# **Example**: Deformation of highly viscous liquid

Elmer Basic Course Authors: T. Zwinger and M. Lyly



# **Problem Outline**

- Geometry
  - Square with 100 x 20 m
  - Free surface
- > Dynamics:
  - Constant load ±10m around middle
  - $p_{ext} = 1 \text{ MN m}^{-2}$
  - Gravity in -y
- > Material (similar to temperate ice):
  - $\mu = 10^{14} \text{ kg m}^{-1} \text{ s}^{-1}$
  - $\rho = 900 \text{ kg m}^{-3}$
- Integration time:
  - 4 years in steps of 1 months (48 steps)



Units in meters



1. Elementary entities



- 1. Elementary entities
- 2. Add

| Gn     | nsh                                                                                    | X                                                                                                                                                                                                 |
|--------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tools  | Help                                                                                   |                                                                                                                                                                                                   |
| ometry |                                                                                        | •                                                                                                                                                                                                 |
| A      | dd                                                                                     |                                                                                                                                                                                                   |
| De     | lete                                                                                   |                                                                                                                                                                                                   |
| Tran   | slate                                                                                  |                                                                                                                                                                                                   |
| Rot    | tate                                                                                   |                                                                                                                                                                                                   |
| Sp     | olit                                                                                   |                                                                                                                                                                                                   |
| Sc     | ale                                                                                    |                                                                                                                                                                                                   |
| Symr   | netry                                                                                  |                                                                                                                                                                                                   |
| Extr   | ude                                                                                    |                                                                                                                                                                                                   |
| Cohe   | rence                                                                                  |                                                                                                                                                                                                   |
|        | Gn<br>Tools<br>cometry<br>Ad<br>Del<br>Tran<br>Rot<br>Sp<br>Sc<br>Symr<br>Extr<br>Cohe | Gmsh         Tools       Help         Tools       Help         Add         Delete         Translate         Rotate         Split         Scale         Symmetry         Extrude         Coherence |

- 1. Elementary entities
- 2. Add
- 3. New





- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point



- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point
  - 1. (0,0,0) length 5
  - 2. (100,0,0) length 5

| Contextual Geometry Definitions |                                     |  |  |  |
|---------------------------------|-------------------------------------|--|--|--|
| Parameter Point                 | Translation Rotation Scale Symmetry |  |  |  |
| 0                               | X coordinate                        |  |  |  |
| 0                               | Y coordinate                        |  |  |  |
| 0                               | Z coordinate                        |  |  |  |
| 5                               | Characteristic length               |  |  |  |
| 0.1 0.1 0.1                     | Snapping grid spacing               |  |  |  |
|                                 |                                     |  |  |  |
|                                 | Add <=                              |  |  |  |

- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point
  - 1. (0,0,0) length 5
  - 2. (100,0,0) length 5
  - 3. (100,20,0) length 1
  - 4. (0,20,0) length 1

| Contextual Geometry Definitions |                                     |  |  |  |
|---------------------------------|-------------------------------------|--|--|--|
| Parameter Point                 | Translation Rotation Scale Symmetry |  |  |  |
| 100                             | X coordinate                        |  |  |  |
| 20                              | Y coordinate                        |  |  |  |
| 0                               | Z coordinate                        |  |  |  |
| 1                               | Characteristic length               |  |  |  |
| 0.1 0.1 0.1                     | Snapping grid spacing               |  |  |  |
|                                 |                                     |  |  |  |
|                                 | Add <                               |  |  |  |
|                                 |                                     |  |  |  |

csc

- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point
  - 1. (0,0,0) length 5
  - 2. (100,0,0) length 5
  - 3. (100,20,0) length 1
  - 4. (0,20,0) length 1

#### 5. Line

- 1. Click on consecutive points
- 2. "q" when ready



- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point
  - 1. (0,0,0) length 5
  - 2. (100,0,0) length 5
  - 3. (100,20,0) length 1
  - 4. (0,20,0) length 1

