Log file opened on Mon Mar 3 19:39:51 2014 Host: md74 pid: 2834 nodeid: 0 nnodes: 1 Gromacs version: VERSION 4.6.5 Precision: single Memory model: 64 bit MPI library: thread_mpi OpenMP support: enabled GPU support: disabled invsqrt routine: gmx_software_invsqrt(x) CPU acceleration: SSE4.1 FFT library: fftw-3.3.2-sse2 Large file support: enabled RDTSCP usage: enabled Built on: Wed Dec 4 12:18:58 CET 2013 Built by: root@md74 [CMAKE] Build OS/arch: Linux 3.5.0-30-generic x86_64 Build CPU vendor: GenuineIntel Build CPU brand: Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz Build CPU family: 6 Model: 26 Stepping: 5 Build CPU features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pdcm popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 C compiler: /usr/bin/gcc GNU gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3 C compiler flags: -msse4.1 -Wextra -Wno-missing-field-initializers -Wno-sign-compare -Wall -Wno-unused -Wunused-value -fomit-frame-pointer -funroll-all-loops -fexcess-precision=fast -O3 -DNDEBUG :-) G R O M A C S (-: GROningen Mixture of Alchemy and Childrens' Stories :-) VERSION 4.6.5 (-: Contributions from Mark Abraham, Emile Apol, Rossen Apostolov, Herman J.C. Berendsen, Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra, Gerrit Groenhof, Christoph Junghans, Peter Kasson, Carsten Kutzner, Per Larsson, Pieter Meulenhoff, Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz, Michael Shirts, Alfons Sijbers, Peter Tieleman, Berk Hess, David van der Spoel, and Erik Lindahl. Copyright (c) 1991-2000, University of Groningen, The Netherlands. Copyright (c) 2001-2012,2013, The GROMACS development team at Uppsala University & The Royal Institute of Technology, Sweden. check out http://www.gromacs.org for more information. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. :-) mdrun (-: ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation J. Chem. Theory Comput. 4 (2008) pp. 435-447 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen GROMACS: Fast, Flexible and Free J. Comp. Chem. 26 (2005) pp. 1701-1719 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ E. Lindahl and B. Hess and D. van der Spoel GROMACS 3.0: A package for molecular simulation and trajectory analysis J. Mol. Mod. 7 (2001) pp. 306-317 -------- -------- --- Thank You --- -------- -------- ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ H. J. C. Berendsen, D. van der Spoel and R. van Drunen GROMACS: A message-passing parallel molecular dynamics implementation Comp. Phys. Comm. 91 (1995) pp. 43-56 -------- -------- --- Thank You --- -------- -------- Input Parameters: integrator = md nsteps = 10000 init-step = 0 cutoff-scheme = Group ns_type = Grid nstlist = 10 ndelta = 2 nstcomm = 10 comm-mode = Linear nstlog = 1000 nstxout = 1 nstvout = 1 nstfout = 0 nstcalcenergy = 10 nstenergy = 10 nstxtcout = 100 init-t = 0 delta-t = 0.002 xtcprec = 1000 fourierspacing = 0.12 nkx = 32 nky = 32 nkz = 32 pme-order = 4 ewald-rtol = 1e-05 ewald-geometry = 0 epsilon-surface = 0 optimize-fft = FALSE ePBC = xyz bPeriodicMols = FALSE bContinuation = FALSE bShakeSOR = FALSE etc = Berendsen bPrintNHChains = FALSE nsttcouple = 10 epc = Berendsen epctype = Isotropic nstpcouple = 10 tau-p = 1 ref-p (3x3): ref-p[ 0]={ 1.00000e+00, 0.00000e+00, 0.00000e+00} ref-p[ 1]={ 0.00000e+00, 1.00000e+00, 0.00000e+00} ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 1.00000e+00} compress (3x3): compress[ 0]={ 5.00000e-06, 0.00000e+00, 0.00000e+00} compress[ 1]={ 0.00000e+00, 5.00000e-06, 