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To those who study the progress of exact science, the common spinning-top is a 

symbol of the labours and the perplexities of men who had successfully threaded the 

mazes of the planetary motions. The mathematicians of the last age, searching through 

nature for problems worthy of their analysis, found in this toy of their youth, ample 

occupation for their highest mathematical powers.  

No illustration of astronomical precession can be devised more perfect than that 

presented by a properly balanced top, but yet the motion of rotation has intricacies far 

exceeding those of the theory of precession.  

Accordingly, we find Euler and D'Alembert devoting their talent and their patience to 

the establishment of the laws of the rotation of solid bodies. Lagrange has incorporated 

his own analysis of the problem with his general treatment of mechanics, and since his 

time M. Poinsôt has brought the subject under the power of a more searching analysis 

than that of the calculus, in which ideas take the place of symbols, and intelligible 

propositions supersede equations.  

In the practical department of the subject, we must notice the rotatory machine of 

Bohnenberger, and the nautical top of Troughton. In the first of these instruments we 

have the model of the Gyroscope, by which Foucault has been able to render visible 

the effects of the earth's rotation. The beautiful experiments by which Mr J. Elliot has 

made the ideas of precession so familiar to us are performed with a top, similar in 

some respects to Troughton's, though not borrowed from his.  



The top which I have the honour to spin before the Society, differs from that of Mr 

Elliot in having more adjustments, and in being designed to exhibit far more 

complicated phenomena.  

The arrangement of these adjustments, so as to produce the desired effects, depends on 

the mathematical theory of rotation. The method of exhibiting the motion of the axis of 

rotation, by means of a coloured disc, is essential to the success of these adjustments. 

This optical contrivance for rendering visible the nature of the rapid motion of the top, 

and the practical methods of applying the theory of rotation to such an instrument as 

the one before us, are the grounds on which I bring my instrument and experiments 

before the Society as my own.  

I propose, therefore, in the first place, to give a brief outline of such parts of the theory 

of rotation as are necessary for the explanation of the phenomena of the top.  

I shall then describe the instrument with its adjustments, and the effect of each, the 

mode of observing of the coloured disc when the top is in motion, and the use of the 

top in illustrating the mathematical theory, with the method of making the different 

experiments.  

Lastly, I shall attempt to explain the nature of a possible variation in the earth's axis 

due to its figure. This variation, if it exists, must cause a periodic inequality in the 

latitude of every place on the earth's surface, going through its period in about eleven 

months. The amount of variation must be very small, but its character gives it 

importance, and the necessary observations are already made, and only require 

reduction.  



On the Theory of Rotation.  

The theory of the rotation of a rigid system is strictly deduced from the elementary 

laws of motion, but the complexity of the motion of the particles of a body freely 

rotating renders the subject so intricate, that it has never been thoroughly understood 

by any but the most expert mathematicians. Many who have mastered the lunar theory 

have co ne to erroneous conclusions on this subject; and even Newton has chosen to 

deduce the disturbance of the earth's axis from his theory of the motion of the nodes of 

a free orbit, rather than attack the problem of the rotation of a solid body.  

The method by which M. Poinsôt has rendered the theory more manageable, is by the 

liberal introduction of ``appropriate ideas,'' chiefly of a geometrical character, most of 

which had been rendered familiar to mathematicians by the writings of Monge, but 

which then first became illustrations of this branch of dynamics. If any further progress 

is to be made in simplifying and arranging the theory, it must be by the method which 

Poinsôt has repeatedly pointed out as the only one which can lead to a true knowledge 

of the subject,--that of proceeding from one distinct idea to another instead of trusting 

to symbols and equations.  

An important contribution to our stock of appropriate ideas and methods has lately 

been made by Mr R. B. Hayward, in a paper, ``On a Direct Method of estimating 

Velocities, Accelerations, and all similar quantities, with respect to axes, moveable in 

any manner in Space.'' (Trans. Cambridge Phil. Soc Vol. x. Part I.)  



In this communication I intend to confine myself to that part of the subject which the 

top is intended io illustrate, namely, the alteration of the position of the axis in a body 

rotating freely about its centre of gravity. I shall, therefore, deduce the theory as briefly 

as possible, from two considerations only,--the permanence of the original angular 

momentum in direction and magnitude, and the permanence of the original vis viva.  

The mathematical difficulties of the theory of rotation arise chiefly from the want of 

geometrical illustrations and sensible images, by which we might fix the results of 

analysis in our minds.  

