Elmer

Software Development Practices
APIs for Solver and UDF

ElmerTeam

CSC —IT Center for Science Ltd.

April 2013, CSC

cscC

Elmer programming languages *

CScC

¢ Fortran90 (and newer)

— ElmerSolver (~200,000 lines of which ~50% in DLLS)
v C++

— ElmerGUI (~18,000 lines)

— ElmerSolver (~10,000 lines)
v C

— ElmerPost

— ElmerGrid (~30,000 lines)

— MATC (~11,000 lines)

Elmer libraries *

CScC

v ElmerSolver
— Required: matc, hutiter, eio, lapack, blas, umfpack

— Optional: Arpack, mumps, Hypre, Pardiso, ML
(Trilinos), NetCDF, HDF5, ...

v ElmerGUI
— Required: Qt, elmergrid, netgen
— Optional: tetgen, OpenCASCADE, VTK, QVT

Elmer licenses *

CScC

v ElmerSolver library is published under LGPL
— Enables linking with all license types

— It is posible to make a new solver even under
proprierity license

— Note: some optional libraries may constrain this
freedom

v Rest of Elmer is published under GPL

— Derived work must also be under same license
(“copyleft”)

Elmer at sourceforge.net

CSscC

Home / Browse / Mathematics / Elmer finit

f 1

Summary Files Reviews Support Develop Tracker Code

Il

Elmer finite element software

s apursula, juhar, juhavierinen, misf, mmalinen, raback, sjsillan, tzwinger

& 54 Recommendations
© 305 Downloads (This

Download

M Tweet < 0 +1 0 Klike 3 Browse All Files

naYtepakkausta Jaossa
KLIKKAA TASTA!)

TreeGrid Web Gantt Charl

Fully customizable, fully interactive, suto and manusl scheduling, 10005 tasks
Tasks, mil , flags, dependencies (ss,fs,sf ff; lags; floats), constraints
Percent pletion, price calculation, critical path, holideys, smooth z0om
Resources assigning, resource charts, any custom columns, custom bars
Sorting, filtering, grouping, tree, pnmmg/ PDF, paging, AJAX, localization

D e S "I m— ——

Description

Elmer is a finite element software for numerical solution of partial differential equations and multiphysical
problems. It includes models of structural mechanics, fluid dynamics, heat transfer, electromagnetics etc. Elmer
home is www.csc fi/elmer

Elmer finite element software Web Site » || a3 mammm 3 - e

~ FOCENTUEANNNT OF - e on e e e o S o G

P AR T Y TN R N N TR TN T ety Y . Iy Ay ey "B YT

Obtaining the source code $

CScC

¢ Note: elmerfem repository at sf.net was migrated
Into a new svn server in Jan 2013

o To check-out the code anonymously:
svn checkout
svn://svn.code.sf.net/p/elmerfem/code/trun
k elmerfem-code

v To check-out the code with a sf.net username:
svn checkout --username=raback

svn+ssh://raback@svn.code.sf.net/p/elmerfe
m/code/trunk elmerfem-code

¢ We don't utilize branches and consider the trunk version
to be stable and always backward compatible

— The things under development may be little bit volatile

Code organization

Directory listing of elmerfem/trunk:

Mame

o

R ERRRRRRE

buildtools

el

elmergnd
ElmerGLUI
ElmerGUllegger
ElrmerGUItester
elmerparam
fermn

front

hutiter

matc

mathlibs
meshgend
MIsC

post

umfpack

utils

% | LICENSES

-~

Date moedified

2511.2010 14:33
2511.2010 14:37
18.4.2011 23:13
2511.2010 14:37
18.4.2011 23:13
2511.201014:35
2511.2010 14:34
16.9.2011 942
2511.201014:35
2511.2010 14:33
2511.2010 14:33
18.4.2011 23:13
2511.2010 14:37
16.8.2011 13:26
2511.201014:34
2511.201014:34
2511.2010 14:35
2511.201014:37

