<<Up     Contents

Jacobson radical

The Jacobson radical of a ring R is an ideal of R which in a sense contains "superfluous" elements of R which are "close to zero". It is denoted by J(R) and can be defined in the following equivalent ways:

Note that the last property does not mean that every element x of R such that 1-x is invertible must be an element of J(R). Also, if R is not commutative, then J(R) is not necessarily equal to the intersection of all two-sided maximal ideals in R.

Examples:

Properties

Unless R is the trivial ring {0}, the Jacobson radical is always a proper ideal in R.

If R is commutative and finitely generated, then J(R) is equal to the nilradical[?] of R.

The Jacobson radical of the ring R/J(R) is zero. Rings with zero Jacobson radical are called semiprimitive[?].

If f : R -> S is a surjective ring homomorphism, then f(J(R)) ⊆ J(S).

If M is a finitely generated left R-module with J(R)M = M, then M = 0 (Nakayama lemma).

J(R) contains every nil ideal[?] of R. If R is left or right artinian, then J(R) is a nilpotent ideal[?].

See also: radical of a module[?].


This article (or an earlier version of it) was based on the Jacobson radical article (http://www.planetmath.org/encyclopedia/JacobsonRadical.html) from PlanetMath (http://www.planetmath.org).

wikipedia.org dumped 2003-03-17 with terodump