

s
2

(4πc)s/2
e−

|x|2

4c t−1

. (5.1.12)

Indeed, by (5.1.11) and (5.1.5), we have

G(x, t) = gσ(x1) · · · gσ(xs)

=
( 1√

4πσ2
e−x

2
1
/4σ2

)
· · ·

( 1√
4πσ2

e−x
2
s/4σ

2
)

=
1

(4πσ2)s/2
e−x

2
1
/4σ2 · · · e−x2

s/4σ
2

=
1

(4πσ2)s/2
e−(x2

1+···+x2
s)/4σ2

=
1

(4πσ2)s/2
e−|x|2/4σ2

=
t−

s
2

(4πc)s/2
e−

|x|2

4c t−1

as desired.

Next, we extend the convolution operation from 1-dimension to s-
dimension by

(u0 ∗ h)(x) =

∫

Rs

u0(y)h(x− y)dy. (5.1.13)

Then for fixed t ≥ 0, the s-dimensional convolution with the spatial vari-
ables x = (x1, · · · , xs) of h(x) = Gc(x, t) can be written as consecutive 1-
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dimensional convolutions; namely,

(
u0 ∗G(·, t)

)
(x) =

∫

Rs

u0(y)G(x− y, t)dy

=

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
s integrals

u0(y1, · · · , ys)G(x1 − y1, t) · · ·G(xs − ys, t) dy1 · · · dys

=
(
u0(·, ·, · · · , ·)︸ ︷︷ ︸
s components

∗1gσ ∗2 · · · ∗s gσ
)
(x1, · · · , xs), (5.1.14)

where “∗k” denotes the 1-dimensional convolution with respect to the kth

component (say yk in (5.1.13)).

Hence, as in the 1-dimensional case, it is not difficult to verify that

G(x, t) = G(x1, · · · , xs, t)

is the solution of the s-dimensional heat equation with δ(x) = δ(x1) · · ·δ(xs)
as the initial heat source; namely,






∂

∂t
G(x, t) = c▽2G(x, t), x ∈ Rs, t ≥ 0,

G(x, 0) = δ(x) = δ(x1) · · · δ(xs), x ∈ Rs,

(5.1.15)

where ▽
2 denotes the Laplace operator, defined by

▽
2G(x, t) =

∂2

∂x2
1

G(x, t) + · · ·+ ∂2

∂x2
s

G(x, t).

To verify that G(x, t) satisfies the heat diffusion equation, we simply follow
the same computations in the derivation of (5.1.6), as follows:

∂

∂t
G(x, t) =

1

(4πc)s/2
e−( |x|2

4c )t−1
{
− s

2
t−

s+2

2 + t−
s
2 (
|x|2
4c

)t−2
}

;

∂

∂xk
Gc(x1, · · · , xs, t) =

t−
s
2

(4πc)s/2
e−

|x|2

4c t−1
{
− t−1

2c
xk

}
,

so that

∂2

∂x2
k

G(x, t) =
t−

s
2

(4πc)s/2
e−

|x|2

4c t−1
{
− t−1

2c
+ (− t

−1

2c
xk)2

}
.
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Hence, it follows that

c▽G(x, t) = c
s∑

k=1

∂2

∂x2
k

G(x1, · · · , xs, t)

=
t−

s
2

(4πc)s/2
e−

|x|2

4c t−1
{
− st−1

2c
+
t−2

4c2

s∑

k=1

x2
k

}

=
1

(4πc)s/2
e−

|x|2

4c t−1
{
− s

2
t−

s
2
−1 + t−

s
2

( |x|2
4c

)2
t−2

}

=
∂

∂t
G(x, t).

To apply the above result to an arbitrary heat source, we simply follow the
same argument for the 1-dimensional setting and apply (5.1.14) and (5.1.15)
to obtain the solution of the initial value PDE:






∂

∂t
u(x, t) = c▽2u(x, t), x ∈ Rs, t ≥ 0,

u(x, 0) = u0(x), x ∈ Rs,

(5.1.16)

where the initial condition is any integrable function u0(x) = u0(x1, · · · , xs)
in Rs.

We summarize the above discussion in the following theorem.

Theorem 5.1.2 Let u0(x) be a measurable function in Rs, s ≥ 1, with at
most polynomial growth such that the set of x ∈ Rs on which u0(x) is dis-
continuous has (Lebesgue) measure zero. Then the solution of the initial value
PDE (5.1.16) is given by

u(x, t) =
(
u0 ∗G(·, t)

)
(x), (5.1.17)

as defined in (5.1.14 ).

Example 5.1.4 Let c > 0 and ▽
2 be the Laplace operator defined by

▽
2f(x, y) =

∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y).

Re-formulate the solution u(x, y, t) of the 2-dimensional (heat diffusion) initial
value PDE

∂

∂t
u(x, y, t) = c▽2u(x, y, t)

in (5.1.16) with initial (input) function u0(x, y), according to Theorem 5.1.2
explicitly in terms of the 1-dimensional Gaussian function.



180 SAYLOR MA 304

Solution According to Theorem 5.1.2 and the commutative property of the
convolution operation, we have

u(x, y, t) =

∫ ∞

−∞
gσ(y1)

{ ∫ ∞

−∞
u0(x− x1, y − y1)gσ(x1) dx1

}
dy1

=
t−1

4πc

∫ ∞

−∞
e−

t−1

4c y2
1

{ ∫ ∞

−∞
u0(x− x1, y − y1)e−

t−1

4c x2
1 dx1

}
dy1,

(5.1.18)

where σ2 = ct. �

Definition 5.1.1 A function u0(x, y) of two variables is said to be separable,
if there exist functions fj and hk of one variable, such that

u0(x, y) =
∑

j,k

aj,kfj(x)hk(y) (5.1.19)

for some constants aj,k, where
∑

j,k denotes a finite double sum, such as:

m∑

j=0

n∑

k=0

,

n∑

ℓ=0

∑

j+k=ℓ

,

m∑

j=0

n−j∑

k=0

, etc.

Example 5.1.5 Let u0(x, y) be a separable function as defined by (5.1.19).
Write out the solution u(x, y, t) of the 2-dimensional (heat diffusion) PDE
in Example 5.1.4 with initial condition u0(x, y) in the most useful form for
computation.

Solution Let σ2 = ct and apply the formulation (5.1.18) to obtain

u(x, y, t) =

∫ ∞

−∞
gσ(y1)

{ ∫ ∞

−∞

∑

j,k

aj,kfj(x − x1)hk(y − y1)gσ(x1) dx1

}
dy1

=
∑

j,k

aj,k

( ∫ ∞

−∞
fj(x − x1)gσ(x1)dx1

)

×
( ∫ ∞

−∞
hk(y − y1)gσ(y1)dy1

)
, (5.1.20)

with σ =
√
ct. After computing (5.1.20), we may write out the solution

u(x, y, t) by replacing σ with
√
ct1/2, as follows:

u(x, y, t) =
t−1

4πc

∑

j,k

aj,k

( ∫ ∞

−∞
fj(x− x1)e−

t−1

4c x2
1dx1

)

×
( ∫ ∞

−∞
hk(y − y1)e−

t−1

4c y2
1dy1

)
.

�



PDE METHODS 181

Example 5.1.6 Apply the solution in Example 5.1.5 to compute the solution
u(x, y, t) of the 2-dimensional (heat diffusion) initial value PDE in Example
5.1.4 with initial condition u0(x, y) given by (5.1.19), where fj(x) = cos jπM x

and hk(y) = cos kπN y for M,N > 0.

Solution For fj(x) = cos jπ
M
x and hk(y) = cos kπ

N
y, application of the solu-

tion in Example 5.1.1 yields,
∫ ∞

−∞
fj(x− x1)gσ(x1)dx1 = e−σ

2( jπ
M )2 cos

jπ

M
x = e−( jπ

M )2ct cos
jπ

M
x.

Hence, it follows from (5.1.20) in the previous example that

u(x, y, t) =
∑

j,k

aj,ke
−
(
( jπ

M )2+( kπ
N )2

)
ct cos

jπ

M
x cos

kπ

M
y.

�

5.2 The method of separation of variables

The most elementary and commonly used approach to solving a linear par-
tial differential equation (PDE) is to treat the solution as an infinite sum of
simple-minded solutions that the variables are separated. In this subunit, the
method of separation of variables is introduced to change a partial differential
equation (PDE) of n independent variables to two differential equations, with
one ordinary differential equation (ODE) and one PDE of n− 1 independent
variables.

5.2.1 Separation of Time and Spatial Variables

First, let us consider n = 2 and separate a PDE to two ODE’s. If a function
u(x, t) of two independent variables x and t is written as the product of two
dependent variables X = X(x) and T = T (t), with X(x) independent of t
and T (t) is independent of x, we say that u(x, t) is separated, namely

u(x, t) = X(x)T (t).

Of course, this artificial way of writing the original function u(x, t) makes little
sense. But it helps in changing a linear partial differential equation (PDE)
of u into two ordinary differential equations (ODE). For example, the one-
dimensional heat equation

∂

∂t
u(x, t) = c

∂2

∂x2
u(x, t) (5.2.1)
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becomes
X(x)T ′(t) = cX′′(x)T (t). (5.2.2)

Hence, dividing both sides by X(x)T (t), we obtain

T ′(t)

cT (t)
=
X′′(x)

X(x)
. (5.2.3)

Observe that since the right-hand side T ′(t)/cT (t) is independent of x
and the left-hand side X′′(x)/X(x) is independent of t, they must be the
same constant, say λ. Hence, the PDE (5.2.1) becomes two ODE’s (ordinary
differential equations):

T ′(t) = λcT (t) (5.2.4)

X′′(x) = λX(x). (5.2.5)

The constant λ is instrumental to the solution of a PDE with boundary con-
ditions and/or initial values.

5.2.2 Superposition Solution

Indeed, if Tj(t), j = 0, 1, . . . are solutions of (5.2.4) and Xj(x), j = 0, . . . are
solutions of (5.2.5), where the “eigenvalues” λ = λj are chosen appropriately
to satisfy the given “boundary conditions”, then since each

uj(x, t) = Xj(x)Tj(t), j = 0, 1, . . . ,

is a solution of the original PDE (5.2.1), the formal (possibly infinite) linear
combination ∞∑

j=0

bjuj(x, t) =

∞∑

j=0

bjXj(x)Tj(t) (5.2.6)

is also a solution of (5.2.1). If the infinite series indeed converges, then by
applying the given boundary or initial conditions to determine the coeffi-
cients b0, b1, b2, . . . , we obtain the solution of the given boundary-value and/or
initial-value problem with the PDE model (5.2.1). The consideration of the
formal linear combination (5.2.6) is called the “Principle of superposition.”

5.2.3 Extension to two spatial variables

The method of separation of (dependent) variables and the principle of su-
perposition can be extended to linear PDE models for higher dimensions.
To demonstrate the feasibility of this extension, let us consider the two-
dimensional heat equation

∂

∂t
= c∇2u(x, y, t) (5.2.7)
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where ∇2 denotes the two-dimensional Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2

with (x, y) denoting the two-dimensional spatial coordinates. Then we may
first write

u(x, y, t) = U(x, y)T (t)

to separate u to two dependent variables U = U(x, y) and T = T (t). Then
the PDE (5.2.7) becomes

U(x, y)T ′(t) = c∇U(x, y)T (t). (5.2.8)

Dividing both sides of (5.2.8) by cU(x, y)T (t), we rewrite (5.2.8) as

T ′(t)

c T (t)
=
∇U(x, y)

U(x, y)
. (5.2.9)

Again, since T ′(t)/cT (t) is independent of x, y and ∇U(x, y)/U(x, y) is inde-
pendent of t, they must be the same constant, say −λ again. Thus, the PDE
(5.2.7) becomes an ODE (for T (t)) and a PDE (for U(x, y)), namely:

T ′(t) = −λcT (t)
∇U(x, y) +λU(x, y) = 0.

(5.2.10)

To separate the PDE (5.2.11), we may write

U(x, y) = X(x)Y (y).

Then (5.2.11) yields

X′′(x)Y (y) + X(x)Y ′′(y) + λX(x)Y (y) = 0

or
X′′(x)

X(x)
+
Y ′′(y)

Y (y)
+ λ = 0

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ.

The left-hand side of the above equation is a function of x only, while the
right-hand side is a function of y only. Thus both sides are the same constant,
say, −λ̃. Therefore, we have two ODE’s:

X′′(x)− λ̃X(x) = 0, (5.2.11)

Y ′′(y) + (λ− λ̃)Y (y) = 0. (5.2.12)

To summarize, we have to solve three ODE’s by solving three eigenvalue
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problems (5.2.10), (5.2.12), and (5.2.13). The eigenvalues λ = λj and λ̃ = λ̃k,ℓ
must be so chosen that the boundary and/or initial values are satisfied.

Finally, the principle of superposition allows us to formulate the general
solution

u(x, y, t) =

∞∑

j=0

∞∑

k,ℓ=0

bj,k,ℓ Tj(t)Xk(x)Yℓ(y), (5.2.13)

where the coefficients bj,k,ℓ are to be determined by the boundary and/or
initial values.
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5.3 Fourier series solution

In the history of mathematics, the most fruitful research collaboration, be-
fore the famous team of Godfrey Hardy and John Littlewood of Cambridge
University almost two centuries later, was probably the collabration between
Daniel Bernoulli (1700–1782) and Leonhard Euler (1707–1783), during the five
years (1727–1732), when they were together at the St. Petersburg Academy
of Science. Together, they accomplished important work in hydrodynamics,
probability, and the theory of oscillations. It is interesting to learn, however,
that even these two giants could not agree on the solution of the two-point
boundary-valued problem:






∂2

∂t2 u(x, t) = c2 ∂2

∂x2 u(x, t), 0 < x < L;

u(0, t) = u(L, t) = 0, t ≥ 0,

(5.3.1)

which is the partial differential equation that describes the vibrating string.
Bernoulli proposed that the solution should be the “infinite series”

u(x, t) =

∞∑

k=1

ck sin
kπ

L
cos

ckπ

L
t (5.3.2)
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which clearly satisfies

∂2

∂t2
u(x, t) = c2

∂2

∂x2
u(x, t)

with u(0, t) = u(L, t) = 0 for all t ≥ 0. Furthermore, for t = 0, before the
vibration starts, the initial displacement of the string is given by

u(x, 0) =
∞∑

k=1

ck sin
kπ

L
x. (5.3.3)

Unfortunately, Bernoulli could not relate the coefficients ck, k = 1, 2, . . ., with
the function that represents the initial displacement of the string. The reader
should be reminded that this discovery by Bernoulli is more than 50 years
before the introduction of Fourier series by Joseph Fourier (1768–1830).

Euler thought that Bernoulli’s proposed solution was absurd, pointing out
that if (5.3.2) would be the general solution of (5.3.1), then the initial displace-
ment given by (5.3.3) must be an odd function, and gave a counter-example
f(x) = x(L− x), which certainly does not satisfy f(−x) = −f(x). Euler then
found his own general solution

u(x, t) =
1

2

(
f(x + ct) + f(x − ct)

)
(5.3.4)

of the initial-valued/boundary-valued problem for the vibrating string PDE






∂2

∂t2
u(x, t) = c2 ∂2

∂x2 u(x, t), 0 < x < L;

u(0, t) = u(L, t) = 0, t ≥ 0;

u(x, 0) = f(x), 0 ≤ x ≤ L,

(5.3.5)

where f(x) is any given function in C2[0, L].
The reader is reminded of the study of Fourier series in Unit 3, and partic-

ularly the formulation of the Fourier coefficients of the sine series on [0, L] in
Subunit 3.1 and the convergence of the Fourier series in Subunit 3.4. Indeed,
Bernoulli’s proposed solution (5.3.2)–(5.3.3) is correct, but he did not realize
the coefficients ck, k = 1, 2, . . . , in (5.3.3) can be computed, as being done by
Fourier some 50 years later, from the given initial function u(x, 0) = f(x).
In the following, we will apply the method of separation of variables studied
in Subunit 5.2 to derive Fourier series solutions of linear PDE governed by
boundary and/or initial values.

5.3.1 One-spatial dimension

Let us first consider the one-spatial variable setting. In Subunit 5.1.2, we have
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seen that for the heat equation on the entire real-line, if the initial heat content
(or temperature) is a periodic function represented by a (Fourier) cosine series,
then the Gaussian convolution of it yields the solution of the heat (diffusion)
PDE with the given initial heat content as the initial-value function.

Hence, to unify our presentation, we will again study the heat equation,
but now on a bounded interval of the real-line with perfect insulation at the
two (boundary) endpoints. In other words, we will discuss the solution of the
following initial-valued Neumann PDE, where the Neumann condition at the
two end-points is described by the partial derivative with respect to the spatial
variable being zero for all t ≥ 0.






∂
∂t u(x, t) = c ∂

2

∂x2 u(x, t), x ∈ (0,M), t > 0;

∂
∂x

u(0, t) = ∂
∂x

u(M, t) = 0, t > 0;

u(x, 0) = f(x), 0 ≤ x ≤M.

(5.3.6)

Observe that the heat equation (5.3.6) is different from the vibrating string
PDE (5.3.5), in that the partial derivative with respect to the time variable
t in (5.3.6) is of the first order, while that in (5.3.5) is of the second order.
In addition, for the vibrating string PDE (5.3.5), the two endpoints of the
string are fixed for all t ≥ 0, so that the boundary condition is the so-called
Dirichlet condition, while for the heat equation (5.3.6), the two endpoints are
perfectly insulated to avoid heat diffusion across the boundary, so that the
first derivative in the spatial variable x is zero, called a Neumann condition.

Recall from Subunit 5.2.1, by writing

U(x, t) = X(x)T (t),

where X is independent of t and T is independent of x, the PDE

∂

∂t
U(x, t) = c

∂2

∂x2
U(x, t) (5.3.7)

becomes
XT ′ = cX′′T

or
T ′

cT
=
X′′

X
= λ

for some constant λ. This separates the PDE (5.3.7) into two ODE’s:
{
T ′ = λcT
X′′ = λX

where X = X(x) must satisfy the Neumann condition X′(0) = X′(M) = 0.
The general solution of the first order ODE T ′ = λcT is simply

T (t) = a0e
λcT .
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Since the constant c is positive, being the heat conductivity constant, it is
clear that λ cannot be positive, since heat (or temperature) cannot increase
with increasing time t > 0 (without further additional heat source for t > 0).
For this reason, we may write

λ = −µ2, µ ≥ 0.

Of course, we may also deduce this conclusion from the ODE with zero Neu-
mann condition:

{
X′′(x) = λX(x), 0 ≤ x ≤M ;
X′(0) = X′(M) = 0.

Indeed, if λ > 0, then

X(x) = a1e
√
λx + a2e

−√
x,

so that X′(x) = a1

√
λ e

√
λx − a2

√
λ e

√
x, and hence,





0 = X′(0) = a1

√
λ a2

√
λ =
√
λ (a1 − a2);

0 = X′(M) = (a1e
√
λM − a2e

−
√
λM )
√
λ;

from which it follows that
a1 = a2 = 0.

Hence, for a non-trivial solution X(x), we must choose λ ≤ 0.
Now, for λ = −µ2, the general solution of X′′ + µ2X = 0 is given by

X(x) = a1 cosµx+ a2 sinµx,

which yields
X′(x) = −a1µ sinµx+ a2µ cosµx.

To satisfy the Neumann condition X′(0) = 0, we have

0 = a2µ.

Therefore, for µ > 0, a2 must be zero. To satisfy the other Neumann condition
X′(M) = 0, we have

0 = −a1µ sinµM,

so that for µ > 0, µ must be

µ =
kπ

M
for integers k;

or

λ = −µ2 = −
(
kπ

M

)2

, k = 0, 1, 2, . . . . (5.3.8)
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Here, we have included k = 0 to allow µ = 0 and arbitrary a1. In addition,
since we have k2 in general, we may select positive values of k without changing
the values of µ. Putting (5.3.8) into U = XT , we obtain

U(t) = bke
−( kπ

M )2t cos

(
kπ

M
t

)
,

where we have replaced the constant a0a1 by bk. Therefore, by applying the
principle of superposition as introduced in Subunit 5.2, we may formulate the
general solution of the heat diffusion PDE (5.3.6) as

U(x, t) =
b0
2

+

∞∑

k=1

bke
−( kπ

M )2t cos

(
kπ

M
x

)
(5.3.9)

with u(x, 0) = f(x) for 0 < x < L. Here, we replace b0/2 for the convenience
of formulating the (Fourier) cosine coefficients:

bk =
2

M

∫ M

0

f(x) cos
kπx

M
dx. (5.3.10)

In summary, we have proved the following theorem.

Theorem 5.3.1 Let f(x) be a square integrable function on [0,M ] with
(Fourier) cosine coefficients b0, b1, b2, · · · in (5.3.10). Then the solution of the
heat equation (5.3.6) is given by u(x, t) in (5.3.9).

Example 5.3.1 Solve the heat equation (5.3.9) on the interval [0, π] with
initial heat content f(x) = 2− cos 3x.

Solution Since f(x) = 2 − cos 3x is already a (Fourier) cosine series on the
interval [0, π], the solution of (5.3.9) with M = π is simply

u(x, t) = 2− e−c( 3π
π )2t cos 3x

= 2− e−9t cos 3x.

�

Example 5.3.2 Solve the heat equation (5.3.9) on the interval [0, π] with
initial heat content f(x) = x

π
.

Solution We first compute the (Fourier) cosine coefficients, with [0,M ] =
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[0, π]. For k > 0, we have

bk = 2
π

∫ π

0

x

π
cos kxdx

= 2
π2

[(
x sin kx

k

)∣∣∣∣
π

0

−
( ∫ π

0

sin kx

k
dx

)]

= 2
π2k2

[
(0 − 0)−

(
− coskx

k2

)∣∣∣∣
π

0

]

= 2
π2k2

(
(−1)k − 1

)
.

On the other hand, for k = 0, we have

b0 =
2

π

∫ π

0

x

π
dx =

2

π2
· π

2

2
= 1.

Hence, b0 = 1, b2k = 0, and b2k−1 = −4
π2(2k−1)2 . Therefore, putting these values

in (5.3.9), we have

u(x, t) =
1

2
− 4

π2

∞∑

k=1

1

(2k − 1)2
e−c(2k−1)2t cos(2k − 1)x.

�

5.3.2 Extension to higher dimensional domains

In this subunit, we extend the discussion in Subunit 5.3.1 to higher spatial
dimensions Rs, for s ≥ 2. We remark that the key contents of Subunit 5.3.1
include the supplementary reading materials: Markus Pivoto, “Linear PDE
and Fourier Theory” 1A, and Peter Olver, “Introduction to PDE” Chapter 8.

Let ∇2 denote the Laplacian operator defined by

∇2U(x) =
s∑

k=1

∂2

∂x2
k

U(x), (5.3.11)

where x := (x1, · · · , xs) ∈ D, and D is any bounded and connected region
(i.e. the closure of a domain) in Rs, s > 1. The extension of the initial-valued
Neumann PDE (5.3.5) from a bounded interval (0,M) ⊂ R1 to a bounded
open set D in Rs is simply





∂
∂t
u(x, t) = c∇2u(x, t), x ∈ D, t ≥ 0;

∂
∂n u(x, t) = 0, x ∈ ∂D, t > 0;

u(x, 0) = f(x), x ∈ D,

(5.3.12)
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where ∂D denotes the boundary curve of D, which is assumed to have con-
tinuous turning tangent almost everywhere, n denotes the outer unit normal
vector on ∂D, and

∂

∂n
= n · ∇

with ∇ denoting the vector-valued gradient operator. Of course, the initial
heat content f(x) is assumed to be square-integrable on D. Another way to
formulate the above equation is

∂

∂n
u(x, t) =

s∑

k=1

nk
∂

∂xk
u(x, t)

where n = (n1, · · · , ns).
In this subunit, we only consider the rectangular region

D = (0,M1) × · · · × (0,Ms),

and in particular, D = (0,M)× (0, N) for the two-dimensional spatial space
with s = 2. Recall from Subunit 5.2 that by the method of separation of
variables (5.2.8)–(5.2.13) restricts the dependent variableX = X(x) to satisfy

X′(0) = X′(M) = 0.

