Elmer

### Overview of Physical Models with Examples

ElmerTeam

CSC – IT Center for Science Ltd.

April 2013

## **Elmer – Numerical Methods**

- Time-dependency
  - Static, transient, eigenmode, scanning
- Discretization
  - Element families: nodal, edge, face, and p-elements, DG
  - Formulations: Galerkin, stabilization, bubbles
- Linear system solvers
  - Direct: Lapack, Umfpack, (SuperLU, Mumps, Pardiso)
  - Iterative Krylov space methods (Hutlter & Hypre)
  - multigrid solvers (GMG & AMG) for "easy" equations (own & Hypre)

- Preconditioners: ILU, BILU, Parasails, multigrid, SGS, Jacobi,...
- Parallellism
  - Parallel assembly
  - Solution with selected methods
- Adaptivity
  - For selected equations, works well in 2D

## **Elmer - Physical Models**

- Heat transfer
  - Heat equation
  - Radiation with view factors
  - convection and phase change
- Fluid mechanics
  - Navier-Stokes (2D & 3D)
  - RANS: SST k- $\Omega$ , k- $\varepsilon$ , v<sup>2</sup>-f
  - LES: VMS
  - Thin films: Reynolds (1D & 2D)
- Structural mechanics
  - General Elasticity (unisotropic, lin & nonlin)
  - Plate, Shell
- Acoustics
  - Helmholtz
  - Linearized time-harmonic N-S
  - Monolithic thermal N-S
- Species transport
  - Generic convection-diffusion equation

- Electromagnetics
  - Emphasis on steady-state and harmonic analysis
  - New Whitney element formulation for magnetic fields

- Mesh movement (Lagrangian)
  - Extending displacements in free surface problems
  - ALE formulation
- Level set method (Eulerian)
  - Free surface defined by a function
- Electrokinetics
  - Poisson-Boltzmann
- Thermoelectricity
- Quantum mechanics
  - DFT (Kohn Scham)
- Particle Tracker

# **Elmer Simulations**











Figures by Esko Järvinen, Mikko Lyly, Peter Råback, Timo Veijola (TKK) & Thomas Zwinger

# Application Fields – Poll (Status 10/2012)

CSC

#### What are your main application fields of Elmer?

Heat transfer 55 28% 1 Fluid mechanics 53 27% 1 Solid mechanics 41 21% 1 Electromagnetics 30 15% **Ouantum mechanics** 3 2% Something else (please specify) 12 6% Total votes : 194

You may select up to 5 options

### **Elmer – Heat Transfer**

- Heat equation
  - convection
  - diffusion
  - Phase change
  - Temperature control feedback
  - Thermal slip BCs for small Kn number
- Radiation with view factors
  - 2D, axisymmetric use numerical integration
  - 3D based on ray tracing
  - Stand-alone program
- Strongly coupled thermoelectric equation

Associated numerical features

- Steady state, transient
- Stabilization, VMS
- ALE
- Typical couplings
  - Mesh movement
  - Electricity Joule heating
  - Fluid convection
- Known limitations
  - Turbulence modeling not extensively validated
  - ViewFactor computation not possible in parallel

### Microfluidics: Flow and heat transfer in a microchip



- Electrokinetically driven flow
- Joule heating
- Heat Transfer influences performance
- Elmer as a tool for prototyping
- Complex geometry
- Complex simulation setup



CSC

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho and A. Pursula, Microfluidics and Nanofluidics (2008)

## **Elmer – Solid mechanics**

- Linear elasticity (2D & 3D)
  - Linear & orthotropic material law
  - Thermal and residual stresses
- Non-linear Elasticity (in geometry) (unisotropic, lin & nonlin)
  - Neo hookean material law
- Plate equation
  - Spring, damping
- Shell equation
  - Undocumented

- Associated numerical features
  - Steady-state, harmonic, eigenmode
  - Simple contact model
- Typical physical coupling
  - Fluid-Structure interaction (FSI)
  - Thermal stresses
  - Source for acoustics
- Known limitations
  - Limited selection of material laws
  - Only simple contact model

## **MEMS: Inertial sensor**

- MEMS provides an ideal field for multiphysical simulation software
- Electrostatics, elasticity and fluid flow are often inherently coupled
- Example shows the effect of holes in the motion of an accelerometer prototype



#### Figure by VTI Technologies



A. Pursula, P. Råback, S. Lähteenmäki and J. Lahdenperä, *Coupled FEM simulations of accelerometers including nonlinear gas damping with comparison to measurements*, J. Micromech. Microeng. **16** (2006), 2345-2354.