It is easy to understand the motion of a body revolving about a fixed axle. Every point 

in the body describes a circle about the axis, and returns to its original position after 

each complete revolution. But if the axle itself be in motion, the paths of the different 

points of the body will no longer be circular or re-entrant. Even the velocity of rotation 

about the axis requires a careful definition, and the proposition that, in all motion about 

a fixed point, there is always one line of particles forming an instantaneous axis, is 

usually given in the form of a very repulsive mass of calculation. Most of these 

difficulties may be got rid of by devoting a little attention to the mechanics and 

geometry of the problem before entering on the discussion of the equations.  

Mr Hayward, in his paper already referred to, has made great use of the mechanical 

conception of Angular Momentum.  

Definition 1   The Angular Momentum of a particle about an axis is measured by the 

product of the mass of the particle, its velocity resolved in the normal plane, and the 

perpendicular from the axis on the direction of motion. 
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The angular momentum of any system about an axis is the algebraical sum of the 

angular momenta of its parts.  

As the rate of change of the linear momentum of a particle measures the moving force 

which acts on it, so the rate of change of angular momentum measures the moment of 

that force about an axis.  

All actions between the parts of a system, being pairs of equal and opposite forces, 

produce equal and opposite changes in the angular momentum of those parts. Hence 

the whole angular momentum of the system is not affected by these actions and re-

actions.  

When a system of invariable form revolves about an axis, the angular velocity of 

every part is the same, and the angular momentum about the axis is the product of the 

angular velocity and the moment of inertia about that axis.  

It is only in particular cases, however, that the whole angular momentum can be 

estimated in this way. In general, the axis of angular momentum differs from the axis 

of rotation, so that there will be a residual angular momentum about an axis 

perpendicular to that of rotation, unless that axis has one of three positions, called the 

principal axes of the body.  

By referring everything to these three axes, the theory is greatly simplified. The 

moment of inertia about one of these axes is greater than that about any other axis 

through the same point, and that about one of the others is a minimum. These two are 
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at right angles, and the third axis is perpendicular to their plane, and is called the mean 

axis.  

Let , , be the moments of inertia about the principal axes through the centre 

of gravity, taken in order of magnitude, and let be the angular velocities 

about them, then the angular momenta will be , , and .  

Angular momenta may be compounded like forces or velocities, by the law of the 

``parallelogram,'' and since these three are at right angles to each other, their resultant 

is  

 

(1) 

 

 

and this must be constant, both in magnitude and direction in space, since no external 

forces act on the body.  

We shall call this axis of angular momentum the invariable axis. It is perpendicular to 

what has been called the invariable plane. Poinsôt calls it the axis of the couple of 

impulsion. The direction-cosines of this axis in the body are,  
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Since , and vary during the motion, we need some additional condition to 

determine the relation between them. We find this in the property of the vis viva of a 

system of invariable form in which there is no friction. The vis viva of such a system 

must be constant. We express this in the equation  

 

 

(2) 

 

 

Substituting the values of , , in terms of , , ,  

 

 



 

 

Let , , , , and this equation 

becomes  

 

(3) 

 

 

and the equation to the cone, described by the invariable axis within the body, is  

 

 

(4) 

 

 

The intersections of this cone with planes perpendicular to the principal axes are found 

by putting , , or , constant in this equation. By giving various values, all the 

different paths of the pole of the invariable axis, corresponding to different initial 

circumstances, may be traced.  



 

Figure:  



In the figures, I have supposed , , and . The first 

figure represents a section of the various cones by a plane perpendicular to the axis of 

, which is that of greatest moment of inertia. These sections are ellipses having their 

major axis parallel to the axis of . The value of corresponding to each of these 

curves is indicated by figures beside the curve. The ellipticity increases with the size of 

the ellipse, so that the section corresponding to would be two parallel 

straight lines (beyond the bounds of the figure), after which the sections would be 

hyperbolas.  
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Figure:  



The second figure represents the sections made by a plane, perpendicular to the mean 

axis. They are all hyperbolas, except when , when the section is two 

intersecting straight lines.  
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Figure:  



The third figure shows the sections perpendicular to the axis of least moment of inertia. 

From to the sections are ellipses, gives two parallel 

straight lines, and beyond these the curves are hyperbolas.  