Since the solution of O.D.E. (5.2.12), for negative λ̃, is

X(x) = B cos
(√
−λ̃ x

)
+C sin

(√
−λ̃ x

)
,

that

X′(x) = −B
√
−λ̃ sin

(√
−λ̃ x

)
+

√
−λ̃ C cos

(√
−λ̃ x

)
,

the condition X′(0) = 0 implies C = 0 and the condition X′(M) = 0 im-

plies
√
−λ̃ = πk

M for any integer k. Hence, under these two zero Neumann
conditions, the general solution of the O.D.E. (5.2.12) is

X(x) = Xk(x) = bk cos
kπx

M

for k = 0, 1, 2, . . . .
Similarly, under the two Neumann boundary conditions

Y ′(0) = Y ′(N) = 0,

the general solution of the O.D.E. (5.2.13) restricts the values of λ − λ̃ to be

λ− λ̃ = −
( ℓπ
N

)2

,



PDE METHODS 191

for ℓ = 0, 1, 2, . . . . Since λ = −
(
πk
M )2, we have

λ− λ̃ = −
((πk

M

)2

+
(πℓ
N

)2
)

for k, ℓ = 0, 1, 2, . . . . Hence, by the principle of superposition, the general
solution of the Neumann PDE in (5.3.12), with D = [0,M ]× [0, N ] is given
by

u(x, y, t) =

∞∑

k=0

∞∑

ℓ=0

d(k, ℓ)bk,ℓ e
−c

(
( kπ

M )2+( ℓπ
N )2

)
t cos

(kπ
M
x
)

cos
( ℓπ
N
y
)
,

(5.3.13)
where we have introduced the notation

d(k, ℓ) = 2−(δk+δℓ), k, ℓ = 0, 1, 2, · · · , (5.3.14)

by using the Kronecker delta symbol δj defined by δ0 = 1 and δj = 0 for j 6= 0
(applied to j = k and j = ℓ), and where bk,ℓ are certain constants. To impose
the initial condition, we have

u(x, y, 0) = f(x, y) =

∞∑

k=0

∞∑

ℓ=0

d(k, ℓ)bk,ℓ cos
(kπ
M
x
)

cos
(ℓπ
N
y
)
, (5.3.15)

which is the Fourier cosine series representation of f(x) = f(x, y) in (5.3.12).
Thus, bk,ℓ, k = 0, 1, · · · , ℓ = 0, 1, · · · in (5.3.13) are the coefficients of the
cosine series of the initial function u0(x, y), namely:

bk,ℓ =
4

MN

∫ M

0

∫ N

0

f(x, y) cos

(
kπ

M
x

)
cos

(
ℓπ

N
y

)
dx dy, (5.3.16)

for k, ℓ = 0, 1, 2, · · · . �

For s ≥ 3, we may consider separation of one variable at a time, by writing

U(x) = U(x1, · · ·xs−1, xs) = V (x1, · · · , xs−1)X(xs),

so that

▽
2
sU = X▽

2
s−1V + X′′V

(where the subscript of ▽
2 denotes the dimension of the Laplace operator).

Hence, by an induction argument, we have the following result, which extends
Theorem 5.3.1 to any dimension s ≥ 2.

For convenience, the notation d(k, ℓ) in (5.3.14) is extended to an arbitrary
s ≥ 2; namely

d(k1, · · · , ks) = 2−
Ps

j=1
δkj .
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Theorem 5.3.2 Let u0 ∈ L1

(
(0,M1)×· · ·×(0,Ms)

)
, where M1, · · · ,Ms > 0.

Then the solution of the Neumann diffusion PDE (5.3.12) for D = (0,M1) ×
· · · × (0,Ms) with initial heat content u(x, 0) = u0(x),x ∈ D, is given by

u(x, t) =

∞∑

k1=0

· · ·
∞∑

ks=0

d(k1, · · · , ks)bk1···kse
−c

Ps
j=1

(
kjπ

Mj
)2 t

× cos
(
k1π
M1

x1

)
· · · cos

(
ksπ
Ms

xs

)
,

(5.3.17)

with

bk1···ks =
2s

M1 · · ·Ms

∫

D

f(x1, · · · , xs) cos
(k1π

M1
x1

)
· · ·cos

(ksπ
Ms

xs

)
dx,

where u(x, 0) = f(x) = f(x1, · · · , xs) and the convergence of the series in
(5.3.17) is in the L2(D)-norm.

Example 5.3.3 Solve the Neumann diffusion PDE (5.3.12) for M = N = π,
with initial heat content

u(x, 0) = f(x) = 1 + 2 cosx cos y + cosx cos 3y.

Solution Since the representation of u0(x, y) is already its Fourier cosine
series representation, it follows from Theorem 5.3.2 that the solution is given
by

u(x, y, t) = 1 + 2e−c(1
2+12)t cos x cos y + e−c(1

2+32)t cosx cos 3y

= 1 + 2e−2ct cosx cos y + e−10ct cosx cos 3y.

�

5.4 Boundary Value Problems

In this subunit, we extend the linear PDE model (5.3.12), that describes the
isotropic heat diffusion process, with positive constant heat conductivity, to
anisotropic heat diffusion, with the conductivity constant c replaced by a
function that dictates the direction of heat diffusion. We first recall that

∇2 = ∇ · ∇

where ∇ is the vector-valued gradient operator

∇f(x1, · · · , xs) =
( ∂f

∂x1
, · · · , ∂f

∂xs

)
,
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(with scalar-valued function f), and the scalar-valued divergence operator

∇ · F(x1, · · · , xs) = ∇ ·
(
f1(x1, · · · , xs), · · · , fs(x1, · · · , xs)

)

=
(

∂
∂x1

f1 + · · ·+ ∂
∂xs

fs

)
(x1, · · · , xs),

(with vector-valued function F = (f1, · · · , fs)). Therefore, for any constant c
and scalar-valued function v(x) = v(x1, · · · , xs), we have

c ∇2 u(x) = c ∇ · ∇ v(x) = ∇ · (c ∇v(x)).

This formulation allows us to replace the constant c by any differentiable
function w(x). With u(x, t) denoting the heat content at the spatial location
x and time t, then the isotropic diffusion PDE

∂

∂t
u(x, t) = c ∇2 u(x, t)

with constant heat conductivity c > 0, can be extended to the anisotropic
diffusion PDE

∂

∂t
u(x, t) = ∇ ·

(
c(|∇u(x, t)|

)
∇u(x, t)

)
, (5.4.1)

where c(p) is a function of the variable p defined for p ≥ 0, and we will consider

p = |∇u(x, t)|=
√
u2
x1

(x, t) + · · ·+ u2
xs

(x, t).

Observe that since the PDE (5.4.1) is highly non-linear, we first describe
how heat diffuses with various choices of the conductivity function c(p) in
terms of the “geometry” of “arcs” or “edges.” This is usually called “dif-
fusion geometry.” To compute reasonably good approximate solutions of an
anisotropic PDE, we introduce the notion of “lagged anisotropic diffusion” in
Subunit 5.4.2, converting the non-linear PDE to a system of linear PDE’s. To
facilitate our discussion and solution of the PDE system, we replace c(p) in
(5.4.1) by a general differentiable function w(x) ≥ 0 and study the Neumann
boundary value problem (in the spatial domain) obtained from (5.4.1) with
c(p) replaced by w(x), by application of the method of separation of variables
to isolate the spatial PDE model.

5.4.1 Neumann boundary value problems

Let D be a bounded and simply connected domain in R2, such that the bound-
ary ∂D is a piecewise smooth curve C, so that, with the exception of possibly
a finite number of “corners,” C has continuous turning tangent τ = τ (x, y),
for (x, y) ∈ C = ∂D. To unify the notations with the previous subunit, we set
the closure of D to be

closD = D ∪ C = D ∪ ∂D.
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In particular, for the rectangular region

D = (0,M)× (0, N)

considered in Subunit 5.3.2, the boundary curve C of D consists of 4 straight
edges and 4 corners.

We will use the notation

n = n(x, y)

for the unit normal of any smooth arc γ in D, and in particular, the outer
normal of the boundary curve C of D. For the smooth arc γ, corresponding
to n = n(x, y), (x, y) ∈ γ, we will introduce the unit tangent

τ = τ (x, y)

for the same (x, y) ∈ γ. Hence, (τ ,n) constitutes a pair of local coordinates
at (x, y).

The Neumann boundary value problem to be studied in this subunit is the
“anisotropic” PDE:






∂
∂t u(x, y, t) = ∇ ·

(
w(x, y)∇u(x, y, t)

)
, (x, y) ∈ D;

∂
∂n

u(x, y, t)
∣∣
(x,y)∈∂D = 0,

(5.4.2)

for all t > 0. As mentioned previously, w(x, y) > 0 is a differentiable function.
Observe that since (5.4.2) is a linear PDE, we may apply the method of
separation of variables studied in Subunit 5.2 to write

u(x, y, t) = U(x, y)T (t),

so that
∂u

∂t
= U T ′ and ▽ · (w▽u) =

(
▽ · (w▽U)

)
T ,

which yields
T ′

T
=

▽ · (w▽U)

U
,

where the left-hand side is independent of (x, y) and the right-hand side is
independent of t. Thus, they must be equal to the same constant, say −λ.
Also, since T ′

T = −λ, T (t) = e−λt (with any multiplication constant). It is
intuitively clear that λ ≥ 0 for “diffusion” for increasing value of t. This will
be shown rigorously later in this subunit. As to the spatial consideration, we
have an eigenvalue problem

▽ · (w▽U) = −λU.
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Indeed, in view of the zero Neumann condition in (5.4.2), this eigenvalue
problem can be formulated, more precisely, as

{
∇ · (w∇v) = −λv;
∂
∂n

v
∣∣
∂D

= 0,
(5.4.3)

where v = U . For any fixed λ, the set of solutions of the Neumann boundary
value problem (5.4.3) is the same as the eigenspace:

S(λ) := {v :
∂

∂n
v

∣∣∣∣
∂D

= 0, ▽ · (w▽v) = −λv} (5.4.4)

corresponding to the eigenvalue λ. For λ0 = 0, it is clear that S(λ0) is non-
trivial, since the constant functions lie in S(λ0). By applying the Gram-
Schmidt orthonormalization procedure, we may assume that {v0,k}k is an
orthonormal basis of the eigen-space S(λ0).

Consider two different eigenvalues λi and λj (with e.g. λi = λ0 = 0). Let
(λi, vi) and (λj , vj) be two such eigenvalue-function pairs. In the following, we
will prove that the eigenfunctions vi and vj must be orthogonal, namely,

∫

D

vi(x, y)vj(x, y)dx dy = 0. (5.4.5)

Theorem 5.4.1 Eigenfunctions corresponding to different eigenvalues of the
operator defined in (5.4.4) are orthogonal.

Our proof will depend on the following “Divergence Theorem,” namely:

For vector-valued functions
−→
F on D,

∫∫

D

▽ · −→F (x, y)dx dy =

∮

C

−→
F · n ds, (5.4.6)

where n(x, y) is the unit outer normal at (x, y), and the line integral over the
close curve C = ∂D is considered to be in the counter-clockwise direction.

Now for the eigenfunction vi and vj discussed above, observe that

▽ · (viw▽vj) = w(▽vi) · (▽vj) + vi▽ · (w▽vj);

▽ · (vjw▽vi) = w(▽vj) · (▽vi) + vj▽ · (w▽vi),

so that by taking the difference, we have

▽ · (viw▽vj)− ▽ · (vjw▽vi) = vi▽ · (w▽vj)− vj▽ · (w▽vi). (5.4.7)

The formula (5.4.6) of the Divergence Theorem can be applied to both
−→
F =

viω∇vj and
−→
F = vjω∇vi to show that both integrals

∫ ∫
D

on the left-hand
side of (5.4.7) vanish, since

(▽uj) · n
∣∣
∂D

=
∂

∂n
uj

∣∣
∂D

= 0 and (▽ui) · n
∣∣
∂D

=
∂

∂n
ui

∣∣
∂D

= 0.
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Therefore, from (5.4.7), we have

∫∫

D

vi▽ · (w▽vj)dx dy =

∫∫

D

vj▽ · (w▽vi)dx dy,

or equivalently,

−λj
∫∫

D

vivjdx dy = −λi
∫∫

D

vjvidx dy,

since vj ∈ S(λj ) and vi ∈ S(λi). Hence, if λj 6= λi, (5.4.5) follows, completing
the proof of the theorem. �

To apply the above theorem to investigate if any eigenvalue λ 6= λ0(= 0)
exists, we now know that if v is an eigenfunction corresponding to λ, then v
must be orthogonal to the eigenspace S(λ0). (We’ll use the notation v ⊥ S(λ0)
or v ∈ S⊥(λ0).) Now, for v ∈ S(λ),

−λv = ▽ · (w▽v)

so that
−λv2 = v▽ · (w▽v).

On the other hand, since

▽ · (vw▽v) = v▽ · (w▽v) + (▽v) · (w▽v)

= v▽ · (w▽v) + w|▽v|2,

it follows that
−λv2 = ▽ · (vw▽v) −w|▽v|2.

Hence, by applying the Divergence Theorem (5.4.6) again, but with
−→
F =

vw▽v in (5.4.6), and using the Neumann boundary condition

(▽v) · n
∣∣
∂D

=
∂

∂n
v
∣∣
∂D

= 0,

(which implies
∫∫
D ▽ · (vw▽v)dx dy = 0), we have

∫∫

D

λv2dx dy =

∫∫

D

w|▽v|2dx dy.

That λ ≥ 0 is in agreement with the “diffusion” process T (t) = e−λt. In
addition, the eigenvalue λ is given by the “Rayleigh quotient”:

λ =

∫∫
D
w|▽v|2dxdy∫∫

D
v2(x, y)dx dy

. (5.4.8)

We will continue this discussion in Subunit 5.4.3, when we study the solu-
tion of the system of linear PDE’s obtained by “linearization” of the non-linear
anisotropic PDE model.



PDE METHODS 197

5.4.2 Anisotropic diffusion

In this subunit, we discuss the “geometry” of the diffusion process governed
by various conductivity functions c(p), p ≥ 0, for the anisotropic heat diffusion
PDE, (5.4.9) below, with initial heat content u(x, y, 0) = u0(x, y) = f(x, y),
for a bounded and simply connected region closD = Ω∪C ⊂ R2, as introduced
in the previous subunit:





∂
∂t u(x, y, t) = ∇ ·

(
c(|∇u(x, y, t)|)∇ u(x, y, t)

)
, (x, y) ∈ D;

∂
∂n u(x, y, t)

∣∣
∂D

= 0, (x, y) ∈ ∂D;

u(x, y, 0) = u0(x, y), (x, y) ∈ D,

(5.4.9)

for t ≥ 0. For notational convenience, we will write u = u(x, y, t), when it
is understood that (x, y) ∈ D and t > 0 (see (5.4.2) for ω(x, y) in place of
c(|∇u|) and the Neumann boundary condition, where n = (x, y) denotes the
outer unit normal at (x, y) ∈ ∂D). Observe that if α denotes the angle of
inclination of the unit tangent vector τ of C with the x-axis, we have

[
τ

n

]
=

[
cosα sinα
− sinα cosα

] [
e1

e2

]
, (5.4.10)

where e1 = (1, 0) and e2 = (0, 1). Here, we consider (τ ,n) as the unit tangent-
normal pair at any point (x, y) ∈ ∂D.

To change the derivative from the (x, y) coordinates to the local coordi-
nates (τ ,n), we may apply (5.4.10) to write




∂
∂τ

∂
∂n



 =




cosα sinα

− sinα cosα








∂
∂x

∂
∂y



 , (5.4.11)

or 


∂
∂x

∂
∂y



 =




cosα − sinα

sinα cosα








∂
∂τ

∂
∂n



 . (5.4.12)

As to the second-order partial derivatives, we present the following com-
putations:

(i) ∂2

∂x2 = ∂
∂x

(
cosα ∂

∂τ
− sinα ∂

∂n

)

= cosα ∂
∂τ

(
cosα ∂

∂τ
− sinα ∂

∂n

)
− sinα ∂

∂n

(
cosα ∂

∂τ
− sinα ∂

∂n

)

= cos2 α ∂2

∂τ
2 − 2 cosα sinα ∂2

∂τ∂n + sin2 α ∂2

∂n2 .

Similarly, we have

(ii)
∂2

∂x∂y
= sinα cosα

∂2

∂τ 2
+ (cos2 α− sin2 α)

∂2

∂τ∂n
− sinα cosα

∂2

∂n2
;

(iii)
∂2

∂y2
= sin2 α

∂2

∂τ 2
+ 2 sinα cosα

∂2

∂τ∂n
+ cos2 α

∂2

∂n2
.
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In matrix formulation, we have:




∂2

∂x2

∂2

∂x∂y

∂2

∂y2




=




cos2 α −2 sinα cosα sin2 α

sinα cosα cos2 α− sin2 α − sinα cosα

sin2 α 2 sinα cosα cos2 α







∂2

∂τ
2

∂2

∂τ∂n

∂2

∂n2



. (5.4.13)

In particular, we remark that the Laplace operator ∇2 is rotationally in-
variant, namely:

▽
2 = ∂2

∂x2 + ∂2

∂y2

= (cos2 α+ sin2 α) ∂2

∂τ
2 + (−2 cosα sinα+ 2 cosα sinα) ∂2

∂τ∂n

+(sin2 α+ cos2 α) ∂2

∂n2

= ∂2

∂τ
2 + ∂2

∂n2 ,

or we may write

▽
2
(x,y) = ▽

2
(τ ,n), (5.4.14)

In addition, by taking matrix inverse in (5.4.13), we have




∂2

∂τ
2

∂2

∂τ∂n

∂2

∂n2




=




cos2 α 2 sinα cosα sin2 α

− sinα cosα cos2 α− sin2 α sinα cosα

sin2 α −2 sinα cosα cos2 α







∂2

∂x2

∂2

∂x∂y

∂2

∂y2



. (5.4.15)

Now, returning to PDE (5.4.9), by setting

p = |▽u| =
√
u2
x + u2

y,

we have 




ux

p = ux

|▽u| = − sinα,

uy

p
=

uy

|▽u| = cosα,
(5.4.16)

Hence, it follows that 




∂p
∂x =

uxxux+uxyuy√
u2

x+u2
y

,

∂p
∂y =

uxyux+uyyuy√
u2

x+u2
y

.

(5.4.17)
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This implies, by direct computations, that

▽ ·
(
c(p)▽u

)
=

(
▽c(p)

)
·
(
▽u

)
+ c(p)▽u

= c′(p)(
∂p

∂x
,
∂p

∂y
) · (ux, uy) + c(p)▽u

= c′(p)
uxxu

2
x + 2uxyuxuy + uyyu

2
y√

u2
x + u2

y

+ c(p)▽u

= c′(p)

[
uxx

u2
x

p
+ 2uxy

uxuy
p

+ uyy
u2
y

p

]
+ c(p)▽u

= p c′(p)

[
uxx(

ux
p

)2 + 2uxy(
ux
p

)(
uy
p

) + uyy(
uy
p

)2
]

+ c(p)▽u

= p c′(p)
[
(sin2 α)uxx − 2(sinα cosα)uxy + (cos2 α)uyy

]
+ c(p)▽u.

(5.4.18)

Therefore, by applying the change of variables from (x, y)-coordinates to the
local coordinates (τ ,n) in (5.4.14), we have, from (5.4.18),

▽ ·
(
c(p)▽u

)
= pc′(p)unn + c(p)(unn + uττ ). (5.4.19)

Hence, by introducing the function:

F (p) := p c(p), (5.4.20)

so that

F ′(p) := p c′(p) + c(p), (5.4.21)

it follows from (5.4.19) that

▽ ·
(
c(p)▽u

)
= F ′(|▽u|) unn + c(|▽u|) uττ . (5.4.22)

In other words, the anisotropic diffusion PDE in (5.4.9) can be written, for
each (x, y) ∈ D, as

∂u(x, y; t)

∂t
= F ′(|▽u(x, y; t|) unn + c(|▽u(x, y; t|) uττ , (5.4.23)

where n = n(x, y), τ = τ (x, y) depend on (x, y), F ′(|▽u|) is the conductivity
of the diffusion of u = u(x, y; t) at (x, y) in the normal direction n = ▽u

|▽u| ,

and c(|▽u|) is the conductivity of the diffusion of in the tangential direction
τ = τ (x, y).

This observation of the “diffusion geometry” has important applications to
digital image noise removal (called “denoising”), while preserving sharpness
of image edges. We will elaborateon this application in Subunit 5.5.2, with
various examples of the heat conductivity function c(p), p ≥ 0.
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5.4.3 Solution in terms of eigenvalue problems

We emphasize that it is not feasible, in general, for the non-linear PDE (5.4.9)
to have an exact solution. In this subunit, we introduce the notion of lagged
anisotropic transform by considering the system of linear PDE’s






∂
∂t
un(x, y, t) = ∇ ·

(
c(|∇un−1 (x, y, t)|)∇ un(x, y, t)

)
, (x, y) ∈ D

∂
∂n
un(x, y, t)

∣∣
∂D

= 0, (x, y) ∈ D;

un(x, y, 0) = u0(x, y), (x, y) ∈ D,
(5.4.24)

for n = 1, 2, . . . , with

u0(x, y, 0) := u0(x, y), t > 0,

or if necessary, u0(x, y) should be convolved with some lowpass filter to define
the initial function u0(x, y, t). The reason for this extra step is that c

(
|∇ u0|

)

must be differentiable for the PDE in (5.4.24), for n = 1, to be well posed. To
solve the linear PDE for each n ≥ 1, we rely on the results derived in Subunit
5.4.1, with w = c

(
|∇ un−1|

)
in the Rayleigh quotient (5.4.8). More precisely,

while the eigenspace S(0) = S(λ0) in (5.4.4) is easy to determine (see Example
5.4.1 to follow), the positive eigenvalues λk, k = 1, 2, . . ., namely:

0 = λ0 < λ1 < λ2 < · · · ,

can be computed, by solving the minimization problems with

λ1 = min

{∫∫
D
w|▽v|2dx dy∫∫
D
v2dx dy

: v ∈ S⊥(λ0) and ∂v
∂n

∣∣
∂D

= 0

}
. (5.4.25)

Then by applying the Gram-Schmidt orthonormalization procedure, we have
an orthonormal basis {v1,k}k of S(λ1). Hence, by the Theorem 5.4.1 of Subunit
5.4.1, the set of functions {v0,k} ∪ {v1,k} constitute an orthonormal basis of
S(λ0)⊕ S(λ1).

In general, for j > 1, compute

λj = min

{∫∫
D
w|▽v|2dx dy∫∫
D v

2dx dy
: v ∈

(
⊕j−1
ℓ=0 S(λℓ)

)⊥
,

∂v

∂n

∣∣
∂D

= 0

}
,

(5.4.26)
with S(λj) being its corresponding eigen-space with λ = λj , with orthonormal
basis {vj,k}k. Then

∪∞j=0{vj,k}k (5.4.27)

is an orthonormal basis of the space its spans, namely

closL2

(
⊕∞
j=0S(λj )

)
= L2

0(D),
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where

L2
0(D) :=

{
f ∈ L2(D) :

∂f

∂n

∣∣
∂D

= 0

}
. (5.4.28)

That is, the family of vj,k in (5.4.27) is an orthonormal basis of L2
0(D) defined

in (5.4.28).

Example 5.4.1 Let D = (0, π)2 = (0, π)× (0, π) and w = c0 be a constant.
Define

hm,n(x, y) =






1
π , for m = n = 0,

√
2
π cosmx, for m = 1, 2, · · · , and n = 0,

√
2
π cos ny, for m = 0 and n = 1, 2, · · · ,

2
π2 cosmx cosny, for m, n = 1, 2, · · · .

(5.4.29)

Then {hm,n} is an orthonormal basis of L2
0(0, π)2. Let λ0 = 0. For λ1, since

S(λ0) is a one-dimensional vector space generated by the constant basis func-
tion h0,0, we must consider

∫∫
D
w|▽v|2dxdy∫∫
D
v2dx dy

, with
∫∫
D
vdx dy = 0, (5.4.30)

(i.e. v ∈ S⊥(λ0)) to find the smallest eigenvalue λ1 > λ0(= 0). Let us first
observe that

∫ π

0

cos2mxdx =

∫ π

0

sin2mxdx =
π

2
, m ≥ 1, (5.4.31)

so that for all m = 1, 2, · · · ,
∫∫

D

w|▽hm,0|2dx dy = c0

∫ π

0

∫ π

0

2

π2
m2 sin2mxdx dy = c0m

2.

Similarly,
∫∫
D
w|▽h0,m|2dx dy = c0m

2. Now, write v =
∑∞

m,n=0 am,nhm,n.

Since v ∈ S⊥(λ0), a0,0 = 0. Therefore, by applying the Parseval’s identity to
v =

∑∞
m+n≥1 am,nhm,n, we have

∫∫

D

v2dx dy =

∞∑

j+k≥1

(aj,k)2.

