
ElmerSolver Input File
(SIF)

Explained

ElmerTeam
CSC – IT Center for Science

Contents

Elmer Modules

Syntax of SIF

– Parameters, etc.

Sections of SIF:

– Header

– Constants

– Simulation

– Solver

– Body

– Equation

– Body Force

– Material

– Initial Condition

– Boundary Condition

Tables and Arrays

MATC

User Defined Functions

Elmer - Modules

Sections of SIF

– Header

– Constants

– Simulation

– Solver

– Body

– Equation

– Body Force

– Material

– Initial Condition

– Boundary Condition

• The SIF is structured into sections

The contents of each section is between the keyword above
and an End-statement

Sections of SIF: Header

Header

Mesh DB ".“ "dirname"

End

• Declares search paths for mesh

preceding path + directory
name of mesh database

Replace path and dirname
to fit your case

Sections of SIF: Constants

Constants

Gas Constant = Real 8.314E00

Gravity(4) = 0 -1 0 9.81

End

• Declares simulation-wide constants

a casted scalar constant

Gravity vector, an array with a
registered name

Sections of SIF: Simulation

Simulation

Coordinate System = "Cartesian“

Coordinate Mapping(3) = Integer 1 2 3

Coordinate Scaling = Real 0.001

Simulation Type =“Transient“

Output Intervals(2) = 10 1

• Declares details of the simulation:

choices:
Cartesian{1D,2D,3D},

Polar{2D,3D},

Cylindric, Cylindric

Symmetric, Axi

Symmetric

Permute or scale
coordinates

Steady State,

Transient or Scanning

Interval of results being
written to disk

Sections of SIF: Simulation

Steady State Max Iterations = 10

Steady State Min Iterations = 2

Timestepping Method = ”BDF”

Timestep Intervals(2) = 10 100

Timestep Sizes(2) = 0.1 1.0

Output File = "name.result"

Post File = "name.ep“ ! Or “name.vtu”

• Declares details of the simulation:
How many min/max
rounds on one
timelevel/in a steady state
simulation (see later)

Choices: BDF, Newmark
or Crank-Nicholson

Has to match array
dimension of Timestep
Sizes

The length of one time
step

Contains data for
restarting

Contains ElmerPost data

Restart File = “previous.result”

Restart Position = 10

Restart Time = 100

Max Output Level = 5

End

Sections of SIF: Simulation

• Declares details of the simulation:
Restart from this file at file-
entry (not necessarilly
timestep!) no. 10 and set
time to 100 time-units

Level of verbosity.
1 = errors,
3 = warnings,
4 = quite silent,
…
10 = very verbose

Sections of SIF: Solver

Solver 3

Equation = "Navier-Stokes“

Exec Solver = ”Always”

Linear System Solver = “Iterative"

Linear System Iterative Method = BiCGStab

Linear System Convergence Tolerance =1.0e-6

Linear System Abort Not Converged = True

Linear System Preconditioning = "ILU2"

• Declares a physical model to be solved
Numbering from 1 (priority)

The name of the equation

Always (default),
Before/After

Simulation/Timestep

Choices: Iterative,
Direct, MultiGrid

Lots of choices here

Convergence criterion

If not True (default) continues
simulation in any case

Lots of choices

Sections of SIF: Solver

Nonlinear System Convergence Tolerance=1.0e-5

Nonlinear System Max Iterations = 20

Nonlinear System Min Iterations = 1

Nonlinear System Newton After Iterations=10

Nonlinear System Newton AfterTolerance=1.0e-3

Steady State Convergence Tolerance = 1.0e-3

Stabilization Method = Stabilized

End

• Declares a physical model to be solved

Convergence criterion for
non-linear problem

The maximum rounds

The minimum rounds

Switch from Picard to Newton
scheme after 10 iterations ...

... or after this criterion (NV.:
has to be smaller than
convergence criterion ot hit)

The convergence on the time-
level

Convection needs
stabilization. Alternatives:
Bubbles, VMS, P2/P1

Sections of SIF: Solver

Sections of SIF: Body

Body 2

Name = “pipe"

Equation = 2

Material = 2

Body Force = 1

Initial Condition = 2

End

• Declares a physical model to be solved

Numbering from 1 to number of bodies

Identifier of the body

The assigned set of equations

The assigned material section

The assigned body force

The assigned initial condition

Sections of SIF: Body

Each Body has to have an Equation
and Material assigned
– Body Force, Initial Condition

optional

Two bodies can have the same

Material/Equation/

Body Force/Initial

Condition section assigned

Material 1

Body Force 1

Material 2

Equation 1

Body 2

Body 1

Equation 2

Sections of SIF: Equation

Equation 2

Active Solvers(2) = 1 3

Convection = Computed

NS Convect = False

End

• Declares set of solvers for a body

Numbering from 1 to number of equation
sets

Declares the solvers (according to their
numbers) to be solved within this set

Important switch to account for convection
term. Alternatives: None and Constant
(needs Convection Velocity to be declared
in the Material section)