 



Figure:  

The fourth and fifth figures show the sections of the series of cones made by a cube 

and a sphere respectively. The use of these figures is to exhibit the connexion between 

the different curves described about the three principal axes by the invariable axis 

during the motion of the body.  
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Figure:  

We have next to compare the velocity of the invariable axis with respect to the body, 

with that of the body itself round one of the principal axes. Since the invariable axis is 

fixed in space, its motion relative to the body must be equal and opposite to that of the 

portion of the body through which it passes. Now the angular velocity of a portion of 

the body whose direction-cosines are , , , about the axis of is  

 

 
 

 

Substituting the values of , , , in terms of , , , and taking account of 

equation (3), this expression becomes  
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Changing the sign and putting we have the angular velocity of the 

invariable axis about that of  

 
 

 

always positive about the axis of greatest moment, negative about that of least 

moment, and positive or negative about the mean axis according to the value of . 

The direction of the motion in every case is represented by the arrows in the figures. 

The arrows on the outside of each figure indicate the direction of rotation of the body.  

If we attend to the curve described by the pole of the invariable axis on the sphere in 

fig. 5, we shall see that the areas described by that point, if projected on the plane of 

, are swept out at the rate  
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Now the semi-axes of the projection of the spherical ellipse described by the pole are  

 

 
 

 

Dividing the area of this ellipse by the area described during one revolution of the 

body, we find the number of revolutions of the body during the description of the 

ellipse--  

 

 



 

 

The projections of the spherical ellipses upon the plane of are all similar ellipses, 

and described in the same number of revolutions; and in each ellipse so projected, the 

area described in any time is proportional to the number of revolutions of the body 

about the axis of , so that if we measure time by revolutions of the body, the motion 

of the projection of the pole of the invariable axis is identical with that of a body acted 

on by an attractive central force varying directly as the distance. In the case of the 

hyperbolas in the plane of the greatest and least axis, this force must be supposed 

repulsive. The dots in the figures 1, 2, 3, are intended to indicate roughly the progress 

made by the invariable axis during each revolution of the body about the axis of , 

and respectively. It must be remembered that the rotation about these axes varies 

with their inclination to the invariable axis, so that the angular velocity diminishes as 

the inclination increases, and therefore the areas in the ellipses above mentioned are 

not described with uniform velocity in absolute time, but are less rapidly swept out at 

the extremities of the major axis than at those of the minor.  

When two of the axes have equal moments of inertia, or , then the angular 

velocity is constant, and the path of the invariable axis is circular, the number of 

revolutions of the body during one circuit of the invariable axis, being  
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The motion is in the same direction as that of the rotation, or in the opposite direction, 

according as the axis of is that of greatest or of least moment of inertia.  

Both in this case, and in that in which the three axes are unequal, the motion of the 

invariable axis in the body may be rendered very slow by diminishing the difference of 

the moments of inertia. The angular velocity of the axis of about the invariable axis 

in space is  

 
 

 

which is greater or less than , as is greater or less than , and, when these 

quantities are nearly equal, is very nearly the same as itself. This quantity indicates 
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the rate of revolution of the axle of the top about its mean position, and is very easily 

observed.  

The instantaneous axis is not so easily observed. It revolves round the invariable axis 

in the same time with the axis of , at a distance which is very small in the case when 

, , , are nearly equal. From its rapid angular motion in space, and its near 

coincidence with the invariable axis, there is no advantage in studying its motion in the 

top.  

By making the moments of inertia very unequal, and in definite proportion to each 

other, and by drawing a few strong lines as diameters of the disc, the combination of 

motions will produce an appearance of epicycloids, which are the result of the 

continued intersection of the successive positions of these lines, and the cusps of the 

epicycloids lie in the curve in which the instantaneous axis travels. Some of the figures 

produced in this way are very pleasing.  

In order to illustrate the theory of rotation experimentally, we must have a body 

balanced on its centre of gravity, and capable of having its principal axes and moments 

of inertia altered in form and position within certain limits. We must be able to make 

the axle of the instrument the greatest, least, or mean principal axis, or to make it not a 

principal axis at all, and we must be able to see the position of the invariable axis of 

rotation at any time. There must be three adjustments to regulate the position of the 

centre of gravity, three for the magnitudes of the moments of inertia, and three for the 

directions of the principal axes, nine independent adjustments, which may be 

distributed as we please among the screws of the instrument.  
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Figure:  

The form of the body of the instrument which I have found most suitable is that of a 

bell (fig. 6). is a hollow cone of brass, is a heavy ring cast in the same piece. Six 

screws, with heavy heads, , , , , , , work horizontally in the ring, and 

three similar screws, , , , work vertically through the ring at equal intervals. 

is the axle of the instrument, is a brass screw working in the upper part of the 

cone , and capable of being firmly clamped by means of the nut . is a 

cylindrical brass bob, which may be screwed up or down the axis, and fixed in its place 

by the nut .  