Furthermore, applying Parseval’s identity again to ▽v =
∑∞

m+n≥1 am,n▽hm,n
with the orthonormal family {sinmx cos ny, cosmx sinny}, we have

∫∫

D

wv2dx dy =

∞∑

j+k≥1

c0(m2 + n2)(aj,k)2. (5.4.32)
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In the following, consider the weights

bm,n :=
a2
m,n∑

j+k≥1 a
2
j,k

, m+ n ≥ 1

which satisfy:

0 ≤ bm,n ≤ 1,
∑

m+n≥1

bm,n = 1. (5.4.33)

Therefore, from (5.4.32), we may write

∫∫
D w|▽v|2dx dy∫∫
D
v2dx dy

=
∑

m+n≥1

bm,n
(
c0(m2 + n2)

)
. (5.4.34)

In view of (5.4.33), we see that the Rayleigh quotient in (5.4.34) is a convex
combination of the sequence {c0(m + n)2}, m + n ≥ 1, with weights bm,n.
Thus

λ1 = min
v

∫∫
D w|▽v|2dx dy∫∫
D
v2dx dy

=
∑

bm,n

c0(m2 + n2) = c0, (5.4.35)

which is attained at b1,0 = 1 or b0,1 = 1. Therefore, the eigen-space S(λ1) has
dimension = 2, with orthonormal basis {h1,0, h0,1}. This procedure obviously
extends to λ1 < λ2 < λ3 < · · · . In the following, we compile a table of
eigenvalues 0 = λ0 < λ1 < λ2 < · · · with dimensions of the eigen-spaces
S(λ0), S(λ1), S(λ2), · · · , and orthonormal bases. See the following table for the
first 11 eigenvalues with corresponding orthonormal bases of eigenfunctions.

eigenvalues (λ) dimension of S(λ) orthonormal bases

λ0 = 0 dimS(λ0) = 1 {h0,0}
λ1 = c0 dimS(λ1) = 2 {h1,0, h0,1}
λ2 = 2c0 dimS(λ2) = 1 {h1,1}
λ3 = 4c0 dimS(λ3) = 2 {h2,0, h0,2}
λ4 = 5c0 dimS(λ4) = 2 {h2,1, h1,2}
λ5 = 8c0 dimS(λ5) = 1 {h2,2}
λ6 = 9c0 dimS(λ6) = 2 {h3,0, h0,3}
λ7 = 10c0 dimS(λ7) = 2 {h3,1, h1,3}
λ8 = 13c0 dimS(λ8) = 2 {h3,2, h2,3}
λ9 = 17c0 dimS(λ9) = 2 {h4,1, h1,4}
λ10 = 18c0 dimS(λ10) = 1 {h3,3}
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We remark that the computation of the eigenvalues (and corresponding
eigenfunctions) by means of the minimization criteria (5.4.25)–(5.4.26) ap-
plies to an arbitrary simply connected bounded region with piecewise smooth
boundary curve, while the Fourier series solution studied in Subunit 5.3.2 only
applies to bounded rectangular regions. The above simple example is included
here only for the demonstrative purpose. In general, w(x, y) is not a constant
function c0, which reduces to the isotropic diffusion PDE studied in Subunit
5.3.

5.5 Application to Image De-Noising

Observe that the entropy (of the probability distribution ¶n) of an informa-
tion source increases, often quite significantly, when the information source is
contaminated with additive noise. The reason is that the noise random be-
havior causes the distribution of ¶n =: p1, . . . , pn to be more uniform, in that
the contaminated values of p1, . . . , pn are more likely to be different. Since the
entropy directly governs coding efficiency according to the Noiseless Coding
Theorem, as studied in Subunit 2.4.2, noise reduction certainly facilitates data
compression efficiency. When the information source is some (noisy) digital
image, quantization reduces the entropy, due to the sparseness of the quan-
tized DCT blocks. From a theoretical point of view, if each image block is
represented by a Fourier series, then the Fourier coefficients are divided by
some exponentially increasing terms, induced by the diffusion process (as the
time parameter increases). In other words, isotropic diffusion performs just
like quantization of the DCT coefficients. This concept will be discussed in
Subunit 5.5.1. On the other hand, since isotropic diffusion causes uniform im-
age blurring, it would be preferable to replace the quantization process by
anisotropic diffusion. In Subunit 5.5.2, four anisotropic diffusion models are
introduced and the implementation issue is also discussed. Our study of the
application of image de-noising ends with a brief discussion in Subunit 5.5.3
of the pros and cons of such enhancement of the JPEG image compression
standard.

5.5.1 Diffusion as quantizer for image compression

Recall from Subunit 2.5 that quantization of the discrete cosine transform
(DCT) of a digital image is the critical step to achieve high compression ratios
at the cost of removing certain high-frequency image content. The quantizers
“Q”, however, were artificially chosen by means of experimentation and visual
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judgment. In the continuous-time setting, if the image to be compressed is
represented by a Fourier cosine series, as given by (5.3.15) of Subunit 5.3.2,
namely

u(x, y, 0) = f(x, y) =

∞∑

k=0

∞∑

ℓ=0

d(k, ℓ)bk,ℓ cos
(kπ
M
x
)

cos
(ℓπ
N
y
)
,

then the solution of the isotropic heat diffusion PDE (5.3.12) is given by

u(x, y, t) =

∞∑

k=0

∞∑

ℓ=0

d(k, ℓ)bk,ℓ e
−c

(
( kπ

M )2+( ℓπ
N )2

)
t cos

(kπ
M
x
)

cos
( ℓπ
N
y
)
.

Hence, it is natural to apply

Q = Q(t) := ec
(
( kπ

M )2+( ℓπ
N )2

)
t (5.5.1)

as the quantizer by choosing desirable values of t > 0.
To apply (5.5.1) to the discrete-time and DCT setting for digital image

compression, we may “sample” the solution u(x, y, t) in (5.3.13) in the spatial
domain (x, y) ∈ D. Let us first discuss this aspect before considering dis-
cretization of the time parameter t (since this should be done with input from
experimentation and visual judgment).

Let △x and △y denote the uniform spacings; that is

vk := u0(a+ k△x); vk,ℓ := u0(a+ k△x, b+ ℓ△y)

for the domain D = (a, c)× (b, d). Then the A/D (analog-to-digital) converter
may be described by

u0(x, y) −→ A/D (with △x,△y) −→

−→




v0,0 v1,0 · · · vM,0

v0,1 v1,1 · · · vM,1

...
...

. . .
...

v0,N v1,N · · · vM,N


 = vM,N ,

where vM,N is an (N + 1)× (M + 1) matrix. Recall that to apply the DCT to
vM,N , the data matrix vM,N must be first transposed; that is, we will apply
DCT to

v0 := (vM,N)T .

When the matrix dimension is not clear, we then write
(
v0

)
(M+1)×(N+1)

by

tacking on the dimension indices. Let us replace the (Fourier) cosine coeffi-
cients

b0,0

4 ,
b0,k

2 , k = 1, 2, · · · ;
bℓ,0

2 , ℓ = 1, 2, · · · ;
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and bℓ,k, ℓ, k = 1, 2, · · · , in the continuous-spatial setting (5.3.15) by the
discrete-spatial setting:

C :=




c0,0 c0,1 · · · c0,N
c1,0 c1,1 · · · c1,N

...
...

. . .
...

cM,0 cM,1 · · · cM,N


 .

Then by introducing the DCT matrix:

EM+1 =

√
2√

M + 1




√
2

2

√
2

2 · · ·
√

2
2

cos( π
M+1 · 1

2) cos( π
M+1 · 3

2 ) · · · cos( π
M+1 · 2M+1

2 )
...

...
. . .

...
cos( Mπ

M+1
· 1

2
) cos( Mπ

M+1
· 3

2
) · · · cos( Mπ

M+1
· 2M+1

2
)



,

(5.5.2)
we see that the 2-D discrete cosine transform of the discretized version v of
u0(x, y) is given by

C = EM+1v0 ETN+1 , (5.5.3)

where
v0 = (v0)(M+1)×(N+1).

Next, let us consider the “diffusion terms” e−c(
mπ

M+1
)2t and

e−c
(
( mπ

M+1
)2+( nπ

N+1
)2

)
t in (5.3.13) or Q−1(t) in (5.5.1), and consider the diagonal

matrices

DM+1 :=




1

e−c(
π

M+1
)2t

e−c(
2π

M+1
)2t

. . .

e−c(
Mπ

M+1
)2t




and

EN+1 :=




1

e−c(
π

N+1
)2t

e−c(
2π

N+1
)2t

. . .

e−c(
Nπ

N+1
)2t



.

Then quantization of C in (5.5.3 ) can be described by

C = EM+1v0ETN+1 −→ DM+1 C ETN+1 =
(
DM+1EM+1

)
v0

(
EN+1EN+1

)T
.
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We remark that the diffusion process can be pre-computed by

EM+1 −→ DM+1EM+1, EN+1 −→ DN+1EN+1. (5.5.4)

In other words, the same “diffusion system” handles all (arbitrary) data.

Input data v0 −→

DCT
↑

Diffusion
terms

−→ IDCT −→

−→ “diffused v0” =: v(t) =
(
vM(t)

)T
or

(
vM,N(t)

)T
.

Next, returning to the solution u(x, y; t) in (5.3.15), we observe that the
cosine terms in the continuous-space setting must be replaced by IDCT in the
discrete-space setting. Hence, by introducing the notation

vM,N(t) =




v0,0(t) v1,0(t) · · · vM,0(t)
v0,1(t) v1,1(t) · · · vM,1(t)

...
...

. . .
...

v0,N(t) v1,N(t) · · · vM,N(t)


 , t ≥ 0, (5.5.5)

with vM,N(0) = vM,N , we have

(
vM,N(t)

)T
=

(
ETM+1DM+1EM+1

)
v0

(
ETM+1DM+1EM+1

)T
.

Of course, uniform time discretization is to replace t by tk := t0 + k△T ,
△T > 0, where t0 = 0. But non-uniform time discretization should be more
desirable, depending on experimentation and human visual judgment.

5.5.2 Diffusion for noise reduction

It is well-known that convolution with a lowpass filter is commonly used for
(high-frequency) noise reduction, and that the most popular lowpass filter is
the Gaussion function. Recall from Subunit 5.1.3 that Gaussion convolution
also solves the (isotropic) heat diffusion PDE with spatial domain R2. Hence,
for image noise reduction, with image domain D = (0,M)× (0, N) ⊂ R2, the
solution u(x, y, t) of the initial-value Neumann problem (5.3.12) provides an
image de-noising tool for the given image u0(x, y) = u(x, y, 0). However, re-
moval of high-frequency noise also removes high-frequency image content. To
preserve high-frequency content, such as image edges and certain visible tex-
tures, anisotropic diffusion should be used. In Subunit 5.4.2, we have derived
a general theory of anisotropic heat diffusion PDE with conductivity function
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c(p), where the magnitude of the image gradient |∇ u(x, y, t)| is used for p.
The key property is the re-formation of the anisotropic PDE (5.4.9) as

∂

∂t
u = F ′(p)unn + c(p) uττ

in (5.4.23), with u = u(x, y, t) and p = |∇ u|; where the coefficient F ′(p) =
pc(p) in (5.4.20) of unn quantifies the amount of diffusion in the normal di-
rection n of any image edge or visible image texture, and c(p) quantifies the
amount of diffusion in the tangential direction τ . Hence, since diffusion in the
normal direction blurs image edges and removes certain image textures, while
diffusion in the tangential direction is much less visible, it is usually wise to
select the conductivity function c(p) > 0 such that

F ′(p) := pc′(p) + c(p)

is small (or even negative). Here, negative F ′(p) implies backward diffusion
that sharpens image edges for application to image enhancement. In the fol-
lowing, we compile a list of popular choices of the conductivity function c(p).

Example 5.5.1 (TV model) c(p) is defined by

c(p) :=
1

p
. (5.5.6)

Thus, F (p) = 1 and hence, F ′(p) = 0. Therefore, the geometry of diffusion for
the PDE

∂

∂t
u = ▽ ·

(
▽u

|▽u|

)

is
∂

∂t
u =

1

|▽u|uττ , (5.5.7)

which implies that the image diffuses only along image edges and no visibly
blurring occurs, but the price to pay is that: large 1

|▽u| (for small |▽u|, i.e.

low-intensity edges and texture) means enormous diffusion, though in the tan-
gential direction, which results in loss of texture. In addition, modification at
|▽u| ≈ 0 (in terms of truncation) is needed for computation and implementa-
tion. �

Example 5.5.2 (Gaussian model) c(p) is defined by

c(p) := c0 e−p
2/2p2

0 , (5.5.8)

where c0 and p0 are positive constants. Then F (p) = c0pe
−p2/2p2

0 . Thus

F ′(p) = c0e−p
2/2p2

0

(
1 + p(−p/p2

0)
)

= c0e−p
2/2p2

0

(
1− (p/p0)2

)
.
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From the geometry of diffusion for the PDE given in (5.4.23), if
|▽u(x, y; t)| > p0, then F ′(p) < 0. Thus, the image edges are enhanced (due
to backward diffusion). Note: In contrast to the TV model, low-variation con-
tent (i. e. 0 < |▽u| ≈ 0) is preserved (though slightly diffused in the normal
direction, which results in blurring). �

Example 5.5.3 (Perona-Malik model) c(p) is defined by

c(p) :=
c0

1 + (p2/p0)2
, (5.5.9)

where c0 and p0 are positive constants. Thus, F (p) = c0p
1+(p2/p0)2

, and

F ′(p) =
c0

(
1− (p2/p0)2

)
(
1 + (p2/p0)2

)2 .

Note that image edges may be over-sharpened for |▽u| > p0. �

Example 5.5.4 In this example, we consider the conductivity function c(p)
proposed by You, Xu, Tannenbaum and Kavech in IEEE Trans. Image Proc.,
vol.5, pp.1539-1553, 1996. The design of c(p) takes full advantage of backward
diffusion for edge sharpening, while preserving “isotropic diffusion” for |▽u| ≤
p0.

Let ǫ > 0 and 0 < α < 1 be constants and let

c0 =
1

p0

(
1 +

α

(p0 + ǫ)1−α

)

be the conductivity constant for isotropic diffusion.
The conductivity function c(p) is defined by

c(p) :=





c0, for 0 ≤ p ≤ p0

1
p

(
1 + α

(p+ǫ)1−α

)
, if p0 < p.

where p0 > 0. Then

F ′(p) =






c0, for 0 ≤ p ≤ p0

− α(1−α)
(p+ǫ)2−α , if p0 < p.

�

As to the issue of implementation, since images to be de-noised are digital,
we are only interested in discretization of the anisotropic PDE (5.4.9). In
view of the popularity of the TV model in Example 5.5.1, we only consider
the formulation (5.5.7), namely:

∂

∂t
u(x, y, t) =

1√
u2
x + u2

y

∂2

∂τ 2
u(x, y, t),
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where τ = τ (x, y) denotes the unit tangent vector at (x, y). By (5.4.15), we
have (with cosα =

uy

|∇u| and sinα = ux

|∇u| from (5.4.16)),

∂2

∂τ
2 = cos2 α ∂2

∂x2 + 2 sinα cosα ∂2

∂x∂y
+ sin2 α ∂2

∂y2

= 1
u2

x+u2
y

(
u2
y

∂2

∂x2 − 2ux uu
∂2

∂x∂y + u2
x

∂2

∂y2

)
.

Hence, it follows that the anisotropic PDE (5.4.9) (for the TV model) is:

∂u

∂t
ut =

u2
y uxx − 2ux uy uxy + u2

x uyy

(u2
x + u2

y)3/2
. (5.5.10)

To discretize the PDE (5.5.10), let△t,△x,△y > 0. Then for ℓ = 0, 1, 2, · · ·
and j, k ∈ Z such that (j△x, k△y) ∈ D ∪ ∂D, set

uℓ(j, k) := u(j△x, k△y, ℓ△), (5.5.11)

and replace the partial derivatives ut, ux, uy, uxx, uxy, uyy by partial divided
differences δtu, δxu, δyu, δxxu, δxyu, δyyu respectively, defined by

(
δtu

)
ℓ
(j, k) :=

(
uℓ+1(j, k)− uℓ(j, k)

)
/△t,

(
δxu

)
ℓ
(j, k) :=

(
uℓ(j + 1, k)− uℓ(j, k)

)
/△x,

(
δyu

)
ℓ
(j, k) :=

(
uℓ(j, k + 1) − uℓ(j, k)

)
/△y,

(
δxxu

)
ℓ
(j, k) :=

(
uℓ(j + 1, k)− 2uℓ(j, k) + uℓ(j − 1, k)

)
/(△x)2,

(
δxxu

)
ℓ
(j, k) :=

(
uℓ(j + 1, k+ 1)− uℓ(j + 1, k)− uℓ(j, k + 1) +

+uℓ(j, k)
)
/△x△y, (5.5.12)

(
δyyu

)
ℓ
(j, k) :=

(
uℓ(j, k + 1)− 2uℓ(j, k) + uℓ(j, k − 1)

)
/(△y)2.

Therefore, discretization of (5.5.10) becomes

δtu =
(
δtu

)
ℓ
(j, k)

=

[
(δyu)2 (δxxu)−2(δxu) (δyu) (δxyu)+(δxu)2 (δyyu)(

(δxu)2+(δyu)2
)
3/2

]

ℓ

(j, k),
(5.5.13)

for ℓ = 0, 1, . . . , and for (j△x, k△y) ∈ D ∪ ∂D.

5.5.3 Enhanced JPEG compression

We conclude this unit (Unit 5) by proposing an improvement of the JPEG
compression standard studied in Subsection 2.5. Recall that other than the
8×8 DCT blocks, the quantization step discussed in (2.5.1)–(2.5.2) of Subunit
2.5 could benefit from the theoretical approach of isotropic diffusion studied
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in Subunit 5.5.1. Unfortunately, as pointed out in Subunit 5.5.2, isotropic dif-
fusion necessarily blurs the original images. On the other hand, since random
noise could be significantly reduced from the diffusion process, the entropy of
the diffused DCT is much smaller in general. This ensures smaller compressed
file size, since the size of the Huffman code, as studied in Subunit 2.5.3 is
governed by the “noiseless coding” theorem of Shannon (see Theorem 2.4.2).

Of course, as a digital image compressing standard, all JPEG compressed
images must be recoverable (i.e. decompressed and open) by the existing de-
vices; that is, by using the existing software or hardware devices. This re-
striction significantly limits the freedom in modifying the JPEG compression
scheme. One improvement which is not restricted by the JPEG standard is im-
age pre-processing (before JPEG compression is to be applied). To reduce the
entropy, image enhancement by reducing noise and sharpening image edges is
feasible by applying anisotropic diffusion as studied in Subunit 5.5.2. If further
reduction of compressed file size is desired by the user, as improved quantizer,
as studied in Subunit 5.5.1, can be applied to replace the limited JPEG quan-
tization tables. Of course, since the modified quantizer must be sent to the
receiver, the application of this recommendation is somewhat limited.



Unit 6

WAVELET METHODS

This final unit is concerned with the study of multi-scale data analysis and
wavelet transform, with emphasis on construction of compactly supported
wavelets, development of wavelet algorithms, and application to image cod-
ing. The continuous wavelet transform (CWT) is introduced and the relation
of scale and frequency is described by using a high-pass filter. For the CWT,
an inner product on the time-scale space is introduced, and Parseval’s identity
for this inner-product space is derived, with application to introducing the in-
verse continuous transform (ICWT). For dyadic discretization of the CWT,
resulting in the discrete wavelet transform (DWT), the notion of multires-
olution analysis (MRA) is introduced to give an effective architecture, both
for wavelet construction and for DWT algorithm development. Construction
of compactly supported wavelets is achieved by the method of matrix exten-
sion, to be studied in some depth in Subunit 6.3. Wavelet algorithms to be
studied include derivation of the wavelet decomposition and reconstruction
algorithms, extension of these algorithms to tensor products, and the lift-
ing scheme. This unit ends with a study of embedding a digital image in the
wavelet-domain for image manipulation, such as progressive transmission, and
the lossless JPEG-2000 digital image compression standard.

6.1 Time-Scale Analysis

The continuous wavelet transform (CWT), defined by translation and dila-
tion (also called scaling) of some convolution wavelet kernel, is introduced in
Subunit 6.1.1. The importance of the (positive) scaling parameter is that it
can be viewed as the reciprocal of the frequency of the signal (represented
by a function) being analyzed by the CWT. This concept is illustrated by
some ideal high-pass filter in Subunit 6.1.2. Since a (finite) frequency band
can be partitioned into a disjoint union of ideal hig-pass bands, the discus-
sion in Subsection 6.1.2 is extended in Subunit 6.1.3 to introduce the notion
of the discrete wavelet transform (DWT). A class of admissible wavelets is
introduced in Subunit 6.1.4. In terms of each admissible wavelet, an inner
product operation is introduced and Parseval’s identity for the correspond-

211
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ing inner-product space is established. Furthermore, as an application of this
identity, the inverse continuous wavelet transform (ICWT) is derived and the
reproducing kernel (again in term of the given admissible wavelet) for this
inner-product space is formulated in Subunit 6.1.4.

6.1.1 Wavelet transform

Let ψ ∈ L2(R) be a continuous function such that ψ(t) → 0 for t→ ±∞, for
which the Cauchy principal value of the integral of ψ on R exists and vanishes;
that is,

PV

∫ ∞

−∞
ψ(t)dt = lim

A→∞

∫ A

−A
ψ(t)dt = 0. (6.1.1)

Then ψ is called a “wavelet.” For any given wavelet ψ, by introducing two
real numbers b ∈ R and a > 0, we have a two-parameter family of functions

ψb,a(t) =
1

a
ψ

( t− b
a

)
, (6.1.2)

called “wavelets generated by ψ.” The word “wavelets” means “small waves.”
In view of (6.1.1), the graph of ψ(t) is oscillating (and hence, “wavy”); and
this wave dies down to 0, since ψ(t) → 0 as |t| → ∞. Moreover, observe that
ψb,a(t) zooms in to a smaller region near t = b as the positive parameter a
tends to 0. Therefore the graphs of ψb,a(t) are indeed small or large waves,
depending on small values or large values of the parameter a > 0; and this
family of wavelets covers the entire “time-domain” R = (−∞,∞) as b runs
over R.

The wavelets ψb,a(t) defined in (6.1.2) have both the localization and os-
cillation features for the analysis of (input) functions f ∈ L2(R), when used
as the “integration kernel” for the (continuous)wavelet transform (CWT)
of f(t), defined by

(Wψf)(b, a) = 〈f, ψb,a〉 =
1

a

∫ ∞

−∞
f(t) ψ

( t− b
a

)
dt (6.1.3)

for analyzing the oscillation behavior of f(t). The localization feature is easy to
understand, since ψ(t) is a window function already. However, it is important
to point out that the window size (as defined in terms of the width 2∆ψ

defined in (4.4.2) of Subunit 4.4.1) varies since

∆ψb,a = a∆ψ and ∆
bψb,a

=
1

a
∆

bψ.

Hence, the wavelet transform (Wψf)(b, a) of f(t) zooms in, as the time-window
width 2∆ψb,a = 2a∆ψ narrows (for smaller values of a > 0, with wider
frequency-window) and zooms out as the window width widens (for larger
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values of a > 0, with narrower frequency-window for analyzing high-frequency
contents).

Next, we must understand the feature of oscillation, or frequency. Since
the translation parameter b has nothing to do with oscillation, the frequency
must be governed by the scale parameter a > 0 as well.

For this purpose, let us consider the single frequency signal fω(t) = eiωt

with frequency = ω/2π Hz (where ω is fixed). Although fω is not in L2(R),
the inner product in (6.1.3) is still well-defined (for any wavelet ψ ∈ L2(R),
since

〈fω , ψb,a〉 =

∫ ∞

−∞
ψb,a(t)e−itωdt

is the Fourier transform of the function ψb,a ∈ L2(R) Hence, we have, from
(6.1.3), that

(
Wψfω

)
(b, a) = 〈fω , ψb,a〉 =

(
Fψb,a

)
(ω)

=
1

a

∫ ∞

−∞
ψ̄

(t − b
a

)
eiωt dt

= eiωb ψ̂(aω). (6.1.4)

6.1.2 Frequency versus scale

Let us apply (6.1.4) to explore the relationship between the notions of “fre-
quency” ω and “scale” a, by considering an appropriate wavelet ψ whose
Fourier transform is formulated as the difference of two ideal lowpass filters.

First consider a pure-tone signal

gω0
(t) = d0 cosω0t,

with amplitude = d0 6= 0 and frequency = 1
2πω0 Hz. Let hη , defined by

hη(t) =
sin ηt

πt
, η > 0,

be the ideal lowpass filter with Fourier transform given by

ĥη(ω) = χ[−η,η](ω), (6.1.5)

and consider the function ψǫ(t) defined by

ψǫ(t) = h1+ǫ(t)− h1−ǫ(t),

with Fourier transform given by

ψ̂ǫ(ω) = χ[−1−ǫ,−1+ǫ)(ω) + χ(1−ǫ,1+ǫ](ω)
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by applying (6.1.5). Since 0 < ǫ < 1, we have ψ̂ǫ(0) = 0, or equivalently,

∫ ∞

−∞
ψǫ(t)dt = ψ̂ǫ(0) = 0,

so that ψǫ(t) is a wavelet. Now, applying (6.1.4), we have

(
Wψǫgω0

)
(b, a) =

1

2
d0

(
Wψǫe

iω0t
)

(b, a) +
1

2
d0

(
Wψǫe

−iω0t
)

(b, a)

=
1

2
d0

(
eiω0b + e−iω0b

)
ψ̂ǫ(aω0)

= d0 (cos ω0 b)
(
χ[−1−ǫ,−1+ǫ) + χ(1−ǫ,1+ǫ]

)
(aω0)

= d0 (cos ω0 b) χ[1−ǫ,1+ǫ] (aω0), (6.1.6)

since aω0 > 0 for positive values of ω0. An equivalent formulation of (6.1.6) is
that (

Wψǫgω0

)
(b, a) = 0, for |aω0 − 1| > ǫ

and (
Wψǫgω0

)
(b, a) = d0(cos ω0 b) = gω0

(b), for |aω0 − 1| < ǫ

(where we have ignored the consideration of |aω0 − 1| = ǫ for convenience).
Hence, for small values of ǫ > 0, we see that the relation of the scale a and
frequency ω0 is

1

a
≈ ω0, (6.1.7)

and that the wavelet transform Wψǫ is an ideal band-pass filter which preserves
the signal content with frequencies in some ǫ-neighborhood of 1

a . In view of
(6.1.7), it is customary to say that the scale a is inversely proportional to the
frequency, although this statement is somewhat misleading and only applies
to the wavelet ψǫ(t).