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File

~-

CscC

Library for reading the mesh
ElmerGrid
ElmerGUI

ElmerParam
ElmerSolver
ElmerFront (obsolite)

MATC library

Basic math libraries
Mesh2D (almost obsolite)
Miscallenous features
ElmerPost

Umfpack

Various utilities
Information on LICENCES

Consistency tests $

CScC

o Simple shell script to run through the cases +
piece of C-code to compare the norm of solutions

v There are about 220 consistency tests (Jan 2013)
— Located under fem/tests

¢ Each time a significant commit is made the tests are
run with the fresh version

— Aim: trunk version is a stable version
— New tests for each major new feature

@ The consistency tests provide a good starting point
for taking some Solver into use

— cut-paste from sif file

¢ Note: the consistency tests have often poor time
and space resolution for rapid execution

Consistency tests - example

raback@hippu2:/fs/projl/elmer/raback/elmerfem/fem/tests>
SELMER HOME undefined, setting it to

test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

test

Tests completed, passed:
Cumulative CPU time used in test:

1

O J o U b W N

9 :
10
11
12
13
14
15

189

../src
ldtests [PASSED],
lsttime [PASSED],
2ndtime [PASSED],
AdvReactDG [PASSED],
BlockLinElastl [PASSED],
BlockLinElast?2 [PASSED],
BlockLinElast3 [PASSED],
BlockPoissonl [PASSED],
BlockPoisson?2 [PASSED],
BlockPoisson3 [PASSED],
CapacitanceMatrix [PASSED],
CavityLid [PASSED],
CavityLid?2 [PASSED],

ConditionalFlow look at
CoordinateScaling [PASSED],
vortex3d [PASSED],

188 out of total 189 tests
809.12 s

CPU
CPU
CPU
CRU
GEL
CPU
CPU
GPU
CPl
CLll
CPU
@PU
CPu

~-

CscC

./runtests

time=0.
time=0.
time=1.
time=1.
time=2.
time=2.
time=6.
time=6.
time=6.
time=7.
time=7.

time=8

1

58
09
53
06
32
32
46
7

S
66
46

time=14.21

[ConditionalFlow/test.log]

for «

CPU time=14.34

CPU time=809.12

Doxygen — WWW documentation

Elmer finite element re: Modules - Mazilla Fi E=REERT

lEiie Edit View History Bookmarks Tools Help

17 -

';" * | Google

@ Y hd c A ﬁ' €2 http://www.elmerfern.org/doxygen/modules.html

£ Most Visited [Ej Elmer-fem | Download...

{2 Elmer finite element software: Modu... | - |

IR S
=

Elmer finite element software

preliminary version open for comments

Main Page | Related Pages m Data Types List

¥ Elmer finite element software
¢ Related Pages
Modules
» Elmer library
Dynamically linked solvers
Dynamically linked functions
¢ Utility programs
b Class List
Data Types
Data Fields
b File List

File Members

Generated on Fri Sep =~ 162011 09 &3 :28:55 for Elmer finite element software by ﬁ!.mmmggn 1.7.5.1

Modules

Here is a list of all modules:

+ Elmer library
o Default APT
+« Dynamically linked solvers
+ Dynamically linked functions
« Utility programs
¢ Program ResultToPost
¢ Program ResultToResult
o Program ViewFactors

| Files

P
[Q Search

) |

Doxygen — Example in code *

v Special comment indicators: !> and <!

!> Subroutine for computing fluxes and gradients of scalar fields.

!> For example, one may compute the the heat flux as the negative grad:
!> field multiplied by the heat conductivity.

!> \ingroup Solvers

USE CoordinateSystems
USE DefUtils
IMPLICIT NONE

TYPE

(Solver t) :: Solver !< Linear & nonlinear equation solver option:
TYPE (Model t) :: Model !< All model information (mesh, materials, Bl
REAL (KIND=dp) :: dt !< Timestep size for time dependent simulati
LOGICAL :: Transient !< Steady state or transient simulation

TYPE (ValueList t),POINTER :: SolverParams

Doxygen — Example in WWW

CscC

subroutine FluxSolver { TYPE{(Model_t) Model,
TYPE(Solver_t) Solver,
REAL(KIND=dp) dt,
LOGICAL Transient
)

Subroutine for computing fluxes and gradients of scalar fields. For example, one may compute the the heat flux as the
negative gradient of temperature field multiplied by the heat conductivity.

