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Executive Summary 
 

Research Questions 
 

What are the advantages and disadvantages of Bayesian statistical techniques in 
clinical trial design and analysis, and what is the potential impact of these approaches 
on policy-level decisionmaking by the Centers for Medicare & Medicaid Services 
(CMS)? 

 
Methods 

 
We provide a basic tutorial on Bayesian statistics and the possible uses of such 

statistics in clinical trial design and analysis.  We conducted a synthesis of existing 
published research focusing on how Bayesian techniques can modify inferences that 
affect policy-level decisionmaking.  Noting that subgroup analysis is a particularly fruitful 
application of Bayesian methodology, and an area of particular interest to CMS, we 
focused our efforts there rather on the design of such trials.  We used simulation studies 
and a case study of patient-level data from eight trials to explore Bayesian techniques in 
the CMS decisional context in the clinical domain of the prevention of sudden cardiac 
death and the use of the implantable cardioverter defibrillator (ICD).  We combined 
knowledge gained through the literature review, simulation studies, and the case study 
to provide findings concerning the use of Bayesian approaches specific to the CMS 
context. 

 
Results 

 
Our literature review summarized articles categorized into four themes: (1) the 

advantages and disadvantages of Bayesian techniques in clinical trial design and 
analysis; (2) the use of Bayesian techniques in subgroup analyses; (3) the use of 
Bayesian techniques in meta-analysis; and (4) the effect of using Bayesian techniques 
on policymaking/decisionmaking.  Our simulation studies demonstrated that while single 
trials may be adequately powered to detect main treatment effects, they often have low 
power to detect treatment-covariate interactions.  Furthermore, these studies 
demonstrated that combining data from trials improves the power to detect such 
treatment-covariate interactions.  Our ICD case study explored the findings from our 
simulation studies and sought to provide evidence concerning the advantages and 
disadvantages of Bayesian techniques in clinical trial design and analysis.  This case 
study led us to the following key findings: 

 
• The analysis of the individual ICD trials found that, out of eight trials, five showed 

evidence of treatment effect, but there was also a lot of variation in the estimates 
of ICD effect across trials.  Within any trial, the results were fairly robust to 
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different model formulations.  Generally there was no evidence of significant 
treatment-covariate interactions in the prognostic subgroups. 

• Combining data from trials improves our inferences by increasing the precision of 
our estimates, as well as the power to detect main effects and interactions.  A 
variety of modeling approaches allow us to combine data from different trials, but 
they do not necessarily lead to the same inference.   

• Understanding the underlying model assumptions and limitations is important 
when interpreting the results from the combined analysis.  For example, we 
observed that some models showed evidence for an interaction between 
treatment and age in the combined analysis.  But this evidence arises from 
models that assume that this interaction is the same across all trials.  If this 
assumption is regarded as unreasonable, and we consider instead a model that 
accounts for the variation of the interaction across trials, then the interaction 
between treatment and age is no longer significant.  

• When considering Bayesian estimation, the role of priors should also be 
examined through a sensitivity analysis.  

• Our analyses demonstrate that we can utilize Bayesian hierarchical models to 
predict survival from patients in subgroups.  We found, however, that survival 
predictions from the analysis based on randomized trials may not be comparable 
to the empirical survival observed in the registry.  One reason may be that 
patients in the registry may have different prognoses from those seen in clinical 
trials. 

• We examined the use of patient-level data versus aggregate data as information 
accrues over time.  Our analysis showed that the resulting inferences are not 
necessarily the same.  The analysis of aggregate data may be more sensitive to 
priors.   

• We note that an analysis which assesses the interactions between treatment and 
covariates defining the subgroups of interest may not be feasible with aggregate 
data. 

 
Conclusions 

 
Based on our review of the literature, simulation studies, and our case study, we 

conclude the following concerning the use of Bayesian statistical approaches in CMS 
policy- and decisionmaking. 

 
1. CMS should consider claims about differential subgroup effects only if 

they are accompanied by a formal statistical test for interaction.  
a. Claims about differential subgroup effects based on stratified 

analysis should only be considered as exploratory.  These 
analyses are compromised by the small sample sizes and post hoc 
decisions regarding the number of tested subgroups.   

b. Subgroup effects observed in a specific trial should be placed 
into context by using a statistical model that combines 
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information across trials and across subgroups.  The random-
effects/hierarchical models do both.  

2. To increase the statistical power to detect those interactions that in fact 
exist, consider using all sources of data in order to stipulate within the 
statistical model which types of interaction are likely.  For example, 
observational data and expert opinion might suggest that if an interaction is 
present it will take the form of decreasing ICD efficacy with increasing burden 
of disease  

3. Base study design and decisionmaking only on those subgroup effects 
that are likely to be strong.  The power to detect interactions is not 
universally high, and focusing attention on the most likely candidates will limit 
the number of subgroups that are analyzed, and thus limit the pernicious 
effects of random variation.   

4. If the trial-based data are sufficient, do not directly combine trial-based 
data with information from other sources such as observational data 
and expert opinion.  In this case the objective data are sufficient, and there 
is no need to utilize subjective information. Instead, use these other sources 
as informal sources of validation, and also to help design the statistical model 
for the trials (see below).   

5. When little or no trial-based information about a subgroup is available, 
consider the use of other data (e.g., trial-based information from other 
subgroups, observational data, expert opinion) in order to specify a 
prior distribution.  Unless special circumstances such as small patient 
pools are present, do not use this information to make final decisions 
about efficacy within the subgroups in question, but instead use this 
information to plan further studies.  This suggests that the more 
controversial applications of Bayesian methodology should be reserved for 
those situations in which the decisionmaker has no other choice, and should, 
in any case, not be considered definitive.   

6. Claims based on Bayesian methods should provide sensitivity analysis 
to the assumed priors.  While for large trials the results are not sensitive to 
prior choices, this is not the case for small size trials. It is therefore important 
to demonstrate through sensitivity analyses how the choice of the prior 
impacts (or does not impact) the findings. 

 
Summary 

 
The use of Bayesian statistical approaches has gained broader acceptance within 

the clinical trial community.  The impact of these methods on CMS decisional contexts 
and policy-level decisionmaking however was uncertain.  Our analyses explore the main 
proclaimed advantages of Bayesian statistics (namely, the use of prior information, 
sample size determination, borrowing strength from different trials, and sequential 
monitoring of trials) and provide examples of decisionmaking situations where the 
findings reached using these approaches both agree with and differ from findings 
reached using frequentist statistical techniques. 
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Our findings confirm that, like classical techniques, Bayesian approaches are 
affected by the problems of model specification (i.e., the relationship between various 
factors – patient, provider, intervention, and other contextual features – and the 
outcome of interest).  In addition, Bayesian approaches can be substantially affected by 
the “Bayesian prior” – the representation of beliefs about the quantity of interest (e.g., 
relative risk of events when a new device is used vs. a conventional device).  Thus, 
when considering using or interpreting Bayesian analyses, the focus of attention and 
thoughtful ex ante agreement are the specification of the model and specification of the 
Bayesian prior.  The case study of the use of ICD therapy in the prevention of sudden 
cardiac death demonstrates the application of these techniques and highlights some of 
the practical challenges.  

The use of Bayesian statistical approaches, and incorporation of our findings 
concerning their strengths and limitations into the CMS decisionmaking process will 
enable policymakers to harness the power of the available sources of clinical evidence, 
explore subgroup effects within a trial and across trials in a methodologically rigorous 
manner, assess the uncertainty in clinical trial findings, and – ideally – improve health 
outcomes for Medicare beneficiaries. 
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Chapter 1. Introduction, Tutorial, and Overview of 
Project 

Introduction 
 

The phrase “Bayesian statistics”a refers to an approach and method of analysis 
which combines prior knowledge and accumulated experience with current information 
in order to make inferences about a quantity of interest.  Using Bayes’ theorem, 
Bayesian approaches are able to provide a formal method of learning from evidence as 
it accumulates.  In the past, Bayesian approaches to clinical trial design and analysis 
have been difficult, given their computational intensity and their sometimes controversial 
method of using prior information.  As a result of recent breakthroughs in computational 
algorithms, the computational limitations of Bayesian approaches have mostly been 
mitigated.  The potential benefits of Bayesian approaches – especially when good prior 
information is available – have allowed the use of these techniques to become more 
popular within the clinical trial community. 

As evidence of the rise of Bayesian statistical approaches in the clinical trial and 
regulatory communities, in 2006 the U.S. Food and Drug Administration (FDA) Center 
for Devices and Radiological Health (CDRH) issued draft guidance for industry and FDA 
staff entitled “Guidance for the Use of Bayesian Statistics in Medical Device Clinical 
Trials.”1  Although this guidance from the FDA provides a useful overview of Bayesian 
statistics and the recommended methods for employing such approaches in clinical trial 
design and analysis, it focuses on the use of Bayesian techniques at the FDA approval 
stage rather than at the stage at which the Centers for Medicare & Medicaid Services 
(CMS) determines whether evidence is sufficient to support their needed coverage 
decisions.  In addition, it has been suggested that the FDA CDRH guidance in its 
current form puts substantial emphasis on calibrating Bayesian findings to classical 
(frequentist) calculations and therefore does not take full advantage of the Bayesian 
approach. 

As Bayesian statistical techniques have gained broader acceptance within the 
clinical trial community, CMS seeks to assess the potential impact of such techniques 
on their policy-level decisionmaking.   The Coverage and Analysis Group at the CMS 
requested this report from The Technology Assessment Program (TAP) at the Agency 
for Healthcare Research and Quality (AHRQ).  AHRQ assigned this report to the 
following Evidence-based Practice Center (EPC):  Duke EPC (Contract Number:  HHSA 
290 2007 10066 I).   

The overall goal of this project is to provide CMS with a general approach for 
assessing the use of Bayesian techniques in its evidence-based policy processes.  To 
reach this goal we had three specific aims: 

 
1) To provide a synthesis of existing research regarding the advantages and 

disadvantages of Bayesian techniques in clinical trial design and analysis, 

                                                 
a A glossary of terms is provided at the end of this report.  Terms defined in the glossary appear in bold and 
italicized where they first appear in the main text of the report.   
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focusing on how such techniques can modify inferences that affect policy-level 
decisionmaking. 

2) To explore Bayesian techniques in the CMS context through the specific clinical 
domain of the prevention of sudden cardiac death (SCD) trials to determine the 
effective use of the implantable cardioverter defibrillator (ICD). 

3) To use the findings from the above two investigations to determine lessons 
learned specific to the CMS context, and to provide CMS with findings on: (a) the 
inclusion of studies that apply Bayesian techniques; (b) the circumstances in 
which such techniques may or may not be particularly appropriate; and (c) how 
such techniques can be used in conjunction with other data sources available to 
CMS, such as registries. 

 
To help orient the reader we first provide an overview of the structure of the report, 

and then provide a basic tutorial on Bayesian statistical approaches and their use in 
clinical trial design and analysis.   

 
Overview of the Report 

 
There are numerous areas within clinical trial design and analysis where the use of 

Bayesian analyses can be and has been explored.  These include applications to 
planning a clinical trial, performing and analyzing the trial, planning subsequent trials, 
combining data from multiple trials (and other sources), and incorporating registry data 
into the evidence base.  These different potential applications of Bayesian approaches 
and the relative advantages and disadvantages of Bayesian approaches compared with 
more classical techniques are summarized in the literature review in Chapter 3.   

Our main focus in this report, however, is on one of the potential applications of 
Bayesian analysis – subgroup analysis – within individual trials and across multiple 
trials.  We chose this focus because it is a  natural application of Bayesian methods 
from the CMS perspective, since (a) CMS is often presented with subgroup analyses 
that might suggest that a drug or device might work better or worse for particular 
categories of patient; (b) CMS is usually more interested in  patients aged 65 years and 
above; and (c) results for particular subgroups are often based on small sample sizes, 
and/or are otherwise inconsistent, and thus require the introduction of additional 
information in order to draw sound conclusions.  In Chapter 2 we define four decisional 
contexts or situations where CMS may consider the use of Bayesian approaches, and 
throughout our analysis we continually refer back to how our findings may apply to 
these contexts.  

After defining these contexts, we provide a review of the literature, describing current 
knowledge of subgroup analyses from both the Bayesian and frequentist perspectives. 
We sought to determine whether there are circumstances under which Bayesian or 
frequentist statistical techniques provide design or analysis advantages for Phase III 
efficacy trials.  In particular, we summarize the published literature exploring how 
Bayesian techniques of clinical trial design and analysis could modify inferences and 
potentially affect CMS policy-level decisionmaking. 
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We then illustrate the application of these findings to a clinical domain of interest to 
CMS – specifically, clinical trials evaluating the use of implantable cardioverter 
defibrillator (ICD) therapy in the prevention of sudden cardiac death (SCD).  We used 
both simulation studies and a case study evaluating patient-level data from eight ICD 
clinical trials to highlight the advantages and disadvantages of Bayesian techniques as 
compared to frequentist approaches. These simulations are intended to illustrate and 
supplement the literature review.  

We use the data from the ICD trials to illustrate how the analyses of these data 
might proceed using the Bayesian and frequentist perspectives.  The primary goal of 
this case study is to help the reader visualize how a Bayesian analysis would proceed 
and be reported.  In order to illustrate the two types of data that an analyst might 
encounter in practice, the case study includes both analyses of raw data and of 
summary data.  We also explore the use of Bayesian statistical techniques in a clinical 
domain where registry data are available – such as those clinical domains where CMS 
issues a national coverage decision requiring, as a condition of coverage, the collection 
of additional patient data to supplement standard claims data (i.e., Coverage with 
Evidence Development).  Although the simulation studies and case study focus on 
clinical trials of ICD use in primary and secondary prevention of SCD, we highlight 
throughout this report how our findings are generalizable to other clinical domains. 