6.1.3 Partition into frequency bands

The relationship as illustrated in (6.1.7) between the scale a > 0 and frequency
can be extended from a single frequency to a range of frequencies, called
“frequency band”, with bandwidth determined by ∆

bψ. (Observe that ∆
bψǫ
→ 0

as ǫ→ 0.) To illustrate this concept, let us again consider some wavelet ψ as
the difference of two ideal lowpass filters in the following example.

Example 6.1.1 Apply (6.1.4) to explore the relationship between the scale
a > 0 and “frequency bands” [dj, dj+1) for any d > 1 and all integers, j =
0, 1, 2, · · · , by considering some wavelet ψ as the difference of two appropriate
ideal lowpass filters.
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Solution Let us again consider the ideal lowpass filter hη(t) with Fourier

transform ĥη(ω) = χ[−η,η](ω) as in (6.1.5), but consider the wavelet

ψI(t) = hd(t)− h1(t), (6.1.8)

where d > 1, so that

ψ̂I(ω) = χ[−d,−1)(ω) + χ(1,d](ω) (6.1.9)

is an “ideal” bandpass filter, with pass-band =[−d,−1) ∪ (1, d]. Then for a
multi-frequency signal

g(t) =

n∑

k=0

ck cos kt (6.1.10)

with DC (direct current) term c0, and AC (alternating current) terms with
amplitudes ck, for the frequency components of k/2π Hz, respectively, for
k = 1, . . . , n, it follows from the same computation as in Subunit 6.1.2 that

(WψI g)(b, a) =

n∑

k=0

ck(cos kb)χ[1,d)(ak).

In particular, for each j = 0, · · · , ⌊logd n⌋,

(WψI g)
(
b,

1

dj

)
=

n∑

k=0

ck(cos kb)χ[1,d)

( k

dj

)

=
∑

dj≤k<dj+1

ck cos kb. (6.1.11)

That is, (WψI g)(b, d
−j) is precisely the restriction of the given signal g(t) on

the “frequency band” [dj, dj+1), where the time variable t of g(t) is replaced
by the translation parameter b.

To capture the dc term c0, we simply use the lowpass filter h1(t) that
generates the wavelet ψ(t), again by taking the inner product, namely,

〈g, h1〉 =

∫ ∞

−∞
g(t) h1(t)dt =

∫ ∞

−∞
g(t)h1(t)dt

=
1

2

n∑

k=0

ck

( ∫ ∞

−∞
h1(t)eiktdt+

∫ ∞

−∞
h1(t)e−iktdt

)

=
1

2

n∑

k=0

ck

(
χ(−1,1) (−k) + χ(−1,1) (k)

)

=
1

2
c0(1 + 1) = c0. (6.1.12)

This result, together with (6.1.11), gives rise to the following decomposition of
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the given signal g(t) into the frequency bands [0, 1), [1, d), [d, d2), · · · , namely:

g(t) = 〈g, h1〉 +

⌊logd n⌋∑

j=0

(WψI g)
(
t,

1

dj

)

= 〈g, h1〉 +

⌊logd n⌋∑

j=0

〈g, ψIt,d−j 〉, (6.1.13)

where
ψIt,d−j (x) := djψI

(
dj(x− t)

)
,

and
〈g, ψIt,d−j〉 = dj(WψI g)(t, d

−j)

as introduced in (6.1.2) and (6.1.3), respectively, for b = t and a = d−j. �

We remark that the decomposition formula (6.1.13) derived in Example
6.1.1 should be considered only as an illustration of the concept of wavelet de-
composition of signals into frequency sub-bands. For computational efficiency,
the translation parameter b is also discretized, namely: b = k/dj, so that for
a = d−j, we have

ψIb,a(x) = dj ψI

(
dj

(
x− k

dj
))

= dj ψI
(
djx− k

)
(6.1.14)

and

(WψIf)(b, a) = (WψIf)
( k

dj
,

1

dj

)
= dj

∫ ∞

−∞
f(t)ψI

(
djt− k

)
dt. (6.1.15)

6.1.4 Parseval’s identity for wavelet transform

In this subunit, we introduce “Parseval’s formula” that will be used to derive
the inverse wavelet transform later in Subunit 6.1.5.

Definition 6.1.1 Let R2
+ denote the upper-half plane (−∞,∞)×(0,∞). Then

for F (b, a) and G(b, a) with 1
a
F (b, a), 1

a
G(b, a) ∈ L2(R2

+), the inner product
〈F,G〉W is defined by

〈F,G〉W =

∫ ∞

0

{∫ ∞

−∞
F (b, a) G(b, a) db

}
da

a
. (6.1.16)

Furthermore, the vector space with inner product defined by (6.1.16) will be
denoted by L2(R2

+,
db da
a

) and

‖F ‖W =
√
〈F, F 〉W .
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Definition 6.1.2 A wavelet ψ ∈ L2(R) is said to be admissible, if its Fourier

transform ψ̂ satisfies

Cψ =

∫ ∞

0

|ψ̂(ω)|2
ω

dω <∞. (6.1.17)

Theorem 6.1.1 Let ψ ∈ L2(R) be an admissible wavelet as introduced in
Definition 6.1.2. Then for any f ∈ L2(R), the wavelet transform (Wψf)(b, a)

is in L2

(
R2

+,
db da
a

)
.

Proof Since both f and ψ are in L2(R) and

ψ̂b,a(ω) = ψ̂(aω) e−ibω,

it follows from Parseval’s formula for Fourier transform that

(Wψf)(b, a) =
1

2π

∫ ∞

−∞
f̂(ω) ψ̂(aω) eibωdω. (6.1.18)

Hence, by introducing the notation

F̂a(ω) = f̂(ω) ψ̂(aω), (6.1.19)

which is an L1(R) function in view of the Cauchy-Schwarz inequality, we may
conclude that

Fa(b) =
(

F−1F̂a

)
(b) =

(
F# F̂a

)
(b)

is well defined, with

Fa(b) = (Wψf)(b, a)
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almost everywhere by (6.1.19). Hence, we have

∫ ∞

0

{∫ ∞

−∞

∣∣∣(Wψf)(b, a)
∣∣∣
2

db

}
da

a

=

∫ ∞

0

{∫ ∞

−∞
|Fa(b)|2db

}
da

a

=

∫ ∞

0

{
1

2π

∫ ∞

−∞

∣∣∣F̂a(ω)
∣∣∣
2

dω

}
da

a

= 1
2π

∫ ∞

−0

{∫ ∞

−∞
|f̂(ω)|2 |ψ̂(aω)|2dω

}
da

a

= 1
2π

∫ ∞

−∞

∣∣f̂(ω)
∣∣2

{∫ ∞

0

|ψ̂(aω)|2 da

a

}
dω

= 1
2π

∫ ∞

−∞

∣∣f̂(ω)
∣∣2

{∫ ∞

0

|ψ̂(ξ)|2
ξ

dξ

}
dω

= Cψ
1
2π ||f̂ ||22 = Cψ||f ||22 <∞.

�

We are now ready to derive Parseval’s formula for the wavelet transform,
as follows.

Theorem 6.1.2 Let ψ ∈ L2(R) be an admissible wavelet as defined by
(6.1.17). Then

〈Wψf,Wψg〉W = Cψ〈f, g〉, (6.1.20)

for all f, g ∈ L2(R), where the inner product 〈 , 〉W is defined in (6.1.16) and
the constant Cψ is defined in (6.1.17).

Proof To prove this theorem, we first observe that the left-hand side of
(6.1.20) is well defined and finite by applying Theorem 6.1.1 and the Cauchy-
Schwarz inequality for the inner product 〈 , 〉W . Hence, by introducing the

notation F̂a(ω) = f̂(ω)ψ̂(aω) and Ga(ω) = ĝ(ω)ψ̂(aω) as in (6.1.19) and
observing that they are L2(R) functions with inverse Fourier transform given
by

Fa(b) = (Wψf)(b, a), Ga(b) = (Wψg)(b, a)
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almost everywhere, respectively, we may apply Fubini’s theorem to compute

〈Wψf,Wψg〉W =

∫ ∞

0

{∫ ∞

−∞
(Wψf) (b, a) (Wψg)(b, a)db

}
da

a

=

∫ ∞

0

{∫ ∞

−∞
Fa(b) Ga(b)db

}
da

a

=

∫ ∞

0

{
1

2π

∫ ∞

−∞
F̂a(ω) Ĝa(ω)dω

}
da

a

=

∫ ∞

0

{
1

2π

∫ ∞

−∞
f̂(ω) ĝ(ω) |ψ̂(aω)|2dω

}
da

a

=
1

2π

∫ ∞

−∞
f̂(ω) ĝ(ω)

{∫ ∞

0

|ψ̂(aω)|2da
a

}
dω

=
1

2π

∫ ∞

−∞
f̂(ω) ĝ(ω)

{∫ ∞

0

|ψ̂(ξ)|2
ξ

dξ

}
dω

= Cψ
1

2π

∫ ∞

−∞
f̂(ω) ĝ(ω) dω

= Cψ〈f, g〉.

�

6.1.5 Inverse wavelet transform

The objective of this subunit is to derive the formula for recovering f(x) from
its wavelet transform (Wψf)(b, a).

Let gσ(x) be the (normalized) Gaussian function defined in (4.2.1) of Sub-
unit 4.2.2 and recall that for any f ∈ L∞(R),

(f ∗ gσ)(x)→ f(x) (6.1.21)

as 0 < σ → 0 at each x ∈ R where f is continuous. For each x ∈ R where both
f(t) and ψ( t−b

a
) are continuous at t = x, in addition to (6.1.21), we also have

(
Wψgσ(x− ·)

)
(b, a) =

1

a

∫ ∞

−∞
gσ(x− t)ψ

( t− b
a

)
dt

→ 1

a
ψ

(x− b
a

)
= ψ̄b,a(x) (6.1.22)



220 SAYLOR MA 304

as 0 < σ → 0, which yields

〈Wψf,Wψgσ(x− ·)〉W

=

∫ ∞

0

{∫ ∞

−∞
(Wψf)(b, a) (Wψgσ(x− ·)) (b, a)db

}
da

a

→
∫ ∞

0

{∫ ∞

−∞
(Wψf)(b, a) ψb,a(x)db

}
da

a

=

∫ ∞

0

{∫ ∞

−∞
(Wψf)(b, a) ψ

(x− b
a

)
db

}
da

a2
.

This, together with (6.1.21), yields the following result on the inverse wavelet
transform (IWT).

Theorem 6.1.3 Let ψ ∈ L2(R) satisfy (6.1.17). Then for all f ∈ (L2 ∩
L∞)(R),

f(x) =
1

Cψ

∫ ∞

0

{∫ ∞

−∞
(Wψf)(b, a)ψ

(x− b
a

)
db

}
da

a2

=
1

Cψ

∫ ∞

0

{∫ ∞

−∞
〈f, ψb,a〉 ψb,a(x)db

}
da

a
(6.1.23)

almost everywhere, where Cψ is given by (6.1.17).

To write out (6.1.23) without using the notation ψb,a, we may set

K(x, t, b, a) =
1

a3
ψ

(x− b
a

)
ψ

( t− b
a

)
(6.1.24)

and apply Fubini’s theorem to re-formulate (6.1.23) as

f(x) =

∫ ∞

0

{∫ ∞

−∞

∫ ∞

−∞
f(t)K(x, t, b, a)dt db

}
da, (6.1.25)

which is a reconstruction (or reproduction) formula for (L2 ∩ L∞)(R), with
wavelet kernel K(x, t, b, a) given in (6.1.24), that may be considered as a “re-
producing kernel”.

6.2 Multiresolution Analysis (MRA)

In this subunit we introduce the notion of multiresolution analysis (MRA) and
show how MRA leads to the study of wavelet decomposition. This subunit
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also serves as an introduction of the MRA method for the construction of
compactly supported wavelets, which is studied in some depth in Subunit 6.3.
To be more specific, in Subunit 6.2.1, the notion of function refinement, along
with refinement equation, scaling function, two-scale relation and two-scale
symbol, is introduced, with the sinc function (from the Sampling theorem
studied in Subunit 4.1.3) as a demonstrative example. To derive compactly
supported refinable (or more precisely, scaling) functions, the characteristic
function of the unit interval is used to introduce (polynomial) B-splines of
any positive order in Subunit 6.2.2. The multiresolution (MRA) architecture,
based on an arbitrary scaling function, is formally described in Subunit 6.2.3,
along with justifications in terms of certain low-pass and high-pass filters that
are generated by using the sinc function from Shannon’s Sampling theorem.

6.2.1 Function refinement

In most applications, particularly in signal and image processing, only band-
limited functions are of interest. Hence, although the general theory and
method of MRA will be studied in this section and the next two chapters
under the framework of L2 = L2(R), we will first introduce the concept of
MRA and that of the corresponding wavelet bandpass filters, by considering
ideal lowpass and ideal bandpass filters, to apply to all band-limited functions.

Let φ̂S(ω) = χ[−π,π](ω) denote the ideal lowpass filter. Here, the subscript
S of φS stands for both Claude Shannon and “sinc,” since φS is the sinc func-
tion in Shannon’s Sampling theorem studied in Subunit 4.1.3. Then for any
band-limited function f(x), there exists a (sufficiently large) positive integer

J such that f̂(ω) vanishes outside the interval

[−2Jπ, 2Jπ].

Hence, the ideal lowpass filter φ̂S(2−Jω) becomes an allpass filter of all func-
tions including f(x), with bandwidth ≤ 2J+1π; that is,

f̂(ω)φ̂S(2−Jω) = f̂(ω)

for all ω, or equivalently

(f ∗ φS,J)(x) = f(x)

for all x, where
φS,J(x) = 2Jφ(2Jx)

and the function φS , given by

φS(x) = sinc x :=
sinπx

πx
, (6.2.1)

is the inverse Fourier transform of φ̂(ω) = χ[−π,π](ω). On the other hand,
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it follows from the Sampling Theorem discussed in Subunit 4.1.3 that such
functions f(x) (with bandwidth not exceeding 2J+1π) can be recovered from
its discrete samples f( k

2J ), k ∈ Z, via the formula

f(x) =

∞∑

k=−∞
f
( k

2J

) sinπ(2Jx− k)

π(2Jx− k)

=

∞∑

k=−∞
cJkφ(2Jx− k), (6.2.2)

by applying (6.2.1), where

cJk = f
( k

2J

)
.

Since the function f(x) = φS(2J−1x) has bandwidth = 2Jπ, it follows from
(6.2.2) that

φS(2J−1x) =

∞∑

k=−∞
cJkφS(2Jx− k), (6.2.3)

where, in view of (6.2.1),

cJk = φS

(2J−1k

2J

)
= φS

(k
2

)
=

sin(πk/2)

kπ/2
,

which is independent of J . Hence, we may introduce the sequence {pS,k},
defined by

pS,k =
sin(πk/2)

πk/2
=






δj , for k = 2j,

(−1)j2
(2j+1)π , for k = 2j + 1,

(6.2.4)

for all j ∈ Z, and replace 2J−1x by x in (6.2.3) to obtain the identity

φS(x) =

∞∑

k=−∞
pS,kφs(2x− k), (6.2.5)

to be called the two-scale relation or refinement equation, with the
governing sequence {pS,k} in (6.2.4) called the corresponding two-scale se-
quence or refinement sequence of φS(x). We will also say that φS(x) is a
refinable function.

For each j ∈ Z, let

Vj = span
{
φS(2jx− k) : k ∈ Z

}
(6.2.6)

be the L2-closure of the (linear) algebraic span of {φ(2jx−k)}. Then it follows
from the two-scale relation (6.2.5) that the family {Vj} of vector spaces is a
nested sequence

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · , (6.2.7)
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of L2(R).
In general, if φ is a refinable function with refinement sequence {pk}; that

is,

φ(x) =
∑

k

pk φ(2x− k) (6.2.8)

for all x, where the sequence may be finite or infinite, then by taking the
Fourier transform of both sides of (6.2.8), we have

φ̂(ω) = P (e−i
ω
2 ) φ̂

(ω
2

)
, (6.2.9)

where P (x) is called the two-scale symbol of {pk}, defined by

P (z) =
1

2

∑

k

pkz
k, (6.2.10)

with z = e−i ω/2.

6.2.2 B-spline examples

The ideal lowpass filter function φS(x) in (6.2.1) is a refinable function, as
described by the refinement relation (6.2.5), but its refinement sequence {pS,k}
(6.2.5) is infinite. In this subunit, we introduce a family of refinable functions
with finite refinement sequences.

The first is the obvious example ϕ1(x) := χ[0,1)(x), the characteristic func-
tion of the unit interval [0, 1), as follows.

Example 6.2.1 Let

ϕ1(x) =

{
1 for 0 ≤ x < 1
0 otherwise

(6.2.11)

Then

ϕ1(2x) =

{
1 for 0 ≤ x < 1

2
0 otherwise

and

ϕ1(2x− 1) =

{
1 for 1

2
≤ x < 1

0 otherwise.
(6.2.12)

Hence,
ϕ1(x) = ϕ1(2x) + ϕ1(2x− 1) (6.2.13)

for all x. That is, ϕ1(x) is a refinable function, with refinement sequence {pk}
given by

p0 = p1 = 1

and pk = 0 for all k 6= 0, 1. �
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Following (6.2.6), consider

Vj = span
{
ϕ1(2jx− k) : k ∈ Z

}
.

Then the family {Vj} of vector spaces is also a nested sequence of subspaces
of L2(R) as in (6.2.7).

Example 6.2.2 Let ϕ1(x) = χ[0,1)(x) as introduced in Example 6.2.1. Then
the convolution of ϕ1 with itself, denoted by ϕ2 = ϕ1 ∗ ϕ1, is the piecewise
linear B-spline, also called the hat function, given by

ϕ2(x) = min{x, 2− x}χ[0,2)(x) =






x, for 0 ≤ x < 1,
2− x, for 1 ≤ x < 2,
0, elsewhere.

(6.2.14)

Since the Fourier transform of ϕ1 is given by

ϕ̂1(ω) =
1− e−iω

iω
,

it follows that

ϕ̂1(ω) = (ϕ̂1(ω))2 =
(1− e−iω

iω

)2

=
(1 + e−iω/2

2

)2(1− e−iω/2
iω/2

)2

=
(1 + e−iω/2

2

)2

ϕ̂2(
ω

2
).

Thus, ϕ2 is refinable with two-scale symbol P2(z) given by

P2(z) =
(1 + z

2

)2

,

or the refinement sequence is given by

p0 =
1

2
, p1 = 1, p2 =

1

2
, pk = 0, k 6= 0, 1, 2;

that is,

ϕ2(x) =
1

2
ϕ2(2x) + ϕ2(2x− 1) +

1

2
ϕ2(2x− 2).

�

Example 6.2.3 More generally, let ϕm be the Cardinal B-spline of order
m ≥ 1 defined by the m-fold convolution:

ϕm(x) = (ϕ0 ∗ ϕ0 ∗ · · · ∗ ϕ0)︸ ︷︷ ︸
m copies of ϕ0

(x). (6.2.15)
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Then ϕm is refinable with two-scale symbol given by

Pm(z) =
(1 + z

2

)m
, (6.2.16)

or equivalently, with refinement sequence

pk = 2m−1
(
m
k

)

for 0 ≤ k ≤ m; pk = 0 for k < 0 or k > m.

�

6.2.3 The MRA architecture

In view of the examples φS introduced in Subunit 6.2.1 and the B-spline
examples ϕm, m = 0, 1, 2, . . . , studied in Subunit 6.2.2, we are now ready
to introduce the notion of multiresolution analysis (MRA) generated by any
refinable function φ ∈ L2(R).

Definition 6.2.1 Let φ ∈ L2(R) be a refinable function and

Vj = span {φ(2jx− k) : k ∈ Z}

be the L2-closure of the algebraic span of {φ(2jx−k)}. Then the sequence {Vj}
of subspaces of L2(R) is called a multiresolution analysis (MRA) of L2(R) if
the following conditions are satisfied

(i) Vj ⊂ Vj+1, j ∈ Z;

(ii) ∩j∈Z Vj = {0};

(iii) ∪j∈Z Vj is dense in L2(R);

(iv) any function f(x) ∈ Vj if and only if f(2x) ∈ Vj+1;

(v) {φ(x−k) : k ∈ Z} is a Riesz basis of V0; that is, there exist some positive
constants 0 < c ≤ C <∞, such that

c
∑

k

|ck|2 ≤
∣∣∣
∣∣∣
∑

k∈Z

ckφ(x− k)
∣∣∣
∣∣∣
2

L2(R)
≤ C

∑

k∈Z

|ck|2 (6.2.17)

for all square-summable sequences {ck}.
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We will also say that the refinable function φ generates the MRA. The
main objective of introducing the notion of MRA is to provide an architecture
for the construction of wavelets.

Let us first return to the sinc function example φS considered in Subunit
6.2.1, defined in terms of its Fourier transform by φ̂S(ω) = χ[π,π] (ω), so that

φ̂S

( ω
2j

)
= χ[−2jπ,2jπ] (ω)

is an “ideal lowpass filter” with pass-band [−2jπ, 2jπ]. Observe that for each
integer j ∈ Z, the difference

φ̂S(ω)
( ω

2j

)
− φ̂(ω)

( ω

2j−1

)

is the ideal bandpass filter with pass-band

[−2jπ,−2j−1π) ∪ (2j−1π, 2jπ]. (6.2.18)

Therefore, to separate any function fJ (x), with bandwidth ≤ 2J+1π, into
components:

fJ (x) = f0(x) + g0(x) + · · ·+ gJ−1(x) (6.2.19)

on non-overlapping (ideal) frequency bands; that is,

f̂0(ω) = f̂J (ω)χ[−π,π](ω)

ĝ0(ω) = f̂J(ω)χ[−2π,−π)∪(π,2π](ω)

ĝ1(ω) = f̂J(ω)χ[−22π,−2π)∪(2π,22π](ω)

...

ĝJ−1(ω) = f̂J(ω)χ[−2Jπ,−2J−1π)∪(2J−1π,2Jπ](ω),

it is required to find an ideal bandpass filter ψI(x) with Fourier transform

ψ̂S,I (ω) = χ[−2π,−π)∪(π,2π](ω) = φ̂S

(ω
2

)
− φ̂S(ω), (6.2.20)

which yields

ψ̂S,I

( ω
2j

)
= φ̂S

( ω

2j+1

)
− φ̂S

( ω
2j

)
= χ[−2j+1π,−2jπ)∪(2jπ,2j+1π](ω)

for j = 0, · · · , J − 1. However, for computational and other reasons, we intro-
duce a phase shift of ψS(x) to define the “wavelet”

ψS(x) := −2φS(2x− 1) + φS

(
x− 1

2

)
, (6.2.21)

so that
ψ̂S(ω) = −e−i ω

2

(
φ̂S

(ω
2

)
− φ̂S(ω)

)
. (6.2.22)
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Observe that |ψ̂S(ω)| = |ψ̂S,I (ω)| by comparing (6.2.20) with (6.2.18), and
hence the separation of fJ (x) into components on ideal frequency bands in
(6.2.17) remains valid with only a phase shift of gj(x) by −(π + ω/2j), j =
0, · · · , J − 1.

In the definition of ψS(x) in (6.2.21), we remark that ψS ∈ V1, with

ψS(x) =

∞∑

k=−∞
pS,kφS(2x− (k + 1))− 2φ(2x− 1)

=

∞∑

k=−∞
(pS,k−1 − 2δk−1)φ(2x− k), (6.2.23)

by applying (6.2.5). Furthermore, since we have, from (6.2.4), that pS,2j = δ2j
and

pS,1−2j =
2 sin (1−2j)π

2

(1− 2j)π
=
−2 sin (2j−1)π

2

−(2j − 1)π
= pS,2j−1,

so that

(−1)kpS,1−k =

{
pS,2j−1, for k = 2j,

−δ2j, for k = 2j + 1,

for all k, it follows from (6.2.21) that ψS as defined in (6.2.21) satisfies the
two-scale relation

ψS(x) =

∞∑

k=−∞
qS,kφS(2x− k), (6.2.24)

with
qS,k = (−1)kpS,1−k, k ∈ Z. (6.2.25)

For any function ψ defined on R, the notation

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z, (6.2.26)

is commonly used for the reason that ||ψj,k||2 = ||ψ||2 for all j, k ∈ Z. We
will call ψ ∈ L2(R) an orthogonal wavelet provided that the family {ψj,k :
j, k ∈ Z} is an orthonormal basis of L2(R).

The construction of compactly supported orthogonal and biorthogonal
wavelets based on the MRA architecture will be studied in Subunit 6.3.3.

