

Solution Strategies with Elmer

Solution Strategies with Elmer

Elmer Team CSC – IT Center for Science Ltd. Elmer

Contents

- Elmer Modules
 - Workflow
- From the PDE to the SIF
 - Discretization
 - Linearization
 - Different levels of iteration
- Time Integration
- Steady State Iteration

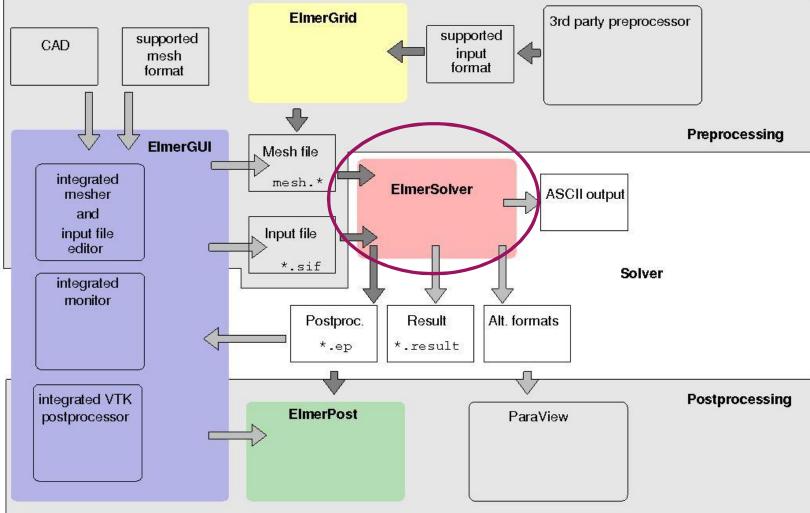
Non-linear Iteration

CSC

- Pre-conditioner
- Linear(ized) Problem
 - Direct Solver
 - Iterative Solver
- On Bodies and Boundaries

csc

Elmer - Modules

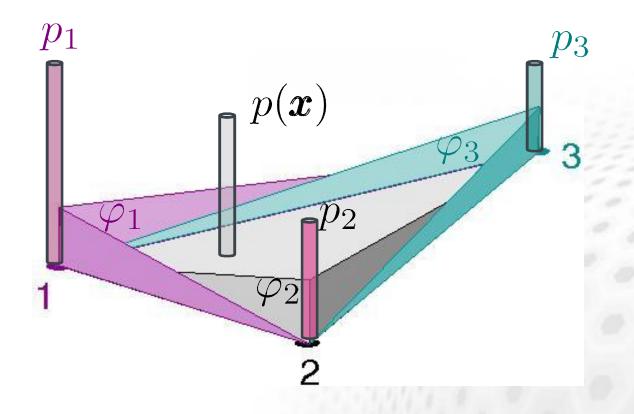


General advection-diffusion problem

$$c\varrho\left(\frac{\partial\Psi}{\partial t} + \mathbf{u}\nabla\Psi\right) = \nabla\cdot\underbrace{\left(-\kappa\nabla\Psi\right)}_{t} + \varrho\sigma$$

CSC

- For instance, heat transfer problem: $\Psi=T$
- Coupled to (Navier-)Stokes via velocity: u
- Non-linearities via material parameters, e.g., $c=c(\Psi)$