The report ends with a series of conclusions based on our review of the literature, 
the simulation studies, and the case study.   

 
Bayesian Tutorial 

 
Background and Scope 
 

The two main schools of statistical thought are Bayesian and frequentist.  Although 
some statisticians strongly prefer one approach over the other, most are willing to 
consider both, and, indeed, with the increased feasibility of Bayesian computation, 
practice appears to be moving toward a blending of these perspectives.  This tutorial 
takes no position on the ongoing debate about the foundations of statistics.  Instead, its 
purpose is to provide non-technical background for non-statisticians.   

For this purpose, it is critical to recognize that the current environment is based 
almost entirely on frequentist ideas.  Some of this emphasis is historical based on when 
Bayesian techniques were more difficult to implement than is presently the case.  The 
other reason for the emphasis on frequentist ideas is that this approach can be 
implemented in a highly rule-based fashion.  This allows agreement on the ground rules 
for what will be deemed statistically significant before data analysis begins, and 
confidence that such ground rules will be consistent from application to application.  
While Bayesian analyses can be pre-specified and rule-based, they are generally 
flexible - advocates of the Bayesian approach cite this as an advantage.  

This section does not focus on circumstances where the Bayesian approach yields 
similar results but frames the analysis differently, or on those situations where the 
Bayesian approach might provide marginal improvements over a frequentist approach.  
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Recognizing the inherent limitations of non-technical tutorials, this section tries to 
provide answers to the following two questions: 

 
(1) For the purposes of policy makers, what are Bayesian statistics? 
(2) For the purposes of policy makers, what are the situations where the 

Bayesian approach is likely to be so much better than the frequentist 
approach that it should be strongly considered?  

 
For a more comprehensive tutorial, we recommend the references cited in Chapter 

3. 
 
Diagnostic Testing Example 
 

Figure 1 illustrates the basic Bayesian paradigm, namely that “prior information and 
beliefs” plus “new data” yield “revised beliefs.”  This paradigm can be illustrated by 
diagnostic testing.  

Suppose that the physician suspects that a patient might have meningitis, and is 
considering whether to subject that patient to the risk and expense of a diagnostic test 
that can shed additional light on the matter.  After taking a history and performing a 
physical examination, the physician believes that the patient has a 20 percent 
probability of meningitis.  This “20 percent” is the “prior information.” 

Prior information can be entirely objective, entirely subjective, or a combination of 
the two.  An example of entirely objective information is the use of a risk score – for 
example, if the patient has a fever in excess of 103 degrees Fahrenheit a risk score 
would increase.  An example of entirely subjective information is the physician’s intuition 
based on years of experience but impossible to quantify using precise rules.  Combining 
the two begins with the quantitative risk score, with clinical intuition being used to modify 
the score.  Note that in this example the “subjective” assessment is in fact based on a 
lot of information (i.e., it is a holistic application of extensive medical knowledge); 
however, it is “subjective” in the sense that it cannot be reduced to a reproducible 
quantitative algorithm. 

As a general principle, applications of Bayesian inference are relatively 
uncontroversial when the prior information is objective and reproducible.  Applications of 
Bayesian inference where prior beliefs are subjective and not reproducible are more 
controversial.  These applications become increasingly controversial when the role of 
the prior beliefs increases relative to the role of the data, and the more that prior 
probability is guided by intuition or is otherwise idiosyncratic. 

Suppose that the physician decides to perform the diagnostic test, and that the test 
has 90 percent sensitivity and 80 percent specificity.  Recall that sensitivity is the 
probability that a patient with meningitis will have a positive test corresponding to 
“meningitis,” and that specificity is the probability that a patient without meningitis will 
have a negative test corresponding to “not meningitis” (see Figure 2).  We posit a 
population of 1000 patients, of whom 200 have meningitis because the prior probability 
of disease is 20 percent.  Of these, 180 will have a positive test because the sensitivity 
is 90 percent.  The remaining entries of the table are filled in similarly.  The positive 
predictive value is the probability that a patient with a positive test will actually have 
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meningitis – 180/(180+160) = 53 percent.  Similarly, the negative predictive value is the 
probability that a patient with a negative test will not have meningitis – 640/(640+20) = 
97 percent. 

Translating Figure 2 into Bayesian terminology, the prior probability of meningitis is 
20 percent.  The new data are the results of the test.  If the results of the test are 
positive, the posterior probability of meningitis is 53 percent.  The data have caused 
the physician to revise her prior beliefs about the probability that the patient has 
meningitis upward, from 20 percent to 53 percent.  A negative test would cause her to 
revise her prior beliefs about the probability that the patient has meningitis downward, 
from 20 percent to 3 percent. 

Figure 3 illustrates the role of the physician’s prior probability in Bayesian inference.  
In this Figure, we explore the scenario when the physician’s probability of meningitis is 
only 10 percent.  This prior probability might have dropped from 20 percent (Figure 2) to 
10 percent (Figure 3) because a different patient is being assessed.  If the prior 
probability of disease is based on subjective criteria, different physicians might have 
different prior estimates of the probability of meningitis, even for the same patient.  The 
sensitivity and specificity are properties of the diagnostic test and remain the same, as 
in Figure 2.  The only difference is that the prior probability of meningitis is smaller.  A 
positive test now yields a posterior probability of meningitis of 33 percent, and a 
negative test yields a posterior probability of 1 percent.  This illustrates the general 
principle that where you end in a Bayesian analysis often depends on where you start. 

This example also illustrates one of the reasons that an analyst might select a 
Bayesian approach – namely, that the problem under consideration is a particularly 
good match for the Bayesian way of thinking.  
 
Meta-analysis Example 
 

The diagnostic testing example is particularly simple, in part because considerations 
of precision have been ignored.  In reality, although the physician’s best estimate of the 
prior probability of meningitis is 20 percent (i.e., 20 percent is a “point estimate”), in 
practice this estimate of 20 percent would not be absolutely precise.  Perhaps the 
physician is comfortable with any probability within the range of 15 to 25 percent.  The 
sensitivity of the test might not be exactly 90 percent – perhaps it was based on a study 
whose results are consistent with everything in the range of 88 to 92 percent.  A similar 
phenomenon holds for specificity. For a positive test the posterior probability of 
meningitis will not be a point estimate of 53 percent, but instead will fall in a range 
centered at 53 percent. 

To illustrate the role played by precision, consider the frequentist graphical 
presentation of a meta-analysis, as in Figure 4.  We now assume that two placebo-
controlled randomized trials have been performed, both of which have as their primary 
outcome the improvement in the intervention group in comparison with placebo in a 
continuous measure such as systolic blood pressure (SBP). Here, an improvement of 0 
implies no impact of the intervention, whereas positive numbers suggest that the 
intervention is preferable to the placebo because it is associated with a greater 
reduction in SBP. As drawn, both studies favor the intervention by different amounts. 
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In Figure 4, study 1 is smaller than study 2, and has a wider confidence interval 
around the estimated effect of the intervention.  The summary measure, derived from 
the meta-analysis, has two characteristics.  First, it has a tighter confidence interval than 
either study, illustrating the gain in precision associated with combining information 
across the two studies.  Second, the point estimate for the meta-analysis-derived 
summary measure is closer to that of study 2 than that of study 1, which reflects that 
study 2 is providing more data.   

Figure 4 also illustrates the process of Bayesian analysis in the presence of 
imprecision.  In the Bayesian paradigm, “study 1” represents the prior distribution of 
the impact of the intervention on SBP in a way that takes into account the precision 
associated with the analyst’s prior beliefs.  “Study 2” represents the new data in a way 
that takes into account the precision associated with these data.  “Summary” represents 
the posterior distribution of the impact of the intervention on SBP, taking into account 
prior beliefs, the data, and the imprecision associated with each. 

The next set of figures illustrates the role played by the prior distribution in the 
conclusions of a Bayesian analysis.  In Figure 5, the prior distribution is diffuse since the 
probability of the parameter being within a given interval is wide.  This situation is 
essentially equivalent to a meta-analysis with a small first study.  This will have little or 
no impact on the results, illustrated by the similarity between the posterior distribution 
and the data.  Diffuse prior distributions that have little impact on the results are termed 
non-informative prior distributions.  Bayesian analyses that use non-informative prior 
distributions are relatively uncontroversial because the impact of prior beliefs is trivial in 
comparison with the impact of the data and the conclusions of a Bayesian analysis 
using a non-informative prior distribution may be the same as to the conclusions derived 
by classical methods.  Note that for a non-informative prior, the interval associated with 
the prior would be over the entire real line. 

Figure 6 illustrates another type of prior distribution.  The confidence intervals 
associated with this distribution are narrower than in Figure 5 – the prior distribution has 
an impact on the results (the posterior distribution) and is “informative.” The prior 
distribution is conservative in that it assumes the intervention has no impact on SBP. – 
Distributions with similarly conservative assumptions are termed “skeptical” since the 
analyst is skeptical that the intervention has an impact.  The result of using the skeptical 
prior distribution is that the posterior distribution is less extreme than the data, and that 
the point estimate of the impact of the intervention from the new data is “shrunk” toward 
the mean of the posterior distribution, in this case toward the null value of 0.  Bayesian 
analyses that use skeptical prior distributions are relatively uncontroversial, if for no 
other reason than that the above idea of “shrinkage” is also well accepted within 
frequentist approaches to statistical inference. 

Figure 7 illustrates a prior distribution that is informative but not skeptical.  The prior 
belief is that the intervention is highly effective. Because the analyst posited an effect 
that was stronger than the effect observed in the new data, the prior distribution pulls 
the posterior distribution away from the null value of 0.  In other words, the analyst 
concludes that the impact of the intervention is stronger than implied by the new data 
when these new data are considered in isolation.  Applications with non-skeptical prior 
distributions are controversial because of this phenomenon.  Such applications are 
more controversial when the prior distribution is based on the subjective beliefs of the 
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analyst, and are less controversial when the prior distribution is based on real data such 
as from another clinical trial.   

An example of deriving the prior distribution objectively is to use the results of a 
previous meta-analysis.  In this situation the posterior distribution from the previous 
meta-analysis becomes the prior distribution when new studies become available.  The 
new studies update the meta-analysis.  A “sequential meta-analysis” or “cumulative 
meta-analysis” is iterative, with each new study published in the literature inducing 
another round of updating.   

Figure 8 illustrates the worst case for Bayesian analysis.  There, the prior distribution 
is non-skeptical and illustrates strong beliefs in the efficacy of the intervention.  (Here, it 
is implicitly assumed that these strong beliefs are primarily based on intuition, rather 
than objective information such as a previous meta-analysis).  The data provide little 
contribution to the posterior distribution, which essentially recapitulates the prior beliefs 
of the analyst.  There is almost universal agreement that applications like those 
illustrated in Figure 8 are inappropriate, except perhaps to document the lack of 
objective data about the phenomenon under study.   

The differences between Figures 5 and 8 can help illustrate the circumstances in 
which Bayesian methods might most naturally be considered.  In Figure 5, there are 
enough data to provide sound inference.  It does not matter whether the analysis is 
Bayesian or not, although some analysts will select a Bayesian approach because of 
their philosophical beliefs, the easier interpretation of the results, or because the type of 
problem is a good fit for a Bayesian formulation.  

In Figure 8, there are too little data to provide sound inference, and a Bayesian 
approach risks being too subjective by being primarily based on subjective belief rather 
than objective data.  The most natural applications of Bayesian methodology fall 
somewhere in between.  Some data are available, but not enough to draw strong 
conclusions in the absence of other information.  An informative prior distribution can 
be supported, either because it is skeptical or because it is based on objective 
information.    
 
Technical Note on the Role of Distributions 
 

The usual presentations of meta-analysis (e.g., Figure 4) or its conceptually 
equivalent Bayesian counterparts (e.g., Figures 5 to 8) gloss over some assumptions 
about the shape of the prior distribution and of the new data.  Figure 9 presents the 
same information, but in a way that highlights the distributional assumptions that 
underlie the analysis.  In particular, a typical meta-analysis such as is depicted in Figure 
4 assumes that the distribution of the outcome within each study, perhaps after an 
appropriate transformation such as log-transformation, is Gaussian.  If so, the analyst 
can rely on the mathematical result that the combination of Gaussian distributions is 
Gaussian, and be confident that the posterior distribution is Gaussian as well.  The 
exact nature of this latter distribution (its center point and its spread) can be obtained 
directly from a formula.  

When distributions can be combined in this simple fashion they are termed 
“conjugate.”  Various other pairs of conjugate distributions exist. When the distributions 
in question are not conjugate, often the posterior distribution must be derived using 
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simulations, which may be technically complex to implement.  Such simulations are 
where the reader will encounter terms such as “Gibbs sampler” or “Markov chain Monte 
Carlo (MCMC).”  This report does not focus on the details of deriving posterior 
distributions.  
 
Technical Note on Fixed- and Random-Effects Models, Heterogeneity, 
and Interaction 
 

Although this is not intended to be an in-depth tutorial on meta-analysis, it may be 
helpful to highlight some additional concepts that will be used in this report.  Specifically, 
the meta-analysis literature makes the distinction between “fixed-effect” models and 
“random-effects” models.  Loosely speaking, a fixed-effect model assumes that the 
efficacy of the intervention is identical from study to study, and that the primary goal of 
the meta-analysis is to estimate this single specific quantity.  The analyst using a fixed-
effect model will begin with a “test for heterogeneity” – in essence, a statistical test that 
allows the data to disprove the assumption that the efficacy of the intervention is similar 
across the studies.  In contrast, a random-effects model assumes (based on the 
philosophical belief that most things involving human biology are heterogeneous) that 
efficacy differs from study to study, and posits that efficacy follows a statistical 
distribution and that a primary goal of the meta-analysis is to estimate the parameters 
(e.g., mean, standard deviation) of this distribution. 