6.3 Wavelet Construction

This is a very elaborate subunit, with detailed discussions of the theoreti-
cal development, computational schemes, and algorithms for implementation.
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In Subunit 6.3.1, to prepare for the construction of compactly supported or-
thogonal wavelets, the notion of quadratic mirror filter (QMF) is introduced
and studied. The QMF is generalized, in Subunit 6.3.2, to the formulation
of the matrix extension specification for the construction of compactly sup-
ported bi-orthogonal wavelets. In Subunit 6.3.3, the notion of direct-sum and
orthogonal-sum decomposition (of the L2(R) space as a sum of multi-scale
wavelet subspaces) is introduced, and the corresponding wavelet decompo-
sition and wavelet reconstruction algorithms are formulated. This subunit
ends with the study of analysis and synthesis wavelets, and the method of
construction of both orthonormal wavelets (that is, orthogonal wavelets with
unit-norm) and bi-orthogonal wavelets.

6.3.1 Quadrature mirror filter

Recall from (6.2.8)–(6.2.11) that for any refinable function φ with refinement
sequence {pk}, the two-scale symbol of {pk} is defined by the Laurent series

P (z) =
1

2

∑

k

pk z
k. (6.3.1)

On the other hand, for any sequence {ck}, its symbol will be defined by the
formal Laurent series

C(z) =
∑

k

ck z
k

(without the 1
2

normalization constant). In general, following the example of
the wavelet ψS in (6.2.21)–(6.2.23), we introduce, for any refinable function
φ, its corresponding “wavelet”

ψ(x) =
∑

k

qk φ(2x− k) (6.3.2)

where {qk} has yet to be determined. But analogous to the two-scale relation

φ̂(ω) = P (e−i
ω
2 )φ̂(

ω

2
)

in (6.2.9) for the refinement function φ, we may also re-write (6.3.2) as

ψ̂(ω) = Q(e−i
ω
2 )φ̂(

ω

2
) (6.3.3)

where

Q(z) :=
1

2

∑

k

qk z
k. (6.3.4)

Inspired by the simple formula of {qS,k} in (6.2.22), we may be tempted to
consider

qk = (−1)k p̄1−k, k ∈ Z. (6.3.5)
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This choice, however, is not necessarily a good one, unless the refinable func-
tion is “orthonormal” (i.e. orthogonal, with unit norm), in that

〈φ(x− k), φ(x− j)〉 :=

∫ ∞

−∞
φ(x− k) φ(x− j)dx = δk−j (6.3.6)

where δℓ is the Kronecker symbol. Recall that the sinc function example φS(x)
in Subunit 6.2.1 does satisfy (6.3.6), since the Fourier transform of φS(x− j)
is χ[π,π] (ω) e−ijω and

〈φS(x− k), φS(x− j)〉 = 1
2π 〈φ̂S(ω) e−ikω, φ̂S(ω) e−ijω〉

= 1
2π

∫ π
−π e−i(k−j)ω dω = δk−j,

by applying Plancherel’s identity. Indeed, for any refinable function φ with
refinement sequence {pk}, if φ is orthonormal, then the choice of {qk} in
(6.3.5) assures that the function ψ defined in (6.3.2) is an orthonormal wavelet
provided that the refinement sequence {pk} satisfies the so-called “sum rule”:

∑

j

p2j =
∑

j

p2j−1 = 1, (6.3.7)

as stated in the following theorem.

Theorem 6.3.1 Let φ ∈ (L1 ∩ L2)(R) be an orthonormal refinable function
with refinement sequences {pk} that satisfies the sum rule (6.3.7). Then the
function ψ in (6.3.2), with {qk} defined by (6.3.5), is an orthonormal wavelet,
in that it satisfies both (6.1.1) and (6.3.6) (with φ replaced by ψ). Furthermore,

〈ψ(x − k), φ(x− j)〉 = 0, j, k ∈ Z. (6.3.8)

We remark that the orthogonality property (6.3.8) implies the orthogonal-
ity of the two sub-spaces

Vj = span{φ(2jx− k), k ∈ Z}

and
Wj = span{ψ(2jx− k), k ∈ Z}

of Vj+1, for all j ∈ Z. Since Vj + Wj = Vj+1 (to be shown in Subunit 6.3.2),
we will write

Vj+1 = Vj ⊕⊥ Wj, j ∈ Z, (6.3.9)

called an orthogonal decomposition of the MRA {Vj} of L2(R). Indeed, in
view of the density condition (iii) in the definition of an MRA, it follows from
(6.3.9) that

L2(R) =

∞⊥⊕

j=−∞
Wj, (6.3.10)
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which implies that every function f ∈ L2(R) has an orthogonal decomposition

f(x) =
∑

j∈Z

gj(x),

where gj ∈Wj.
To prove the above theorem, we first note that ψ is indeed a wavelet, since

∫ ∞

−∞
ψ(x)dx =

∑

k

qk

∫ ∞

−∞
φ(x)dx

=
(∫ ∞

−∞
φ(x)dx

) ( ∑

k

(−1)k p̄1−k
)

=
(∫ ∞

−∞
φ(x)dx

) ( ∑

k

p̄2j −
∑

j

p̄2j−1

)

=
(∫ ∞

−∞
φ(x)dx

)
(1− 1) = 0

by applying the sum rule (6.3.7). To derive the property (6.3.6) for the wavelet
ψ, we first observe that the property (6.3.6) for the refinable function φ implies
that ∑

k

pk p̄k−2n = 2δn, n ∈ Z. (6.3.11)

Indeed, for any n ∈ Z, applying the refinement relation for φ to (6.3.6) yields

δn = 〈φ(x), φ(x− n)〉

=
∑

k

∑

j

pk p̄j 〈φ(2x− k), φ
(
2x− (j + 2n)

)
〉

=
∑

k

∑

j

pk p̄j−2n 〈φ(2x− k), φ
(
2x− j

)
〉

= 1
2

∑

j

pj p̄j−2n

which gives (6.3.10). Hence, for any n ∈ Z, the same derivation also yields

〈ψ(x), ψ(x − n)〉 =
∑

k

∑

j

qk q̄j〈φ(2x− k), φ
(
2x− (j + 2n)

)
〉

= 1
2

∑

j

qj q̄j−2n
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Therefore, from the selection of {qk} in (6.3.5), we have

〈ψ(x), ψ(x − n)〉 = 1
2

∑

j

(−1)j p̄1−j (−1)j−2n p1−j+2n

= 1
2

∑

j

qk p̄1−j p1−j+2n =
1

2

∑

k

q p̄k p̄k+2n

= 1
22δn = δn

by applying (6.3.11). That is,

〈ψ(x − k), ψ(x− j)〉 = 〈ψ(x), ψ
(
x− (j − k)

)
〉 = δj−k,

which is the property (6.3.6) for the wavelet ψ. Finally, to establish (6.3.8),
we consider

dn := 〈ψ(x), φ(x− n)〉

= 1
2

∑

j

qj p̄j−2n =
1

2

∑

j

(−1)j p̄1−j p̄j−2n

= 1
2

∑

k

(−1)1−k+2n p̄k−2n p̄1−k = −dn,

where we have changed the index of summation from 1− j to k − 2n. Hence,
2dn = 0 implies dn = 0, completing the derivation of of (6.3.8), and hence,
the proof of the theorem. �

Next we prove that the property of normalized orthogonality (6.3.6) is
equivalent to the identity

∞∑

k=−∞
|φ̂(ω + 2πk)|2 = 1, ω ∈ R. (6.3.12)
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The reason is that Plancherel’s identity can be applied to (6.3.6) to yield

δj = 〈φ(x), φ(x− j)〉

= 1
2π

∫ ∞

−∞
φ̂(ω) φ(ω) e−ijω dω

= 1
2π

∫ ∞

−∞

∣∣φ̂(ω)
∣∣2 e−ijω dω

= 1
2π

∞∑

k=−∞

∫ 2π(k+1)

2πk

|φ̂(ω)|2 e−ijω dω

= 1
2π

∫ 2π

0

∞∑

k=−∞

∣∣φ̂(ω + 2πk)
∣∣2 eijω dω

= 1
2π

∫ 2π

0

∞∑

k=−∞

∣∣φ̂(ω + 2πk)
∣∣2 eijω dω;

that is, the Fourier coefficients of the 2π-periodic function
∑∞

k=−∞
∣∣φ̂(ω +

2π)
∣∣2 are the same as those of the constant function 1, so that the uniqueness

of Fourier series representations yields (6.3.12). �

As an application of (6.3.12), we apply the two-scale relation (6.2.9) to the
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above derivation to obtain

δj = 1
2π

∞∑

k=−∞

∫ 4π(k+1)

4πk

∣∣∣P
(
e−i

ω
2

)
φ̂
(ω

2

)∣∣∣
2

eijω dω

= 1
2π

∫ 4π

0

∞∑

k=−∞

∣∣∣P
(
e−i

ω
2

)
φ̂

(ω
2

+ 2πk
)∣∣∣

2

eijω dω

= 1
2π

∫ 4π

0

∣∣∣P
(
e−i

ω
2

)∣∣∣
2 ∞∑

k=−∞

∣∣∣φ̂
(ω

2
+ 2πk

)∣∣∣
2

eijω dω

= 1
2π

∫ 4π

0

∣∣∣P
(
e−i

ω
2

)∣∣∣
2

eijω dω

= 1
2π

{∫ 2π

0

∣∣∣P
(
e−i

ω
2

)∣∣∣
2

eijω dω +

∫ 4π

2π

∣∣∣P
(
e−i

ω
2

)∣∣∣
2

eijω dω

}

= 1
2π

{∫ 2π

0

∣∣∣P
(
e−i

ω
2

)∣∣∣
2

eijω dω +

∫ 2π

0

∣∣∣P
(
e−i(

ω
2
+π)

)∣∣∣
2

eijω dω

}

= 1
2π

∫ 2π

0

(∣∣∣P
(
e−i

ω
2

)∣∣∣
2

+
∣∣∣P

(
− e−iω

2

)∣∣∣
2

eijω
)
dω,

where the identity (6.3.23) was applied. Hence, the uniqueness of Fourier series
representations can be applied again to acquire the identity

∣∣P (z)
∣∣2 +

∣∣P (−z)
∣∣2 = 1, |z| = 1. (6.3.13)

The same proof also yields

0 = 〈ψ(x), φ(x− j)〉

= 1
2π

∫ ∞

−∞
ψ̂(ω) φ̂(ω) eijω dω

= 1
2π

∞∑

k=−∞

∫ 4π(k+1)

4πk

Q
(
e−i

ω
2

)
P

(
e−i

ω
2

) ∣∣∣φ̂
(ω

2

)∣∣∣
2

eijω dω

= 1
2π

∫ 4π

0

Q
(
e−i

ω
2

)
P

(
e−i

ω
2

) ∞∑

k=−∞

∣∣∣φ̂
(ω

2
+ 2πk

) ∣∣∣
2

eijω dω

= 1
2π

∫ 2π

0

(
Q

(
e−i

ω
2

)
P

(
e−i

ω
2

)
+ Q

(
− e−iω

2

)
P

(
− e−iω

2

))
eijω dω
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for all j ∈ Z; so that we have the identity

Q(z)P (z) +Q(−z)P (−z) = 0, |z| = 1. (6.3.14)

On the other hand, it follows from (6.3.4)–(6.3.5) that

Q(z) = 1
2

∑

k

(−1)k p̄1−k z
k

= 1
2

∑

k

(−1)1−j p̄j z
1−j

= −z 1
2

∑

k

p̄j(−z)j = −z P (−z)

(6.3.15)

Therefore, as a consequence of (6.3.13), we have the identity

|Q(z)|2 + |Q(−z)|2 = 1, |z| = 1. (6.3.16)

In matrix formulation, the totality of (6.3.13), (6.3.14), and (6.3.16) can be
re-written as

[
P (z) P (−z)
Q(z) Q(−z)

] [
P (z) Q(z)

P (−z) Q(−z)

]
=

[
1 0
0 1

]
, |z| = 1. (6.3.17)

Definition 6.3.1 If P (z) and Q(z) satisfy (6.3.17) ( that is, (6.3.13), (6.3.14),
and (6.3.16)) for all z on the unit circle |z| = 1 of the complex plane, then the
pair (P (z), Q(z)) is said to provide a quadrature mirror filter (QMF).

The reason for the terminology of QMF will be clear when we discuss
“wavelet decomposition and reconstruction” in Subunit 6.3.3. As already dis-
cussed, if P (z) satisfies (6.3.13), the Q(z) can be chosen by using (6.3.15), or
more generally, by setting

Q(z) = −z2k+1 P (−z) (6.3.18)

for any integer k, for (P (z), Q(z)) to be a QMF pair. In other words, to
construct a QMF, the only task is to construct a two-scale symbol P (z) defined
in (6.3.1) that satisfies (6.3.13).

Example 6.3.1 Let {pS,k} be the refinement sequence, given in (6.2.5), of
the refinement function φS(x) = sinc x = sinπx/πx in (6.2.1). Then the
corresponding two-scale symbol,

PS(z) =
1

2

∞∑

k=−∞
pS,k z

k, (6.3.19)

satisfies the QMF condition (6.3.13).
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Solution By taking the Fourier transform of φS(x) in (6.2.5), we have

φ̂S(ω) = PS(e−iω/2) φ̂S
(ω

2

)
.

Since φ̂S(ω) = ψ[−π,π) (ω), it is clear that

|PS(z)|2 = PS(z) = PS(e−iω/2) =






1 if −π
2
≤ ω < π

2

0 if π
2 ≤ ω < 3π

2 ,

where z = e−iω/2. Hence, |PS(−z)|2 = PS(−z) = 1 − PS(z) = 1 − |PS(z)|2,
yielding (6.3.13). �

We remark that the QMF in Example 6.3.1 is given only as a proof of
concept, since the decay of the infinite filter sequence {pS,k} is too slow for
any wavelet application.

Example 6.3.2 Let ϕ1(x) = χ[0,1)(x) be the refinable function discussed
in Example 6.3.1 of Subunit 6.2.2 with refinement sequence {pk} given by
p0 = p1 = 1 and pk 6= 0 for all k 6= 0, 1. Show that the two-scale symbol
P1(z) = (1+z)/2 of ϕ1(x) satisfies (6.3.13). Also, construct the (Haar) wavelet
ψ0(x) associated with ϕ1(x) and the corresponding QMF (P1(z), Q1(z)).

Solution For |z| = 1, we have

|P1(z)|2 + |P1(−z)|2 = 1
22 |1 + z|2 + 1

22 |1− z|2

= 1
4

(
(1 + z)(1 + z) + (1 − z)(1 − z)

)

= 1
4

(
(1 + z̄ + z + |z|2) + ((1− z̄ − z + |z|2)

)

= 1
4 (1 + 1 + 1 + 1) = 1.

This proves that P1(z) satisfies (6.3.13). Next, by (6.3.5), we have

qk = (−1)k p1−k =






1 if k = 0
−1 if k = 1
0 otherwise,

so that the corresponding (Haar) wavelet ψ1(x) defined in (6.3.2) is given by

ψ1(x) =

∞∑

k=−∞
qk ϕ1(2x− k)

= ϕ1(2x)− ϕ1(2x− 1)

= ψ[0,1
2
)(x) − ψ[ 1

2
,1) (x).

(6.3.20)
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Moreover, the two-scale symbol Q1(z) defined in (6.3.4) is given by

Q1(x) =
1

2

∞∑

k=−∞
qk qkz

k =
1

2
(1− z),

which agrees with −z P1(−z), for |z| = 1, as derived in (6.3.15), yielding the
Haar QMF pair

(P1(z), Q1(z)) =
(1 + z

2
,

1− z
2

)
.

�

We conclude this subunit by pointing out that while the QMF for the
“Haar wavelet” in Example 6.3.2 is most economical (with the Laurent series
being linear polynomials), the QMF for the “Shannon wavelet” in Example
6.3.1 is not too useful, being a bi-infinite Laurent series. In Subunit 6.3.3,
we will introduce the notion of Daubechies wavelets whose QMF are Laurent
polynomials of degree greater than 1.

6.3.2 Matrix extension

A QMF pair (P (z), Q(z)) of Laurent series, studied in the previous subunit,
generate a 2× 2 (Laurent) matrix

MP,Q(z) :=

[
P (z) P (−z)
Q(z) Q(−z)

]
, |z| = 1, (6.3.21)

which satisfies the QMF condition (6.3.17). In this subunit, we re-formulate
(6.3.17) as

MP,Q(z)M∗
P,Q(z) = I2, |z| = 1, (6.3.22)

where I2 is the 2×2 identity matrix andM∗
P,Q denotes the complex conjugate

of the transpose of MP,Q. Observe that for |z| = 1, the complex conjugation
implies that z̄ = 1

z . This is instrumental to the algebraic manipulation in
(5.3.15) that leads to the identity (6.3.16). In this regard, we remark that
the adjoint of a matrix is also formulated as the complex conjugation of its
trasnpose, as studied in Subunit 1.2.2 (see (1.2.27)). The importance is that
the inverse of a unitary matrix is its adjoint. Hence, as a consequence of
(6.3.22), for a QMF pair (P (z), Q(z)), the matrixMP,Q(z) is invertible, with
inverse given by M∗

P,Q(z), for |z| = 1. In the previous subunit, we have also
studied two examples of QMF pairs; but such examples are rare. For instance,
let us consider the m-th order Cardinal B-spline ϕm(x) defined by the m-fold
convolution of the characteristic function ϕ1(x) = χ[0,1)(x) in (6.2.13), with
two-scale symbol

Pm(z) =
(1 + z

2

)m
(6.3.23)

in (6.2.14). We will show, in the following example, that for any integer
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m > 1, Pm(z) does not satisfy the necessary condition (6.3.17) or equivalently
(6.3.22), for a QMF.

Example 6.3.3 Let m ≥ 1 and Pm(z) be the polynomial in (6.3.23) (i.e.
(6.2.13)). Show that for z = eiθ,

|Pm(z)|2 + |Pm(−z)|2 = 1, θ ∈ R

holds if and only if m = 1.

Solution Observe that for z = eiθ,

|1± z|2 = (1± z)(1± z̄) = 2(1± cos θ).

Hence, it follows from (6.3.23) that

|Pm(±z)|2 =
(1± cos θ

2

)m
,

so that

|Pm(z)|2 + |Pm(−z)|2 =
(1 + cos θ

2

)m
+

(1− cos θ

2

)m
.

It is clear that the quantity on the right-hand side is equal to 1 for m = 1.
But for m ≥ 2,

|Pm(z)|2 + |Pm(−z)|2 = 2−m
m∑

k=0

(
1 + (−1)k

)(m
k

)
cosk θ

= 2−m+1

⌊m/2⌋∑

j=0

(
m
2j

)
cos2j θ

< 2−m+1

⌊m/2⌋∑

j=0

(
m
2j

)
= 1,

for 0 < |θ| ≤ π/2. The reason is that while

m∑

k=0

(
m
k

)
= 2m,

or

2−m+1
m∑

k=0

(m
j

)
= 2,

we have ∑

odd j

(m
j

)
=

∑

even j

(m
j

)
.
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�

In the next subunit, namely Subunit 6.3.3, we will use Pm(z), m ≥ 2,
as a multiplicative factor of some Laurent polynomial PD,2m(z) of degree
2m−1, that satisfies the necessary condition (6.3.13), so that together with the
Laurent polynomial QD,2m(z) = −z PD,2m(−z) as suggested by (6.3.15), the
(Laurent) matrix MPD,2m,QD,2m(z) does satisfy the QMF condition (6.3.22)
for all |z| = 1. Such Laurent polynomials PD,2m(z) are two-scale symbols of
the orthonormal Daubechies scaling function ϕD,2m(x), with QD,2m(z) being
the two-scale symbols of the corresponding orthonormal Daubechies wavelets
ψD,2m(x).

But for now, we are interested in the more general setting of arbitrarily
given refinable functions φ(x) with refinement sequences {pk} that satisfy the
sum rule condition ∑

k

p2k =
∑

k

p2k−1 = 1,

and corresponding two-scale symbols Q(z), for which three other Laurent
polynomials Q(z), A(z), B(z) exist, so that MP,Q(z) is invertible for |z| = 1,
with inverse given by M∗

A,B(z). We will again consider

P (z) = 1
2

∑

k

pk z
k;

Q(z) = 1
2

∑

k

qk z
k;

A(z) = 1
2

∑

k

ak z
k;

B(z) = 1
2

∑

k

bk z
k,

where {pk}, {qk}, {ak}, and {bk} are preferably finite sequences. The general
problem of finding Laurent symbols Q(z), A(z), B(z) that converge absolutely
and uniformly on |z| = 1, such that

MP,Q(z)M∗
A,B(z) =

[
P (z) P (−z)
Q(z) Q(−z)

] [
A(z) B(z)

A(−z) B(−z)

]
= I2 (6.3.24)

for |z| = 1, is called the problem of “matrix extension.” This problem is a
generalization of the QMF condition, for which

Q(z) = −zP (−z), A(z) = P (z),

and
B(z) = Q(z) = z−1P (z)

for |z| = 1.
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Theorem 6.3.2 Let φ be a refinable function with refinement sequence
{pk} ∈ ℓ1 that satisfies the sum rule condition

∑
k p2k =

∑
k p2k−1 = 1.

Suppose that corresponding to the two-scale symbol P (z) of {pk}, there exist
sequences {qk}, {ak}, {bk} ∈ ℓ1 such that the symbols

Q(z) =
1

2

∑

k

qk z
k, A(z) =

1

2

∑

k

ak z
k, B(z) =

1

2

∑

k

bk z
k,

satisfy the matrix extension condition (6.3.24). Then by setting

ψ(x) =
∑

k

qk φ(2x− k), (6.3.25)

the given refinable function φ also has the decomposition property:

φ(2x− ℓ) =
1

2

∑

k

{
āℓ−2k φ(x− k) + b̄ℓ−2k ψ(x− k)

}
(6.3.26)

for all x ∈ R and all ℓ ∈ Z.

Proof We first observe that for the invertible matrix MP,Q(z), |z| = 1, its
right inverse M∗

A,B(z) is also its left inverse.This yields

P (z) A(z) + Q(z) B(z) = 1;

P (z) A(−z) +Q(z) B(−z) = 0,
(6.3.27)

by multiplying out the first and second rows ofM∗
A,B(z), respectively, to the

first column ofMP,Q(z). Hence, by adding and subtracting the two equations
in (6.3.27), we have

P (z)
(
A(z) +A(−z)

)
+ Q(z)

(
B(z) +B(−z)

)
= 1;

P (z)
(
A(z) −A(−z)

)
+ Q(z)

(
B(z) −B(−z)

)
= 1,

for |z| = 1; that is,

P (z)
(∑

k ā−2k z
2k

)
+Q(z)

( ∑
k b̄−2k z

2k
)

= 1;

P (z)
( ∑

k ā−2k+1 z
2k−1

)
+ Q(z)

( ∑
k b̄−2k+1 z

2k−1
)

= 1

for |z| = e−iω/2, ω ∈ R. Therefore, with both sides of the above two equa-

tions multiplied by φ̂
(
ω
2

)
and zφ̂

(
ω
2

)
, respectively, it follows from (the Fourier

transform of) the two-scale relations that

φ̂(ω) = P
(
e−ω/2

)
φ̂
(
ω
2

)
;

ψ̂(ω) = Q
(
e−ω/2

)
φ̂
(
ω
2

)
,
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that

φ̂
(
ω
2

)
=

∑
k

(
ā−2k e

−ikω φ̂(ω) + b̄−2k e
−ikω ψ̂(ω)

)
;

φ̂
(
ω
2

)
e−iω/2 =

∑
k

(
ā−2k+1 e

−ikω φ̂(ω) + b̄−2k+1 e
−ikω ψ̂(ω)

)
,

or equivalently, by taking the inverse Fourier transform,

2φ(2x) =
∑
k

(
ā−2k φ(x− k) + b̄−2k ψ(x − k)

)
;

2φ(2x− 1) =
∑

k

(
ā−2k+1 φ(x− k) + b̄−2k+1 ψ(x− k)

)
.

Finally, by changing x to x− j in the above two equations, we have

φ(2x− 2j) =
∑

k
1
2

(
ā2j−2kφ(x− k) + b̄2j−2k ψ(x − k)

)
;

φ(2x− (2j + 1)) = 1
2

∑
k

(
ā2j+1−2k φ(x− k) + b̄2j+1−2k ψ(x− k)

)
.

The totality of these two equations is the same as (6.3.26), by setting ℓ = 2j
to the first equation and ℓ = 2j + 1 in the second equation. �

Remark 6.3.1 In the next subunit, we will apply (6.3.26) of Theorem 6.3.2
to decompose digital signals into low-frequency and high-frequency bands and
will also apply the refinement relation (6.3.2) and the MRA wavelet definition
(6.3.25) to reconstruct the original digital signals. Theorem 6.3.2 will also be
applied to prove that the MRA architecture introduced in Subunit 6.2.3 can
be expanded to include decomposition of the L2(R) space into a direct sum of
multi-scale wavelet subspaces. This topic, along with the construction of or-
thogonal and bi-orthogonal MRA wavelets will be studied in the next subunit,
Subunit 6.3.3. Extension to the two-dimensional setting, with application to
digital image decomposition and compression will be discussed in Subunit 6.5.