### **EHDL of patterned surfaces**

- Solution of Reynolds & nonlinear elasticity equations
- Simulation Bengt Wennehorst, Univ. Of Hannover, 2011



### **Elmer – Fluid Mechanics**

- Navier-Stokes (2D & 3D)
  - Nonnewtonian models
  - Slip coefficients
- RANS turbulence models
  - SST k- $\Omega$
  - *k-*ε
  - $v^2 f$
- Large eddy simulation (LES)
  - Variational multiscale method (VMS)
- Reynolds equation
  - Dimensionally reduced N-S equations for small gaps (1D & 2D)

Associated numberical features

- Steady-state, transient
- Stabilization
- ALE formulation
- Typical couplings
  - FSI
  - Thermal flows (natural convection)
  - Transport
  - Free surface
  - Particle tracker
- Known limitations
  - Only experimental segregated solvers
  - Stronger in the elliptic regime of N-S i.e. low Re numbers
  - RANS models have often convergence issues

## **RANS turbulence modeling**

Comparison of k- $\varepsilon$  vs. v<sup>2</sup>-f-turbulence models (red



# VMS turbulence modeling

- Large eddy simulation (LES) provides the most accurate presentation of turbulence without the cost of DNS
- Requires transient simulation where physical quantities are averaged over a period of time
- Variational multiscale method (VMS) by Hughes et al. Is a variant of LES particularly suitable for FEM
- Interation between fine (unresolved) and coarse (resolved) scales is estimated numerically
- No ad'hoc parameters



Plane flow with  $Re_{\tau}$ =395



## **Czockralski Crystal Growth**

- Most crystalline silicon is grown by the Czhockralski (CZ) method
- One of the key application when Elmer development was started in 1995



V. Savolainen et al., *Simulation of large-scale silicon melt flow in magnetic Czochralski growth,* J. Crystal Growth 243 (2002), 243-260.



Figures by Okmetic Ltd.



### **CZ-growth: Transient simulation**

Parallel simulation of silicon meltflows using stabilized finite element method (5.4 million elements).

Simulation Juha Ruokolainen, animation Matti Gröhn, CSC



### **MEMS – Perforated plates**

- Modified Reynolds equations may be used to model squeezed film pressure under perforated plates
- Comparison with very heavy 3D computations show good agreement (see figure)



Simulation: Timo Veijola

### **Extrusion**

 Special algorithm for the steady-state extrusion processes



CSC

Simulation Peter Råback, CSC

# **Thermal creep in light mills**

- Glass container in a very low pressure < 10 Pa</p>
- Each ving has a black and silver side
- When hit by light the light mill rotates with silver side ahead
- The physical explanation of the light mills requires consideration of rarefied gases and thermal creep
- These were studied in the thesis project of Moritz Nadler, University of Tubingen, 2008



### **Thermal creep in light mills**



2D compressible Navier-Stokes eq. with heat eq. plus two rarefied gas effects:

Maxwell's wall slip and thermal transpiration

$$u_{\mathbf{X}}(\Gamma) = \frac{2-\sigma}{\sigma}\lambda\left(\frac{\partial u_{\mathbf{X}}}{\partial n} + \frac{\partial u_{n}}{\partial x}\right) + \frac{3\mu}{4\rho T}\frac{\partial T}{\partial x}$$

Smoluchowski's temperature jump

$$T_{\rm G} - T_{\rm W} = \frac{2 - \sigma_T}{\sigma_T} \frac{2\gamma}{\gamma + 1} \frac{\lambda}{Pr} \frac{\partial T}{\partial n}$$





Simulation Moritz Nadler, 2008

# Glaciology

- Elmer is the leading code for 3D ice flow simulation
- Full Stokes equation to model the flow
- The most used full 3D Stokes tool in the area
- Continental ice sheet simulations very demanding
- Motivated by climate change and sea level rise
- http://elmerice.elmerfem.org





Ice flow velocities on Greenland ice sheet. Simulation: Fabien Gillet-Chaulet, LGGE; Thomas Zwinger, CSC.

### **Computational Hemodynamics**

- Cardiovascular diseases are the leading cause of deaths in western countries
- Calcification reduces elasticity of arteries
- Modeling of blood flow poses a challenging case of fluid-structure-interaction
- Artificial compressibility is used to enhance the convergence of FSI coupling

E. Järvinen, P. Råback, M. Lyly, J. Salonius. *A* method for partitioned fluid-structure interaction computation of flow in arteries. Medical Eng. & *Physics*, **30** (2008), 917-923



## FSI with articifical compressibility

- Flow is initiated by a constant body force at the left channel
- Natural boundary condition is used to allow change in mass balance
- An optinmal artificial compressibility field is used to speed up the convergence of loosely coupled FSI iteration



CSC

P. Råback, E. Järvinen, J. Ruokolainen, *Computing the Artificial Compressibility Field for Partitioned Fluid-Structure Interaction Simulations,* ECCOMAS 2008

### **Elmer – Electromagnetics**

### StatElecSolve for insulators

- Computation of capacitance matrix
- Dielectric surfaces
- StatCurrentSolve for conductors
  - Computation of Joule heating
  - Beedback for desired heating power
- Magnetic induction
  - Induced magnetic field by moving conducting media (silicon)
- Magnetostatics (old)
  - Axisymmetric solver for Joule heating
- MagnetoDynamics2D
  - Rotating machines
- MagnetoDynamics3D
  - AV formulation
  - Steady-state, harmonic, transient

- Associated numerical features
  - Mainly formulations based on scalar and vector potential
  - Lagrange elements except mixed nodal-edge elements for AV solver