Our report uses two elements of the above.  First, our simulations utilize both fixed-
and random-effects models.  It should be noted in this context that random-effects 
modeling is particularly felicitous within the Bayesian framework, but that random-
effects modeling can also be implemented within a frequentist paradigm.  Accordingly, 
any advantages of random-effects and related models should not be entirely attributed 
to the Bayesian way of thinking, although it should also be noted that the Bayesian 
approach does accommodate random-effects and related models particularly well. 

Second, our report uses the closely related concepts of heterogeneity and statistical 
interaction.  In the context of subgroup analysis, heterogeneity is equivalent to having 
different intervention effects for different subgroups – for example, a device that is more 
efficacious for patients aged 50 to 64 years than for patients aged 65 years and above.  
Statistical interaction is data-based evidence of heterogeneity – for example, a 
statistical test that demonstrates that the above difference in efficacy was observed 
within a particular study.  In practice, decisionmakers often desire evidence of 
interactions that are both statistically significant and clinically meaningful.  The 
distinction between the two is that a statistically significant interaction implies that there 
is some difference in efficacy between subgroups (i.e., that the difference in efficacy is 
different from 0), whereas a clinically important interaction implies that this difference is 
“large enough to matter” (e.g., suggests that different actions be taken in one subgroup 
versus another).  With small sample sizes within subgroups it is often the case that tests 
for statistical interaction will have low power – there, the concern is that while there is no 
statistical evidence for interaction, the data might nevertheless be consistent with 
clinically important differences in the efficacy of the intervention across subgroups. 
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Making Decisions Using Bayesian Analysis 
 

Decisionmaking in any particular Bayesian analysis takes place by examining 
properties of the posterior distribution.  As an example of using the posterior distribution 
to make inferences, if more than 95 percent of the area of the posterior distribution for 
the impact of an intervention on SBP falls in positive territory, the analyst is “95 percent 
confident” that the intervention is effective.  Bayesian analysts refer to this as the 95 
percent credible interval.  The credible interval has a specified or subjective probability 
of containing the parameter of interest, given the observed data and the prior 
information.  The best guess or point estimate for the magnitude of effectiveness might 
be the mean, median, or mode of this posterior distribution.  The precision of the 
conclusions is derived from the spread of the posterior distribution or the length of the 
credible intervals.  

In practice, analyses such as the above are then supplemented by an exploration of 
robustness – for example, in order to determine whether similar conclusions are 
obtained when the prior distribution is modified.  The less skeptical and more 
informative the prior distribution, the more extensive should be the assessment of 
robustness.   
 
Two Illustrative Applications of Bayesian Methodology 
 

The ideal application of Bayesian methodology occurs when there are some data, 
but not quite enough to draw sufficiently firm conclusions.  Our report will focus on one 
such application – namely, subgroup analysis.   

CMS might be interested in the performance of a medical device among patients 
aged 65 to 74 years.  Most clinical trials of this device, however, are in patients aged 55 
to 64 years.  Some information is available on patients aged 65 to 74 years, but is 
insufficient to form firm conclusions.  In other words, some data are available on 
patients aged 65 to 74, but not enough.  The question becomes whether a Bayesian 
analysis might be performed, with the information from other age groups of patients 
providing the prior distribution that can then be combined with the data regarding 
patients aged 65 to 74. 

Another natural application of Bayesian statistics is in the design and analysis of 
Phase 1 and Phase 2 clinical trials, especially those trials for which it is critical to make 
the most statistically efficient use of all possible information.  One reason for doing so 
might be the testing of a promising therapy, albeit one with potentially devastating 
adverse events, in a condition that is uniformly fatal.  It is usually assumed that both the 
efficacy of the intervention and the likelihood of adverse events increase with the dose, 
so the goal is to estimate the maximum tolerable dose (the maximum dose with an 
acceptable level of adverse events).  The analyst wishes to do so in a way that exposes 
as few patients as possible to unsafe doses of the drug, while exposing as many 
patients as possible to the drug’s therapeutic doses. 

These goals cannot be accomplished by treating each possible dosage level in 
isolation, if for no other reason than the information for each dose will be based on small 
sample sizes and thus will be unreliable.  Instead, the analyst posits a dose-response 
function between the probability of an adverse event and the dose.  By transforming the 
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outcome variable using a “logit” transformation, a straight line is obtained that can be 
described with a slope and an intercept (see Figure 10, which is drawn to have a slope 
of 1 and an intercept of 0).  The prior distribution for the slope and intercept are derived 
from similar drugs, previously tested patients, and biologically informed supposition if 
necessary.  The outcome for each patient can then be used, in Bayesian fashion, to 
update the estimates of this slope and intercept, and data collection continues until this 
line and the maximum dose corresponding to the acceptable probability of adverse 
events implied by this line has been estimated with adequate precision.  At each step in 
the process (e.g., for each new patient) the information to date can be used to assign 
the most statistically appropriate dosage level, which is the core idea behind Bayesian 
adaptive designs.  

The take-home message of this second example is that early-phase testing is 
another circumstance that satisfies the condition of “some but not quite enough data” 
that suggests the use of Bayesian methods.  This example also illustrates the general 
principle that Bayesian methods are not limited to data analysis, but can be used in 
study design as well. 
 
Differences between Bayesian and Frequentist Methods 
 

Most elements of frequentist inference have Bayesian counterparts.  The above 
example illustrated the Bayesian counterpart to the 95 percent confidence interval used 
by frequentist statisticians, namely, the 95 percent credible interval used by Bayesians.  
There are subtle differences between what these two types of interval represent; but in 
practice they are similarly applied.   

It is not an exaggeration to claim that the only people who believe strongly that there 
are important differences between analogous Bayesian and frequentist concepts are 
those who are already strongly convinced that one is theoretically superior to the other. 
For example, a frequentist might object that estimating the prior distribution involves 
judgment, despite the fact that doing so is crucial to the Bayesian approach.  Similarly, a 
Bayesian might object to the fact that frequentist methods do not explicitly describe prior 
beliefs, despite the fact that they are implicitly taken into account by frequentist 
methods.  We recommend these assertions not be taken seriously, since most 
practicing statisticians do not strongly favor one methodology over the other. As 
Bayesian methods are becoming increasingly feasible from a computational 
perspective, various elements of the two approaches appear to be blending over time. 

One way to think about the differences between the Bayesian and frequentist 
approaches is to recognize that all applications of statistics are limited by the act of 
inference – what we would like to do is to observe an entire population, often including 
its future members, but we are limited by having data on only a subset of that 
population.  This inescapable constraint implies that any statistical analysis will have 
some objective components (the mathematical maneuvers applied to the observed 
data) and some subjective components (extrapolating the results of the observed data 
to the population under consideration).  

Where the Bayesian and frequentist approaches to statistics differ is not in the 
amount of subjective judgment required but instead in where and how subjective 
judgment enters the analysis.  In a Bayesian analysis, the subjective features enter 
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formally and explicitly, primarily through the specification of the prior distribution and the 
choice of the model to be used in the analysis; or they enter the analysis in how 
characteristics of the posterior distribution will be summarized in order to arrive at 
conclusions.  In a frequentist analysis, the subjective features also enter in the choice of 
the model to be used in the analysis.  They enter informally, in the design of the clinical 
study and through the implicit weighting given to various individual results in drawing 
overall conclusions.  Factors in this weighting include whether individual results were  
statistically significant at some p value  or not, the magnitude of observed trends, the 
overall consistency of observed trends in light of biological plausibility and the previous 
literature, and so forth.   

If this informal weighting procedure is performed thoughtfully, the flexibility of the 
frequentist approach represents a potential strength; if not, the flexibility represents a 
potential source for erroneous conclusions, bias, and other sources of mischief.  
Similarly, the formal and explicit specification of how conclusions will be drawn from the 
data and what is known to date are a potential strength of the Bayesian approach, but 
only in those circumstances where the problem at hand and the knowledge to date 
make it sensible to do so. Fortunately, the results of Bayesian and frequentist analyses 
are often substantially similar, especially if both are performed with care and insight.   
 
Summary 
 

The primary goal of this tutorial is to provide non-statistical readers having no 
previous exposure to Bayesian methods with an intuitive introduction to those methods 
– specifically, “what Bayesian statistics are about and when I should care.”  What 
Bayesian statistics are about is the process by which “prior beliefs are combined with 
new data in order to generate revised beliefs.”  The primary strength of Bayesian 
statistics is its explicit nature – by specifying ahead of time and in detail what is currently 
known, and how decisions will be derived from the combination of this knowledge and 
the new data, analyses, and decisions that derive from those analyses will exhibit the 
laudable characteristic of transparency.  Its primary weakness is that not all applications 
of statistics fit naturally into this paradigm. 

When data have already been collected, there is only one set of circumstances 
where one should always strongly consider, independent of any philosophical 
preferences, the use of Bayesian approaches – namely, when: (a) a decision must be 
made; (b) some data are available, but the existing data provide insufficient guidance or 
precision for making that decision; and (c) additional information can be defensibly 
brought to bear on that decision.  In this context, “defensible” could potentially mean: (a) 
based on related data such as a similar (but not identical) intervention applied to a 
similar but not identical population; (b) specified using conservative assumptions (e.g., 
such as an intervention having no impact on outcome); or (c) based on supposition, 
where the nature of that supposition is explicitly justified and accepted as reasonable by 
impartial observers.  

When the study is in the design phase, the flexibility inherent in the Bayesian 
approach provides the basis for adaptive randomization, which allows the size of the 
study to be determined as data collection proceeds, and thus in some cases might help 
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satisfy the ethical imperatives of exposing as few subjects as possible to risks and as 
many subjects as possible to treatments that are maximally beneficial.  
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Chapter 2. Framing the Problem: CMS Contexts (or 
“Situations”) 
 

We defined four decisional contexts or situations where CMS may consider the use 
of Bayesian approaches, and throughout our analysis we continually refer back to how 
our findings may apply to these contexts.  The four contexts are:   

 
• Situation 1: Applicants present CMS with results that suggest no or minimal 

efficacy of an intervention for the overall population, but apparent effectiveness in 
a subgroup or subgroups of patients, and are requesting reimbursement for 
those subgroups only. 

• Situation 2: Applicants present CMS with results that suggest that an 
intervention is effective overall, but concern is raised that the benefits might be 
less effective in some subgroups.  

• Situation 3: Applicants present CMS with results that suggest that an 
intervention is effective, but the trial in question has been performed on a 
different population (e.g. patients aged 55 to 64).  The applicants wish to extend 
the results to patients of interest to CMS. 

• Situation 4: Previous completed trials have demonstrated effectiveness  in high-
risk populations, and applicants are designing a new trial in a lower-risk 
population of interest to CMS and request feedback concerning their proposed 
trial design and analysis. 

 
For the purposes of this work, we assume that CMS’s evaluation task in each of the 

above situations involves three key steps: 
 
1) Translating CMS’ general criterion of whether a given intervention is deemed 

“reasonable and necessary” into specific criteria describing the outcomes that are 
necessary and sufficient to characterize the intervention’s value to the target 
population. 

2) Assessing the degree to which the intervention in question promotes 
improvements in those outcomes to the target populations. 

3) Judging whether those improvements are sufficient to implement into policy. 
 
These evaluation tasks can be performed using two approaches:  frequentist 

statistical techniques or Bayesian techniques.  Step 1 of establishing the specific criteria 
by which an intervention is assessed is basic to both evaluation approaches.  Step 2 
involves analysis of evidence, typically using frequentist statistical tools for assigning 
levels of statistical significance, and Step 3 involves a mix of quantitative and qualitative 
approaches.  Quantitative approaches might include simple criteria such as “are there X 
trials each with a p value < y?,” or more involved approaches based on meta-analysis.  
Qualitative approaches aim to promote decisionmaking by assessing the “sense of the 
committee” and can be informal or formal such as the modified Delphi method.   

What is distinctive about the two approaches is the way they address the latter two 
steps.  In a frequentist evaluation approach, these steps are treated as separate.  The 
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Bayesian approach treats the latter two steps as integrated and may be characterized 
as assessing the adequacy of evidence for the purpose of decisionmaking or action.  In 
particular, a Bayesian analysis of any body of evidence focuses on estimating the 
“strength of belief” regarding any particular measure, for example, “Study X leads me to 
be Y percent confident that the effect of the intervention is greater than Z”.  
Furthermore, the Bayesian approach leads to natural interpretations of multiple studies, 
each contributing to a body of evidence, and also provides a conceptually consistent 
framework for linking various forms of evidence to construct aggregate inferences.  

Whatever the theoretical or philosophical benefits of any particular evaluation 
approach, what is ultimately of interest to CMS and society is how to achieve the 
practical goals of promoting improved health outcomes for Medicare beneficiaries.  It is 
important to note that the evaluation task is not pursued in a vacuum, as multiple 
stakeholders are involved with a wide variety of interests.  Evaluation and ultimate 
decisionmaking occurs through a process which has social, political, and economic 
ramifications.  It is crucial that any evaluation strategy is in harmony with the current 
decisionmaking context and process. In addition to achieving the analytical goal of 
extracting a correct inference from a body of evidence, an evaluation strategy should 
promote the broader goals of transparency, clarity, efficiency, and accommodation of 
multiple objectives.   
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Chapter 3. Literature Review 
 

Methods 
 

This report focuses on those situations where Bayesian these techniques might be 
used in CMS policymaking context.  Therefore, the literature review aimed to 
determine whether there are circumstances under which Bayesian or frequentist 
statistical techniques provide design or analysis advantages for Phase III efficacy 
trials.  Throughout the review we focused on how such approaches could modify 
inferences that affected policy-level decisionmaking.  Although our simulation studies 
and case study of the ICD clinical domain also explore this question, we sought first to 
determine whether a review of the available published literature would provide empirical 
evidence. 