0.00000e+00} compress[ 2]={ 0.00000e+00, 0.00000e+00, 5.00000e-06} refcoord-scaling = No posres-com (3): posres-com[0]= 0.00000e+00 posres-com[1]= 0.00000e+00 posres-com[2]= 0.00000e+00 posres-comB (3): posres-comB[0]= 0.00000e+00 posres-comB[1]= 0.00000e+00 posres-comB[2]= 0.00000e+00 verlet-buffer-drift = 0.005 rlist = 1 rlistlong = 1 nstcalclr = 0 rtpi = 0.05 coulombtype = PME coulomb-modifier = None rcoulomb-switch = 0 rcoulomb = 1 vdwtype = Cut-off vdw-modifier = None rvdw-switch = 0 rvdw = 1 epsilon-r = 1 epsilon-rf = 1 tabext = 1 implicit-solvent = No gb-algorithm = Still gb-epsilon-solvent = 80 nstgbradii = 1 rgbradii = 1 gb-saltconc = 0 gb-obc-alpha = 1 gb-obc-beta = 0.8 gb-obc-gamma = 4.85 gb-dielectric-offset = 0.009 sa-algorithm = Ace-approximation sa-surface-tension = 2.05016 DispCorr = No bSimTemp = FALSE free-energy = no nwall = 0 wall-type = 9-3 wall-atomtype[0] = -1 wall-atomtype[1] = -1 wall-density[0] = 0 wall-density[1] = 0 wall-ewald-zfac = 3 pull = no rotation = FALSE disre = No disre-weighting = Conservative disre-mixed = FALSE dr-fc = 1000 dr-tau = 0 nstdisreout = 100 orires-fc = 0 orires-tau = 0 nstorireout = 100 dihre-fc = 0 em-stepsize = 0.01 em-tol = 10 niter = 20 fc-stepsize = 0 nstcgsteep = 100 nbfgscorr = 10 ConstAlg = Lincs shake-tol = 0.0001 lincs-order = 4 lincs-warnangle = 30 lincs-iter = 1 bd-fric = 0 ld-seed = 1993 cos-accel = 0 deform (3x3): deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00} adress = FALSE userint1 = 0 userint2 = 0 userint3 = 0 userint4 = 0 userreal1 = 0 userreal2 = 0 userreal3 = 0 userreal4 = 0 grpopts: nrdf: 11877 ref-t: 298 tau-t: 0.1 anneal: No ann-npoints: 0 acc: 0 0 0 nfreeze: N N N energygrp-flags[ 0]: 0 efield-x: n = 0 efield-xt: n = 0 efield-y: n = 0 efield-yt: n = 0 efield-z: n = 0 efield-zt: n = 0 bQMMM = FALSE QMconstraints = 0 QMMMscheme = 0 scalefactor = 1 qm-opts: ngQM = 0 Initializing Domain Decomposition on 8 nodes Dynamic load balancing: auto Will sort the charge groups at every domain (re)decomposition Initial maximum inter charge-group distances: two-body bonded interactions: 0.440 nm, LJ-14, atoms 11 23 multi-body bonded interactions: 0.440 nm, Ryckaert-Bell., atoms 11 23 Minimum cell size due to bonded interactions: 0.483 nm Using 0 separate PME nodes, as there are too few total nodes for efficient splitting Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25 Optimizing the DD grid for 8 cells with a minimum initial size of 0.604 nm The maximum allowed number of cells is: X 5 Y 5 Z 5 Domain decomposition grid 4 x 2 x 1, separate PME nodes 0 PME domain decomposition: 4 x 2 x 1 Domain decomposition nodeid 0, coordinates 0 0 0 Using 8 MPI threads Detecting CPU-specific acceleration. Present hardware specification: Vendor: GenuineIntel Brand: Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz Family: 6 Model: 26 Stepping: 5 Features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pdcm popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 Acceleration most likely to fit this hardware: SSE4.1 Acceleration selected at GROMACS compile time: SSE4.1 Table routines are used for coulomb: FALSE Table routines are used for vdw: FALSE Will do PME sum in reciprocal space. ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen A smooth particle mesh Ewald method J. Chem. Phys. 103 (1995) pp. 8577-8592 -------- -------- --- Thank You --- -------- -------- Will do ordinary reciprocal space Ewald sum. Using a Gaussian width (1/beta) of 0.320163 nm for Ewald Cut-off's: NS: 1 Coulomb: 1 LJ: 1 System total charge: -0.000 Generated table with 1000 data points for Ewald. Tabscale = 500 points/nm Generated table with 1000 data points for LJ6. Tabscale = 500 points/nm Generated table with 1000 data points for LJ12. Tabscale = 500 points/nm Generated table with 1000 data points for 1-4 COUL. Tabscale = 500 points/nm Generated table with 1000 data points for 1-4 LJ6. Tabscale = 500 points/nm Generated table with 1000 data points for 1-4 LJ12. Tabscale = 500 points/nm Enabling SPC-like water optimization for 1300 molecules. Potential shift: LJ r^-12: 0.000 r^-6 0.000, Ewald 0.000e+00 Initialized non-bonded Ewald correction tables, spacing: 6.60e-04 size: 3033 Removing pbc first time Pinning threads with an auto-selected logical core stride of 1 Linking all bonded interactions to atoms There are 238 inter charge-group exclusions, will use an extra communication step for exclusion forces for PME The initial number of communication pulses is: X 2 Y 1 The initial domain decomposition cell size is: X 0.85 nm Y 1.71 nm The maximum allowed distance for charge groups involved in interactions is: non-bonded interactions 1.000 nm (the following are initial values, they could change due to box deformation) two-body bonded interactions (-rdd) 1.000 nm multi-body bonded interactions (-rdd) 0.853 nm When dynamic load balancing gets turned on, these settings will change to: The maximum number of communication pulses is: X 2 Y 1 The minimum size for domain decomposition cells is 0.646 nm The requested allowed shrink of DD cells (option -dds) is: 0.80 The allowed shrink of domain decomposition cells is: X 0.76 Y 0.59 The maximum allowed distance for charge groups involved in interactions is: non-bonded interactions 1.000 nm two-body bonded interactions (-rdd) 1.000 nm multi-body bonded interactions (-rdd) 0.646 nm Making 2D domain decomposition grid 4 x 2 x 1, home cell index 0 0 0 Center of mass motion removal mode is Linear We have the following groups for center of mass motion removal: 0: rest ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++ H. J. C. Berendsen, J. P. M. Postma, A. DiNola and J. R. Haak Molecular dynamics with coupling to an external bath J. Chem. Phys. 81 (1984) pp. 3684-3690 -------- -------- --- Thank You --- -------- -------- There are: 3960 Atoms Charge group distribution at step 0: 159 167 171 158 170 167 161 166 Grid: 5 x 5 x 5 cells Initial temperature: 0 K Started mdrun on node 0 Mon Mar 3 19:39:51 2014 Step Time Lambda 0 0.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 1.50838e+03 1.16904e+03 2.37673e+00 6.90984e+01 7.16940e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.24150e+02 1.41515e+04 -5.47516e+04 -5.98691e+03 -4.33422e+04 Kinetic En. Total Energy Temperature Pressure (bar) 2.08903e+02 -4.31333e+04 4.23089e+00 1.06591e+04 DD step 9 load imb.: force 8.8% DD step 999 load imb.: force 7.4% Step Time Lambda 1000 2.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 1.92934e+03 1.57614e+03 6.08531e+00 6.95600e+01 5.66413e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.07650e+02 8.17048e+03 -5.44238e+04 -5.73261e+03 -4.79405e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.45617e+04 -3.33787e+04 2.94917e+02 1.46447e+03 DD step 1999 load imb.: force 12.8% Step Time Lambda 2000 4.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 2.33052e+03 1.64012e+03 1.36921e+01 6.08974e+01 6.34997e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.19605e+02 8.20140e+03 -5.45397e+04 -5.78037e+03 -4.75904e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.45349e+04 -3.30555e+04 2.94373e+02 1.67696e+03 DD step 2999 load imb.: force 16.1% Step Time Lambda 3000 6.