
Elmer
Post-processing utilities within

ElmerSolver
ElmerTeam

CSC – IT Center for Science

Postprocessing utilities in ElmerSolver

Apart from saving distributed data there is a larger
number of capabilities within ElmerSolver to treat data
within ElmerSolver

– Data reduction

nD -> 1D, 0D

– Data averaging and filtering over time

– Derived fields

– Creating fields of material properties

This functionality is often achieved by use of atomic
auxialiry solvers

Derived fields

Many solvers have internal options for computing derived
fields (fluxes, heating powers,…)

Elmer offers several auxiliary solvers
– SaveMaterials: makes a material parameter into field variable

– Streamlines: computes the streamlines of 2D flow

– FluxComputation: given potential, computes the flux q = - c

– VorticitySolver: computes the vorticity of flow, w = 

– PotentialSolver: given flux, compute the potential - c = q

– Filtered Data: compute filtered data from time series
(mean, fourier coefficients,…)

– …

Usually auxiliary data need to be computed only after the
iterative solution is ready
– Exec Solver = after timestep

– Exec Solver = after all

– Exec Solver = before saving

Derived lower dimensional data

Derived boundary data

– SaveLine: Computes fluxes on-the-fly

Derived lumped (or 0D) data

– SaveScalars: Computes a large number of different
quantities on-the-fly

– FluidicForce: compute the fluidic force acting on a surface

– ElectricForce: compute the electrostatic froce using the
Maxwell stress tensor

– Many solvers compute lumped quantities internally for
later use
(Capacitance, Lumped spring,…)

Saving 1D data: SaveLine

Lines of interest may be defined on-the-fly

Flux computation using integration points on the
boundary – not the most accurate

By default saves all existing field variables

Saving 1D data: SaveLine…

Solver n

Equation = "SaveLine"

Procedure = File "SaveData" "SaveLine"

Filename = "g.dat"

File Append = Logical True

Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0

End

Boundary Condition m

Save Line = Logical True

End

Saving 0D data: SaveScalars

Operators on bodies

Statistical operators
– Min, max, min abs, max abs, mean, variance, deviation

Integral operators (quadratures on bodies)
– volume, int mean, int variance

– Diffusive energy, convective energy, potential energy

Operators on boundaries

Statistical operators
– Boundary min, boundary max, boundary min abs, max abs, mean,

boundary variance, boundary deviation, boundary sum

– Min, max, minabs, maxabs, mean

Integral operators (quadratures on boundary)
– area

– Diffusive flux, convective flux

Other operators
– nonlinear change, steady state change, time, timestep size,…

Saving 0D data: SaveScalars…

Solver n

Exec Solver = after timestep

Equation = String SaveScalars

Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature

Operator 1 = String max

Variable 2 = String Temperature

Operator 2 = String min

Variable 3 = String Temperature

Operator 3 = String mean

End

Boundary Condition m

Save Scalars = Logical True

End

Case: TwelveSolvers

Natural convection with ten auxialiary solvers

Case: Motivation

The purpose of the example is to show the flexibility of
the modular structure

The users should not be afraid to add new atomistic
solvers to perform specific tasks

A case of 12 solvers is rather rare, yet not totally
unrealitistic

Case: preliminaries

Square with hot wall
on right and cold wall
on left

Filled with viscous
fluid

Bouyancy modeled
with Boussinesq
approximation

Temperature
difference initiates a
convection roll

COLD HOT

Case: 12 solvers

1. Heat Equation

2. Navier-Stokes

3. FluxSolver: solve the heat flux

4. StreamSolver

5. VorticitySolver

6. DivergenceSolver

7. ShearrateSolver

8. IsosurfaceSolver

9. ResultOutputSolver

10. SaveGridData

11. SaveLine

12. SaveScalars

Case: Computational mesh

10000 bilinear
elements

Case: Navier-Stokes, primary fields

Pressure Velocity

Case: Heat equation, primary field

Case: Derived field, vorticity

Case: Derived field, Streamlines

Case: Derived field, diffusive flux

Case: Derived field, Shearrate

Example: nodal loads

Nodal heat loads

If equation is solved until convergence nodal loads
should only occur at boundaries

Element size h=1/20 ~weight for flux

Example:
view in GiD

Example:
view in Gmsh

Case: View in Paraview

Example: total flux

Saved by SaveScalars

Two ways of
computing the total
flux give different
approximations

When convergence is
reached the agreement
is good

Example: boundary flux

Saved by SaveLine

Three ways of
computing the
boundary flux give
different
approximations

At the corner the
nodal flux should be
normalized using only
h/2

Exercise

Study the command file with 12 solvers

Copy-paste an appropriate solver from there to some
existing case of your own

– ResultOutputSolver for VTU output

– StreamSolver, VorticitySolver, FluxSolver,…

Note: Make sure that the numbering of Solvers is
consistant

– Solvers that involve finite element solution you need to
activate by Active Solvers

Run the modified case

Visualize results in ElmerPost or Paraview

Conclusions

It is good to think in advance what kind of data you need

– 3D volume and 2D surface data

– Derived fields

– 1D line data

– 0D lumped data

Often the same reduction operations may be done also
at later stages but with significantly greater effort