We searched MEDLINE® using terms related to Bayesian theory and analysis, 
frequentist analysis, and health policy.  We restricted the search to trials and review 
articles published in English.  We also searched the reference lists of key papers and 
proceedings from a recent SAMSI workshop on subgroup analysis2 for potentially 
relevant publications.  Titles and abstracts of all studies identified by these means were 
reviewed independently by two investigators. 

The following types of articles were excluded: 
 
• Epidemiological studies (observational or longitudinal studies). 
• Genetic studies. 
• Randomized controlled trials (RCT) that did not include Bayesian analysis. 
 
Meta-analyses and cost-effectiveness analyses were included if they focused on the 

methods of interest and applied them in a way that allowed a comparison of Bayesian 
and frequentist methods.  At the title-and-abstract stage, articles were included for full-
text review if at least one of the two reviewers indicated that they should be included.   

At the full-text review stage, articles were again reviewed by two independent 
reviewers and were included if they fell into one or more of the topics of interest listed 
above.  Disagreements between reviewers were resolved through discussion. 

Through all search strategies combined, we identified 334 potentially relevant 
citations.  One hundred and ninety-seven (197) were excluded at the title-and-abstract 
screening stage, and another 67 were excluded at the full-text screening stage leaving a 
total of 70 included studies to be reviewed.   

 
Findings 

 
Articles in the literature review were categorized into four themes: (1) advantages 

and disadvantages of Bayesian techniques in clinical trial design and analysis; (2) use 
of Bayesian techniques in subgroup analyses; (3) use of Bayesian techniques in meta-
analysis; and (4) the effect of using Bayesian techniques on 
policymaking/decisionmaking.  
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Table 1 reports the number of included articles reviewed for each of the four themes.  
Note that some articles were included for more than one theme.   

In what follows, we summarize our review of the literature in these four themes – 
while focusing these summaries on areas of interest to CMS. 
 
Advantages and Disadvantages of Bayesian Techniques in Clinical 
Trial Design and Analysis 
 
Potential Advantages of Bayesian Approaches 
 

The statistical literature contains numerous books and papers describing Bayesian 
theory, its associated methods as applied to medicine, and the advantages and 
disadvantages of Bayesian techniques in clinical trial design and analysis.  The 
following discussion of the published literature therefore is not intended to be all-
inclusive, or to provide a complete introduction to Bayesian statistical approaches.  
Readers are referred to Spiegelhalter and colleagues3 for a comprehensive summary 
on the use of Bayesian statistical approaches in the design and analysis of clinical trials, 
to a Health Technology Assessment by the National Institute for Health Research 
(NHS)4 for a complete and formal review of Bayesian methods in health technology 
assessment, and to the 2006 FDA guidance on the use of Bayesian methods in medical 
device trials.1  Many of the advantages and disadvantages of Bayesian approaches 
discussed here are based on review of these three sources.  Note that, in addition, the 
International Society for Bayesian Analysis (ISBA) provides a list of Bayesian 
resources.5  

The CMS decisionmaking context focuses mostly on situations in which clinical trials 
have already been performed, and in which CMS is considering whether the current 
evidence base is sufficient.  Two areas where such decisionmaking may be helped by 
Bayesian approaches include the analysis of subgroups and the meta-analysis of 
clinical evidence as it accumulates.  These topics are discussed below.  Here we 
concentrate on three additional potential advantages of Bayesian approaches: (a) the 
use of prior information; (b) sample size determination; and (c) adaptive designs.  It is 
important to note that as with frequentist statistical approaches, clinical trials based on a 
Bayesian approach still require scientifically sound clinical trial planning and analysis. 

Bayesian statistics focus on the ability to learn from evidence as it accumulates.  
Prior information is combined with current information on a quantity of interest, and 
Bayes’ theorem is used to formally combine these two sources of information to 
produce an updated or posterior distribution of the quantity of interest.  The use of prior 
information is both seen as the main strength of Bayesian techniques, while also 
providing the most cause for concern on the part of frequentist clinical trialists.  
Bayesian methods may be controversial when the prior information is based mainly on 
personal opinion or expert judgment, or when it is based on evidence which the 
decisionmaker considers subjective.  In such situations, sensitivity analyses on the prior 
distributions are especially important.  The use of prior information based on empirical 
evidence from existing clinical trials is less controversial, and in the CMS context this 
will be the most common source of prior information.  Additional information could, 
however, be based on patient registries, pilot studies, or clinical trials of similar 
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interventions.  For a prior to be considered appropriate, the evidential basis of the prior 
(and any potential biases of that evidence) must be explicitly given.  In addition, many 
emphasize the necessity of sensitivity analyses which explore a range of options for the 
chosen prior.4 

Fisher provides a discussion of Bayesian and frequentist analysis and interpretation 
of clinical trials and potential controversies over the use of prior information, as well as 
the potential pitfalls both in their elicitation and incorporation into the existing evidence 
base.6  Examples of studies from the literature that explore the use of prior information 
and its impact on clinical trials include those by Gennari et al.,7 Tyson et al.,8 Brophy 
and Joseph,9 and Kpozehouen et al.10 

Although the benefit of incorporating an informative prior into trial design and 
analysis is the most notable advantage of Bayesian statistical approaches, even when 
such an informative prior is not available, the Bayesian approach may still be useful 
through the use of interim analyses or midcourse modifications as discussed below.   

The use of Bayesian approaches may modify the sample size an applicant needs to 
determine that the evidence is sufficient to CMS.  This change could be based on either 
the use of prior information, as described above, or on interim “looks” during the course 
of a clinical trial.  As discussed by Schmid and colleagues,11 the use of prior information 
has two potential effects on sample size estimation.  If the available prior evidence 
provides information about the effect size, then it may reduce the required sample size.  
If, however, the prior evidence reflects additional uncertainty about that effect size, then 
the sample size may be increased.  When either Bayesian or frequentist statistical 
techniques are used for estimating sample size, the goal is to gather enough 
information to make a decision about the efficacy of an intervention, while not wasting 
resources or putting patients at unnecessary risk.  Bayesian approaches allow their 
users not to specify a particular sample size, but rather a particular criterion at which to 
stop the trial.  At any point during the trial period, Bayesian techniques can be used to 
obtain the posterior distribution for the sample size, to compute the expected additional 
number of observations needed to meet the pre-specified stopping criterion, and to 
potentially stop the trial at the precise point where enough information has been 
gathered to answer the clinical or policy question of interest.  An example of the use of 
Bayesian approaches in sample size determination is provided by Wang and 
colleagues.12  

Finally, the use of Bayesian approaches may allow adaptive designs to be 
incorporated into clinical trials.  Such trial designs may allow an unfavorable treatment 
arm to be dropped midcourse during the trial, or permit modifications to the 
randomization scheme to occur.  Although the frequentist approach includes sequential 
analysis techniques that do not require pre-specified sample sizes, it is generally agreed 
that the Bayesian approach is particularly well suited to the topic of interim review. 

The decision to stop a randomized clinical trial based on an interim analysis is best 
made by weighing the value (both costs and benefits) of the additional information that 
would be gained if further subjects were enrolled in the trial.  Lewis and colleagues13 
provide a discussion of how such a comparison is difficult using frequentist statistical 
approaches and give an example application of Bayesian approaches.  Bayesian 
approaches to monitoring clinical trials (and potentially stopping a trial early for futility or 
efficacy) depend on the underlying theory that a trial’s outcome can be considered 
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positive or negative if it is demonstrated that the posterior probability of a clinically 
important improvement is greater than a pre-specified threshold.  This criterion, 
however, is dependent both on interim and future data.  Because the future data are not 
available at the time of the interim analysis, they are replaced by the values predicted 
based on the interim data and the prior distribution of the treatment effect.  Dmitrienko 
and Wang14 and Freedman and Spiegelhalter15,16 reviewed Bayesian strategies for 
monitoring clinical trial data and compare the Bayesian approach to more frequentist 
approaches.  Dmitrienko and Wang14 focus on the sensitivity of stopping rules to the 
choice of prior distribution and provide guidelines for choosing a prior distribution of the 
treatment effect.  In their analysis, they emphasize that the choice of prior distributions 
depends on the trial’s objective, development phase and patient population.  Their 
findings demonstrate that weak priors are more likely to trigger an early stopping in 
futility monitoring compared to strong priors.  This sensitivity to negative treatment 
differences may be justified in large mortality trials because it helps reduce the 
exposure of critically ill patients to ineffective drugs.  However, using such weak priors 
in most proof-of-concept studies may result in unacceptably high early termination rates.  
In these situations, stronger aggressive (i.e. informative) priors are preferable.14  
Emerson and colleagues17 also expand on the importance of including different prior 
distributions when considering Bayesian stopping rules.  Dignam and colleagues18 
provide a discussion of a controversial trial stoppage based on interim results and 
demonstrate how the use of a Bayesian approach allows exploration of a range of prior 
beliefs regarding the efficacy of treatment and the appropriateness of the early 
termination of the trial.  George and colleagues19 and Berry and colleagues20 provide 
additional examples of the use of Bayesian statistical approaches in stopping a clinical 
trial early, and describe how this approach differs from frequentist techniques. 

In addition to early stopping of trials, Bayesian approaches are used for adaptive 
randomization within clinical trials.  Such adaptive randomizations may allow providers 
to enroll patients into a clinical trial, but with treatment assigned based on the 
performance to date, thereby allowing randomization to be based on accumulating data 
during a trial.  Alternatively, the probability of assigning the next patient to a particular 
treatment group can be changed because of baseline prognostic factors.  Thall and 
Wathen21 discuss some of the limitations of adaptive randomization and methods of 
addressing these potential problems.  Avins22 provides an interesting discussion of the 
ethics of subject allocation within randomized controlled trials and how Bayesian 
approaches may be useful. 
 
Potential Disadvantages of Bayesian Approaches 
 

Although much of our review of the literature focuses on the potential advantages of 
Bayesian statistical approaches in clinical trial design and analysis – there are as 
expected also potential difficulties that accompany their use.1  These difficulties include: 

 
• The identification and pre-specification of prior information. 
• The development and pre-specification of the underlying mathematical model. 
• The need for statistical and computational expertise. 
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• The difficulties involved in conveying the results of a Bayesian trial given any 
unfamiliarity with the methods among policymakers or stakeholders.  

• Facilitating interpretation and consensus-building when analysis of trial results by 
frequentist and Bayesian approaches differ. 

 
Many of these difficulties as they specifically apply to healthcare decisions and 

policymaking are discussed by Sheingold23 and Winkler.24  Both discussions also focus 
on ways of making Bayesian approaches transparent and useful to policymakers and 
provide a useful resource for CMS and policymakers. 

In the next two sections we discuss two areas where the use of Bayesian 
approaches may have substantial benefits compared with frequentist approaches 
specifically in the CMS decisionmaking context: (1) the analysis of specific subgroups, 
either within a given trial or between trials as the evidence accumulates; and (2) the 
meta-analysis of a group of clinical trials exploring an intervention of interest. 
 
Use of Bayesian Techniques in Subgroup Analyses 
 
CMS Context 
 

We assume that CMS will potentially encounter all four situations described above 
and require interpretation of subgroup analysis.  For simplicity of presentation, and in 
order to isolate those issues that are unique to subgroups, we assume that a single trial 
is at issue; in particular, that either data from a single trial are being analyzed or that 
CMS and industry representatives are consulting about the design of an upcoming trial.  
Meta-analysis is considered below. 
 
Medical Context 
 

Frequentist randomized trials are designed to identify average effects of 
interventions, the philosophy being to estimate the efficacy of the intervention for 
“typical” patients.  However, patients are biologically heterogeneous, and it is consistent 
with medical science to believe that not only will individual patients differ in their 
response to an intervention, but that groups of patients will do so as well.  This level of 
biological heterogeneity is becoming increasingly apparent through, among other things, 
the genomics revolution.  Accordingly, the desire to explore whether and how the 
efficacy of an intervention differs across subgroups is a medically and scientifically 
reasonable thing to do.  The problem is not with this intention, but rather trials that are 
usually not designed to facilitate definitive subgroup analyses, and even in the best 
case, subgroup analyses induce various issues of statistical methodology that makes 
their interpretation difficult.  
 
Statistical Context 
 

With rather modest exceptions, Bayesian and frequentist statisticians agree on the 
nature of the methodological problems associated with subgroup analysis.  Their 
disagreement lies in how best to address these problems.  The basics of the Bayesian 
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and frequentist approaches have been described elsewhere, and this section assumes 
that the reader is familiar with both.  
 
Frequentist position 
 

The frequentist perspective is well summarized by Rothwell,25 who cites many of the 
other frequentist articles described below – especially those of Pocock et al.26 and 
Brookes et al.27 – and is particularly recommended as a sound listing of action items 
implied by the frequentist philosophy.  This summary will primarily rely on Rothwell.25  
Current perspectives such as  those described by The European Agency for the 
Evaluation of Medicinal Products Committee for Proprietary Medicinal Products28 or by 
Moher and colleagues,29 are based on the frequentist perspective.  Rothwell25 states 
that the situations in which subgroup analyses should be considered include those in 
which there is potential heterogeneity of treatment effect related to risk or to 
pathophysiology, where there are clinically important questions related to the practical 
application of treatment, or where underuse of the treatment in routine clinical practice 
is due to uncertainty about the benefit.  However, he provides recommendations for trial 
design, analysis, and interpretation of such subgroup analyses. 

The problems that the frequentists are trying to address in their recommendations 
include the following.  First (defining statistical significance as p < 0.05), comparison of 
statistical significance across subgroups can lead to flawed conclusions.  
Suppose that in subgroup A, the confidence interval for the treatment effect is 0.2 to 3.8, 
p = 0.04, whereas in subgroup B the confidence interval for the treatment effect is -0.5 
to 2.5, p = 0.08.  The confidence intervals overlap, and in all probability a formal test for 
interaction would be non-significant, but the intervention effect in subgroup A is 
statistically significant, whereas the intervention effect in subgroup B is not.  However, 
there is little or no real difference across subgroups. 