Let us now return to the matrix extension problem (6.3.24) of finding the
Laurent symbols Q(z), A(z), B(z), from a given two-scale symbol P (z). As an
extension of the QMF discussion in Subunit 6.3.1, where the QMF condition
(6.3.17) is equivalent to the totality of (6.3.13), (6.3.14), and (6.3.16), the
matrix extension problem (6.3.24) is equivalent to finding desirable symbols
Q(z), A(z), B(z) that satisfy the totality of four conditions:

P (z)A(z) + P (−z)A(−z) = 1, |z| = 1; (6.3.28)
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P (z)B(z) + P (−z)B(−z) = 0, |z| = 1; (6.3.29)

A(z)Q(z) +A(−z)Q(−z) = 0, |z| = 1; (6.3.30)

B(z)Q(z) +B(−z)Q(−z) = 1, |z| = 1. (6.3.31)

A general procedure to solving the matrix extension problem is first to find the
desirable Laurent symbol A(z) that satisfies the “2-duality” condition (6.3.28)
corresponding to the given two-scale symbol A(z). Concurrently, depending
on the order m of polynomial preservation by the given refinable function
φ(x) (from which P (z) is determined), the symbol B(z), with polynomial
factor (1 − z)n for any n, 1 ≤ n ≤ m, is to be constructed, such that B(z)
satisfies the “2-orthogonal” property (6.3.29). Then the two-scale symbol Q(z)
is unique and satisfies the identities (6.3.30) and (6.3.31).

We remark that the choice of B(z) with polynomial factor (1−z)n assures
the nth-order vanishing moment of the “analysis wavelet,” associated with
the “dual refinable function,” with A(z) as its refinement symbol. To be more
specific, let us consider the mth-order Cardinal B-spline ϕm(x), defined in
(6.2.14) bym-fold convolution of the characteristic function of the unit interval
[0, 1). Hence, by (6.2.15), the given two-scale symbol of the centered B-spline
φm(x) := ϕm(x+ m

2 ), for even m, is given by

P̃m(z) := z−m/2 Pm(z) = z−m/2
(1 + z

2

)m
. (6.3.32)

Remark 6.3.2 As discussed in Subunits 6.1.2 and 6.1.3, the wavelet trans-
form defined in (6.1.3) of Subunit 6.1.1, with wavelet kernel ψb,a introduced in
(6.1.2), is a band-pass filter that annihilates the “low-frequency” content of a
given signal (or function) f(t), while separating the “high-frequency” content
of f(t) for analysis, by adjusting the scale a > 0. Here, the notion of “low-
frequency” means the “slowly oscillating” component of f(t). In applications,
an algebraic polynomial is used to describe slow oscillation. Hence, if f(t) has
a Taylor representation

f(t) =
n−1∑

k=0

1

k!
f(k)(t0) (t − t0)k +Rn(t),

with remainder Rn(t), in some ǫ-neighborhood N(ǫ, t0) of t0, then by using
a wavelet ψ(t) with nth-order vanishing moment for the wavelet transform
(Wψf) (b, a) in (6.1.3), we have

(Wψf) (b, a) = (WψRn) (b, a)

by sliding the translation parameter b and adjusting the scale parameter a > 0
to match ψb,a(t) with the neighborhood N(ǫ, t0) of t0. This enables the wavelet
transform to annihilate the low-frequency content of f(t) and analyze the high-
frequency content Rn(t) in N(ǫ, t0). Observe that a higher order of vanishing
moments improves the quality of high-frequency analysis.



242 SAYLOR MA 304

Theorem 6.3.3 Let m ≥ 2 be an arbitrarily chosen even integer. Then the
Laurent polynomial A(z) with smallest degree that satisfies the “2-duality”
condition (6.3.28), with P̃ (z) given by (6.3.32), is

Am(z) =

m/2−1∑

j=0

(m
2 + j − 1

j

)[
1

2

(
1− (z + 1

z )

2

)]j
. (6.3.33)

Since the most commonly used B-spline is the centered cubic spline
φ4(x) = ϕ4(x+ 2), we only consider the 2-duality property (6.3.28) for m = 4
in (6.3.33) as follows.

Example 6.3.4 For P̃4(z) = z−2
(

1+z
2

)4
in (6.3.32), verify that A(z) = A4(z)

in (6.3.33) satisfies the condition (6.3.28).

Solution For |z| = 1, we have 1
z = z̄, so that

A4(z) =
(

1 +
(
1− z + z−1

2

))
=

(
2− z + z−1

2

)
.

Hence, we have

P̃4(z)A4(z) + P̃4(−z)A4(z)

= 1
2z2

(
1+z
2

)4 (
4−

(
z + 1

z

))
+ 1

2z2

(
1−z
2

)4 (
4 +

(
z + 1

z

))

= 1
32

1
z2

{
(1 + 4z + 6z2 + 4z3 + z4)

(
4−

(
z + 1

z

))
+

(1− 4z + 6z2 − 4z3 + z4)
(
4 + z + 1

z

)}

= 1
32

1
z2

{
4(2 + 12z2 + 2z4) −

(
z + 1

z

)
(8z + 8z3)

}

= 1
32

1
z2

{
8 + 48z2 + 8z4) − (8 + 16z2 + 8z4)

}

= 1
32

1
z2

(
32z2

)
= 1. �

Remark 6.3.3 The condition (6.3.28) is equivalent to the sequence (time-
domain) duality condition

∑

k

pk āk−2j = 2δj , j ∈ Z, (6.3.34)

where δj denotes the Kronecker symbol. In view of the “down-sample” by
2 (i.e. j → 2j) in the convolution, we call (6.3.28), or equivalently (6.3.34),
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the 2-duality condition. Similarly, the time-domain orthogonality condition,
which is equivalent to (6.3.29), is given by

∑

k

pk b̄k−2j = 0, j ∈ Z, (6.3.35)

and called the 2-orthogonality condition. Of course, (6.3.30) is equivalent to

∑

k

āk qk−2j = 0, j ∈ Z, (6.3.36)

and (6.3.31) is equivalent to

∑

k

b̄k qk−2j = 2δj, j ∈ Z. (6.3.37)

Remark 6.3.4 The notion of 2-duality and of 2-orthogonality will be clear
from our study of bi-orthgonal wavelets in the next subunit, particularly The-
orem 6.3.5.

Theorem 6.3.4 For any even integer m ≥ 2, let φm(x) = ϕm
(
x+ m

2

)
be the

mth order centered Cardinal B-spline with two-scale symbol P̃m(x) given by
(6.3.32) and corresponding 2-dual Laurent polynomial Am(z) given by (6.3.33).
Then the Laurent symbol B(z) with smallest Laurent polynomial degree and
nth order vanishing moment, for any n, 1 ≤ n ≤ m, for the matrix extension
(6.3.24) is given by

B(z) = Bn(z) = z−m/2+1(1− z)n. (6.3.38)

Furthermore, the Laurent polynomial

Qm(z) :=
(−1)m/2

2m
z−1 C(x) Am(−z), (6.3.39)

for some appropriate polynomial C(z) (see Example 6.3.7, and in particular,
Theorem 6.5.2 of Subunit 6.5.3), can be used to complete the solution of the
matrix extension problem (6.3.24).

6.3.3 Orthogonal and bi-orthogonal wavelets

The notion of multiresolution analysis (MRA) introduced in Subunit 6.2.3
can now be extended to the decomposition of functions in L2(R) by applying
Theorem 6.3.2 in Subunit 6.3.2. Precisely, let φ be a refinable function that
satisfies the conditions as stated in Theorem 6.3.2 of Subunit 6.3.2. Also, recall

Vj = span {φ(2jx− k) : k ∈ Z}
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where span denotes the L2-closure of the algebraic span. Then φ is said to
generate an MRA if {Vj} is a nested sequence of subspaces of L2(R), with the
L2-closure of the union of all Vj, j ∈ Z, being the entire L2(R) space. Hence,
for any fixed integer j, by defining

Wj = span {ψ(2jx− k) : k ∈ Z}, (6.3.40)

where ψ is called a “wavelet” as defined in (6.3.25), we observe that both Vj
and Wj are subspaces of Vj+1, namely:

Vj,Wj ⊂ Vj+1.

On the other hand, by changing x to 2jx in (6.3.26) of Theorem 6.3.2, it is
clear that

φ(2j+1 x− ℓ) ∈ Vj + Wj, ℓ ∈ Z.

Since the L2-closure of the linear span of the functions φ(2j+1 x − ℓ), ℓ ∈ Z,
is Vj+1, we also have

Vj+1 ⊆ Vj + Wj;

and thus,
Vj+1 = Vj + Wj, j ∈ Z. (6.3.41)

Now, by applying the properties (ii) and (iii) in the MRA definition, we have
the decomposition property:

L2(R2) =
∞∑

j=−∞
Wj. (6.3.42)

In addition, by imposing very mild assumption of “linearly independent integer
shifts” the refinable function φ; (that is, the assumption that for {ck} ∈ ℓ1,

∞∑

k=−∞
ck φ(x− k) = 0, x ∈ R,

implies ck = 0 for all k), it follows that

Vj ∩Wj = {0}, j ∈ Z.

Hence, for all ℓ, k ∈ Z with ℓ 6= k, say ℓ < k, since Wℓ ⊂ Vℓ+1 ⊆ Vk and
Vk ∩Wk = {0}, it follows that

Wj ∩Wk = {0}, (6.3.43)

for all j 6= k. We remark that the linearly “independent integer shift” condition
is satisfied by all orthogonal refinable functions (see (6.3.8)) and all Cardinal
B-splines ϕm(x) (see (6.2.13)). In view of the above discussion, let us introduce
the following two notations:

L2(R) =

∞⊕

j=−∞
Wj (6.3.44)



WAVELET METHODS 245

L2(R) =

∞⊥⊕

j=−∞
Wj, (6.3.45)

where
⊕

is called “direct sum” and
⊕⊥

is called “orthogonal sum.” For
(6.3.44), it follows from (6.3.43) that every f ∈ L2(R) has a unique decom-
position

f(x) =

∞∑

j=−∞
gj(x), gj ∈Wj;

and for (6.3.45), this unique decomposition has the additional property that

〈gj, gk〉 = 0, for j 6= k.

Furthermore, the function ψ(x) in (6.3.25) that generates the subspaces
Wj in (6.3.40) will be called an “MRA wavelet,” and the subspaces Wj are
called “wavelet subspaces.”

In the following, we apply the “2-dual sequence” {ak} and the “2-
orthogonal sequence” {bk} from the matrix extension (6.3.24), as described
by (6.3.34) and (6.3.35) respectively, to decompose functions fj+1 ∈ Vj+1 as
the sum of a function fj ∈ Vj and a function gj ∈Wj, for any integer j ∈ Z.
Here, since

Vj+1 = Vj ⊕Wj, j ∈ Z,

the decomposition fj+1 = fj + gj is unique and should be called direct sum
decomposition. For fj+1 ∈ Vj+1, fj ∈ Vj and gj ∈Wj, we may write

fj+1(x) =:
∑
ℓ c

j+1
ℓ φ(2j+1 x− ℓ);

fj(x) =:
∑
k c

j
k φ(2j x− k);

gj(x) =:
∑
k d

j
k ψ(2j x− k).

(6.3.46)

Therefore, the task of decomposition of the function fj+1 into a direct sum of
two functions fj and gj is equivalent to computing the coefficient sequences

{cjk} and {djk} in terms of the coefficient sequence {cj+1
ℓ } of fj+1.

By replacing x in the decomposition relation (6.3.26) with 2j x, we have

φ(2j+1 x− ℓ) =
1

2

∑

k

{
āℓ−2k φ(2j x− k) + b̄ℓ−2k ψ(2jx− k)

}
.

Hence, from the definition of the coefficient sequence {cjℓ}, {d
j
ℓ}, it follows that

fj+1(x) =
∑
cj+1
ℓ

[∑
k

{
1
2
āℓ−2k φ(2jx− k) + 1

2
b̄ℓ−2k ψ(2jx− k)

}]

=
∑

k

( ∑
ℓ

1
2 āℓ−2k c

j+1
ℓ

)
φ(2jx− k)+

+
∑

k

(∑
ℓ

1
2
b̄ℓ−2k c

j+1
ℓ

)
ψ(2jx− k).
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Observe that the function represented by first sum on the right-hand side is
in Vj, while the function represented by the second sum is in Wj. Since the
decomposition Vj+1 = Vj

⊕
Wj is a direct sum, we have

fj(x) =
∑

k

cjk φ(2jx− k) =
∑

k

( ∑

ℓ

1

2
āℓ−2k c

j+1
ℓ

)
φ(2jx− k),

and

gj(x) =
∑

k

djk ψ(2jx− k) =
∑

k

( ∑

ℓ

1

2
b̄ℓ−2k c

j+1
ℓ

)
ψ(2jx− k).

Therefore, assuming that the wavelet ψ also has the property of “linear in-
dependent integer shifts” as the refinable function φ, we have derived the
following “wavelet decomposition” algorithm:

cjk =
∑

ℓ
1
2
āℓ−2k c

j+1
ℓ ;

djk =
∑

ℓ
1
2 b̄ℓ−2k c

j+1
ℓ , k ∈ Z,

(6.3.47)

for the decomposition of any fj+1 ∈ Vj+1 into the sum of fj ∈ Vj and
gj ∈Wj. This, of course, is valid for any integer j ∈ Z. Hence, by applying the
decomposition algorithm (6.3.47) to fj , fj−1, · · · , fj−L+1 for any arbitrarily
chosen non-negative integer L, we have

fj+1(x) = fj−L(x) + gj(x) + · · ·+ gj−L(x) (6.3.48)

where fj−L ∈ Vj−L and gℓ ∈Wℓ for ℓ = j − L, · · · , j and the sum in (6.3.48)
is unique, being a direct sum.

Remark 6.3.5 By setting gℓ := 1
2 ā−ℓ and hℓ := b̄−ℓ, the decomposition

algorithm (6.3.47) is precisely the convolution of the given sequence {cℓj+1}
with the “filters” {gℓ} and {hℓ}, respectively, followed by “downsampling,”
meaning that the terms with odd indices of the output sequences are dropped.
The notation for downsampling is 2 ↓. That is, (6.3.47) can be described as
follows:

{cj+1
k } −→ ⋆

{
1

2
ā−ℓ

}
−→ 2 ↓ −→ {cjk}

{cj+1
k } −→ ⋆

{
1

2
b̄−ℓ

}
−→ 2 ↓ −→ {djk}.

We will call { 1
2 āℓ} a lowpass filter and { 1

2 b̄ℓ} a highpass filter.

To reconstruct the function fj+1 from the “lowpass” component fj ∈ Vj
and “highpass” component gj ∈ Wj, we apply the refinement and two-scale
relations:

φ(x) =
∑

ℓ pℓ φ(2x− ℓ);

ψ(x) =
∑

ℓ qℓ φ(2x− ℓ),
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in (6.2.8) and (6.3.2), respectively. Indeed, by replacing x with 2jx− k in the
above two relations, we have

φ(2jx− k) =
∑

ℓ pℓ φ
(
2j+1 x− (2k + ℓ)

)

=
∑

ℓ pℓ−2k φ(2j+1 x− ℓ),

and similarly,

ψ(2jx− k) =
∑

ℓ

qℓ−2k φ
(
2j+1 x− ℓ

)
.

Therefore,

fj(x) + gj(x) =
∑

k c
j
k φ(2jx− k) +

∑
k d

j
k ψ(2jx− k)

=
∑

k

[
cjk

( ∑
ℓ pℓ−2k φ(2j+1x− ℓ)

)
+

+djk

(∑
ℓ qℓ−2k φ(2j+1x− ℓ)

)]

=
∑

ℓ

[∑
k

(
pℓ−2k c

j
k + qℓ−2k d

j
k

)]
φ(2j+1x− ℓ).

Since fj+1(x) =
∑

ℓ c
j+1φ(2j+1x− ℓ) and the refinable function φ satisfies the

linearly independent integer shifts condition, we may conclude that

cj+1
ℓ =

∑

k

(
pℓ−2k c

j
k + qℓ−2k d

j
k

)
. (6.3.49)

We call (6.3.48) the “wavelet reconstruction” algorithm.

Remark 6.3.6 For reconstruction, the input sequences {cjk} and {djk} are
first upsampled, by inserting one zero in-between every two consecutive terms;
that is, by setting

c̃jn =

{
cjk, for n = 2k,

0, for n = 2k + 1,

and

d̃jn =

{
djk, for n = 2k,

0, for n = 2k + 1.

Therefore,

∑

k

(
pℓ−2k c

j
k + qℓ−2k d

j
k

)
=

∑

k

(
pℓ−n c̃

j
n + qℓ−n d̃

j
n

)

which is the convolution operation. The symbol for upsampling is 2 ↑. By ap-
plying the upsampling symbol, the wavelet reconstruction algorithm (6.3.49)
can be described as follows.
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To introduce the notion of bi-orthogonal wavelets, we return to the ma-
trix extension problem studied in the previous subunit and assume that the
sequence {ak}, with two-scale symbol A(z) = 1

2

∑
ak z

k in the matrix exten-

sion (6.3.24), is the refinement sequence of some refinable function φ̃ ∈ L2(R);
that is,

φ̃(x) =
∑

k

ak φ̃(2x− k). (6.3.50)

Theorem 6.3.5 Let φ, φ̃ ∈ L2(R) be refinable functions with refinement se-
quences {pk}, {ak} as in (6.2.8), (6.3.50), respectively, that satisfy the sum

rule condition. Suppose that the function pair (φ, φ̃) is a dual pair, namely:

〈φ, φ̃(· − j)〉 = δj , j ∈ Z, (6.3.51)

then the sequence pair ({pk}, {ak}) is 2-dual, as introduced in (6.3.34), namely:

∑

k

pk āk−2j = 2δj , j ∈ Z.

Remark 6.3.7 Under certain appropriate conditions on the symbol A(z), the

converse of this theorem also holds, in that φ̃ ∈ L2(R) exists and is dual to
φ. But the proof is somewhat technical to be included in this writing. In any
case, the 2-duality condition (6.3.51) is a necessary condition for the duality

of φ̃ and φ.

To prove the theorem, we simply apply the refinement relations (6.2.8),
(6.3.50) and the duality assumption (6.3.51) to compute

δj = 〈φ, φ̃(· − j)〉 =
∑

k

∑
ℓ pk āℓ 〈φ(2x− k), φ̃(2x− (ℓ+ 2j))〉

= 1
2

∑
k

∑
ℓ pk āℓ 〈φ, φ̃(· − (ℓ + 2j − k))〉

= 1
2

∑
k

∑
n pk ān+k−2j δn

= 1
2

∑
k pk āk−2j.
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�

Now, under the existence and duality assumption on φ̃, the other two
symbols

B(z) =
1

2

∑

k

bk z
k, Qk(z) =

1

2

∑

k

qk z
k

of the matrix extension (6.3.24) can be applied to introduce two wavelets

ψ̃(x) :=
∑

k

bkφ̃(2x− k), (6.3.52)

and of course,

ψ(x) :=
∑

k

qk φ(2x− k),

as in (6.3.25). These two wavelets also constitute a dual pair, and the wavelet

ψ̃ in (6.3.52) is orthogonal to V0 := span 〈φ(x− k) : k ∈ Z〉, as stated in the
following.

Theorem 6.3.6 Under the assumption that the matrix extension

MP,Q(z) M⋆
A,B(z) = I2

holds for |z| = 1, the existence of φ̃ ∈ L2(R), and the duality (6.3.51) of the

pair (φ, φ̃), then the two wavelets ψ and ψ̃ constitute a dual pair, in that

〈ψ, ψ̃(· − j)〉 = δj , j ∈ Z, (6.3.53)

and ψ̃(· − j) is orthogonal to W0, in that

〈φ(· − j), ψ̃(· − k)〉 = 0, j, k ∈ Z, (6.3.54)

Proof The same computation as in the proof of the above theorem yields:

〈ψ, ψ̃(· − j)〉 =
∑

k

∑
ℓ qk b̄ℓ 〈φ(2x− k), φ̃(2x− (ℓ+ 2j))〉

= 1
2

∑
k qk b̄k−2j = δj , j ∈ Z,

by (6.3.37), and

〈φ, ψ̃(· − j)〉 =
∑

k

∑
ℓ pk b̄ℓ 〈φ(2x− k), φ̃(2x− (ℓ + 2j))〉

= 1
2

∑
k pk b̄k−2j = 0, j ∈ Z,

by (6.3.35). �
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To study the relevance of wavelet decomposition and the wavelet trans-
form, let us apply (6.3.53)–(6.3.54) of Theorem 6.3.6 to the wavelet decompo-
sition

fj+1(x) = fj(x) + gj(x) (6.3.55)

in (6.3.46)–(6.3.48). For L = 1 in (6.3.48), we have (6.3.55), where the repre-
sentations of the functions fj+1, fj, gj are given in (6.3.46), with corresponding

coefficient sequences {cj+1
k }, {cjk}, {d

j
k} governed by the relations in (6.3.47).

For any fixed j ∈ Z, it follows from (6.3.54) that

〈fj , ψ̃(2jx− k)〉 = 0, k ∈ Z;

and from (6.3.53) that

〈gj, ψ̃(2jx− k)〉 =
∑

ℓ

djℓ 〈ψ(2jx− ℓ), ψ̃(2jx− k)〉 = 2−k djk.

Hence, the coefficient djk of gj(x) is precisely:

djk = 2j 〈fj+1, ψ̃(2jx− k)〉 =
(
W

eψfj+1

)( k
2j
,

1

2j

)
, (6.3.56)

as defined in (6.3.3) with

b =
k

2j
, a =

1

2j

for f = fj+1 and wavelet ψ̃. In other words, the wavelet decomposition al-
gorithm (6.3.47) provides a very efficient way (simply by discrete convolution
followed by downsampling) for computing the wavelet transform

(
W

eψf
)
(b, a) =

1

a

∫ ∞

−∞
f(t) ψ̃

( t− b
a

)
dt (6.3.57)

of f(x) = fj+1(x) at the time-scale position

(b, a) =
( k

2j
,

1

2j

)
, k ∈ Z; (6.3.58)

and this applies to all scale levels j ∈ Z.

Definition 6.3.2 The integral transform (6.3.57) with wavelet kernel

ψ̃b,a(t) =
1

a
ψ̃

( t− b
a

)

as previously defined in (6.1.3) is called the continuous wavelet transform
(CWT) of any function f ∈ L2(R); and when (b, a) is evaluated at the discrete
time-scale positions in (6.3.58), then the CWT (6.3.57) becomes

(
W

eψf
) ( k

2j
,

1

2j

)
= 2j

∫ ∞

−∞
f(t) ψ̃(2jt− k) dt, (6.3.59)
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which is called the discrete wavelet transform (DWT). Furthermore, the

wavelet ψ̃ in (6.3.57) and (6.3.59) is called an “analysis wavelet”. In addi-
tion the MRA wavelet ψ corresponding to the scaling function φ is called the
“synthesis wavelet” of the MRA architecture.

Remark 6.3.8 In the wavelet literature, it is more common to define the
CWT and DWT by

(
W

eψf
)

(b, a) =
1√
a

∫ ∞

−∞
f(t) ψ̃

( t− b
a

)
dt

with a−1/2 normalization.
Observe that the wavelet kernel ψ̃b,a in the above definition (6.3.57) (see

also (6.1.2) in Subunit 6.1) preserves L1(R) energy in that

||ψ̃b,a||L1(R) =

∫ ∞

−∞
|ψ̃b,a(t)|dt = ||ψ̃||L1(R),

for all a, b ∈ R, with a > 0; while the kernel

1√
a
ψ̃

( t− b
a

)

preserves L2(R) energy, in that

∣∣∣
∣∣∣ 1√

a
ψ̃

(
t−b
a

)∣∣∣
∣∣∣
2

L2(R)
=

∫ ∞
−∞

∣∣∣ 1√
a
ψ̃

(
t−b
a

)∣∣∣
2

dt

=
∣∣∣
∣∣∣ψ̃

∣∣∣
∣∣∣
2

L2(R)
,

for all a, b ∈ R, with a > 0.

Let us summarize the results obtained in (6.3.46)–(6.3.48) and (6.3.56), as
well as (6.3.49) in the following.

Theorem 6.3.7 Let φ ∈ (L1 ∩ L2)(R) generate an MRA with corresponding
MRA wavelet synthesis wavelet ψ, in that

Vj = span{φ(2jx− k) : k ∈ Z};

Wj = span{ψ(2jx− k) : k ∈ Z}
and

VJ+1 = VJ−L ⊕WJ ⊕ · · · ⊕WJ−L

for arbitrarily chosen integers J and L with L ≥ 0. Also let φ̃ ∈ L2(R) be
the refinable function generated by some matrix extension (6.3.25), such that

(φ, φ̃) satisfies the duality condition (6.3.51), and ψ̃ be the analysis wavelet
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corresponding to φ̃, again from the same matrix extension (6.3.25). Then for
any function fJ+1 ∈ VJ+1, the wavelet decomposition algorithm (6.3.47) can
be applied to compute the DWT

djk =
(
W

eψfj+1

) ( k

2j
,

1

2j

)

of fj+1, with analysis wavelet ψ̃, for any j = J − L, . . . , J and all k ∈ Z.
In addition, the wavelet reconstruction algorithm (6.3.49) can be applied to
perfectly recover fJ+1 from the DWT {djk}, j = J − L, . . . , J and the lowpass

sequence {cJ−Lk }.
We remark that since VJ+1 ≈ L2(R) for sufficiently large J , any function

f ∈ L2(R) can be approximated as closely as desired by some fJ+1 ∈ VJ+1.
Then the DWT {djk}, j = J − L, . . . , J , can be considered as the DWT of the
given function f ∈ L2(R). In addition, since VJ−L ≈ {0} for sufficiently large
L, the lowpass sequence {cJ−Lk } can be ignored. However, in most applications,

{cJ−Lk } is used as a “thumb-nail” of f , while the DWT sequences {djk} are
used for analyzing the “details” of f . In Subunit 6.5.1–6.5.2, we will elaborate
on this concept in our study of digital image analysis and compression.

