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Postprocessing utilities in EImerSolver 4‘

v Apart from saving distributed data there is a larger
number of capabilities within EImerSolver to treat data
within ElmerSolver

— Data reduction
@ nD->1D, 0D
— Data averaging and filtering over time
— Derived fields
— Creating fields of material properties

e This functionality is often achieved by use of atomic
auxialiry solvers



Derived fields *

CscC

¢ Many solvers have internal options for computing derived
fields (fluxes, heating powers,...)

v Elmer offers several auxiliary solvers
— SaveMaterials: makes a material parameter into field variable
— Streamlines: computes the streamlines of 2D flow
— FluxComputation: given potential, computes the flux g =-c V¢
— VorticitySolver: computes the vorticity of flow, w = Vx¢
— PotentialSolver: given flux, compute the potential - c V@ =q

— Filtered Data: compute filtered data from time series
(mean, fourier coefficients,...)

@ Usually auxiliary data need to be computed only after the
iterative solution is ready
— Exec Solver = after timestep
— Exec Solver = after all
— Exec Solver = before saving



Derived lower dimensional data *
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@ Derived boundary data

— Saveline: Computes fluxes on-the-fly

@ Derived lumped (or OD) data

— SaveScalars: Computes a large number of different
guantities on-the-fly

— FluidicForce: compute the fluidic force acting on a surface

— ElectricForce: compute the electrostatic froce using the
Maxwell stress tensor

— Many solvers compute lumped quantities internally for
later use
(Capacitance, Lumped spring,...)



Saving 1D data: Saveline *
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v Lines of interest may be defined on-the-fly

v Flux computation using integration points on the
boundary — not the most accurate

v By default saves all existing field variables



Saving 1D data: Saveline... *
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Solver n

Equation = "SavelLlne"

Procedure = File "SaveData" "SavelLine"

Filename = "g.dat"

File Append = Logical True

Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0
End

Boundary Condition m
Save Line = Logical True
End



Saving 0D data: SaveScalars *

cCscC

Operators on bodies
v Statistical operators

— Min, max, min abs, max abs, mean, variance, deviation
v Integral operators (quadratures on bodies)

— volume, int mean, int variance

— Diffusive energy, convective energy, potential energy
Operators on boundaries
v Statistical operators

— Boundary min, boundary max, boundary min abs, max abs, mean,
boundary variance, boundary deviation, boundary sum

— Min, max, minabs, maxabs, mean
@ Integral operators (quadratures on boundary)
— area
— Diffusive flux, convective flux
Other operators
— nonlinear change, steady state change, time, timestep size,...



Saving 0D data: SaveScalars... $
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Solver n

Exec Solver = after timestep
Equation = String SaveScalars
Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature
Operator 1 = String max
Variable 2 = String Temperature
Operator 2 = String min
Variable 3 = String Temperature
Operator 3 = String mean

End

Boundary Condition m
Save Scalars = Logical True
End
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Case: TwelveSolvers

Natural convection with ten auxialiary solvers



Case: Motivation *
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v The purpose of the example is to show the flexibility of
the modular structure

@ The users should not be afraid to add new atomistic
solvers to perform specific tasks

v A case of 12 solvers is rather rare, yet not totally
unrealitistic



Case: preliminaries

@ Square with hot wall
on right and cold wall
on left

o Filled with viscous
fluid

@ Bouyancy modeled
with Boussinesq

approximation
COLD

v Temperature
difference initiates a
convection roll

CscC

HOT



Case: 12 solvers *
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1. Heat Equation

2. Navier-Stokes

3. FluxSolver: solve the heat flux
StreamSolver

VorticitySolver
DivergenceSolver
ShearrateSolver
IsosurfaceSolver

L X N O U ok

ResultOutputSolver
10. SaveGridData

11. Saveline

12. SaveScalars



Case: Computational mesh *
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10000 bilinear
elements




Case: Navier-Stokes, primary fields
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Case: Heat equation, primary field *
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Case: Derived field, vorticity *
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Case: Derived field, Streamlines *
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Case: Derived field, diffusive flux *

CcscC




Case: Derived field, Shearrate *
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Example: nodal loads *
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v If equation is solved until convergence nodal loads
should only occur at boundaries

v Element size h=1/20 ~weight for flux

Nodal heat loads
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Case: View in Paraview
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Example: total flux

v Saved by SaveScalars ¢
¢ Two ways of 35

computing the total al

flux give different
approximations

Wim

2+

@ When convergence is
reached the agreement
is good
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: r
—int flux
—min flux
— max flux
—sum loads

10



Example: boundary flux

v Saved by Saveline

v Three ways of
computing the
boundary flux give
different
approximations

o At the corner the
nodal flux should be

normalized using only
h/2

~-
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Fluxes at the boundary

—20*(nodal flux)
— {boundary flux) [
— flux at boundary
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Exercise *
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v Study the command file with 12 solvers

v Copy-paste an appropriate solver from there to some
existing case of your own

— ResultOutputSolver for VTU output
— StreamSolver, VorticitySolver, FluxSolver,...

v Note: Make sure that the numbering of Solvers is
consistant

— Solvers that involve finite element solution you need to
activate by Active Solvers

@ Run the modified case
@ Visualize results in EImerPost or Paraview



Conclusions *
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v Itis good to think in advance what kind of data you need
— 3D volume and 2D surface data
— Derived fields
— 1D line data
— OD lumped data

v Often the same reduction operations may be done also
at later stages but with significantly greater effort