Second, the more subgroup analyses there are, the greater the likelihood of 
spurious results.  Often, the emphasis is on falsely positive findings, in which case this 
phenomenon is termed the multiple-inference, multiplicity, or multiple-testing problem. It 
is also possible for the spurious results to be falsely negative.  An example is when the 
intervention effect is actually the same in all groups but by chance appears to be of a 
smaller magnitude in some subgroups than others. 

Third, when subgroup analyses are made in isolation they can potentially 
suffer from having small sample sizes, which in turn can lead to instability in 
conclusions and often to low statistical power as well.  If the randomization is not 
stratified by the subgroup in question, it is possible that the subgroups in question will 
be unbalanced (e.g., one intervention having more patients with a good prognosis than 
the other), which must be accounted for in order to draw appropriate conclusions. 

The frequentist response to these issues is two-fold, pertaining to design and 
analysis.  Regarding design, post hoc analyses of subgroups are de-emphasized and in 
extreme cases forbidden.  Put in more positive terms, the frequentist approach 
emphasizes the specification, on clinical grounds, of potentially important subgroups, 
and places greater weight on those (presumably clinically well grounded) subgroup 
analyses that are pre-specified.  This approach does not necessarily solve the problem 
of multiple subgroup analyses, since large numbers of such analyses could potentially 
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be specified, but in practice often serves to limit the number of subgroup analyses to a 
manageable level.  

The main analytic response to the above difficulties is to adopt the strategy of only 
considering subgroup analyses if an initial test for intervention-by-subgroup interaction 
is statistically significant.  The intention of this strategy is to reduce the number of 
spurious findings of unusual effects in individual subgroups.  For the same reason, it is 
sometimes the case that the set of potential interactions includes only those interactions 
that are specified a priori, but other analysts will test for unexpected interactions and 
use a more stringent threshold for such tests.  If the test for interaction is positive, 
analyses of subgroups might make adjustments for multiplicity.  A simple such 
adjustment is the Bonferroni correction.  For example, if two subgroup analyses are 
being considered, then α= 0.025 (i.e., 0.05/2, the number of statistical tests) is used as 
a revised threshold for statistical significance, and confidence intervals are similarly 
inflated by a Bonferroni correction factor.  
 
Bayesian critique 
 

The Bayesian critique of the frequentist position is both technical and philosophical.  
The technical portion of the critique is that the test for interaction that forms the 
underpinning of the frequentist approach does not necessarily have good properties.  In 
the first place, this test for interaction often has low power, which frequentists believe to 
be an advantage because of its conservatism but which Bayesians believe to be a 
disadvantage because of its tendency to miss real differences in efficacy across 
subgroups.   

A second problem lies not with the test for interaction per se, but instead lies with the 
analysis strategy within which that test for interaction is imbedded.30  In particular, the 
problem lies in making a “go/no go” decision based on whether the p-value for this test 
for interaction falls below 0.05.   

One component of the philosophical portion of the Bayesian critique pertains to the 
way that frequentists frame the multiplicity problem.  Bayesian statisticians believe that 
it is intellectually inconsistent for one analyst that has performed 99 previous subgroup 
analyses and then discovered an interesting result in subgroup analysis number 100 to 
come to a different conclusion than another analyst that begins with the latter subgroup 
analysis, the rationale being that the data are the same for both analysts as is the true 
state of nature.  Bayesian statisticians believe that they have solved the multiplicity 
problem through reframing it, as discussed below. 

A second component of this philosophical critique pertains to the assumption of no 
differential efficacy among subgroups that is represented by the null hypothesis in the 
frequentist test for interaction.  To a Bayesian, such an assumption is inconsistent with 
the notion of biological heterogeneity (i.e., discussed under the medical context).  
Rather than having to make an artificial distinction, based on a single statistical test, 
whether such heterogeneity is present or absent, the Bayesian prefers to (a) follow the 
biological insight that heterogeneity is almost always present; (b) include parameters 
representing this heterogeneity in their models; and (c) include the quantitative 
exploration of this heterogeneity as part of their analysis strategy.  
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A final component of this philosophical critique pertains to the problem of small 
sample sizes.  In the most extreme version of the frequentist position, the only 
information that can be considered about a subgroup pertains to the subgroup itself, 
which can lead to small sample sizes within that subgroup.  Bayesians, on the other 
hand, use information (i.e., “borrow strength”) from similar subgroups to enhance the 
amount of evidence available for any particular subgroup.   

 
Bayesian position 
 

The Bayesian position is perhaps most clearly elucidated by Simon31 and illustrated 
by Goodman and Sladky.32  Its basics are also covered in various tutorial articles, not 
discussed here.   

Some statistical price must be paid in order to address the problems of multiplicity 
and the instability of estimates within small subgroups.  The price that Bayesians are 
willing to pay is through (a) specifying a model delineating the nature of the anticipated 
interactions; and then (b) specifying, through a prior distribution, estimates associated 
with the parameters of this model (i.e., specifying the anticipated interaction terms).  
Once the data are collected, the estimates within any subgroup are not based on that 
subgroup alone (as is the case in the frequentist approach), but instead are a weighted 
average of the subgroup in question and all other subgroups.  Technically, and as 
described in detail elsewhere, the methodology can be summarized by the expression 
prior distribution plus data equals posterior distribution.  Thus, at the conclusion of a 
Bayesian analysis, the estimated efficacy within any subgroup will be a distribution 
whose central (or modal) value reflects the most plausible point estimate and whose 
spread provides information about the range of reasonable values.   

The effect of this procedure is to “shrink” the estimates of “extreme” subgroups – 
that is, subgroups that have extreme estimates of efficacy, and also subgroups that 
have extremely small sample sizes – toward the main effect of efficacy in the population 
as a whole.  Very skeptical prior distributions give greater weight to the notion that 
interactions are unlikely, and thus require dramatic differences between subgroups in 
order to conclude that substantial differences exist.  

Those that advocate for a comprehensive Bayesian approach argue that neither of 
the above elements of the statistical price is particularly problematic.  Regarding the first 
point, Bayesians argue that the principle of biological heterogeneity suggests that it is 
scientifically sound to assume that subgroup effects exist, and thus that modeling these 
effects is a positive rather than a negative, and also contributes toward greater 
transparency in decisionmaking.  Regarding the second point, Bayesians regard the 
specification of a prior distribution as being consistent with the way that decisionmakers 
frame many actual decision problems (i.e., as preliminary beliefs altered by data into 
revised beliefs), and regard the specification of those prior beliefs as providing important 
elements of transparency. Sensitivity analyses can be performed in order to assess how 
the conclusions are altered by postulating different prior distributions.  Finally, skeptical 
prior distributions can be specified, thus providing a high hurdle before declaring 
subgroup effects to be different – in essence, the same idea of a high hurdle that 
underpins the frequentist test for interaction, but implemented in a fashion that 
Bayesians believe to be preferable.  
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Comments 
 

Fortunately, the entire debate of whether the Bayesian worldview is uniformly 
preferable to that of the frequentist can be avoided by taking the position of Simon;31 
namely, that Bayesian methods work very well in some situations and not so well in 
others, and that the subgroup analysis problem is one that is unusually well matched to 
the Bayesian approach.  Both Bayesians and frequentists acknowledge the same set of 
problems associated with subgroup analyses – namely, the potential inconsistency in 
conclusions obtained from analyzing multiple subgroups.  These problems are 
exacerbated when subgroups are small and the analyses are made in the absence of 
an explicit theoretical model.  This potential inconsistency is illustrated in our CMS 
Situation 1 (requesting determination that the evidence demonstrating efficacy is 
sufficient for select subgroups) and Situation 2 (potential of limited efficacy in select 
subgroups) – that is, the data suggest that efficacy associated with one or more 
subgroups might differ from the others leaving CMS with the problem of whether to 
believe that the effectiveness of the intervention actually differs.   

The clinical trial literature and many policymaking groups acknowledge the problems 
associated with subgroup analyses and implicitly or explicitly adopt the frequentist 
position in response.  One element of this response with which Bayesians would agree 
is the importance of transparently specifying the analyst’s conceptual model ahead of 
time. Here, the main difference between Bayesians and frequentists is precisely how 
that model is specified.  Another point of agreement is that the test for interaction 
proposed by frequentists is conservative (i.e. avoids falsely declaring statistical 
significant), in the sense that it is more likely to miss true subgroup effects than it is to 
falsely declare that subgroup effects exist.   

The primary point of dispute is how to respond to this conservatism.  Frequentists 
interpret this conservatism as an advantage.  Bayesians prefer a strategy that has a 
better chance of discovering subgroup effects when they in fact exist.  The Bayesian 
approach even provides a way forward in CMS Situation #3 (extending current results to 
subgroups not well represented in the trials) for which there is no equivalent frequentist 
method – namely, to (a) verify that the biological science is not markedly different for 
Medicare beneficiaries or  to make a conceptually based estimate of the degree of 
difference; and (b) use this assumption, plus data from other subgroups, to posit a 
distribution of possible efficacy values in the currently unstudied subgroup.  The paper 
by Goodman and Sladky32 provides a particularly thoughtful example of how prior 
distributions can be specified.   

As illustrated by Simon31 and Goodman and Sladky,32 policymakers that are 
considering Bayesian methods should insist on prior distributions that are (a) 
scientifically justified, such as by a conceptual model or a meta-analysis; and (b) 
skeptical.  One implication of a skeptical prior distribution is that results from extreme 
subgroups – in particular, from subgroups based on extremely small sample sizes – will 
shrink toward the population mean.  In particular, in Situation 1 and Situation 2, when 
the subgroup in question is small neither frequentist nor Bayesian methods are likely to 
conclude that the results in the anomalous subgroup are real.   
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Another advantage of a skeptical prior distribution is that it would serve to 
standardize the application of Bayesian methods in practice.  Advocates of the 
Bayesian position often seem to underestimate the importance of this standardization 
within a regulatory context, where analysts are not always disinterested observers but 
instead may be adopting a position of advocacy. Indeed, this standardization is  in many 
cases  a significant advantage of frequentist methods which, although not necessarily 
optimal in all cases, provide a set of ground rules that can be agreed upon ahead of 
time and, thus, are in that sense  ‘objective’.   

The best solution to all of the above issues is replication and validation.  In designing 
subsequent studies, Bayesian methods offer the potential for smaller and more focused 
studies.32 This issue is discussed in detail elsewhere. In addition, note that when 
making coverage decisions CMS is in general interested in more inclusive trials that 
have a large enough sample size to detect a health benefit, not just for the group with 
the highest likelihood of showing efficacy. 
 
Use of Bayesian Techniques for Meta-Analysis of Existing Trials 
 

As the number of clinical trials assessing a given intervention increases, often with 
differing findings, policymakers are tasked with how best to evaluate the collection of 
existing trials, and whether the use of Bayesian techniques is helpful in such analysis.  
The literature considers two separate cases of meta-analyses:  (a) all the evidence 
consists of similar trials with similar design, similar patient populations, similar 
interventions, and similar outcome measures; and (b) other evidence is available such 
as that from dissimilar trials, which may differ in terms of interventions or patient groups, 
from non-trial sources such as from observational studies or registries, or from expert 
judgment.   
 
Case 1: Similar Trials  
 

Three models are typically used: (a) a fixed-effect model; (b) a random-effects 
model with all parameters estimated from the trials in question; and (c) a random-
effects model using outside information.  Frequentists utilize either models A or B 
above.  Bayesians utilize either models B or C above.  Model B is termed the “empirical 
Bayesian” solution, whereas model C is termed the “fully Bayesian” solution.   

Symbolically, denote the efficacy measure in study “k” by λk.  The fixed-effect model 
assumes that these λk are the same for all studies, and can thus be denoted by λ.  Each 
study will generate an observed λk and a within-study standard error σk.  Typically, σk will 
decrease with sample size; as sample size increases, the standard error of the 
estimated intervention effect λk tends to decrease.  The fixed-effect model uses as its 
estimate of λ a weighted average of the λk, with weighting factor 1/Vk, where Vk denotes 
variance.  Thus, more precise studies will receive greater weight in the estimation of λ. 

The fixed-effect model violates the principle of biological heterogeneity (discussed in 
the subgroup analysis section); that is, it is more plausible to postulate that there is 
some degree of heterogeneity in the effects being measured than to believe that they 
are absolutely identical.  Nevertheless, in practice this assumption is not intended to be 
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literally true but only approximately so and, thus, some analysts (e.g., Senn33) 
recommend beginning with a fixed-effect analysis as a standard of comparison. 

The random-effects model relaxes the assumption that the efficacy being measured 
is identical from study to study.  Each individual study still generates an efficacy 
estimate λk and precision σk (or, equivalently, Vk).  In order to implement the notion that 
efficacy can differ across trials, it is assumed that each λk is drawn from a “super-
population distribution” having mean λ0 and standard deviation τ.  The estimate of λ0 is 
still a weighted average of the λk, with the weighting factor now being vk + τ2, where (to 
recapitulate) τ2 is the between-study variance.   

The main implications of this procedure are: (a) less precise studies are given more 
weight when compared with the fixed-effect model; (b) in effect, estimates from extreme 
studies are shrunk toward the overall mean; and (c) estimates of λ0 from the random-
effects model are less precise than estimates of λ from the fixed-effect model.  Just as 
the absolute consistency of the effects is a useful fiction within the fixed-effect model, 
the existence of a super-population distribution is a useful fiction in the random-effects 
model.  This fiction is made more actionable by the notion of “exchangeability,” which in 
essence states that the analyst has no reason to anticipate that the efficacy estimate 
from any particular study will be either higher or lower than average.   