We next turn to the discussion of the construction of refinable functions
φ, φ̃ and their corresponding bi-orthogonal wavelets. For the special case when
MP,Q is a QMF, recall that the only task is to construct the two-scale symbol

P (z) =
1

2

∑

k

pk z
k,

or equivalently the refinement sequence {pk}, since A(z), B(z), and Q(z) are
simply A(z) = P (z), B(z) = Q(z), and Q(z) = −z2k+1 P (−z) for an arbitrary
integer k (see (6.3.28)). On the other hand, for the general matrix extension,
the most common choice of P (z) is

P (z) = Pm(z) =
(1 + z

2

)m
,

m ≥ 2, or any phase shift of Pm(z) such as the centered z−⌊m/2⌋ Pm(z). That
is, the refinable function φ of choice is

φ(x) = ϕm(x+ ⌊m/2⌋),

where ϕm is the mth order Cardinal B-spline defined by m-fold convolution
of the characteristic function of the unit interval.

In any case, for practical applications, since only finite filters are used for
wavelet decomposition (6.3.47) and wavelet reconstruction (6.3.49), we are
only interested in Laurent polynomials P (z), A(z), B(z), Q(z).

We begin with considering the QMF and the construction of Laurent poly-
nomials P (z) that satisfied

|P (z)|2 + |P (−z)|2 = 1, |z| = 1. (6.3.60)
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Let m ≥ 1 be any integer, and consider

P (z) =
(1 + z

2

)m
S(z), (6.3.61)

where S(z) is a Laurent polynomial to be constructed according to the speci-
fication (6.3.60). Setting z = e−iθ, θ ∈ R, we have

|P (z)|2 + |P (−z)|2 = |S(z)|2 cos2m
(θ

2

)
+ |S(−z)|2 sin2m

(θ
2

)
.

Next, replace |S(e−θ)|2 by pℓ(sin
2( θ

2
)) where pℓ is an algebraic polynomial of

degree ℓ (to be determined). Then since |S(−e−iθ)| = |S(e−i(θ−π))|, we have
|S(−z)|2 = pℓ(cos2( θ2 )). This translates the condition to

pℓ

(
sin2 θ

2

)
cos2m

θ

2
+ pℓ

(
cos2 θ

2

)
sin2m θ

2
= 1

or equivalently

pℓ(x)(1− x)m + pℓ(1− x)xm = 1, (6.3.62)

where x := sin2 θ
2
. To determine the algebraic polynomial pℓ(x) in (6.3.62),

observe that

pℓ(x) = (1− x)−m
(
1− xm pℓ(1 − x)

)

=

∞∑

k=0

(
m+ k − 1

k

)
xk

(
1− xm pℓ(1− x)

)

where the Taylor expansion of (1 − x)−m at x = 0 is used. Hence, the poly-
nomial pℓ(x) is given by

pℓ(x) =

m−1∑

k=0

(
m+ k − 1

k

)
xk + xm r0(x)

where r0(x) is a power series with non-negative powers of x, so that the lowest
power of x of the power series xm r0(x) is at least m. This leads to the choice
of ℓ = m− 1 to arrive at

pm−1(x) =

m−1∑

k=0

(m+ k − 1
k

)
xk (6.3.63)

for the polynomial pℓ(x) in (6.3.62). Returning to |S(z)|2 = pm−1

(
sin2 θ

2

)
,



254 SAYLOR MA 304

since z = e−iθ, we have, by (6.3.63),

|S(z)|2 =
m−1∑

k=0

(
m+ k − 1

k

) (
1−

(eiθ/2 + e−iθ/2

2

)2)k

=

m−1∑

k=0

(
m+ k − 1

k

) (
1− z + 2 + z−1

4

)k

=

m−1∑

k=0

(m+ k − 1
k

) (2− z − z−1

4

)k
,

and therefore, the desired two-scale polynomial P (z) =: PD,2m(z) of the QMF
can be computed by the taking “square-root” of

|PD,2m(z)|2 =
(2 + z + z−1

4

)m m−1∑

k=0

(
m+ k − 1

k

) (2− z − z−1

4

)k
. (6.3.64)

Example 6.3.5 For m = 1 in (6.3.64), we have

|PD,2(z)|2 =
2 + z + z−1

4
=

1 + z

2
· 1 + z−1

2
=

1 + z

2

(1 + z

2

)

where |z| = 1. Hence, PD,2(z) = 1
2(1 + z), so that the refinement sequence is

pk =

{
1 for k = 0, 1

0 otherwise.

That is, the refinable function is simply

φD,2(x) = χ[0,1)(x) = ϕ1(x),

the first order Cardinal B-spline. �

We remark that although it is fairly easy to find the square root for m = 1,
the difficulty increases dramatically for larger integers m. In the next example,
we will see that finding the square root for m = 2 is already somewhat tricky.
In general, a systematic method by applying the “Riesz Lemma” allows us
to compute the square root for any integer m ≥ 2. This topic will not be
discussed in this writing.
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Example 6.3.6 For m = 2 in (6.3.64), we have

|PD,4(z)|2 =
(2 + z + z−1

4

)2 (
1 + 2 · 2− z − z−1

4

)

=
(

1+z
2

)2 (
1+z−1

2

)2
4−z−z−1

2

=
(

1+z
2

)2 (
1+z−1

2

)2
[
(2+

√
3)−z

] [
(2+

√
3)−z−1

]

2(2+
√

3)

=
(

1+2z+z2

4 · (2+
√

3)−z√
4+2

√
3

) (
1+2z+z2

4 · (2+
√

3)−z√
4+2

√
3

)
.

Therefore, we have

PD,4(z) = (1+2z+z2) (2+
√

3−z)
4
√

4+2
√

3

= (1+2z+z2) (2+
√

3−z) (
√

3−1)
8 ,

since 1√
4+2

√
3

=
√

3−1
2 . That is, by writing

PD,4(z) =
1

2

3∑

k=0

pD,k z
k,

it follows that the refinement sequence is given by

pD,0 =
1 +
√

3

4
, pD,1 =

3 +
√

3

4
, pD,2 =

3−
√

3

4
, pD,3 =

1−
√

3

4
,

and pD,k = 0 for k 6= 0, 1, 2, 3. Observe that

pD,0 + pD,2 =
1 +
√

3

4
+

3−
√

3

4
= 1

and

pD,1 + pD,3 =
3 +
√

3

4
+

1−
√

3

4
= 1.

Thus, the refinement sequence satisfies the sum rule condition. �

Remark 6.3.9 The sequences {pD,k} = {pD,2m,k}, m = 1, 2, . . . , are refine-
ment sequences of the Daubechies orthonormal scaling functions φD,2m(x).
By setting qD,2m,k = (−1)kpD,2m,1−k, the orthonormal wavelets

ψD,2m(x) :=
∑

k

qD,2m,k φD,2m(2x− k)

are called Daubechies wavelets. These are the first compactly supported re-
finable functions and wavelets that are orthonormal and reasonably smooth.
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We now give examples of the matrix extension problem by considering the
most popular (spline) two-scale symbol

P (z) = Pm(z) =
(1 + z

2

)m
.

Example 6.3.7 For m = 2, the refinement function φ is the linear Cardinal
B-spline ϕ2(x). The 2-dual symbol corresponding to P2(z) is the Laurent
polynomial

A2(z) =
1

8
(1 + z)2 (4− z − z−1).

It is easy to verify that

P2(z) A2(z) + P2(−z) A2(−z) = 1

for |z| = 1. The choice of A2(z) follows the recipe (6.3.33). By choosing n =
m = 2 in (6.3.38) we achieve the maximum order of vanishing moments for

the dual wavelet ψ̃, namely:

B2(z) = −1

4
z
(

1− 1

z

)2

,

where a different constant multiple and shift are applied. Finally, by choosing
C(z) = z2 + 4z + 1 in (6.3.39), we have

Q2(z) = −1

8

(
z2 +

1

z2

)
− 1

4

(
z +

1

z

)
+

3

4

where a constant multiple and appropriate shift are also applied. The reason
for the above minor adjustment of (6.3.38) and (6.3.39) is to give the so-called
“5/3 biorthogonal filters” adopted by the JPEG-2000 standard for wavelet
image compression. This topic will be discussed in Subunit 6.5.3.

It is easy to verify that
[
P2(z) P2(−z)
Q2(z) Q2(−z)

] [
A2(z−1) B2(z−1)
A(−z−1) B2(−z−1)

]
=

[
1 0
0 1

]

for |z| = 1. �

More examples will be given in Subunit 6.5.3 in the construction of wavelets
with dyadic filter taps for wavelet decomposition and reconstruction.

6.4 Wavelet Algorithms

This subunit is a compilation of the wavelet decomposition and reconstruction
algorithms, their generalization to filter banks, and their implementation by
applying the lifting scheme.
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6.4.1 Wavelet decomposition and reconstruction

References

(1) This MA 304 text, Subunit 6.3.3: Equations (6.3.47)–(6.3.49) and the
two diagrams.

(2) This MA 304 text, Subunit 6.5.2: Diagrams for “Two-dimensional
wavelet decomposition and “Two-dimensional wavelet reconstruction.

6.4.2 Filter Banks

Reference

(1) Gilbert Strang, “Lecture Notes: Handouts 116, MIT open courseware.

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 419–432. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

6.4.3 The Lifting Scheme

Reference

(1) Gilbert Strang, “Lecture Notes: Handouts 1-16, MIT open courseware.

(2) Charles K. Chui and Qingtang Jiang, “Applied Mathematics: Data Com-
pression, Spectral Methods, Fourier Analysis, Wavelets, and Applica-
tions, pages 479–498. Atlantis Press, ISBN 978-94-6239-009-6, available
on Springer internet platform: www.springerlink.com.

6.5 Application to Image Coding

In this subunit, the time variable t of a “signal” f(t), studied previously, is
replaced by two spatial variables x and y of an “image” f(x, y), for (x, y)
in an image domain D, which is usually a bounded rectangular region, say
D = [0, b]× [0, c] ⊂ R2, where b, c > 0. We will discuss the extension of the
wavelet transform for signals to the wavelet transform for images, by gener-
alizing the one-dimensional domain to two dimensions. In Subunit 6.5.1, the
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theory developed in Subunit 6.3 is applied to map an image defined on D
to a hierarchy of sub-images, by applying a combination of smoothing and
wavelet operators, to reveal “low-frequency” and “high-frequency” contents
of the images. In practice, low-frequency sub-images can be used as image
thumbnails, while the image details in the high-frequency sub-images facili-
tate such applications as image compression and image edge extraction. The
wavelet decomposition and reconstruction algorithms, (6.3.47) and (6.3.49),
respectively, derived in Subunit 6.3.3, will be formulated in two-dimensions
and applied in Subunit 6.5.2 to decompose a given image into its (wavelet)
image hiararchy, and to reconstruct the given image from its wavelet image
hierarchy, with application to progressive image transmission and acquisition.
Application to image compression will be studied in Subunit 6.5.3, where the
image compression industry standard, JPEG-2000, is also discussed.

6.5.1 Mapping digital images to the wavelet domain

In this subunit, the theory developed in Subunits 6.3.1–6.3.3 is applied to map
an (image) function to the wavelet domain, in the form of an image hierarchy.
Let D = [0, b]× [0, c], where b, c > 0. A function f(x, y) defined on D will be
used to represent an image.

Let φ be a refinable (also called scaling) function introduced and dis-
cussed in Subunit 6.2.3. The extension of this MRA architecture from the
one-dimensional space L2(R) to the two-dimensional space L2(R2) is easily
accomplished by considering the tensor product

Φ(x, y) := φ(x) φ(y), (x, y) ∈ R2, (6.5.1)

and setting
Vj := span {Φ(2jx− k, 2jy − ℓ) : k, ℓ ∈ Z} (6.5.2)

where span denotes the closure in L2(R2) of the (linear) algebraic span. It is
easy to verify that the properties (i)–(v) in the definition of MRA in Subunit
6.2.3 for φ and the nested subspaces {Vj} remain valid for Φ(x, y) and the
nested subspaces {Vj} in (6.5.2). In particular, in view of property (iii), while
every function f(x) ∈ L2(R) can be approximated as closely as desired by

∑

k

cjk φ(2jx− k),

for some sequence {cjk} ∈ ℓ2 = ℓ2(Z). Every function f(x, y) in L2(R2) can
also be approximated as closely as desired by

∑

k

∑

ℓ

cjk,ℓ Φ(2jx− k, 2jy − ℓ),

for some sequence {cjk,ℓ} ∈ ℓ2 = ℓ2(Z2), for sufficiently large positive integers
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j ∈ Z. For this reason, we will always consider functions in VJ+1 ⊂ L2(R) or
VJ+1 ⊂ L2(R2) , respectively, where 0 < J ∈ Z is considered to be sufficiently
large.

Next, returning to the matrix extension of the two-scale symbol P (z) =
1
2

∑
k pk z

k, where {pk} is the refinement sequence of φ(x), namely:

[
P (z) P (−z)
Q(z) Q(−z)

] [
A(z) B(z)

A(−z) B(−z)

]
=

[
1 0
0 1

]
, (6.5.3)

where P (z), A(z), B(z), and Q(z) are assumed to be Laurent polynomials from
now on, and assuming that A(z) = 1

2

∑
k ak z

k is also the two-scale symbol of

a refinable function φ̃(x) ∈ L2(R), as in (6.3.50) and Theorem 6.3.3 of Subunit
5.3.3, it follows that

ψ̃(x) :=
∑

k

bk φ̃(2x− k);

ψ(x) :=
∑

k

qk φ(2x− k) (6.5.4)

are also in L2(R). Furthermore, by taking the Fourier transform, we have

φ̂(ω) = P
(
e−iω/2

)
φ̂
(
ω
2

)
;

ψ̂(ω) = Q
(
e−iω/2

)
φ̂
(
ω
2

)
;

̂̃
φ(ω) = A

(
e−iω/2

)̂̃
φ
(
ω
2

)
;

̂̃ψ(ω) = B
(
e−iω/2

)̂̃φ
(
ω
2

)
.

(6.5.5)

Now, along with the refinable (or scaling) function Φ(x, y) ∈ L2(R2) intro-
duced in (6.5.1), we introduce the following three synthesis wavelets:

Ψ1(x, y) := φ(x) ψ(y);
Ψ2(x, y) := ψ(x) φ(y);
Ψ3(x, y) := ψ(x) ψ(y).

(6.5.6)

In the next subunit (Subunit 6.5.2), we will apply the decomposition and re-
construction algorithms, (6.3.47) and (6.3.49) respectively, derived in Subunit
6.3.3, to decompose each function

fj+1(x, y) :=
∑

ℓ

∑

m

cj+1
ℓ,m Φ(2j+1x− ℓ, 2j+1y −m) (6.5.7)
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into a (direct) sum of four components:

fj(x, y) :=
∑

ℓ

∑
m c

j
ℓ,m Φ(2jx− ℓ, 2jy −m);

g1,j(x, y) :=
∑
ℓ

∑
m d

j
1;ℓ,m Ψ1(2jx− ℓ, 2jy −m);

g2,j(x, y) :=
∑
ℓ

∑
m d

j
2;ℓ,m Ψ2(2jx− ℓ, 2jy −m);

g3,j(x, y) :=
∑
ℓ

∑
m d

j
3;ℓ,m Ψ3(2jx− ℓ, 2jy −m),

(6.5.8)

namely:

fj+1(x, y) = fj(x, y) +
3∑

n=1

gn,j(x, y), (6.5.9)

for j = J −L+ 1, · · · , J , for any desired number of L levels of decomposition
of any given function f(x, y) := fJ+1(x, y), where L ≥ 1.

Definition 6.5.1 For f(x, y) = fJ+1(x, y), the decomposition (6.5.9) maps
the “image” f(x, y) to the hierarchy of sub-images

{fJ+1−L(x, y), g1,j(x, y), g2,j(x, y), g3,j(x, y) : j = J + 1− L, · · · , J}
(6.5.10)

for any desirable number L ≥ 1 of the hierarchy. In addition, the corresponding
set of coefficients

{
{cJ+1−L
ℓ,m }, {djn;ℓ,m} : n = 1, 2, 3; j = J + 1− L, · · · , J

}
(6.5.11)

is called the representation of the given image f(x, y) in the wavelet domain.

Remark 6.5.1 In (6.5.10), if L = 1 is selected, then f(x, y) = fJ+1(x, y) is
decomposed as a direct-sum of four sub-images fJ (x, y), g1,J(x, y), g2,J(x, y),
g3,J(x, y); to be called the LL, LH,HL,HH bands, respectively, of f(x, y).
Here, “L” stands for “low-frequency” and “H” stands for “high-frequency.”
Furthermore, again for one level decomposition, the wavelet-domain represen-
tation of f(x, y) consists of four sequences: {cJℓ,m}, {dJ1;ℓ,m}, {dJ2;ℓ,m}, {dJ3;ℓ,m},
which reveal the LL, LH,HL,HH contents, respectively, of f(x, y). In appli-
cations, the number L of decomposed levels is chosen to be larger than 1, so
that fJ+1−L(x, y) is used as the “thumb-nail” of the given image, and the
family of sequences {dJn;ℓ,m}, n = 1, 2, 3 and j = J + 1 − L, · · · , J , is used to
reveal the nulti-level wavelet details of the image. Observe that the size of the
thumb-nail is 4−L of that of the original image f(x, y).

To understand the reason for the terminology of thumb-nails and wavelet
details, let us first introduce the “smoothing transform”, defined by

(
S

eφf
)

(b, a) :=
1

a

∫ ∞

−∞
f(x) φ̃

(x− b
a

)
dx, (6.5.12)
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for all functions f ∈ L2(R), where φ̃ is a refinable (or scaling) function, such

as the φ̃ in (6.3.50) and Theorem 6.3.3. of Subunit 5.3.3, b ∈ R, and a > 0.
Of course, the formulation of the smoothing transform S

eφ
is the same as the

wavelet transform W
eψ , defined by

(
W

eψf
)

(b, a) :=
1

a

∫ ∞

−∞
f(x) ψ̃

(x− b
a

)
dx,

where ψ̃ is an analysis wavelet, such as the wavelet associated with φ̃ as in
(6.5.4). However, S

eφ andW
eψ serve two different, yet complementary, purposes.

For example, one might think of W
eψ as a “high-pass filter” and S

eφ as a “low-
pass filter”. Indeed, in the frequency domain, it follows from Plancherel’s
identity that

(
W

eψf
)

(b, a) = 〈f, ψ̃b,a〉 = 1
2π 〈f̂ ,

̂̃
ψb,a〉

= 1
2π

∫ ∞

−∞
f̂(ω)

̂̃
ψ(aω) eibω dω,

and (
S

eφf
)

(b, a) =
1

2π

∫ ∞

−∞
f̂(ω)

̂̃
φ(aω) eibω dω,

where
̂̃
ψ(aω) and

̂̃
φ(aω) are window functions of the above two inverse short-

time Fourier transforms (STFT). Since

̂̃
ψ(0) =

∫ ∞

−∞
ψ̃(x) dx = 0

and
̂̃
φ(0) =

∫ ∞

−∞
φ̃(x) dx = 1,

the inverse STFT, with window function
̂̃
ψ(aω), “ignores” the low-frequency

content of f , particularly for large scale a > 0; while the inverse STFT, with

window function
̂̃
φ(aω), “retains” the low-frequency content of f , particularly

for large scale a > 0.
When the two transforms S

eφ and W
eψ are applied to functions f(x, y) of

two variables x and y, we consider one variable at a time, by introducing the
superscripts “1” and “2”, when they are applied to the first variable x and
second variable y, respectively; namely, for fixed values of y,

(
S1

eφ
f
)

(b, y; a) := 1
a

∫ ∞

−∞
f(x, y) φ̃

(x− b
a

)
dx;

(
W 1

eψ
f
)

(b, y; a) := 1
a

∫ ∞

−∞
f(x, y) ψ̃

(x− b
a

)
dx, (6.5.13)
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while for fixed values of x,

(
S2

eφ
f
)

(x, b; a) :=
1

a

∫ ∞

−∞
f(x, y) φ̃

(y − b
a

)
dy;

(
W 2

eψ
f
)

(x, b; a) :=
1

a

∫ ∞

−∞
f(x, y) ψ̃

(y − b
a

)
dy. (6.5.14)

Next, analogous to the (tensor-product) synthesis wavelets Ψ1(x, y),Ψ2(x, y)
and Ψ3(x, y) introduced in (6.5.6), we also need the (tensor product) analysis
wavelets:

Ψ̃1(x, y) := φ̃(x) ψ̃(y);

Ψ̃2(x, y) := ψ̃(x) φ̃(y);

Ψ̃3(x, y) := ψ̃(x) ψ̃(y).

(6.5.15)

We now apply (6.5.13)–(6.5.14) to introduce the two-dimensional wavelet

transforms W
eΨ1 ,W

eΨ2 , and W
eΨ3 , with analysis wavelets Ψ̃1, Ψ̃2 and Ψ̃3, re-

spectively, as follows: For f(x, y) ∈ L2(R2),

(
W

eΨ1f
)

(b1, b2; a) :=
(
W 2

eψ
S1

eφ
f
)

(b1, b2; a)

= 1
a

∫ ∞

−∞

(1

a

∫ ∞

−∞
f(x, y) φ̃

(x− b1
a

)
dx

)
ψ̃

(y − b2
a

)
dy;

(
W

eΨ2f
)

(b1, b2; a) :=
(
S2

eψ
W 1

eψ
f
)

(b1, b2; a)

= 1
a

∫ ∞

−∞

(1

a

∫ ∞

−∞
f(x, y) ψ̃

(x− b1
a

)
dx

)
φ̃

(y − b2
a

)
dy;

(
W

eΨ3f
)

(b1, b2; a) :=
(
W 2

eψ
W 1

eψ
f
)

(b1, b2; a)

= 1
a

∫ ∞

−∞

(1

a

∫ ∞

−∞
f(x, y) ψ̃

(x− b1
a

)
dx

)
ψ̃

(y − b2
a

)
dy,

(6.5.16)
where b1, b2 ∈ R and a > 0.

Theorem 6.5.1 Let (φ, φ̃) be a dual pair of refinable (or scaling ) L2(R) func-
tions with 2-dual two-scaling Laurent polynomial symbols (P (z), A(z)) and that
together with Laurent polynomial symbols B(z), Q(z), constitute the matrix
extension (6.5.3). Then by adopting the notations in (6.5.4)–(6.5.8), the coef-
ficients dj1;ℓ,m, d

j
2;ℓ,m, d

j
3;ℓ,m, in (6.5.8) reveal the wavelet details of fj+1(x, y),
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for each j = J + 1− L, · · · , J , as follows:

dj1;ℓ,m =
(
W

eΨ1fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
;

dj2;ℓ,m =
(
W

eΨ2fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
;

dj3;ℓ,m =
(
W

eΨ3fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
.

(6.5.17)

Before attempting to prove the above theorem, we remark that the duality
of φ and φ̃, defined by

∫ ∞

−∞
φ(x− j) φ̃(x− k) = δj−k

is equivalent to

∞∑

k=−∞
φ̂(ω + 2πk)

̂̃
φ(ω + 2πk) = 1. (6.5.18)

Since the derivation of (6.5.18) is the same as that of (6.3.12) where φ̃ = φ, it
is safe not to provide the proof here.