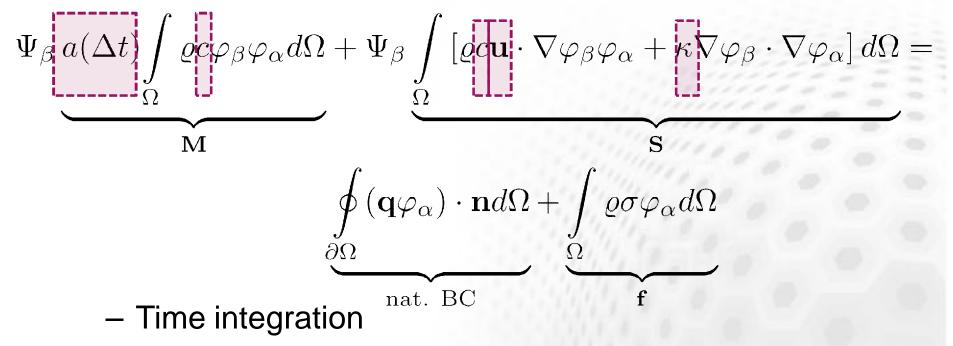


 $p(\boldsymbol{x}) = p_1 \varphi_1 |_{\boldsymbol{x}} + p_2 \varphi_2 |_{\boldsymbol{x}} + p_3 \varphi_3 |_{\boldsymbol{x}}$

csc

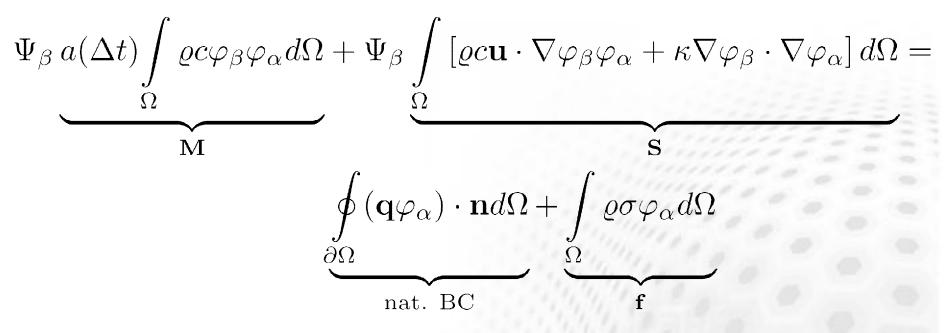
From the PDE to the SIF

Weak formulation:



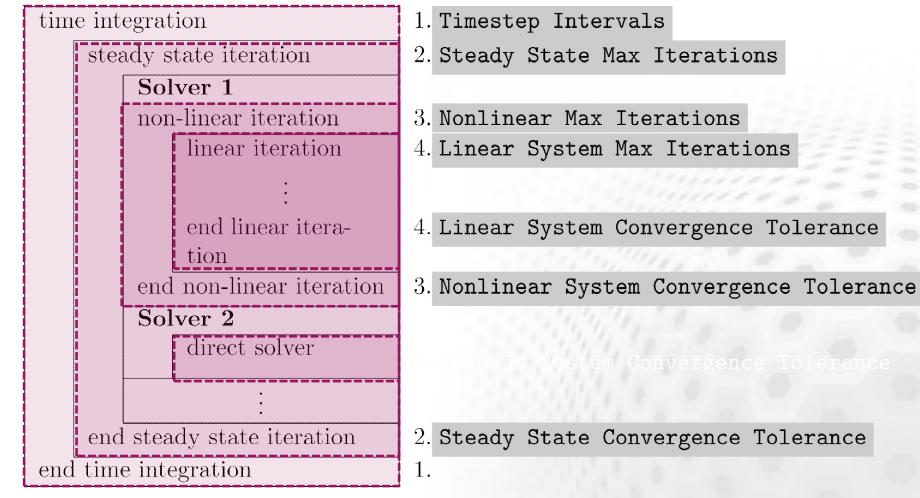
- Steady State:dependence on other variables
- Non-linear iteration: internal dependence

Weak formulation:



CSC

- System matrix: $\mathbf{M} + \mathbf{S} = \mathbf{A} \Rightarrow \mathbf{A} \Psi = \mathbf{f}$ Non-linearities: e.g. $c(\Psi)\Psi|^{(i)} \Rightarrow c(\Psi^{(i-1)})\Psi^{(i)}$
- Natural BC: either to A or f



Time Integration

Two different methods:

- Crank Nicholson: Crank Nicholson
- Backward Difference Formula: BDF
 - BDF Order (if 1, then backward Euler only choice for adaptive time-stepping)

Additional settings:

- Time Derivative Order (if 2 then Bossak)
- Timestep Intervals
- Timestep Sizes

Steady State Iteration

- Mutual dependence between Solvers
 - (e.g., Flow solution and convected temperature)
 - Steady State Convergence Tolerance

$$\|\boldsymbol{\Psi}^{(j)} - \boldsymbol{\Psi}^{(j-1)}\| / \|\boldsymbol{\Psi}^{(j)}\| < \epsilon_{\mathrm{st}}$$

- Steady State Max Iterations

$$j < j_{\max}$$
.