In practice, the rate-limiting factor in the estimation of τ is the number of studies, not 
the sample size within study.  Accordingly, estimates of τ from meta-analyses of small to 
moderate numbers of studies can be clinically implausible, and deleteriously affect the 
statistical properties of the analysis.  Note that what is considered as a small to 
moderate number of studies depends on the variability of the outcome of interest within 
and between trials and goals of analysis.  However, this empirical Bayesian approach 
does have the advantage (or disadvantage, depending on one’s perspective) of being 
entirely data-based. 

In the fully Bayesian solution, σk and τ are considered to be random variables, and 
require external prior estimates.  The results are often sensitive to these assumptions 
about the prior distribution.  Accordingly, the advantages of the fully Bayesian solution 
are more prominent in Case 2 described below.   

 
Case 2: Dissimilar Information 
 

The fully Bayesian solution is the only approach that accommodates disparate types 
of information.  Examples of such information are randomized trial data from similar 
interventions or similar patient subgroups, non-randomized trial data in circumstances 
where few randomized trials are available, and expert judgment.  The impact of this 
external information can be adjusted through the precision of the prior distributions 
which summarize that information.  For example, suppose that information from a small 
randomized trial is to be supplemented by external information from observational 
sources such as registries, expert opinion, and the like.  The precision associated with 
the efficacy estimate from the randomized trial is known.  If the analyst wishes to assign 
equal importance to the two types of information, the prior distribution can be assumed 
to have similar precision.  If the analyst wishes to assign greater importance to the prior 
information, this prior distribution can be assumed to have greater precision, and 
similarly, if the analyst wishes to assign less importance to the prior information, this 
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prior distribution can be assumed to have less precision.  This basic idea can be 
implemented in various ways and is discussed in more detail in two publications by 
Spiegelhalter et al.4,34  All of the previously described advantages and disadvantages of 
using external and expert-derived data apply. 

 
Comment 
 

Direct comparisons of meta-analyses between frequentist and Bayesian approaches 
(e.g., Bloom et al.35) do not always yield consistent results – in particular, sometimes the 
results of the two approaches are similar and sometimes they are different.  However, 
some observations do appear to be reasonably consistent. 

 
• Estimates of efficacy from random-effect models have less precision than 

estimates of efficacy from fixed-effect models. 
• Fixed-effect models give greater weight to larger studies than do random-effects 

models. 
• Both approaches struggle a bit when the number of studies is small to moderate.  

In the fixed-effect model, this is reflected by a test for heterogeneity that has low 
power.  In the random-effects models, this is reflected by the tendency for the 
results to be sensitive to the estimate (model B) or assumptions (model C) about 
τ. 

• The results of the fully Bayesian analysis are most likely to differ from others 
when relatively little information is available from the data.  This is, in general, the 
most dangerous circumstance for drawing definitive conclusions – which 
phenomenon should be illustrated by a careful sensitivity analysis. 

• A particularly natural situation for the application of Bayesian statistics occurs 
when (a) the amount of randomized trial data is modest (e.g., as would be the 
case for a small subgroup of patients aged 65 and above); and (b) external 
information is available (e.g., from other trials with designs that are similar but not 
identical, registries, or expert opinion), but this external information is of such 
disparate form that it cannot easily be brought to bear using the frequentist 
paradigm. 

 
Effect of Using Bayesian Techniques on Policymaking and 
Decisionmaking 
 

The literature regarding the policy implications of the application of frequentist or 
Bayesian methods generally falls into two major categories: (a) the technical issues that 
influence applicability of each approach for health economic evaluations, in particular 
cost-effectiveness and net-benefit, and (b) the sources and possible solutions to 
policymaker resistance to the use of Bayesian methods.   
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Applicability of Frequentist vs. Bayesian Approaches for Health Economic 
Evaluations 
 

The majority of articles in the current literature fall into this category.  In addition to 
the critique of the relative theoretical merits of one approach compared to the other, the 
key messages are:  (a) health economic calculations such as incremental cost-
effectiveness ratios, cost-effectiveness acceptability curves, and net-benefit calculations 
can be performed within a Bayesian framework, and (b) as with other metrics emerging 
from research studies, if a non informative prior is used the results of frequentist and 
Bayesian analyses are comparable. 

Several papers illustrate the application of Bayesian methods to cost-related 
analyses.  Hahn and Whitehead36 applied data from a comparative study of 
laparoscopic vs. open surgery for repair of inguinal hernia, specifically calculating and 
plotting net benefit as a function of willingness to pay for units of health effectiveness.  
With the exception of the interpretation, using a non-informative prior led to comparable 
results with both approaches.  They advocate for the Bayesian approach because of its 
natural interpretation in a decisionmaking context but warn that misspecification of a 
prior distribution can lead to less than robust conclusions.  Similarly, Heitjan and Li37 
apply data from a cardiovascular trial to calculate incremental net health benefit using 
Bayesian methods, advocating for the value in producing more interpretable, flexible 
results.  However, like Hahn and Whitehead,36 they do not offer direct evidence of the 
attractiveness of the outputs to decisionmakers.   

Ades et al.38 provide a conceptual case for the use of Bayesian evidence synthesis 
in the context of cost-effectiveness decision models; decision models are noted to be 
increasingly well accepted policy analysis tools in health care.  While written to provide 
guidance on the use of the techniques, they point out that “[f]urther research is needed 
on how to model particular evidence structures, how to use historical evidence and 
expert opinion to inform priors, and how to understand the…information around complex 
networks of evidence.”  

Nixon and Thompson39 focus on the potential utility of Bayesian methods for 
addressing the importance of subgroup differences; it is suggested that these methods 
hold promise in the context of cost-effectiveness studies, noting many of the issues 
raised by Bayesian versus frequentist approaches to subgroups identified in the relative 
efficacy literature (see the section on “Use of Bayesian Techniques in Subgroup 
Analyses,” above).   

In the same vein, Vanness and Kim40 apply Bayesian methods to data from a study 
of ganciclovir prophylaxis in liver transplantation.  In addition to demonstrating the 
application of the methodology, they also suggest that Bayesian methods should be 
more attractive to decisionmakers as the outputs have natural interpretations (and can 
be directly incorporated into analyses which explicitly incorporate realistic 
representations of the losses associated with decisionmaking errors).  The study does 
not provide any empirical support for that suggestion. 

Three additional studies41-43 further illustrate the application of Bayesian methods to 
the calculation of cost-relevant metrics.  However, they do not provide further evidence 
regarding how the Bayesian approach leads to more useful analyses to decisionmakers 
than do frequentist methods. 
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Sources and Possible Solutions to Policymaker Resistance to the Use of 
Bayesian Methods 
 

Two thought articles23,24 focused on the question of why policymakers (and others) 
have been resistant to the application of Bayesian methods and how such resistance 
might be overcome.  After laying out the case for preferring a Bayesian framework for 
evaluation of healthcare interventions, Winkler24 notes several possible explanations for 
why such an advantageous approach is not used more widely.  He considers and 
dismisses as crucial the philosophical issues (i.e., the notion of subjective versus 
objective probability), as not particularly relevant to decisionmakers and, indeed, notes 
that decisionmakers are most apt to function in a Bayesian mode while appearing to 
embrace the frequentist analytic approach.  Note that the relevance of information 
provided by Bayesian approaches to decisionmakers and ease of interpretation of these 
findings are highlighted by Harrell and Shih in their related analysis.44  In his research, 
Winkler lists five core problems with acceptance of the Bayesian approach:  (a) there is 
inadequate training in Bayesian statistics; (b) software to implement Bayesian 
techniques are less accessible; (c) application of Bayesian techniques requires thinking 
while frequentist approaches can be implemented relatively thoughtlessly; (d) there are 
few role models for successful application of Bayesian techniques; (e) there is a strong 
frequentist tradition that will be difficult to overcome – it is accepted as the standard by 
journals, policy makers, regulators, and courts.  On the latter point, he considers the 
possibility that one core issue is the belief by recipients of analyses that frequentist 
approaches are inherently more “objective” and thus less subject to manipulation.  In 
response to this list, he suggests the following: 

 
1. More materials for Bayesian training. 
2. Easier-to-use software. 
3. Better procedures for choosing prior distributions. 
4. Standards for presentation of results. 
5. Creating illustrative cases of the application of Bayesian techniques to 

decisionmaking problems in health care. 
6. Demonstrating the advantages of Bayesian techniques in important healthcare 

decisions, including consideration of utilities/loss functions. 
7. “Selling” the case for Bayesian methods more effectively (i.e., have people 

demand a Bayesian analysis). 
 
Sheingold23 takes a similar approach, but from the perspective of a decisionmaker 

looking to appreciate the value of Bayesian methods.  He observes that most 
decisionmakers are implicitly Bayesian; they are just not drawn to the formal methods 
(“new and different results are carefully scrutinized, although usually not with formal 
Bayesian methods, when they seem to contradict our prior knowledge”).  In addition to 
the explanations described by Winkler, he highlights the key importance of added value, 
noting that approaches that require movement from a relatively stable and comfortable 
position requires demonstration of a significant anomaly – “an outcome that could not 
be predicted by the current paradigm.”  In terms of the Medicare decisionmaking 
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process, he points out 3 areas of resistance:  (a) the methods are difficult to explain to 
stakeholders; (b) the decisionmaking process cannot be fully encompassed by any 
analytic process and indeed such a process may contradict goals of key stakeholders; 
and (c) there is no clear demonstrated anomaly related to frequentist methods.  His 
prescription for overcoming these barriers is similar to that of Winkler, with stress on 
what Bayesian methods add to the existing decisionmaking processes. 

Recognizing that a potential weakness of the application of Bayesian methods in the 
policy domain is the worrisome role of the prior distribution, Stevens and O’Hagan45 
focus on the notion of developing a “genuine prior.”  The genuine prior is an informative 
prior that “would represent all available evidence that has been formally synthesized 
into probability distributions.”  In the context of decisionmaking, they acknowledge that 
there is no well accepted process for elicitation of prior information and so any genuine 
prior should be judged relative to a non-informative prior for purposes of assessing the 
extent to which the informative prior influenced the analysis (and presumably to judge 
how intensely a decisionmaker must scrutinize how the “genuine prior” was 
constructed).  In conclusion, they recommend that “[g]uidelines should be developed 
that provide recommendations for the elicitation process and the synthesis of such 
information into probability distributions.  Submissions of evidence on the cost-
effectiveness of new interventions using the Bayesian approach must include 
supporting documentation that demonstrates clearly that a formal process of elicitation 
has been followed if the prior information is to be accepted as credible.” 
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Chapter 4. Clinical Domain: The Implantable 
Cardioverter Defibrillator for the Prevention of Sudden 
Cardiac Death 

 
Introduction 

 
To explore the use of Bayesian techniques in the CMS context we evaluate the use 

of the implantable cardioverter defibrillator (ICD) in the prevention of sudden cardiac 
death.  This domain is of particular interest as it represents: 

 
• A clinical domain and intervention which CMS has evaluated and for which it has 

provided coverage decisions several times over the past two decades. 
• An intervention which has been demonstrated to be effective in specific trial 

populations, but for which there is uncertainty in particular subgroups,  
• A costly intervention to the Medicare program. 
• A domain where there have been numerous clinical trials evaluating the ICD in 

diverse populations. 
• An intervention for which CMS has issued a “Coverage with Evidence 

Development” requirement, thereby establishing with professional societies an 
ICD registry to monitor the use of the ICD outside the confines of the clinical 
trials. 

• Several clinical and policy questions remain regarding the optimal use of the ICD. 
 

Put in terms of the criteria recommended in the tutorial, the use of ICDs is a potential 
application of Bayesian methods because (a) CMS is particularly interested in the use of 
ICDs for subgroups of patients, such as those aged 65 years and above and those at 
highest risk for sudden cardiac death; (b) the information for some of these subgroups is 
inconclusive, due to small sample sizes (i.e., thus satisfying the condition of “some but 
not quite enough data”); and (c) other information – for example, data from other 
subgroups – is available.  ICDs have been subjected to multiple randomized trials, with 
results that are not entirely consistent, especially when specific subgroups are 
considered in isolation.  Thus, Bayesian methods might be used to “gain strength” by 
combining data both within and across studies, and also to resolve some of the 
apparent inconsistencies in our knowledge about ICDs. 

This chapter provides basic clinical background about sudden cardiac death; ICDs; 
the trials; current CMS coverage decisions; other information that might be brought to 
bear on decisions about ICDs, such as registries; and a translation of CMS’ decisional 
context into the terminology of this report.  The following chapter will take the 
background of this case study as given, and explore some of the statistical properties of 
the application of Bayesian methods to the case study.   
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Sudden Cardiac Death 
 

Sudden cardiac death (SCD), usually due to a ventricular tachyarrhythmia (rapid 
abnormal heart beat), is the most common cause of death in the United States 
accounting for up to 350,000 deaths per year.46  Each year, SCD claims more lives than 
stroke, lung cancer, breast cancer, and AIDS combined.  Although the overall number of 
cardiac deaths has decreased over the past decade, the proportion of cardiac deaths 
that are sudden has increased.  This increase in the rate of SCD has resulted from our 
inability to accurately identify those who will die suddenly and to improve the utilization 
of therapies that have been proven to reduce the risk of SCD in certain patient 
populations.   

 
The Implantable Cardioverter Defibrillator 

 
The ICD is a device that monitors heart rhythms and delivers shocks if dangerous 

rhythms are detected.  Like a pacemaker, an ICD consists of a battery and pulse 
generator connected to one or more insulated wires or leads.  This generator and 
batteries are sealed together and implanted under the skin of a patient at risk for 
sudden cardiac death, usually near the patient’s shoulder.  The leads are threaded 
through the blood vessels from the ICD to the heart muscle.  Once inserted, the ICD 
continuously checks the heart rate, and when it detects a too-rapid or irregular 
heartbeat, it delivers a shock that aims to reset the heart to a more normal rate and 
electrical pattern.   