The lower extremity of the axle is a fine steel point, finished without emery, and 

afterwards hardened. It runs in a little agate cup set in the top of the pillar . If any 

emery had been embedded in the steel, the cup would soon be worn out. The upper end 

of the axle has also a steel point by which it may be kept steady while spinning.  

When the instrument is in use, a coloured disc is attached to the upper end of the axle.  

It will be seen that there are eleven adjustments, nine screws in the brass ring, the axle 

screwing in the cone, and the bob screwing on the axle. The advantage of the last two 

adjustments is, that by them large alterations can be made, which are not possible by 

means of the small screws.  



The first thing to be done with the instrument is, to make the steel point at the end of 

the axle coincide with the centre of gravity of the whole. This is done roughly by 

screwing the axle to the right place nearly, and then balancing the instrument on its 

point, and screwing the bob and the horizontal screws till the instrument will remain 

balanced in any position in which it is placed.  

When this adjustment is carefully made, the rotation of the top has no tendency to 

shake the steel point in the agate cup, however irregular the motion may appear to be.  

The next thing to be done, is to make one of the principal axes of the central ellipsoid 

coincide with the axle of the top.  

To effect this, we must begin by spinning the top gently about its axle, steadying the 

upper part with the finger at first. If the axle is already a principal axis the top will 

continue to revolve about its axle when the finger is removed. If it is not, we observe 

that the top begins to spin about some other axis, and the axle moves away from the 

centre of motion and then back to it again, and so on, alternately widening its circles 

and contracting them.  

It is impossible to observe this motion successfully, without the aid of the coloured 

disc placed near the upper end of the axis. This disc is divided into sectors, and 

strongly coloured, so that each sector may be recognised by its colour when in rapid 

motion. If the axis about which the top is really revolving, falls within this disc, its 

position may be ascertained by the colour of the spot at the centre of motion. If the 

central spot appears red, we know that the invariable axis at that instant passes through 

the red part of the disc.  



In this way we can trace the motion of the invariable axis in the revolving body, and 

we find that the path which it describes upon the disc may be a circle, an ellipse, an 

hyperbola, or a straight line, according to the arrangement of the instrument.  

In the case in which the invariable axis coincides at first with the axle of the top, and 

returns to it after separating from it for a time, its true path is a circle or an ellipse 

having the axle in its circumference. The true principal axis is at the centre of the 

closed curve. It must be made to coincide with the axle by adjusting the vertical screws 

, , .  

Suppose that the colour of the centre of motion, when farthest from the axle, indicated 

that the axis of rotation passed through the sector , then the principal axis must also 

lie in that sector at half the distance from the axle.  

If this principal axis be that of greatest moment of inertia, we must raise the screw 

in order to bring it nearer the axle . If it be the axis of least moment we must lower 

the screw . In this way we may make the principal axis coincide with the axle. Let us 

suppose that the principal axis is that of greatest moment of inertia, and that we have 

made it coincide with the axle of the instrument. Let us also suppose that the moments 

of inertia about the other axes are equal, and very little less than that about the axle. 

Let the top be spun about the axle and then receive a disturbance which causes it to 

spin about some other axis. The instantaneous axis will not remain at rest either in 

space or in the body. In space it will describe a right cone, completing a revolution in 

somewhat less than the time of revolution of the top. In the body it will describe 



another cone of larger angle in a period which is longer as the difference of axes of the 

body is smaller. The invariable axis will be fixed in space, and describe a cone in the 

body.  

The relation of the different motions may be understood from the following 

illustration. Take a hoop and make it revolve about a stick which remains at rest and 

touches the inside of the hoop. The section of the stick represents the path of the 

instantaneous axis in space, the hoop that of the same axis in the body, and the axis of 

the stick the invariable axis. The point of contact represents the pole of the 

instantaneous axis itself, travelling many times round the stick before it gets once 

round the hoop. It is easy to see that the direction in which the hoop moves round the 

stick, so that if the top be spinning in the direction , , , the colours will 

appear in the same order.  

