CSC

Elmer Pre-processing utilities within ElmerSolver

ElmerTeam CSC – IT Center for Science

Alternatives for increasing mesh resolution

- Use of higher order nodal elements
 - Elmer supports 2nd to 4th order nodal elements
 - Unfortunately not all preprocessing steps are equally well supported for higher order elements
 - E.g. Netgen output supported only for linear elements
- Use of hierarhical p-element basis functions
 - Support up to 10th degree polynomials
 - In practice Element = p:2, or p:3
 - Not supported in all Solvers
- Mesh multiplication
 - Subdivision of elements by splitting

Note on bottle-necks in pre-processing

- After the solution pre-processing is typically the 2nd most time- and memory intensive task
- Mesh partitioning is typically less laborious than mesh generation
 - In Elmer we haven't utilized parallel graph partitioning libraries (e.g. ParMetis)
- Serial mesh generation limited to around ~10 M elements
- Finalizing the mesh in parallel level within ElmerSolver may be used to eliminate this bottle-neck

Finalizing the mesh in parallel level

- First make a coarse mesh and partition it
- Bisection of existing elements in each direction
 - 2^DIM^n -fold problem-size
 - Known as "Mesh Multiplication"
 - Simple inheritance of mesh grading
- Increase of element order (p-elements)
 - p-hierarchy enables the use of p-multigrid
- Extrusion of 2D layer into 3D for special cases
 - Example: Greenland Ice-sheet

Standard parallel workflow

- Both assembly and solution is done in parallel using MPI
- Assembly is trivially parallel
- This is the basic parallel workflow used for Elmer

Parallel workflow

Large meshes may be finilized at the parallel level

Mesh Multiplication, example

- Implemented in Elmer as internal strategy ~2005
- Mesh multiplication was applied to two meshes
 - Mesh A: structured, 62500 hexahedrons
 - Mesh B: unstructured, 65689 tetrahedrons
- The CPU time used is negligible

Mesh	#splits	#elems	#procs	T_center (s)	T_graded (s)
А	2	4 M	12	0.469	0.769
	2	4 M	128	0.039	0.069
	3	32 M	128	0.310	0.549
В	2	4.20 M	12	0.369	
	2	4.20 M	128	0.019	
	3	33.63 M	128	0.201	

Limitations of mesh multiplication

- Standard mesh multiplication does not increase geometric accuracy
 - Polygons retain their shape
 - Mesh multiplication could be made to honor boundary shapes but this is not currently done

- Optimal mesh grading difficult to achieve
 - The coarsest mesh level does not usually have sufficient information to implement fine level grading

Extrusion of partitioned meshes

- CSC
- Implemented as an internal strategy in ElmerSolver (2013)
- First partition a 2D mesh, then extrude into 3D
- Implemented also for partitioned meshes
 - Extruded lines belong to the same partition by construction!
- Deterministic, i.e. element and node numbering determined by the 2D mesh
 - Complexity: O(N)
- There are many problems of practical problems where the mesh extrusion of a initial 2D mesh provides a good solution
 - One such field is glasiology where glaciers are thin, yet the 2D approach is not always sufficient in accurary

Internal extrusion example: Aalto Vase

Utilizing extruded structures

- If the mesh is extruded it makes sense to utilize this fact also in later steps
 - Operators in the extruded directions
 - Combination of full 3D and 2D higher order models
- Tailored solvers that assume extruded structure
 - StructuredMeshMapper
 - StructuredProjectToPlane
 - StructuredFlowLine
- No assumptions on the numbering of the nodes is needed

Deforming meshes

- Meshes may be internally deformed
- MeshUpdate solver uses linear elasticity to deform the mesh
- RigidMeshMapper uses rigid deformations and their smooth transition to deform the mesh
- Deforming meshes have number of uses
 - Deforming structures in multiphysics simultion
 - ➡ E.g. fluid-structure interaction
 - Rotating & sliding structures
 - Geometry optimization
 - Mesh topology remains unchanged

Conclusions on internal meshing features

There are number of ways to increase the resolution of solution within ElmerSolver that eliminate meshing bottle-necks

- For complex cases these may still be unsatisfactory
- Internal mesh deformation may be used to solve complex problems without a need for remeshing
 - Large deformations may be problematic and topological changes impossible