Recent clinical trials of patients considered at risk for sudden cardiac death have 
demonstrated that the ICD is the most effective therapy currently available for the 
prevention of sudden cardiac death.47-56  Although the overall mortality benefit from ICD 
therapy is evident, the magnitude of effectiveness of ICD therapy in clinically defined 
subgroups is unclear.  In addition, given the substantial cost associated with ICD 
implantation and followup, the clinical and policy community currently are exploring 
methods of aiding in risk stratification for at-risk populations to increase the potential 
benefit of the ICD.   

 
Current ICD Clinical Trials and Evidence of Efficacy 

 
Following the introduction of the ICD, there have been numerous clinical trials 

evaluating its efficacy in various at-risk populations.  The earliest trials evaluated the 
ICD in patients who had survived a previous sudden cardiac arrest or who presented 
with sustained ventricular tachycardia or syncope.  These trials included the Canadian 
Implantable Defibrillator Study (CIDS), the Antiarrhythmics Versus Implantable 
Defibrillators (AVID) trial, and the Cardiac Arrest Study Hamburg (CASH) trial.  Although 
the ICD was shown to be effective in this high-risk population, most patients who suffer 
sudden cardiac arrest do not survive this initial event.  Therefore subsequent trials 
sought to identify patients who although not survivors of a previous sudden cardiac 
arrest, were at a risk for sudden cardiac death high enough to benefit from ICD therapy.  
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These trials included the two Multicenter Automatic Defibrillator Implantation Trials 
(MADIT-I and MADIT-II), the Defibrillators in Non-Ischemic Cardiomyopathy Treatment 
Evaluation (DEFINITE) trial, the Multicenter Unsustained Tachycardiac Trial (MUSTT), 
Defibrillator in Acute Myocardial Infarction Trial (DINAMIT), Coronary Artery Bypass 
Graft Patch trial (CABG-PATCH), and the largest trial being the Sudden Cardiac Death 
in Heart Failure Trial (SCD-HeFT). 

Table 2 lists the current ICD trials and their timings.  The primary and secondary 
prevention trials are sorted within the table by publication date to indicate when the 
results of the trials became publicly available and could potentially have been used for 
designing future trials, or stopping ongoing trials.  Those trials marked with an asterisk 
indicate that their patient-level data are included in our case study analysis. 

Table 3 lists the patient inclusion and exclusion criteria for the different trials, the 
number of patients randomized to ICD therapy and control, and the efficacy of the ICD 
in reducing total mortality as reported in the main trial publication.  Additional details 
regarding the distribution of patient characteristics are provided in Table 4 (Parts 1 and 
2) in the ICD case study.  The primary endpoint in almost all trials was total mortality 
(the exception being the MUSTT trial where although total mortality was reported, the 
primary endpoint was arrhythmic mortality or cardiac arrest).  Secondary endpoints 
included various outcomes such as arrhythmic mortality, non-arrhythmic mortality, 
cardiac hospitalizations, costs, and quality of life.  The main clinical characteristics 
which defined the patient populations included in the trials, or which were the focus of 
pre-defined subgroup analyses included: left ventricular ejection fraction (LVEF), QRS 
interval, New York Heart Association (NYHA) class, presence or absence of ischemia, 
and age of the patient. 

 
Current Clinical Practice Guidelines for ICD Implantation 

 
The American College of Cardiology (ACC), American Heart Association (AHA), and 

the Heart Rhythm Society (HRS) recently updated their guidelines for the implantation 
of cardiac pacemakers and antiarrhythmia devices.57  This revision updates previous 
versions published in 1984, 1991, 1998, and 2002.  The most recent revision includes 
evidence from all of the clinical trials included in our case study.  In the guideline, Class 
I recommendations are those whether the benefit is greater than the risk and 
implantation of an ICD is recommended. 

For secondary prevention of SCD and ventricular arrhythmias, the 
ACC/AHA/NASPE 2008 guidelines list the following Class I indications for ICD therapy: 

 
1. Cardiac arrest due to ventricular fibrillation (VF) or hemodynamically unstable 

sustained ventricular tachycardia (VT) after exclusion of any completely 
reversible causes. 

2. Spontaneous sustained VT in association with structural heart disease. 
3. Syncope of undetermined origin with clinically relevant, hemodynamically 

significant sustained VT or VF induced at electrophysiologic study (EPS). 
4. Spontaneous sustained VT in patients without structural heart disease and 

not amenable to other treatments. 
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For the primary prevention of SCD, according to the Class I recommendations in the 

2008 guidelines for ICD therapy, patients with ischemic cardiomyopathy with an LVEF < 
30 percent should be considered for an ICD regardless of their NYHA class.  Patients 
with ischemic cardiomyopathy and a LVEF > 30 percent but ≤ 35 percent should be 
considered for an ICD if they have NYHA Class II or III heart failure symptoms.  For 
both indications, patients must be at least 40 days post-myocardial infarction (MI) and > 
3 months post-revascularization.  In addition, the new Class I recommendations for ICD 
therapy now include patients with non-ischemic dilated cardiomyopathy and an LVEF ≤ 
35 percent who have NYHA Class II or III heart failure.  Note that all recommendations 
apply only to patients who are receiving optimal medical therapy and have reasonable 
expectation of survival with good functional capacity for more than 1 year. 

 
Current CMS Coverage of ICD Implantation 

 
Along with the professional societies and their assessment of the evidence regarding 

the ICD’s efficacy in prevention of sudden cardiac death, CMS has also reviewed the 
evidence several times and modified their coverage decision regarding ICDs.  CMS first 
issued a Medicare National Coverage Determination in 1986 providing limited coverage 
of ICDs.  The policy has expanded over the years with revisions in 1991, 1999, 2003, 
and most recently 2005.  Each of these revisions has been prompted by the publication 
of new evidence regarding the efficacy of the ICD in different patient populations.  The 
most recent coverage includes the following covered indications: 

 
1. Documented episode of cardiac arrest due to ventricular fibrillation (VF), not 

due to a transient or reversible cause (effective July 1, 1991). 
2. Documented sustained ventricular tachyarrhythmia (VT), either spontaneous 

or induced by an electrophysiology (EP) study, not associated with an acute 
myocardial infarction (MI) and not due to a transient or reversible cause 
(effective July 1, 1999). 

3. Documented familial or inherited conditions with a high risk of life-threatening 
VT, such as long QT syndrome or hypertrophic cardiomyopathy (effective July 
1, 1999). 

4. Patients with ischemic dilated cardiomyopathy (IDCM), documented prior 
myocardial infarction (MI), NYHA Class II and III heart failure, and measured 
left ventricular ejection fraction (LVEF) < 35 percent. 

5. Patients with non-ischemic dilated cardiomyopathy (NIDCM) > 9 months, 
NYHA Class II and III heart failure, and measured LVEF < 35 percent;  

6. Patients who meet all current CMS coverage requirements for a cardiac 
resynchronization therapy (CRT) device and have NYHA Class IV heart 
failure. 

 
For patients in groups 4 to 6 the following criteria must also be met: 
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1. Patients must not have had a coronary artery bypass graft (CABG) or 
percutaneous transluminal coronary angioplasty (PTCA) within the past 3 
months. 

2. Patients must not have had an acute MI within the past 40 days. 
3. Patients must be enrolled in either an FDA-approved clinical trial or a qualified 

data collection system. 
 

ACC-NCDR® ICD Registry 
 

CMS’ objective when it required patients receiving ICDs under its 2006 NCD to be 
enrolled in a registry was to determine if use of ICD therapy in the primary prevention of 
SCD is appropriate for the Medicare beneficiaries who meet the clinical conditions in the 
agency’s National Coverage Decision of January 2005.  CMS approved the ACC-
NCDR®, which was already operating a registry for diagnostic catheterizations and/or 
coronary interventions in the cardiac catheterization lab to enroll ICD patients.   

As of June 2008, the registry had collected data from 1510 hospitals totaling over 
280,000 implants.58  Approximately 10,000 implants are entered into the registry per 
month.  Although the registry is required for primary prevention patients potentially 
eligible for Medicare, 88 percent of implants are being done in hospitals entering all 
patients who are receiving ICDs.  The registry data collection process collects over 130 
data elements at the time of initial ICD implant, device upgrade, and device 
replacement.59 

 
Current Clinical and Policy Questions Regarding 

ICD Implantation 
 

Clinically there are numerous unanswered questions related to ICDs and the 
prevention of sudden cardiac death.  It is hoped that many of these questions will be 
explored through the use of the ICD registry.  Answering other questions will require 
new clinical trials, and others may be evaluated through the combination of existing data 
sources.  Some of the questions that device makers, professional societies, 
researchers, providers, and policymakers are exploring include: 

 
• Can risk stratification techniques be used to either rule in “low-risk” patients, or 

rule out current “high-risk” patients? 
• Can we ethically randomize future patients to “no ICD” to find more effective (or 

cost effective) populations? 
• Will the clinical trial results be replicated in the community? 
• Are the devices and medical therapies in the existing trials similar enough to 

allow combining data among trials? 
• Can the results of the existing trials be extended to Medicare patients when the 

vast majority of patients within the trials were under 75 years of age? 
• Can trial results be extended to populations not well represented in the existing 

trials (e.g., those patients with chronic kidney disease)? 
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• Can the ICD registry be used to answer questions about subgroups of uncertain 
efficacy in the trials? 

 
We next explore how these questions and past research provide examples of CMS 

decisional contexts. 
 

CMS Contexts 
 

The clinical domain of the prevention of sudden cardiac death and the existing 
clinical trials which have evaluated the use of the ICD in populations at risk for sudden 
death provide illustrative examples of each of the four CMS decisional contexts we used 
to frame this project.  We detail here either existing or potential examples of these four 
situations. 

Situation 1: Applicants present CMS with results that suggest none or minimal 
efficacy of an intervention for the overall population, but apparent effectiveness in a 
subgroup or subgroups, and are requesting reimbursement for those subgroups only. 

Although the above situation has not occurred related to ICD therapy specifically 
there are several patient populations where CMS currently restricts ICD coverage based 
on the existing trials.  These include:  

 
• New York Heart Association (NYHC) classification IV.  (Note, Medicare’s 

coverage of Cardiac Resynchronization Therapy defibrillators [CRT-D] in 2005 
reduced the number of NYHA Class IV CHF patients who would not be covered 
for defibrillator implantation by CMS.) 

• Had a coronary artery bypass graft (CABG) or percutaneous transluminal 
coronary angioplasty (PTCA) within past 3 months. 

• Had an acute MI in the past 40 days. 
• Patients with non-ischemic dilated cardiomyopathy (NIDCM) < 9 months. 
 
These populations are being explored where possible in the ICD registry as well as 

through novel trials by the device industry and clinical researchers.  
Situation 2: Applicants present CMS with results that suggest that an intervention is 

efficacious overall, but concern is raised that the benefits might be less in some 
subgroups.  CMS must decide whether to reimburse the intervention without restriction, 
or require more information for these particularly problematic subgroups. 

Throughout the ICD clinical trial history, CMS has been faced with this situation 
several times.  Although in 5 of the 8 primary prevention trials (MADIT-I, MADIT-II, 
SCD-HeFT, COMPANION, and MUSTT) the ICD demonstrated a significant reduction 
in total mortality, two trials did not show a reduction in mortality (CABG-PATCH, 
DINAMIT), and the DEFINITE trial was associated with a non-significant reduction in 
risk of death from any cause.  Based on the results of these trials however, the device 
industry and the clinical community have worked with CMS to define coverage for 
specific populations.  As the trials were ongoing several areas of potential concern 
however were expressed by CMS or the clinical community and have been reflected in 
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CMS’s changing coverage of ICD therapy.  Examples of subgroup uncertainties within 
the existing trials include: 

 
• Effectiveness by NYHA class: subgroup analysis from SCD-HeFT trial (which 

was positive overall) showed significant benefit from an ICD in patients with 
NYHA Class II but not Class III symptoms.  These observations contradict other 
studies in which NYHA Class III patients were well represented (MADIT-I and II, 
DEFINTITE and COMPANION) and for that subgroup ICD was significantly 
efficacious. 

• Effectiveness by QRS interval:  Prior to the reporting of the SCD-HeFT trial, 
subgroup analysis from existing trials suggested less efficacy with narrower QRS 
interval.  In 2003, CMS made a controversial coverage restriction, limiting 
coverage to patients with QRS > 120 ms.  This restriction was lifted in 2005 after 
the SCD-HeFT trial results were reported.   

• Effectiveness by Ejection Fraction (EF): based on an earlier meta-analysis,60 it 
did not appear that ICD was as effective for patients with better contraction (EF > 
30 percent).  Note, however, that it was questioned whether the potentially less 
frequent arrhythmias in this subgroup and length of followup in the trials would 
allow sufficient exploration of the efficacy of the ICD in this patient population.   

• Effectiveness for patients whose heart failure is not caused by ischemia.  The 
representation of patients with non-ischemic disease has been small with only 
the SCD-HeFT and DEFINITE trial having substantial representation  

• Effectiveness by age:  the mean age of patients in the clinical trials was in the 
early 60s, and more than 80 percent of patients were under 75 years of age.  
Conversely, the Medicare population is comprised of over 40 percent people over 
the age of 75.  The efficacy of the ICD in these patients is uncertain – especially 
given competing mortalities.   

• Effectiveness in women:  only 19 percent of patients in the clinical trials were 
women.  By contrast, the Medicare population from the ICD registry is almost 25 
percent women, and the total Medicare population is over 55 percent women.  
The efficacy of the ICD in women is uncertain and requires further study. 

• Placement of ICDs in patients who do not use them:  only ~30 percent of patients 
in the treatment arms of ICD trials have received appropriate shocks (i.e., that 
could have alleviated sudden death); that nearly two-thirds of ICD recipients do 
not make use of the device (during the trial period) suggests a need to identify 
better patient-level predictors of utility – while also emphasizing the limits of our 
knowledge given the shortened time horizon of most clinical trials. 