Parameters:
Solver Linear & nonlinear eguation solver options
Model All model information (mesh, materials, BCs, etc...)
dt Timestep size for time dependent simulations

Transient Steady state or transient simulation

References BulkfAssembly().
Here is the call graph for this function:

FluxSolver ——» Bulkfssambly

Compilation of the whole code *

CscC

¢ To compile the whole code see example scripts
under and

#!/bin/sh -f

Compile Elmer modules and install it
replace these with your compilers:
export CC=gcc

export CXX=g++

export FC=gfortran

export F77=gfortran

modules="matc umfpack mathlibs elmergrid meshgen?2d eio hutiter fem"
for m in Smodules; do

cd $m

make clean

./configure --prefix=/fs/projl/elmer/raback/elmerbin

make

make install

cd
done

http://www.csc.fi/elmer
http://www.elmerfem.org/

Compilation of a DLL module *

CScC

v Applies both to Solvers and User Defined Functions
(UDF)

@ Assumes that there is a working compile
environment that provides "elmer£90” script

— Comes with the Windows installer, and Linux
packages

— Generated automatically when ElmerSolver is
compiled

elmerf90 MySolver.£f90 -o MySolver.so

Elmer — High level abstractions $

CScC

v The quite good success of Elmer as a multiphysics
code may be addressed to certain design choices
— Solver is an asbtract dynamically loaded object
— Parameter value is an abstract property fecthed from a list

v The abstractions mean that new solvers may be
Implemented without much need to touch the main
library
— Minimizes need of central planning
— Several applications fields may live their life quite

Independently (electromagnetics vs. glaceology)

v MATC — a poor man’s Matlab adds to flexibility as

algebraic expressions may be evalueted on-the-fly

Solver as an abstract object $

CScC

v Solver is an dynamically loaded object (.dll or .s0)
— May be developed and compiled seperately

o Solver utilizes heavily common library utilities
— Most common ones have interfaces in DefUltils
¢ Any solver has a handle to all of the data

v Typically a solver solves a weak form of a differential
equation

o Currently ~50 different Solvers,
roughly half presenting physical phenomena
— No upper limit to the number of Solvers

v Solvers may be active in different domains,
and even meshes

¢ The menu structure of each solver in EImerGUI may be
defined by an .xm1 file

Property as an abstract object $

CScC

v Properties are saved in a list structure by their name

¢ Namespace of properties is not fixed, they may be introduced in
the command file
— E.g. 'MyProperty = Real 1.23" adds a property "MyProperty”
to a list structure related to the solver block
¢ In code parameters are fetched from the list
— E.g."val = GetReal (Material,’MyProperty’, Found)”
retrieves the above value 1.23 from the list
¢ A’Real’” property may be any of the following
— Constant value
— Linear or cubic dependence via table of values
— Expression given by MATC (MatLab-type command language)
— User defined functions with arbitrary dependencies
— Real vector or tensor
v As a result solvers may be weakly coupled without any a priori
defined manner

¢ There is a price to pay for the generic approach but usually it is
less than 10%

¢ SOLVER.KEYWORDS file may be used to give the types for the
keywords in the command file

DefUtils ~-

CScC

o DefUtils module includes wrappers to the basic
tasks common to standard solvers
— E.g. 'DefaultDirichlet()” sets Dirichlet boundary
conditions to the given variable of the Solver
— E.g. 'DefaulSolve ()’ solves linear systems with all

available direct, iterative and multilevel solvers, both
In serial and parallel

¢ Programming new Solvers and UDFs may usually
be done without knowledge of other modules