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 2.35439e+03 1.72239e+03 9.38069e+00 9.22758e+01 9.51456e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.24915e+02 7.49860e+03 -5.40649e+04 -5.75285e+03 -4.76206e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.45011e+04 -3.31195e+04 2.93690e+02 9.03004e+02 DD step 3999 load imb.: force 31.0% Step Time Lambda 4000 8.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 2.83946e+03 1.79537e+03 7.89651e+00 1.04793e+02 5.94397e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.42801e+02 8.20855e+03 -5.55059e+04 -5.77520e+03 -4.78228e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.46657e+04 -3.31571e+04 2.97023e+02 -1.64983e+02 DD step 4999 load imb.: force 13.9% Step Time Lambda 5000 10.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 2.85421e+03 1.78343e+03 1.15875e+01 7.82027e+01 7.76498e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.35347e+02 8.16162e+03 -5.54942e+04 -5.77334e+03 -4.78655e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.46363e+04 -3.32292e+04 2.96426e+02 1.72787e+03 DD step 5999 load imb.: force 29.4% Step Time Lambda 6000 12.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 3.04140e+03 1.83132e+03 1.24487e+00 7.26094e+01 6.54566e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.19744e+02 7.90682e+03 -5.56986e+04 -5.76848e+03 -4.81285e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.46854e+04 -3.34430e+04 2.97422e+02 4.25719e+02 DD step 6999 load imb.: force 11.8% Step Time Lambda 7000 14.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 3.36964e+03 1.93767e+03 4.69468e+00 7.27173e+01 7.21244e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.16241e+02 8.15200e+03 -5.63799e+04 -5.79132e+03 -4.81462e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.48343e+04 -3.33119e+04 3.00436e+02 -9.22522e+01 DD step 7999 load imb.: force 14.7% Step Time Lambda 8000 16.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 3.45444e+03 2.01576e+03 7.85119e+00 7.50137e+01 6.06712e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.16534e+02 8.64230e+03 -5.76922e+04 -5.78749e+03 -4.88072e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.49591e+04 -3.38480e+04 3.02965e+02 -4.58115e+02 DD step 8999 load imb.: force 11.1% Step Time Lambda 9000 18.00000 0.00000 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 3.61158e+03 2.04954e+03 5.12403e+00 9.15925e+01 5.30020e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.17737e+02 8.65090e+03 -5.75332e+04 -5.79864e+03 -4.84524e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.47666e+04 -3.36858e+04 2.99065e+02 -9.28294e+02 DD step 9999 load imb.: force 18.3% Step Time Lambda 10000 20.00000 0.00000 Writing checkpoint, step 10000 at Mon Mar 3 19:42:09 2014 Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 3.68614e+03 2.08649e+03 1.40044e+01 9.23197e+01 7.80435e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.07067e+02 8.68474e+03 -5.76404e+04 -5.83631e+03 -4.84279e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.44779e+04 -3.39500e+04 2.93219e+02 1.91117e+02 <====== ############### ==> <==== A V E R A G E S ====> <== ############### ======> Statistics over 10001 steps using 1001 frames Energies (kJ/mol) Bond Angle Proper Dih. Ryckaert-Bell. LJ-14 2.85085e+03 1.80734e+03 7.08262e+00 8.03121e+01 6.79219e+01 Coulomb-14 LJ (SR) Coulomb (SR) Coul. recip. Potential 4.20817e+02 8.19708e+03 -5.57201e+04 -5.77909e+03 -4.80678e+04 Kinetic En. Total Energy Temperature Pressure (bar) 1.46613e+04 -3.34065e+04 2.96934e+02 5.32662e+02 Box-X Box-Y Box-Z 3.46109e+00 3.46109e+00 3.46109e+00 Total Virial (kJ/mol) 4.17389e+03 -1.98962e+01 -2.35062e+00 -1.98961e+01 4.25491e+03 -1.73824e+01 -2.35055e+00 -1.73822e+01 4.27240e+03 Pressure (bar) 5.66143e+02 2.27383e+01 5.52858e+00 2.27382e+01 5.18885e+02 1.31783e+01 5.52852e+00 1.31781e+01 5.12959e+02 M E G A - F L O P S A C C O U N T I N G NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table W3=SPC/TIP3p W4=TIP4p (single or pairs) V&F=Potential and force V=Potential only F=Force only Computing: M-Number M-Flops % Flops ----------------------------------------------------------------------------- NB Elec. [V&F] 287.569728 287.570 0.1 NB Elec. [F] 2277.687564 2277.688 0.5 NB Elec. [W3,V&F] 69.120759 69.121 0.0 NB Elec. [W3,F] 549.140418 549.140 0.1 NB VdW & Elec. [V&F] 234.138267 234.138 0.1 NB VdW & Elec. [F] 1715.050971 1715.051 0.4 NB VdW & Elec. [W3,V&F] 519.740560 519.741 0.1 NB VdW & Elec. [W3,F] 3997.697634 3997.698 0.9 NB VdW & Elec. [W3-W3,V&F] 34825.256640 34825.257 8.1 NB VdW & Elec. [W3-W3,F] 272986.665534 272986.666 63.2 1,4 nonbonded interactions 1.450145 130.513 0.0 Calc Weights 118.811880 4277.228 1.0 Spread Q Bspline 2534.653440 5069.307 1.2 Gather F Bspline 2534.653440 15207.921 3.5 3D-FFT 9831.383040 78651.064 18.2 Solve PME 20.482048 1310.851 0.3 NS-Pairs 236.850985 4973.871 1.2 Reset In Box 1.320319 3.961 0.0 CG-CoM 3.967920 11.904 0.0 Bonds 26.592659 1568.967 0.4 Angles 14.081408 2365.677 0.5 Propers 0.080008 18.322 0.0 RB-Dihedrals 1.120112 276.668 0.1 Virial 4.324320 77.838 0.0 Stop-CM 3.967920 39.679 0.0 P-Coupling 39.603960 237.624 0.1 Calc-Ekin 7.927920 214.054 0.0 ----------------------------------------------------------------------------- Total 431897.515 100.0 ----------------------------------------------------------------------------- D O M A I N D E C O M P O S I T I O N S T A T I S T I C S av. #atoms communicated per step for force: 2 x 8953.9 Average load imbalance: 16.2 % Part of the total run time spent waiting due to load imbalance: 1.1 % R E A L C Y C L E A N D T I M E A C C O U N T I N G Computing: Nodes Th. Count Wall t (s) G-Cycles % ----------------------------------------------------------------------------- Domain decomp. 8 1 1001 7.212 179.327 5.2 DD comm. load 8 1 101 0.118 2.937 0.1 Neighbor search 8 1 1001 0.889 22.099 0.6 Comm. coord. 8 1 10001 29.237 726.935 21.1 Force 8 1 10001 10.001 248.672 7.2 Wait + Comm. F 8 1 10001 3.711 92.281 2.7 PME mesh 8 1 10001 72.853 1811.373 52.5 Write traj. 8 1 10001 5.099 126.779 3.7 Update 8 1 10001 0.180 4.478 0.1 Comm. energies 8 1 1001 9.095 226.131 6.5 Rest 8 0.481 11.958 0.3 ----------------------------------------------------------------------------- Total 8 138.877 3452.968 100.0 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- PME redist. X/F 8 1 20002 50.498 1255.557 36.4 PME spread/gather 8 1 20002 12.992 323.027 9.4 PME 3D-FFT 8 1 20002 0.974 24.214 0.7 PME 3D-FFT Comm. 8 1 40004 8.064 200.510 5.8 PME solve 8 1 10001 0.294 7.300 0.2 ----------------------------------------------------------------------------- NOTE: 7 % of the run time was spent communicating energies, you might want to use the -gcom option of mdrun Core t (s) Wall t (s) (%) Time: 561.840 138.877 404.6 (ns/day) (hour/ns) Performance: 12.444 1.929 Finished mdrun on node 0 Mon Mar 3 19:42:10 2014