CSC

- Steady State Relaxation Factor

$$\lambda_{\mathrm{st}}: \quad \Psi^{(j)} \to \lambda_{\mathrm{st}} \Psi^{(j)} + (1 - \lambda_{\mathrm{st}}) \Psi^{(j-1)}$$

Nonlinear Solver Iteration

Nonlinear Problem:

$$\underbrace{\mathbf{A}(\mathbf{\Psi})}_{\mathbf{M}+\mathbf{S}} \mathbf{\Psi} = \mathbf{f}(\mathbf{\Psi}) \quad \Rightarrow \quad \mathbf{A}(\mathbf{\Psi}^{(i-1)}) \mathbf{\Psi}^{(i)} = \mathbf{f}(\mathbf{\Psi}^{(i-1)})$$

- Nonlinear System Convergence Tolerance

$$\|\mathbf{\Psi}^{(i)} - \mathbf{\Psi}^{(i-1)}\| / \|\mathbf{\Psi}^{(i)}\| < \epsilon_{\mathrm{nl}}$$

- -Nonlinear System Max Iterations $i \leq i_{
 m max}$
- Nonlinear System Relaxation Factor
 - $\lambda_{\mathrm{nl}}: \quad \Psi^{(i)} \to \lambda_{\mathrm{nl}} \Psi^{(i)} + (1 \lambda_{\mathrm{nl}}) \Psi^{(i-1)}$

CSC

Pre-conditioner

- But, before we solve, we usually apply a pre-conditioner
 - Find P~A, but much easier to invert
 - $P^{-1}A \sim I$ has favourable condition number

$$\mathbf{P}^{-1}\mathbf{A}\,\boldsymbol{\Psi} = \mathbf{P}^{-1}\mathbf{f}$$

Linear System Preconditioning

None

Diagonal

● ILUn (n=0,1,2,...) and ILUT

Large potential for improving scalability!

Linear(ized) Problem

Solving the Linear(ized) Problem $A \Psi = f$

Keyword:

Linear System Solver

- 3 ways to do that in Elmer:
 - 1. Direct methods (= inversion of A)
 - 2. Iterative methods (=working with approximations to A)
 - 3. Multi-grid methods (built-in or via externla libraries)

Linear(ized) Problem

Direct linear system solver

Keyword:

Linear System Direct Method

- Banded (default) LAPack
- UMFPACK Unsymmetric MultiFrontal method (only serial)
- MUMPS Unsymmetric MultiFrontal method (only parallel)
- Sometimes the only way to go (if bad conditioned)
- Costly: Elimination takes $\sim N^3$ operations and needs to store N^2 unknows in memory

C S C

CSC

Linear(ized) Problem

- Iterative solvers:
 - Krylov subspace: $\mathbf{x}_n \in \operatorname{span}(K_n)$

$$K_n = [\mathbf{f}, \mathbf{A}\mathbf{f}, \mathbf{A}^2\mathbf{f}, \mathbf{A}^3\mathbf{f}, \dots, \mathbf{A}^{n-1}\mathbf{f}]$$

$$\mathbf{R} = (\mathbf{f} - \mathbf{A} \mathbf{x}_n) \to \min.$$

Linear System Iterative Method
 GMRES Generalized Minimal Residual Method
 CG, CGS, BiCGStab Conjugate Gradient
 TFQMR Transpose-free quasi-minimal residual
 GCR Generalized Conjugate Residual