DefUtils — some functions

Public Member Functions

TYPE(Solver_t) function, pointer
TYPE(Matrix_t) function, pointer
TYPE(Mesh_t) function, pointer
TYPE(Element_t) function, pointer
INTEGER function

INTEGER function

REAL(KIND=dp) function
INTEGER function

INTEGER function

REAL(KIND=dp) function
REAL(KIND=dp) function
INTEGER function

INTEGER function

INTEGER function

subroutine

subroutine

INTEGER function

subroutine

subroutine
CHARACTER(LEN=MAX_NAME_LEN)
function

INTEGER function

LOGICAL function

recursive REAL(KIND=dp) function
recursive REAL(KIND=dp) function
recursive REAL(KIND=dp)

function, dimension(:),
pointer

CscC

GetSolver ()

GetMatrix (USolver)

GetMesh (USolver)

GetCurrentElement (Element)

GetElementIndex (Element)

GetNOFActive (USolver)

GetTime ()

GetTimeStep ()

GetTimeSteplInterval ()

GetTimestepSize ()

GetAngularFrequency (Valuelist, Found)

GetCoupledIter ()

GetNonlinIter ()

GetNOFBoundaryElements (UMesh)

GetScalarLocalSolution (x, name, UElement, USolver, tStep)
GetVectorLocalSolution (x, name, UElement, USolver, tStep)
GetNofEigenModes (name, USolver)

GetScalarLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)
GetVectorlLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)

GetString (List, Name, Found)
GetInteger (List, Name, Found)
GetlLogical (List, Name, Found)
GetConstReal (List, Name, Found, x, v,)
GetCReal (List, Name, Found)

GetReal (List, Name, Found, UElement)

Solver API ~-

USE DefUtils
IMPLICIT NONE

TYPE (Solver t) :: Solver !< Current solver

TYPE (Model t) :: Model !< Handle tp dhl datg
REAL (KIND=dp) :: dt !< Timestep size

LOGICAL :: Transient !< Time-dependent or not

Actual code ..

Solver API ~-

CScC

Solver 1

Equation = "“"MySolver"

Procedure = "“MyModule" “MySolver”
End

v Solver is typically a FEM implementation of a
physical equation

o But it could also be an auxiliary solver that does
something completely different

v Solver is usually called once for each coupled
system iteration

User defined function API

FUNCTION MyProperty(Model, n, t) RESULT(f)

USE DefUtils
IMPLICIT NONE

TYPE (Model t) :: Model !< Handle to all data
INTEGER :: n I< Current node

REAL (KIND=dp) :: t !< Parameter (s)

REAL (KIND=dp) :: £ !< Parameter value at node

Actual code ..

Function API $

CScC
MyProperty = Variable time
"MyModule" "“MyProperty”

v User defined function (UDF) typically returns a real
valued property at a given point

v It can be located in any section that is used to fetch
these values from a list

— Boundary Condition, Initial Condition, Material,...

Example: Poisson equation —Vy2¢ = p

CScC

v Implemented as an dynamically linked solver
— Available under tests/1dtests

o Compilation by:
Elmerf90 Poisson.f90 -o Poisson.so

v Execution by:
ElmerSolver case.sif

¢ The example is ready to go massively parallel and
with all a plethora of elementtypes in 1D, 2D and 3D

! CScC
I> Solve the Poisson equation -\nabla\cdot\nabla \phi = \rho CONTAINS

!
SUBROUTINE PoissonSolver(
Model,Solver,dt, TransientSimulation)
!
USE DefUtils
IMPLICIT NONE

SUBROUTINE LocalMatrix(STIFF, FORCE, LOAD, Element, n)
!