- Typical physical couplings
  - Thermal (Joule heating)
  - Flow (plasma)
  - Rigid body motion
- Known limitations
  - Limited to low-frequency (small wave number)
  - One needs to be weary with the Coulomb gauge in some solvers

# Elmer and electromagnetics – historic solvers

Electrostatics (two versions)

StatElecSolve: 
$$-\nabla \cdot \varepsilon \nabla \phi = \rho$$
.  
StatCurrentSolve:  $\nabla \cdot \sigma \nabla \phi = \frac{\partial \rho}{\partial t}$ 

StatMagSolve: (mu constant or axisymmetric)

$$\nabla \times \left(\frac{1}{\mu}\nabla \times \vec{A}\right) = \vec{j}.$$

MagenticSolve: (induction by moving charges)

$$\frac{\partial \vec{B}}{\partial t} + \frac{1}{\sigma \mu} \nabla \times \nabla \times \vec{B} - \nabla \times (\vec{v} \times \vec{B}) = 0,$$

# Whitney solver for the AV formulation

- AV-formulation of the Maxwell's equations
  - Assumes that the displacement current density is small

$$\sigma \frac{\partial \vec{A}}{\partial t} + \nabla \times \left(\frac{1}{\mu} \nabla \times \vec{A}\right) + \sigma \nabla V = \vec{J^s} + \nabla \times \vec{M^s} - \sigma \nabla V^s$$

- Coulomb gauge *div(A)=0* satisfied locally by construction by choosing Whitney elements for the basis functions for the vector potential
- Solvers also for harmonic  $(d/dt = i\omega)$  and steady state (d/dt = 0) simulations.
- Solution of the resulting linear system may require some tailored preconditioners in large scale
- Now also a 2D version for the same equation

### **Whitney element Solver**



## Mutual inductances of a coil pair

Simulation by "millim" at elmerfem.org/forum



### **Electric machine in 2D**

Novel 2D vector potential solver tested with rotating BCs. Figure shows magnetic field intensity.

CSC



Model specification Antero Arkkio, Meshing Paavo Rasilo, Aalto Univ. Simulation Juha Ruokolainen, CSC

## **Electric machine: Mortar finite elements**



- Continuity of results between stator and rotor is ensured by mortar finite element technique
- Technique is applicable also to periodic systems



Model specification Antero Arkkio, Meshing Paavo Rasilo, Aalto Univ. Simulation Juha Ruokolainen, CSC

### **Induction machine**



Animation: Realistic 2D induction machine depicting vector potential and magnetic field intensity. Case specification by Mikko Lyly, ABB. Model development Juha Ruokolainen, CSC. Visualization Peter Råback, CSC.

### Mortar finite elements in 3D



Animation: Continuity of solution (heat equation) is ensured in rotating nonconforming meshes. Simulation Peter Råback, CSC.

## **3-phase current – Re and Im of potential**





Simulation Peter Råback, CSC

### **Elmer – Acoustics**

- Helmholtz Solver
  - Possibility to account for convection
- Linearized time-harmonic N-S
  - Special equation for the dissipative acoustics
- Thermal N-S
  - Ideal gas law
  - Propagation of large amplitude acoutic signals

Associated numerical features

- Bubble stabilization
- Typical physical couplings
  - Structural (vibroacoustics)
- Known limitations
  - Limited to small wave numbers
  - N-S equations are quite computitionally intensive

### **Acoustic wave propagation**







#### Simulation Mikko Lyly, CSC

Sound waves solved from the Helmholtz equation

### **Acoustics: Losses in small cavities**

Temperature waves resulting from the Helmholtz equation

Temperature waves computed from the l linearized Navier-Stokes equation



Mika Malinen, Boundary conditions in the Schur complement preconditioning of dissipative acoustic equations, SIAM J. Sci. Comput. 29 (2007)

### **Elmer – other physical models**

- Species transport
- Groundwater flow, Richards equation

- DFT, Kohn-Sham equations
- Iter reactor, fusion plasma equilibrium
- Optimization
- Particle tracking

### **Richard's equation**

- Richards equations describes the flow of water in the ground
- Porous flow of variably saturated flow
- Modeled with the van Genuchten material models
- Picture show isolines for pressure head and magnitude of the Darcy flux



Simulation, Peter Råback, CSC

### **Quantum Mechanics**

- Finite element method is used to solve the Kohn-Sham equations of density functional theory (DFT)
- Charge density and wave function of the 61st eigenmode of fullerine C60
- All electron computations using 300 000 quadratic tets and 400 000 dofs



CSC

Simulation Mikko Lyly, CSC

### **Iter fusion reactor**



- Assumption that 2D dependencies are valid also on a perturbed 3D system
- 3D magnetic fields but no real plasma simulation



# Levelset method

2D levelset of a falling bubble







# **Optimization in FSI**

- Elmer includes some tools that help in the solution of optimization problems
- Profile of the beam is optimized so that the beam bends as little as possible under flow forces



Optimized profiles for Re={0,10,50,100,200}





Pressure and velocity distribution with Re=10

### **Particle tracker - Granular flow**





Simulation Peter Råback, CSC