To prove Theorem 6.5.1, we first apply (6.5.18) to derive the following
duality and orthogonality properties, where the inner product notation for
L2(R2) is used:

〈Φp(2jx− k, 2jy − ℓ), Ψ̃q(2jx−m, 2jy − n)〉 = 0 (6.5.19)

and

〈Ψp(2jx− k, 2jy − ℓ), Ψ̃q(2jx−m, 2jy − n)〉 = 2−2jδk−mδℓ−nδp−q (6.5.20)

for all p, q = 1, 2, 3 and all k, ℓ,m, n ∈ Z. To prove (6.5.19), we apply
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Plancherel’s identity to write
∫ ∞

−∞
φ(x− k) ψ̃(x−m) dx =

= 1
2π

∫ ∞

−∞
φ̂(ω) ̂̃ψ(ω) e−i(k−m)ω dω

= 1
2π

∫ ∞

−∞
φ̂
(ω

2

) ̂̃
φ
(ω

2

)
P

(
e−i

ω
2

)
B

(
e−i

ω
2

)
e−i(k−m)ω dω

= 1
2π

∞∑

ℓ=−∞

∫ 2π(ℓ+1)

2πℓ

φ̂
(ω

2

) ̂̃
φ
(ω

2

)
P

(
e−i

ω
2

)
B

(
e−i

ω
2

)
e−i(k−m)ω dω

= 1
2π

∫ 2π

0

( ∞∑

ℓ=−∞
φ̂
(ω

2
+ πℓ

) ̂̃
φ
(ω

2
+ πℓ

))
×

×P
(
(−1)ℓz

)
B

(
(−1)ℓz

))
e−i(k−m)ω dω

= 1
2π

∫ 2π

0

( ∞∑

n=−∞
φ̂
(ω

2
+ 2πn

) ̂̃
φ
(ω

2
+ 2πn

))
P (z) B(z) e−i(k−m)ω dω+

+ 1
2π

∫ 2π)

0

( ∞∑

n=−∞
φ̂
(ω + 2π

2
+ 2πn

) ̂̃
φ
(ω + 2π

2
+ 2πn

))
×

×P (−z) B(−z) e−i(k−m)ω dω

= 1
2π

∫ 2π)

0

(
P (z) B(z) + P (−z) B(−z)

)
e−i(k−m)ω dω = 0,

(6.5.21)

where z = e−iω/2 and the identities (6.5.18) and P (z)B(z) + P (−z)B(−z)
= 0 for |z| = 1 in (6.5.3) are used. Hence, we have, for q = 1 in (6.5.19),

〈Φ(2jx− k, 2jx− ℓ), Ψ̃1(2jx−m, 2jy − n)〉 =

=
( ∫ ∞

−∞
φ(2jx− k) φ̃(2jx−m) dx

)
×

( ∫ ∞

−∞
φ(2jy − ℓ) ψ̃(2jy − n) dy

)
= 0,

by applying (6.5.21) to the second multiplicative term. Of course, the proof
of (6.5.19) for q = 2, 3 is identically the same.

To prove (6.5.20), we first observe that the following L2(R) inner products
can be derived by applying (6.5.18) and the identities

P (z) B(z) + P (−z) B(−z) = 0,
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Q(z) A(z) + Q(−z) A(−z) = 0,

and

Q(z) B(z) +Q(−z) B(−z) = 1

for all |z| = 1 in (6.5.3), as in the derivation of (6.5.21):

∫ ∞

−∞
φ(2jx− k) ψ̃(2jx− n) dx = 0;

∫ ∞

−∞
ψ(2jx− ℓ) φ̃(2jx−m) dx = 0;

∫ ∞

−∞
ψ(2jx− k) ψ̃(2jx− n) dx = 2−jδℓ−n,

(6.5.22)

for all k, ℓ,m, n ∈ Z.

Hence, for p = q = 1 in (6.5.20), we have

〈Φ1(2jx− k, 2jy − ℓ), Ψ̃1(2jx−m, 2jy − n)〉

=
(∫ ∞

−∞
φ(2jx− k) φ̃(2jx−m) dx

)
×

( ∫ ∞

−∞
ψ(2jy − ℓ) ψ̃(2jy − n) dy

)

=
(

2−jδk−m
) (

2−jδℓ−n
)

= 2−2jδk−mδℓ−n,

by applying the duality property of (φ, φ̃) and the third property in (6.5.22).
The same derivation also yields (6.5.20) for p = q = 2, 3. By applying the first
properties in (6.5.22), the property (6.5.20) for p 6= q also follows.

We are now ready to prove that the coefficients dj1;ℓ,m, d
j
2;ℓ,m, d

j
3;ℓ,m in

(6.5.8) for the decomposition (6.5.9), namely:

fj+1(x, y) = fj(x, y) +

3∑

q=1

(∑

k

∑

n

djq;k,nΨq(2jx− k, 2jy − n)
)
,

reveal the wavelet details, as described by the wavelet transforms in (6.5.17).
To derive (6.5.17), we apply (6.5.19)–(6.5.20) to obtain

〈fj+1 (x, y), Ψ̃p
(
2jx− ℓ, 2jy −m

)
〉 = 0 +

3∑

q=1

(∑

k

∑

n

djq;k,n

)
2−2j×

×δk−ℓδn−mδp−q

= 2−2jdjp;m,n.
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Hence, for p = 1, we have, from the first formula in (6.5.16)

dj1;ℓ,m = 2j
∫ ∞

−∞

(
2j

∫ ∞

−∞
fj+1(x, y) φ̃(2jx− ℓ) dx

)
ψ̃(2jy −m) dy

=
(
W

eΨ1 fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
.

Similarly, for p = 2, we have, from the second formula in (6.5.16),

dj2;ℓ,m = 2j
∫ ∞

−∞

(
2j

∫ ∞

−∞
fj+1(x, y) φ̃(2jy −m) dy

)
ψ̃(2jx− ℓ) dx

=
(
W

eΨ2 fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
.

Finally, for p = 3, we have, from the third formula in (6.5.16),

dj3;ℓ,m = 2j
∫ ∞

−∞

(
2j

∫ ∞

−∞
fj+1(x, y) ψ̃(2jx− ℓ) dx

)
ψ̃(2jy −m) dy

=
(
W

eΨ3f
) (

ℓ
2j ,

m
2j ; 1

2j

)
.

This completes the derivation of (6.5.17) and the proof of Theorem 6.5.1.
�

6.5.2 Progressive image transmission

As an application of Theorem 6.5.1, we observe that if f(x, y) =:
fJ+1(x, y) ∈ VJ+1 is considered as an image defined on [0, b] × [0, c], then
the decomposition

fJ+1(x, y) = fJ+1−L(x, y) +

3∑

p=1

J∑

j=J+1−L

∑

ℓ,m

djp;ℓ,m Ψp(2jx− ℓ, 2jy −m),

(6.5.23)
for any desired number of levels L ≥ 1, provides both the image thumb-nail

fJ+1−L(x, y) =
∑

ℓ,m

cJ+1−L
ℓ,m Φ

(
2J+1−Lx− ℓ, 2J+1−Ly −m

)
, (6.5.24)

with image size = 4−L of the size of the given image, as well as the wavelet
image details

dj1;ℓ,m =
(
W

eΨ1 fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)

dj2;ℓ,m =
(
W

eΨ2 fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)

dj3;ℓ,m =
(
W

eΨ3 fj+1

) (
ℓ
2j ,

m
2j ; 1

2j

)
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for j = J + 1 − L, · · · , J. Here, the wavelet transform W
eΨ1 fj+1 is applied

only to the y-variable, while the smoothing operation is applied to the x-
variable. Hence, {dj1;ℓ,m} is called the LH band of fj+1(x, y). Similarly, since

the wavelet transform W
eΨ2 fj+1 is applied only to the x-variable, {dj2;ℓ,m}

is called the HL band of fj+1(x, y). On the other hand, since the wavelet
transform W

eΨ3fj+1 is applied to both x and y variables of fj+1(x, y) to yield

dj3;ℓ,m, the sequence {dj3;ℓ,m} is called the HH band of fj+1(x, y).

To transmit or acquire an image f(x, y) = fJ+1 (x.y), the thumb-
nail fJ+1−L (x, y) is most essential, followed by the LH and HL bands,
g1,J+1−L(x, y) and g2,J+1−L(x, y), and then the HH band g3,J+1−L(x, y).
These four sub-images constitute a larger image thumb-nail fJ+2−L(x, y)
of size = 4−L+1 of that of the given image. To acquire a higher-
resolution image, the LH and HL bands, followed by the HH band,
g1,J+2−L(x, y), g2,J+2−L(x, y) and g3,J+2−L(x, y), in this order, may be trans-
mitted and combined with the previous thumb-nail fJ+2−L(x, y) to yield yet
a larger thumb-nail fJ+3−L(x, y), and so forth.

For image compression (before transmission or storage), the wavelet image
details djp;ℓ,m for p = 1, 2, 3 and all j,m can be quantized, and even thresholded
(i.e. replaced by zero) for small values. This is analogous to DCT quantiza-
tion as studied in Subunit 2.5, though different quantization tables should be
created. As to the thumb-nail image fJ+1−L(x, y) on the Lth level, since it is
an image, it can be compressed by any other schemes, such as DCT or 8× 8
tiled DCT as studied in Subunit 2.5, by treating the coefficients in {cJ+1−L

ℓ,m }
of (6.5.24) as a digital image.

Entropy coding, studied in Subunits 2.3.2–2.3.4, such as the Huffman en-
coding scheme, discussed in Subunit 2.5, can be applied to the quantized
values of the wavelet image details.

In the following, we extend the wavelet decomposition algorithm in (6.3.47)
and wavelet reconstruction algorithm in (6.3.49) to two-dimensions, for ef-
ficient computation of the wavelet image details {djp;ℓ,m}, p = 1, 2, 3; j =

J + 1 − L, . . . , L; ℓ,m ∈ Z, as well as the thumb-nail {cJ+1−L
ℓ,m }; and effi-

cient reconstruction from the de-coded quantized values of {djp;ℓ,m} and de-

compressed digital thumb-nail image {cJ+1−l
d,m }.

Two-dimensional wavelet decomposition
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For j = J, J − 1, · · · , J + 1− L, compute

cjℓ,m = 1
4

∑
k2
āk2−2m

(∑
k1
āk1−2ℓ c

j+1
k1,k2

)
;

dj1;ℓ,m = 1
4

∑
k2
b̄k2−2m

(∑
k1
āk1−2ℓ c

j+1
k1,k2

)
;

dj2;ℓ,m = 1
4

∑
k2
āk2−2m

(∑
k1
b̄k1−2ℓ c

j+1
k1,k2

)
;

dj3;ℓ,m = 1
4

∑
k2
b̄k2−2m

(∑
k1
b̄k1−2ℓ c

j+1
k1,k2

)
,

as follows:

cJ+1
ℓ,m −→ cJℓ,m −→ −→ · · · −→ cj+2−L

ℓ,m −→ cJ+1−L
ℓ,my

y
y

y
dJn;ℓ,m dJ−1

n;ℓ,m dJ+1−L
n;ℓ,m

(n = 1, 2, 3) (n = 1, 2, 3) (n = 1, 2, 3)

Two-dimensional wavelet reconstruction

For j = J + 1− L, · · · , J , compute

cj+1
ℓ,m =

∑
k2
pm−2k2

(∑
k1
pℓ−2k1

cjk1,k2

)
+

+
∑

k2
qm−2k2

(∑
k1
pℓ−2k1

dj1;k1,k2

)
+

+
∑

k2
pm−2k2

( ∑
k1
qℓ−2k1

dj2;k1,k2

)
+

+
∑

k2
qm−2k2

(∑
k1
qℓ−2k1

dj3;k1,k2

)

as follows:

cJ+1−L
ℓ,m −→ cJ+2−L

ℓ,m −→ · · · −→ cJ+1
ℓ,m

↑ ↑ ↑
dJ+1−L
n;ℓ,m dJn;ℓ,m

(n = 1, 2, 3) (n = 1, 2, 3)

6.5.3 Lossless JPEG-2000 compression

As already studied in Subunits 2.3–2.5, there are two types of image compres-
sion schemes, namely: (1) lossless (or reversible) compression, and (2) lossy
(or non-reversible) compression. For lossy compression, the DCT transform
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is the most popular data transformation, since it facilitates isolating high-
frequency content for effective application of the quantization scheme. On the
other hand, DCT does not help in lossless compression at all, since multiply-
ing by DCT coefficients which are not dyadic (i.e. not of the form k/2n for
some integers k and n > 0) increase bit-depths, often significantly. For ex-
ample, a multiple of 1

3 changes an 8-bit pixel value, which is not divisible by
3, to infinite bit-depth (without the benefit of round-off truncation). On the
other hand, a multiple of 1

2n , for any positive integer n, only requires shifting
the bits by n places for the binary representation. Therefore, for JPEG image
compression studied in Subunit 2.5, while 8×8 DCT is used to transform 8×8
image blocks to the frequency domain (to facilitate effective quantization) for
lossy compression, the transform in the lossless image compression mode of
the JPEG standard is only DPCM, by coding differences of pixel values.

The birth of wavelets for image compression some two decades ago gave
us hope to unify lossy and lossless compression by using the same transform,
namely convolution with the same wavelet filters, with dyadic filter taps, fol-
lowed by downsampling. In Subunit 6.3.3 we gave such an example in Example
6.3.7, where

P (z) =
(1 + z

2

)2

, A(z) =
(1 + z

2

)2 (−z + 4− z−1

2

)
,

B(z) = −z
(1− z−1

2

)2

, Q(z) = −z
(1− z−1

2

)2 (z + 4 + z−1

2

)
.

These are Laurent polynomials with dyadic coefficients and satisfy the matrix
extension property:

[
P (z) P (−z)
Q(z) Q(−z)

] [
A(z−1) B(z−1)
A(−z−1) B(−z−1)

]
=

[
1 0
0 1

]
, (6.5.25)

for |z| = 1.
Observe that in the above example, while (P (z), A(z)) are 2-dual, in that

P (z)A(z−1) + P (−z)A(−z−1) = 1, (6.5.26)

the other Laurent polynomial symbols satisfy

B(z) = −zP (−z−1);
Q(z) = −zA(−z−1).

(6.5.27)

Indeed, that B(z) and Q(z) can be constructed from the 2-dual pair
(P (z), A(z)) by applying (6.5.27) is always valid, as follows.

Theorem 6.5.2 Let (P (z), A(z)) be a 2-dual Laurent polynomial pair with
real coefficients as defined by (6.5.26). Then the polynomials B(z) and Q(z)
as in (6.5.27) satisfy the matrix identity (6.5.25).
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Proof Multiplication of the first row of MP,Q(z) =

[
P (z) P (−z)
Q(z) Q(−z)

]
to the

first column of MA,B(z−1) =

[
A(z−1) B(z−1)
A(−z−1) B(−z−1)

]
yields the left-hand side

of (6.5.26), which is equal to 1 for |z| = 1 by the 2-duality assumption. Hence,
by (6.5.27), the other row-column multiplications of MP,Q(z) to MA,B(z−1)
are:

P (z)B(z−1) + P (−z)B(−z−1)
= P (z)

(
− z−1P (−z)

)
+ P (−z)

(
z−1P (z)

)
= 0;

Q(z)A(z−1) +Q(−z)A(−z−1)
=

(
− zA(−z−1)

)
A(−z−1) +

(
zA(z−1)

)
A(−z−1) = 0;

Q(z)B(z−1) + Q(−z)B(−z−1)
=

(
− zA(−z−1)

) (
− z−1P (−z)

)
+

(
zA(z−1)

)
z−1 P (z−1)

)

= A(−z−1)P (−z) +A(z−1)P (z) = 1,

where the last equality is obtained by applying (6.5.26). �

Remark 6.5.2 From the first formula in (6.5.27), we may write

P (z) = zB(−z−1), |z| = 1. (6.5.28)

Hence, if A(z) and B(z) are given, so that the pair (P (z), A(z)), with P (z)
defined by (6.5.28), satisfies the 2-duality condition (6.5.26), then by defining
Q(z) as in (6.5.27), we have the wavelet decomposition sequence pair

({
1

2
ak

}
,

{
1

2
bk

})
(6.5.29)

and wavelet reconstruction sequence pair

(
{pk}, {qk}

)
(6.5.30)

for image decomposition and reconstruction respectively, by applying the
“Two-dimensional wavelet decomposition” scheme, and “Two-dimensional
wavelet reconstruction” scheme, respectively, discussed in Subunit 6.5.2. The
formulation of (6.5.29)–(6.5.30) is a result of

A(z) = 1
2

∑
k ak z

k, B(z) = 1
2

∑
k bk z

k;

P (z) = 1
2

∑
k pk z

k, Q(z) = 1
2

∑
k qk z

k.
(6.5.31)

In the following example, we list the sequence pairs ({ak}, {bk}), and call
them (Low, High) pairs. Then by applying (6.5.28)–(6.5.31), the reconstruc-
tion sequence pair ({pk}, {qk}) can be obtained easily.
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Example 6.5.1 (Low, High) pairs ({ak}, {bk}) for unified lossless and lossy
image compression:

(1) 2/2 decomposition filters (Haar)

{ak} = {1, 1}
{bk} = {−1, 1}

(2) 2/10 decomposition filters

{ak} = {1, 1}

{bk} =
1

27
{−3,−3, 22, 22,−128, 128,−22,−22, 3, 3}

(3) 2/6 decomposition filters

{ak} = {1, 1}

{bk} =
1

23
{1, 1,−8, 8,−1,−1}

(4) 5/11 decomposition filters

{ak} =
1

4
{−1, 2, 6, 2,−1}

{bk} =
1

27
{−1, 2, 7, 0,−70, 124,−70, 0, 7, 2,−1}

(5) 5/3 decomposition filters

{ak} =
1

4
{−1, 2, 6, 2,−1}

{bk} =
1

2
{−1, 2,−1}

(6) 9/3 decomposition filters

{ak} =
1

26
{3,−6,−16, 38, 90, 38,−16,−63}

{bk} =
1

2
{−1, 2,−1}

(7) 9/7 decomposition filters

{ak} =
1

25
{1, 0,−8, 16, 46, 16,−8, 0, 1}

{bk} =
1

24
{1, 0,−9, 16,−9, 0, 1}

Remark 6.5.3 The 5/3 decomposition filter pair in (5), or equivalently the
symbols A(z), B(z) in Example 6.3.3 of Subunit 6.3.2, was selected by the
JPEG-2000 image compression standard for lossless image compression.
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frame, 163

tight, 163
frame bounds, 163
Frobenius norm, 23
Frobenius norm of a matrix, 23
Fubini’s theorem, 222
full singular value decomposition, 20
full SVD, 23

Gabor transform, 150, 152
Gamma rays, 42
Gaussian function, 144
Gaussian Kernel, 143
Gaussian model, 209
general binomial probability distribu-

tion, 69

generalized inverse, 30
generating function, 136
GIF image, 87
global warming, 178
gradient operator, 191, 194
Gram matrix, 14, 27
Gram-Schmidt orthonormalization pro-

cedure, 202
Gram-Schmidt process, 21

H.264, 94
Haar wavelet, 237
Hardamard transform, 87
hat function, 226
Hermitian, 12
Hertz, 41
hierarchy of sub-images, 262
histogram, 70, 73
homeland security, 49
Huffman coding, 80
Huffman table, 92
Hyperion sensor, 47
Hyperion system, 47
hyperspectral imaging, 45

I, P, and B video frames, 93
IDCT, 90
ideal bandpass filters, 223
IEC, 93
IFT, 146, 150
image coding, 259
image enhancement, 209
image features, 43
image thumb-nail, 268
infinite sequences, 4
information, 71
information coding, 66
information source, 71, 73
infrared, 42
initial values, 186
initial-valued Neumann PDE, 191
inner product, 2
inner-product space, 2
instantaneous, 78
instantaneous code-table, 78
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instantaneous code-tables, 83
inter-macroblocks, 94
intra-macroblocks, 94
inverse DCT, 90
inverse Fourier transform, 146, 150
inverse transformation, 87
inverse wavelet transform, 221
ISO, 93
isotropic heat diffusion, 206
iTune stores, 94

Jacob Bernoulli, 135
John Tukey, 71
Joint Photographic Experts Group,

88
Joseph Fourier, 187
JPEG, 88, 90, 93
JPEG compressed image, 72
JPEG compression, 212
JPEG quantization tables, 212
JPEG standard, 92
JPEG-2000, 258
JPEG-2000 image compression stan-

dard, 273

Kraft inequality, 80
Kraft’s inequality, 80
Kraft-McMillan’s inequality, 80
Kronecker symbol, 244
Ky Fan norm, 25

lagged anisotropic diffusion, 195
lagged anisotropic transform, 202
Lagrange multipliers, 82
Lanczos matrix factorization, 58
Landsat satellites, 46
Laplace operator, 180, 181, 200
Laplacian operator, 191
Laurent polynomial, 240, 244, 245
Laurent series, 230
least-squares estimation, 35
Lebesgue’s dominated convergence

theorem, 177
LFT, 151
LIFT, 151, 152
linear transformation, 7

Linear Transformations, 6
linearly independent integer shifts,

246
local basis functions, 167
local coordinates, 201
localized Fourier transform, 151
localized inverse Fourier transform,

151, 152
lossless and lossy compression, 79
lossless compression, 86
lossless JPEG-2000 compression, 270
lowpass filters, 216
luminance - chrominance formats, 93
LZW compression, 86

Malvar wavelets, 169
mammography, 43
matrix

covariance, 27
matrix adjoint, 10, 12
matrix extension, 238, 240, 245, 254
mean-square approximation, 110
measurement of best approximation,

39
medical applications, 43
medical imaging, 43
method of separation of variables, 187
microwave, 42
mineralogy, 49
minimum-norm least-squares estima-

tion, 30
motion search and compensation, 93
motion vector, 94
Moving Pictures Expert Group, 93
MPEG, 93
MPEG-1, 93
MPEG-2, 94
MPEG-4 Part 4, 94
MRA, 222
MRA wavelet, 247
multiresolution analysis, 222
multispectral image, 44

nanometers, 41
narrow-band, 37
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NASA, 47
Neumann condition, 188
noiseless coding, 83
Noiseless Coding Theorem, 84, 87
non-deterministic function, 68
norm, 3
norm of a linear transformation, 7
norm-1 matrices, 37
normalized eigenvectors, 19
normalized Gaussian, 157
normalized orthogonality, 233
NTSC standard, 92

orthogonal projection, 107, 109
orthogonal sum, 247
orthogonal wavelet, 229
orthonormal, 231
orthonormal bases, 15
orthonormal basis, 9, 165, 169

PAL standard, 92
Parallelogram Law, 109, 110
Parseval’s formula, 219, 220
Parseval’s identity, 129, 130, 164, 203
partial sums, 98
PCA, 51
PCA dimensionality reduction, 51
PDE, 172
permutation matrix, 60
Perona-Malik model, 210
phase modulation, 166
Plancherel’s formula, 147, 148, 153,

158
Plancherel’s identity, 266
Planck’s constant, 41
positive approximate identity, 99, 116
positive semi-definite, 14
PostScript, 87
precise error, 39
prefix code, 77
prefix-code, 78
principal component analysis (PCA),

28
principal components, 26, 50
Principle of superposition, 184

probability distributions, 66
progressive image transmission, 268
pseudo-inverse, 30
pseudo-inverses, 29
Pythagorean Theorem, 110, 119
Pythagorean theorem, 107

QMF, 236
QMF pair, 236
quadrature mirror filter, 230, 236
quantization, 87
quantizer, 88, 205
quantizers, 90, 91

radio frequencies, 41
radiography, 43
random variable, 68, 70
rank, 14
rank-1 decomposition, 38
Rayleigh quotient, 198
reduced singular value decomposition,

17
refinable function, 224
refinement equation, 224
refinement sequence, 224
remote sensing, 46
representer of the linear functional, 9
reproducing kernel, 222
Riesz Lemma, 256
right-hand and left-hand limits, 122
RLE (run-length encoding), 72
rotationally invariant, 200
round-off function, 88
run-length encoding (RLE), 86

Sampling Theorem, 143, 224
scalar field, 2
Schatten norm, 25
SECAM, 93
self-adjoint, 12
self-dual, 9
semi-definite, 14
semiconductor device, 44
separable function, 182
separation of variables, 183
Shannon wavelet, 238
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short-time Fourier transform, 151
simple knots, 36

simply connected domain, 195
simultaneous time and frequency lo-

calization, 153
singular values, 14
singular-vector pair, 15

smoothing transform, 262
source alphabet, 76
source coding, 76
sparse, 36

sparse matrix decomposition, 25
Specim LWIR-C imager, 49
spectral decomposition, 14

spectro-colorimeters, 37
St. Petersburg Academy of Science,

186
STFT, 151
sum rule, 231
surveillance, 49

Taylor representation, 243
tensor product, 264
terahertz frequency band, 44

terahertz radiation, 44
ternary codes, 78
thermal imaging, 43
thermographic cameras, 44

thumb-nail, 254, 262
TIFF, 87
tight frame, 165

time-domain, 142
time-frequency localization window,

158
time-scale analysis, 213
trace, 24

trace norm, 25
trichromatic, 37
trigonometric series, 102
Ttwo-dimensional wavelet decomposi-

tion, 269
TV model, 209, 211

two-dimensional wavelet decomposi-
tion, 272

two-dimensional wavelet reconstruc-
tion, 270, 272

two-scale relation, 224
two-scale sequence, 224
two-scale symbol, 225, 230, 238

ultraspectral imaging, 45
ultraviolet, 42
uncertainty principle, 158
uniform error, 117
uniform probability distribution, 69
unit normal vector, 191
unit outer normal, 197
unit tangent-normal pair, 199
unitary matrix, 14
upsampling, 249
USGS, 47
UV imaging, 43

variance, 70
variational method, 82
vibrating string, 186
video streaming, 71
visible light, 37, 42

wavelet decomposition, 248
wavelet decomposition algorithm, 254
wavelet details, 262, 264
wavelet domain, 262
wavelet reconstruction, 249
wavelet reconstruction algorithm, 254
wavelet transform, 214
wide spectrum, 41
Wilhelm Roentgen, 43
window center, 155
window width, 155

X-ray imaging, 43
X-rays, 42

YouTube, 94

Zig-zag ordering, 91
ZRL, zero run length, 92


