<<Up     Contents

Levi-Civita symbol

The Levi-Civita[?] symbol, also called the permutation symbol, is defined as follow:
<math>\epsilon_{ijk} =
\left\{ \begin{matrix} +1 & \mbox{if } (i,j,k) \mbox{ is } (1,2,3), (2,3,1) \mbox{ or } (3,1,2)\\ -1 & \mbox{if } (i,j,k) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3)\\ 0 & \mbox{otherwise: }i=j \mbox{ or } j=k \mbox{ or } k=i \end{matrix} \right. </math>

It is used in many areas of mathematics and physics. For example, in linear algebra, the cross product of two vectors can be written as:

<math>
\mathbf{a \times b} =
  \begin{vmatrix} 
    \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} \\
    a_1 & a_2 & a_3 \\
    b_1 & b_2 & b_3 \\
  \end{vmatrix}
= \sum_{i,j,k=1}^3 \epsilon_{ijk} \mathbf{e_i} a_j b_k </math> or more simply:
<math>
\mathbf{a \times b} = \mathbf{c},\ c_i = \sum_{j,k=1}^3 \epsilon_{ijk} a_j b_k </math>

This can be further simplified by using Einstein notation.

The tensor whose components are given by the Levi-Civita symbol (a tensor of covariant rank 3) is sometimes called the permutation tensor.

The Levi-Civita symbol can be generalized to higher dimensions:

<math>\epsilon_{ijkl\dots} =
\left\{ \begin{matrix} +1 & \mbox{if }(i,j,k,l,\dots) \mbox{ is an even permutation of } (1,2,3,4,\dots) \\ -1 & \mbox{if }(i,j,k,l,\dots) \mbox{ is an odd permutation of } (1,2,3,4,\dots) \\ 0 & \mbox{if any two labels are the same} \end{matrix} \right. </math>

See even permutation or symmetric group for a definition of 'even permutation' and 'odd permutation'

A related symbol is the Kronecker delta.

wikipedia.org dumped 2003-03-17 with terodump