Sets no convection for Navier-Stokes
(=Stokes) alternative:

Flow Model = Stokes

in the Solver section of Navier-Stokes

Sections of SIF: Body Force

Body Force 3

Flow Body Force 1 = 0.0

Flow Body Force 2 = -9.81

MyVariable = Real 0.0

Heat Source = 1.0

End

• Declares body forces and bulk and execution
conditions for a body

Numbering from 1 to number of body
forces

Gravity pointing in negative x-direction
applied to Navier-Stokes solver

A Dirichlet condition for a variable set
within the body

Heat source for the heat equation

Sections of SIF: Material

Material 1

Density = 1000.0

Heat Conductivity(3,3) = 1 0 0\

0 1 0\

0 0 2

Viscosity = Variable Temperature

Real MATC ”viscosity(tx)”

MyMaterialParameter = Real 0.0

End

• Declares set of material parameters for body

Numbering from 1 to
number of material

Always declare a density
(mandatory)

Parameters can be arrays

Or functions of other
variables

Non-keyword DB
parameters have to be
casted

Sections of SIF: Initial Condition

Initial Condition 2

Velocity 1 = Variable Coordinate 2

Real MATC ”42.0*(1.0 – tx/100.0)”

Velocity 2 = 0.0

MyVariable = Real 20.0

End

• Declares initial conditions for a body

By default restart values are used

Numbering from 1 to
number of IC’s

Initial condition as a
function of a variable ...

... and as a constant

Non-keyword DB
parameters have to be
casted

Sections of SIF: Boundary Condition

Boundary Condition 3

Target Boundaries(2) = 1 4

Velocity 1 = Variable Coordinate 2

Real MATC ”42.0*(1.0 – tx/100.0)”

Velocity 2 = 0.0

Normal-Tangential Velocity = Logical True

End

• Declares conditions at certain boundaries

Numbering from 1 to
number of BC’s

The boundaries of the
mesh the BC is
assigned to

Variable as a function
and ...

... as a constant

Set velocities in
normal-tangential
system

Tables and Arrays

Tables (piecewise linear
or cubic):

Arrays:

Expresions:

Density = Variable Temperature

Real cubic

0 900

273 1000

300 1020

400 1000

End

Target Boundaries(3) = 5 7 10

MyParamterArray(3,2) = Real 1 2\

3 4\

5 6

OneThird = Real $1.0/3.0

Input options for Real valued keywords

Most Real valued keywords are fetched using a method
that allows multiple functional dependency styles

– Constant value

– Dependence via linear (or spline) loop-up table

– Dependence via MATC in-line function

– Dependece via User Defined Function (UDF)

This related to all command file sections

– Body Force

– Material

– Boundary Condition

MATC

Syntax close to C

Even if-conditions and loops

Can be use for on-the-fly functions inside the SIF

Documentation on web-pages

Do not use with simple numeric expressions:

is much faster than

OneThird = Real $1.0/3.0

OneThird = Real MATC “1.0/3.0”

MATC

Use directly in section:

Even with more than one dependency:

Or declare functions (somewhere in SIF, outside a section)

being called:

Heat Capacity = Variable Temperature

Real MATC "2.1275E3 + 7.253E0*(tx - 273.16)"

Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576*tx(0) - 7.992E-03*tx(1)”

$ function stemp(X) {\

_stemp = 49.13 + 273.16 - 0.7576*X(0) - 7.992E-03*X(1)\

}

Temp = Variable Latitude, Coordinate 3

Real MATC “stemp(tx)”

User Defined Functions (UDF)

Written in Fortran 90

Dynamically linked to Elmer

Faster, if more complicated computations involved

Compilation command elmerf90

Call from within section:

elmerf90 myUDF.f90 –o myUDF.f90

MyVariable = Variable Temperature

Real Procedure ”myUDF” ”myRoutine”

User Defined Functions (UDF)

Example:

– Definitions loaded from DefUtils

– Header: Model access-point to all ElmerSolver inside data;
Node number N; input value T

FUNCTION getdensity(Model, N, T) RESULT(dens)

USE DefUtils !important definitions

IMPLICIT None

TYPE(Model_t) :: Model

INTEGER :: N

REAL(KIND=dp) :: T, dens

dens = 1000.0_dp*(1.0_dp - 1.0d-04*(T - 273.0_dp))

END FUNCTION getdensity