CALL GetElementNodes(Nodes)
STIFF = 0.0d0

lnitialize the system and do the assembly: FORCE = 0.0d0

I
CALL Defaultlnitialize()

I Numerical integration:
!
IP = GaussPoints(Element)
DO t=1,IP%n
I Basis function values & derivatives at the integration point:
gy gy o o ____ TGP s
stat = Elementinfo(Element, Nodes, IP % U(t), IP % V(1), &
IP % W(t), detJ, Basis, dBasisdx)

active = GetNOFActive()

DO t=1,active
Element => GetActiveElement(t)
n = GetElementNOFNodes()

LOAD = 0.0d0
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

| | 3 o
Load(1:n) = GetReal(BodyForce, 'Source’, Found) I The source term at the integration point:

!
LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

I Get element local matrix and rhs vector:
|

CALL LocalMatrix(STIFF, FORCE, LOAD, Element, n)

I Finally, the elemental matrix & vector:
|
STIFF(1:n,1:n) = STIFF(1:n,1:n) + IP % s(t) * Detd * &
MATMUL(dBasisdx, TRANSPOSE(dBasisdx))
FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * LoadAtIP *
Basis(1:n)
END DO

I Update global matrix and rhs vector from local contribs

I

CALL DefaultUpdateEquations(STIFF, FORCE)
END DO

END SUBROUTINE LocalMatrix
|

END SUBROUTINE PoissonSolver
|

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

Check Keywords "Warn"

Header
Mesh DB "." "mesh"
End

Simulation
Coordinate System = "Cartesian"
Simulation Type = Steady State
Steady State Max Iterations = 50
End

Body 1
Equation=1
Body Force =1

End

Equation 1
Active Solvers(1) =1
End

Solver 1
Equation = "Poisson”
Variable = "Potential"
Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct”

Linear System Direct Method = umfpack
Steady State Convergence Tolerance = 1e-09

End

Body Force 1
Source = Variable Potential
Real Procedure "Source" "Source"
End

Boundary Condition 1
Target Boundaries(2) =1 2
Potential = Real 0

End

CScC

Constant source:

Source = 1.0

Source dependeing piecewise linear on x:

Source = Variable Coordinate 1
Real
0.0 0.0
1.0 3.0
2.0 4.0
End

Source depending on x and :

Source = Variable Coordinate
Real MATC "sin(2*pi*tx(0)) *cos(2*pi(tx(1))”

Source depending on anything

Source = Variable Coordinate 1
Procedure ”“Source” "MySource”

CScC

<?xml version="'1.0" encoding='"UTF-8'?> €sc

<IDOCTYPE edf>
<edf version="1.0" >
<PDE Name="Poisson" >
<Name>Poisson</Name>

<BodyForce>
<Parameter Widget="Label" > <Name> Properties </Name> </Parameter>
<Parameter Widget="Edit" >
<Name> Source </Name>
<Type> String </Type>
<Whatis> Give the source term. </Whatis>
</Parameter>
</BodyForce>

<Solver>
<Parameter Widget="Edit" >
<Name> Procedure </Name>
<DefaultValue> "Poisosn" "PoissonSolver" </DefaultValue>
</Parameter>
<Parameter Widget="Edit">
<Name> Variable </Name>
<DefaultValue> Potential</DefaultValue>
</Parameter>
</Solver>

<BoundaryCondition>
<Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>
<Parameter Widget="Edit">
<Name> Potential </Name>
<Whatis> Give potential value for this boundary. </Whatis>
</Parameter>
</BoundaryCondition>
</PDE>
</edf>

Development tools for EImerSolver $

CScC

v Basic use
— Editor (emacs, vi, notepad++, jJEdIt,...)
— elmerfa0 script
¢ Advanced
— Editor
— svn client
— Compiler suite (gfortran, ifort, pathf90, pgf90,...)

— Documentation tools (Doxygen, LaTeX)
— Debugger (gdb)
— Profiling tools

Elmer — some best practices *

CScC

v Use version control when possible

— If the code is left to your own local disk, you might as
well not write it at all

— Never fork! (userbase of 1000’s)
v Always make a consistency test for a new feature
— Always be backward compatible
— If not, implement a warning to the code
¢ Maximize the level of abstraction
— Essential for multiphysics software

— E.g. any number of physical equations,
any number of computational meshes,
any number of physical or numerical parameters —
without the need for recompilation