By screwing the bob B up the axle, the difference of the axes of inertia may be 

diminished, and the time of a complete revolution of the invariable axis in the body 

increased. By observing the number of revolutions of the top in a complete cycle of 

colours of the invariable axis, we may determine the ratio of the moments of inertia.  

By screwing the bob up farther, we may make the axle the principal axis of least 

moment of inertia.  

The motion of the instantaneous axis will then be that of the point of contact of the 

stick with the outside of the hoop rolling on it. The order of colours will be , , 

, if the top be spinning in the direction , , , and the more the bob is 



screwed up, the more rapidly will the colours change, till it ceases to be possible to 

make the observations correctly.  

In calculating the dimensions of the parts of the instrument, it is necessary to provide 

for the exhibition of the instrument with its axle either the greatest or the least axis of 

inertia. The dimensions and weights of the parts of the top which I have found most 

suitable, are given in a note at the end of this paper.  

Now let us make the axes of inertia in the plane of the ring unequal. We may do this by 

screwing the balance screws and farther from the axle without altering the 

centre of gravity.  

Let us suppose the bob screwed up so as to make the axle the axis of least inertia. 

Then the mean axis is parallel to , and the greatest is at right angles to in the 

horizontal plane. The path of the invariable axis on the disc is no longer a circle but an 

ellipse, concentric with the disc, and having its major axis parallel to the mean axis 

.  

The smaller the difference between the moment of inertia about the axle and about the 

mean axis, the more eccentric the ellipse will be; and if, by screwing the bob down, the 

axle be made the mean axis, the path of the invariable axis will be no longer a closed 

curve, but an hyperbola, so that it will depart altogether from the neighbourhood of the 

axle. When the top is in this condition it must be spun gently, for it is very difficult to 

manage it when its motion gets more and more eccentric.  



When the bob is screwed still farther down, the axle becomes the axis of greatest 

inertia, and the least. The major axis of the ellipse described by the invariable 

axis will now be perpendicular to , and the farther the bob is screwed down, the 

eccentricity of the ellipse will diminish, and the velocity with which it is described will 

increase.  

I have now described all the phenomena presented by a body revolving freely on its 

centre of gravity. If we wish to trace the motion of the invariable axis by means of the 

coloured sectors, we must make its motion very slow compared with that of the top. It 

is necessary, therefore, to make the moments of inertia about the principal axes very 

nearly equal, and in this case a very small change in the position of any part of the top 

will greatly derange the position of the principal axis. So that when the top is well 

adjusted, a single turn of one of the screws of the ring is sufficient to make the axle no 

longer a principal axis, and to set the true axis at a considerable inclination to the axle 

of the top.  

All the adjustments must therefore be most carefully arranged, or we may have the 

whole apparatus deranged by some eccentricity of spinning. The method of making the 

principal axis coincide with the axle must be studied and practised, or the first attempt 

at spinning rapidly may end in the destruction of the top, if not the table on which it is 

spun.  

 



On the Earth's Motion  

We must remember that these motions of a body about its centre of gravity, are not 

illustrations of the theory of the precession of the Equinoxes. Precession can be 

illustrated by the apparatus, but we must arrange it so that the force of gravity acts the 

part of the attraction of the sun and moon in producing a force tending to alter the axis 

of rotation. This is easily done by bringing the centre of gravity of the whole a little 

below the point on which it spins. The theory of such motions is far more easily 

comprehended than that which we have been investigating.  

But the earth is a body whose principal axes are unequal, and from the phenomena of 

precession we can determine the ratio of the polar and equatorial axes of the ``central 

ellipsoid;'' and supposing the earth to have been set in motion about any axis except the 

principal axis, or to have had its original axis disturbed in any way, its subsequent 

motion would be that of the top when the bob is a little below the critical position.  

The axis of angular momentum would have an invariable position in space, and would 

travel with respect to the earth round the axis of figure with a velocity 

where is the sidereal angular velocity of the earth. The apparent pole of the earth 

would travel (with respect to the earth) from west to east round the true pole, 



completing its circuit in sidereal days, which appears to be about 325.6 solar 

days.  