#### 5. Line

- 1. Click on consecutive points
- 2. "q" when ready

#### 6. Plane Surface

1. Click on line



- 1. Elementary entities
- 2. Add
- 3. New
- 4. Point
  - 1. (0,0,0) length 5
  - 2. (100,0,0) length 5
  - 3. (100,20,0) length 1
  - 4. (0,20,0) length 1

#### 5. Line

- 1. Click on consecutive points
- 2. "q" when ready

#### 6. Plane Surface

1. Click on line



- 1. Elementary entities
- 2. Add
- 3. New

#### 4. Point

- 1. (0,0,0) length 5
- 2. (100,0,0) length 5
- 3. (100,20,0) length 1
- 4. (0,20,0) length 1

#### 5. Line

- 1. Click on consecutive points
- 2. "q" when ready

#### 6. Plane Surface

1. Click on line

#### 7. Mesh

- 1. Press "2D"
- 2. Press Save

| Δ                 | Gmsh 🛛 |      | X |  |
|-------------------|--------|------|---|--|
| <u>F</u> ile      | Tools  | Help |   |  |
| Me                | esh    |      | • |  |
| Define            |        |      |   |  |
| Inspect           |        |      |   |  |
| Delete            |        |      |   |  |
| 1D                |        |      |   |  |
| 2D                |        |      |   |  |
| 3D                |        |      |   |  |
| First order       |        |      |   |  |
| Second order      |        |      |   |  |
| Refine            |        |      |   |  |
| Optimize          |        |      |   |  |
| Optimize (Netgen) |        |      |   |  |
| Partition         |        |      |   |  |
| Save              |        |      |   |  |



# Transferring the Mesh

**Obtaining a pre-view for ElmerPost** 



ElmerGrid 14 3 deform.msh -autoclean -order 1.0 0.1 0.01

**Obtaining a mesh directory for ElmerSolver** 

ElmerGrid 14 2 deform.msh -autoclean -order 1.0 0.1 0.01



# **Boundary Conditions**

Initial Condition

Mesh Update 1/2 = 0
Velocity 1/2 = 0
FreeSurf = 20.0

#### > Sidewalls:

Velocity 1/2 = 0Mesh Update 1 = 0.0

#### > Bottom wall:

Velocity 1/2 = 0

Mesh Update 1/2 = 0.0

#### **Body Force:**

Flow BodyForce 1 = 0Flow BodyForce 2 = -9.81

#### Free surface:

Body ID = 2
Mesh Update 1 = 0
Mesh Update 2 = Variable FreeSurface
 Real MATC "tx - 20.0"

External Pressure = Variable Coordinate 1 Real 0.0 0 39.999 0







Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

```
math nodes = orignodes + Mesh.Update(0:2,time($t))
```



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



Velocities in m a<sup>-1</sup>

Elmer-Post: math v = Velocity\_abs \* 60 \* 60 \* 24 \* 365.25

Visualizing the deformation

math orignodes = nodes

```
Edit • Timestep Control ...
```

Do after frame:

math nodes = orignodes + Mesh.Update(0:2,time(\$t))



# Exercises

#### Write MATC function:

```
$ function externalload(X) {\
    if (X(0) > 40) {\
        if (X(0) < 60)\
        _externalload = -1.0E06;\
        else _externalload = 0.0;\
    }else _externalload = 0.0;\
}</pre>
```

```
External Pressure = Variable Coordinate 1
Real MATC "externalload(tx)"
```

#### Increase load with time:

```
$ function externalload(X) {\
if (X(0) > 40) {\
if (X(0) < 60){\
if (X(1) < (3.0 * 31446926)){\
__externalload =\
__1.0E06 * X(1)/(3.0 * 31446926);\
}else _externalload = -1.0E06;\
}else _externalload = 0.0;\
}else _externalload = 0.0;\
}
External Pressure = Variable Coordinate 1, Time
Real MATC "externalload(tx)"</pre>
```