The instantaneous axis would revolve about this axis in space in about a day, and 

would always be in a plane with the true axis of the earth and the axis of angular 

momentum. The effect of such a motion on the apparent position of a star would be, 

that its zenith distance should be increased and diminished during a period of 325.6 

days. This alteration of zenith distance is the same above and below the pole, so that 

the polar distance of the star is unaltered. In fact the method of finding the pole of the 

heavens by observations of stars, gives the pole of the invariable axis, which is altered 

only by external forces, such as those of the sun and moon.  

There is therefore no change in the apparent polar distance of stars due to this cause. It 

is the latitude which varies. The magnitude of this variation cannot be determined by 

theory. The periodic time of the variation may be found approximately from the known 

dynamical properties of the earth. The epoch of maximum latitude cannot be found 

except by observation, but it must be later in proportion to the east longitude of the 

observatory.  

In order to determine the existence of such a variation of latitude, I have examined the 

observations of Polaris with the Greenwich Transit Circle in the years 1851-2-3-4. The 

observations of the upper transit during each month were collected, and the mean of 

each month found. The same was done for the lower transits. The difference of zenith 



distance of upper and lower transit is twice the polar distance of Polaris, and half the 

sum gives the co-latitude of Greenwich.  

In this way I found the apparent co-latitude of Greenwich for each month of the four 

years specified.  

There appeared a very slight indication of a maximum belonging to the set of months,  

March, 51. Feb. 52. Dec. 52. Nov. 53. Sept. 54. 

This result, however, is to be regarded as very doubtful, as there did not appear to be 

evidence for any variation exceeding half a second of space, and more observations 

would be required to establish the existence of so small a variation at all.  

I therefore conclude that the earth has been for a long time revolving about an axis 

very near to the axis of figure, if not coinciding with it. The cause of this near 

coincidence is either the original softness of the earth, or the present fluidity of its 

interior. The axes of the earth are so nearly equal, that a considerable elevation of a 

tract of country might produce a deviation of the principal axis within the limits of 

observation, and the only cause which would restore the uniform motion, would be the 

action of a fluid which would gradually diminish the oscillations of latitude. The 

permanence of latitude essentially depends on the inequality of the earth's axes, for if 

they had been all equal, any alteration of the crust of the earth would have produced 

new principal axes, and the axis of rotation would travel about those axes, altering the 



latitudes of all places, and yet not in the least altering the position of the axis of 

rotation among the stars.  

Perhaps by a more extensive search and analysis of the observations of different 

observatories, the nature of the periodic variation of latitude, if it exist, may be 

determined. I am not aware of any calculations having been made to prove its non-

existence, although, on dynamical grounds, we have every reason to look for some 

very small variation having the periodic time of 325.6 days nearly, a period which is 

clearly distinguished from any other astronomical cycle, and therefore easily 

recognised.  

 

 

 

 



Note: Dimensions and Weights of the 

parts of the Dynamical Top.  

Part Weight 

  lb. oz. 

I. Body of the top-- 

Mean diameter of ring, 4 inches.     

Section of ring, inch square. 
    

The conical portion rises from the upper and inner edge 

of the ring, a height of inches from the base. 

    

The whole body of the top weighs 1 7 

Each of the nine adjusting screws has its screw 1 inch 

long, and the screw and head together weigh 1 ounce. 

The whole weigh 

  9 

II. Axle, &c.-- 



Length of axle 5 inches, of which inch at the bottom 

is occupied by the steel point, inches are brass with 

a good screw turned on it, and the remaining inch is of 

steel, with a sharp point at the top. The whole weighs 

  
 

The bob has a diameter of 1.4 inches, and a 

thickness of .4. It weighs 
  

 

The nuts and , for clamping the bob and the body 

of the top on the axle, each weigh oz. 

  1 

Weight of whole top 
2 

 

The best arrangement, for general observations, is to have the disc of card divided into 

four quadrants, coloured with vermilion, chrome yellow, emerald green, and 

ultramarine. These are bright colours, and, if the vermilion is good, they combine into 

a grayish tint when the rotation is about the axle, and burst into brilliant colours when 

the axis is disturbed. It is useful to have some concentric circles, drawn with ink, over 

the colours, and about 12 radii drawn in strong pencil lines. It is easy to distinguish the 

ink from the pencil lines, as they cross the invariable axis, by their want of lustre. In 



this way, the path of the invariable axis may be identified with great accuracy, and 

compared with theory.  

 
...P   

7th May 1857. The paragraphs marked thus have been rewritten since the paper was 

read.  
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