 
The effect of patient characteristics of NYHA class, age, ejection fraction, and 

ischemia are explored in our case study.   
Situation 3: Applicants present CMS with results that suggest that an intervention is 

efficacious, however the trial in question has been performed on a different population 
(e.g., patients aged 55 to 64).  The applicants wish to extend the results to patients of 
interest to CMS. 

As detailed in Table 4 (Parts 1 and 2), although all of the ICD clinical trials have 
included patients over 65, the mean age of patients within the trials ranged from 57 
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years to 65 years with between 2 percent to 18 percent of the patient populations within 
a trial being over 75 years.  There is uncertainty within the clinical community as to the 
effectiveness of the ICD in the elderly.  Although the ICD may be effective in decreasing 
sudden death, the contribution of competing mortality, and the potential for greater 
morbidity need to be considered.   

Situation 4: Previous completed trials have demonstrated efficacy in high-risk 
populations, applicants are designing a new trial in a lower-risk population of interest to 
CMS and request feedback concerning their proposed trial design and analysis. 

The clinical trials described in this section were completed in 2003.  Since that time, 
the exploration of the ICD in additional populations has continued.  Several areas have 
received particular focus.  These include (1) risk stratification methods for high-risk 
populations (e.g., use of T-wave alternans in predicting sudden cardiac death), (2) new 
ICD devices (e.g., trials exploring the use of remote monitoring ICDs), (3) populations 
which have not been well represented in trials (e.g., patients with chronic kidney 
disease), or (4) populations that are currently restricted from CMS coverage (e.g., early 
post MI patients).  A listing of currently recruiting ICD trials can be found on 
ClinicalTrials.gov (see search results at 
www.clinicaltrials.gov/ct2/results?term=defibrillator&recr=Open&pg=1&flds=Xabcdefgi). 
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Chapter 5. ICD Case Study (Executive Summary) 
 

Introduction 
 

In this section we provide an executive summary of our case study in terms of the 
analyses performed and our key findings.  For the interested reader, in the Appendix we 
provide additional details (both in terms of our methods and assumptions but also tables 
and figures of our findings).  More technical details will be published in a statistical 
manuscript.  In this executive summary, references to the tables in the Appendix are for 
the sake of completeness. 

Prior to the case study described in this section, we performed substantial simulation 
studies to demonstrate that while single trials may be adequately powered to detect 
main treatment effects, they often have low power to detect treatment-covariate 
interactions.  Furthermore, these studies demonstrated that combining data from trials 
improves the power to detect such treatment-covariate interactions.  Details about the 
simulation studies and our findings may be obtained from the authors and will be 
published in a statistical manuscript.  To explore the findings from our simulation studies 
and to provide evidence concerning the advantages and disadvantages of Bayesian 
techniques in clinical trial design and analysis, we performed a case study of the use of 
ICD therapy in the prevention of SCD using data from eight clinical trials. 

 
Methods and Assumptions 

 
For the purposes of this case study, we considered data from eight trials (AVID, 

CABG-PATCH, CASH, DEFINITE, MADIT-I, MADIT-II, MUSTT and SCD-HeFT).  For 
any trial, the overall survival (in years from randomization) is the primary outcome.  
There are two treatment groups (ICD versus control) and four baseline prognostic 
variables, namely, age (in years), ejection fraction (given as a percent), NYHA class 
(Classes I through IV) and ischemic disease (yes/no).  We assumed that the four 
prognostic variables also capture differences in the trial designs.   

Besides the clinical trial data, we received ICD Registry data (limited to Medicare 
patients) from CMS, which includes 121,398 implants between 12/31/2004 and 
6/30/2007.  The registry data do not include non-implanted controls and do not have 
followup information regarding patients’ overall survival.  Thus, for the purpose of 
illustration, we utilized registry data from the MUSTT study to address survival 
comparisons considering clinical trial and registry data. 

We performed four sets of analyses.  These analyses focused on the use of data 
from individual trials, combining data from all trials, exploring the use of registry data, 
and then evaluating the impact of access to aggregate versus patient level data. 

In the analysis of the individual trials, we used models to compare overall survival by 
treatment groups.  To most fully explore the impact of classical and Bayesian 
approaches we considered both an unadjusted analysis considering data from all 
patients in the trial as well as stratified analysis on subgroups.  We also considered 
analysis that adjusted for the common set of baseline prognostic variables, both, with 
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and without the interaction between each of the baseline prognostic variables and 
treatment.  Note that statistical interaction means the effect of one independent 
variable(s) on the dependent variable depends on the value of another independent 
variable(s). 

We then performed a set of analyses where we combined data from all of the trials.  
We considered models that included or not the interactions between baseline prognostic 
variables and treatment.  To combine data from all trials we considered four model 
variations: 1) combining data from all trials, but without adjusting for (potential) trial 
effects; 2) combining data from all trials adjusting for trial effects assuming a fixed 
effect for trial; 3) combining data from all trials assuming random effects for trial and 4) 
combining data from all trials assuming trial-specific baseline hazard functions.  
Bayesian estimation was also performed in the models.  We additionally considered a 
full hierarchical model utilizing random effects for baseline hazard functions, main, 
and interaction effects.  We performed sensitivity analyses on the priors used in our 
Bayesian analyses. 

In the analysis of registry data we used Bayesian techniques to simulate the survival 
experience of hypothetical patients in a hypothetical new trial under the ICD and control 
groups in given prognostic subgroups.  Using these samples we obtained the posterior 
predictive survival distributions for the ICD and control groups which can then be 
compared to the empirical survival distribution of the related subgroups in the registry 
data. 

Finally, one critical aspect of our analysis is the availability of patient-level data from 
ICD trials.  In practice, however, data analysts may face a situation in which only 
aggregate data are available; for example, in the form of estimates of the treatment 
effect along with estimated standard errors.  Such data become available sequentially 
as trial results get published.  We, thus, performed additional analyses to investigate 
two additional points: 

 
1. What are the implications of using aggregate data as opposed to using patient-

level data in assessing overall ICD efficacy? 
2. By considering the accumulated sequential evidence from trials, either using 

aggregate or patient-level data, would we be able to reach a conclusive decision 
of overall ICD efficacy sooner?   

 
We explored these questions under alternative models and choices of prior to 

explore their impact on our findings.  Finally, using patient-level data, we also 
considered the accumulated sequential evidence from trials to assess treatment-
covariate interactions across prognostic subgroups.   

As noted, additional details on our methods (and findings) are provided for the 
reader in the Appendix.  Technical details of the statistical models explored are 
available from the authors and will be published in a statistical manuscript. 
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Findings 
 

Analysis of Individual Trials 
 

Summary statistics for each trial by treatment group are shown in Table 4 (Parts 1 
and 2).  The table shows that the trials considered in this case study differ in sample 
size with the smallest trial having 196 patients (MADIT-I) and the largest with 1676 
(SCD-HeFT) patients randomized to ICD and control.  Participants have different 
compositions across trials.  For example, some trials such as CABG-PATCH, MADIT-I, 
MADIT-II and MUSTT had only ischemic patients while the DEFINITE trial only included 
non-ischemic patients. 

Figures 11(a) and 11(b) show the Kaplan-Meier survival curves by trial and 
treatment group.  In the analysis of individual trials, without adjusting for prognostic 
variables, there is evidence of treatment effect on overall survival in five trials (AVID, 
MADIT-I, MADIT-II, MUSTT and SCD-HeFT) (see Table 5).  Among trials that showed 
treatment effect, the estimated hazard ratio (for death from all causes in the ICD group 
as compared to the control group) ranged from 0.35 to 0.75.  Among trials that did not 
show treatment effect, the estimated hazard ratio ranged from 0.65 to 1.07.   

Comparisons of overall survival by treatment group within prognostic subgroups in 
general failed to show an association between treatment and overall survival (see Table 
6).  Most entries in the table with significant results were no longer significant when 
considering Bonferroni’s adjustment to account for multiple testing.  The only exception 
was in subgroup 4 (age < 65, EF < 30 percent, NYHA II and ischemic disease) in the 
SCD-HeFT trial (Bonferroni’s adjusted p-value < 0.001).  We note that these results are 
affected by the small sample sizes in each subgroup (Table 7 [Parts 1-5]).   

When we adjusted for prognostic variables, the model demonstrates evidence of 
treatment effect on overall survival in the trials previously identified as well as in the 
DEFINITE trial (Appendix Tables A5-A12).  In general, there was no evidence of 
significant interactions when we explored the interaction between treatment and each of 
the prognostic variables.  The exception was in CASH which showed significant 
treatment interaction with EF and NYHA class, MADIT-I with a significant interaction 
between treatment and EF and SCD-HeFT with a significant interaction between 
treatment and age and NYHA class.   

Key points: The analysis of the individual trials shows that, out of eight trials, five 
showed evidence of treatment effect, but there is also a lot of variation in the estimates 
of ICD effect across trials.  Within any trial, the results are fairly robust to different model 
formulations.  Generally, there is no evidence of significant treatment-covariate 
interactions in the prognostic subgroups. 
 
Analysis of Data Combining All Trials 
 

Under all model formulations considered here, there is evidence of treatment effect 
on overall survival (Appendix Tables A13-A17).  Estimates from Bayesian models 
(Appendix Tables A18-A21), are generally similar to those obtained under the 
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frequentist models.  Note that the estimates have lower uncertainty as compared to 
those from the individual trials. 

Appendix Table A22 shows estimates under the full Bayesian hierarchical model 
that accounts for trial variation in the baseline-hazard, main effects and interaction 
effects (note that hierarchical models are not limited to the Bayesian paradigm but are 
particularly natural within that way of thinking).  To summarize the results we present 
the population estimates, as well as, the trial-specific estimates.  We find differential 
effect of ICD across trials.  In particular, we find no treatment effect in the CABG-
PATCH and CASH (95 percent posterior credible intervals include the null value) 
trials.  There is no evidence of interactions between treatment and any of the prognostic 
variables.   

For ease of interpretation, in Table 8 we provide the median hazard ratios and the 
95 percent credible intervals for the effect of treatment within the main subgroups 
defined by the prognostic variables for the individual trials and then for the entire 
population of trials.  We also provide the posterior probability that the hazard ratio for 
the total mortality reduction from the ICD treatment would be 0.80 or less, as this was 
considered a clinically important reduction in mortality by members of our technical 
expert panel.  For sensitivity analysis, we also present probabilities when using different 
clinical cutoffs, that is, of 0.70 and 0.90.  So, for example, although the 95 percent 
credible interval for the overall hazard ratio for the reduction in mortality from ICD 
implant includes the value of no treatment efficacy (that is, a hazard ratio equal to 1), 
with 83 percent posterior probability the hazard ratio is 0.80 or less indicating a clinically 
significant reduction.  However, if one looks at the findings for treatment and NHYA 
class 4 patients we observe that not only there is no evidence of a significant 
interaction, but that there is only a 49 percent probability that the hazard ratio is 0.80 or 
less.  In Table 9, we provide the same information (median hazard ratios, 95 percent 
credible intervals, and posterior probability that the hazard ratio is less or equal to 0.70, 
0.80 and 0.90) for each of the 48 subgroups.  Again note that there is no evidence of 
treatment benefit in the individual subgroups.  The probability that the hazard ratio is 
0.80 or less, however, is at least 75 percent in 11 of the subgroups indicated in red in 
the table. 

While these results seem to contradict those arising from Appendix Tables A13-A21, 
we note that this full hierarchical model accounts for a variety of sources of variation not 
accounted for in the previous models; for example, that the interactions between 
treatment and say the presence of ischemia may not be the same across trials.  But in 
doing so, we deal with yet another issue in that some prognostic subgroups were not 
observed in all trials.  When accounting for all of these sources of variation, there is no 
longer evidential support for interactions.   

Key points:  Combining data from trials improves our inferences by increasing the 
precision of our estimates as well as the power to detect main effects and interactions.  
There are a variety of modeling approaches that allow us to combine data from different 
trials, but they do not necessarily lead to the same inference.   

Understanding the underlying model assumptions and limitations is important when 
interpreting the results from the combined analysis.  For example, in this section we 
observed that some models showed evidence for an interaction between treatment and 
AGE in the combined analysis.  But this evidence arises from models that assume that 
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this interaction is the same across all trials.  If this assumption is considered 
unreasonable, and we consider instead a model that accounts for the variation of the 
interaction across trials, then the interaction between treatment and AGE is no longer 
significant.   

Finally, when considering Bayesian estimation, the role of priors should also be 
examined through a sensitivity analysis.  We delay the discussion on the effect of priors 
to the section on “Analysis of Aggregate versus Patient-level Data,” below.  
 
Using Registry Data 
 

Table 10 provides descriptive characteristics of CMS ICD Registry patients (note this 
is limited to Medicare patients within the ACC-NCDR Registry).  As compared to 
patients recruited to the actual ICD trials, we note that patients in the registry are older 
and with worse prognosis.  Of particular note is that more than 87 percent of the 
patients in the CMS ICD Registry are NYHA Class II or greater while these patients 
represented approximately just two thirds of the trial patients. 

As we discussed before, the current CMS registry does not have survival after 
discharge.  Thus, we utilized the registry data from the MUSTT study for illustrative 
purposes.  Table 11 has descriptive statistics for the MUSTT registry.  We note that 
patients in the MUSTT registry also have different characteristics from those in the CMS 
registry.  We also note that only approximately 35 percent of the patients in the MUSTT 
registry received beta-adrenergic blocking agents perhaps influencing the cohort’s 
mortality. 

Figures 12(a) and 12(b) show the posterior predictive survival distribution for the ICD 
and control groups along with the empirical survival distribution from the registry data in 
two subgroups.  For these subgroups, there are few patients in the MUSTT registry who 
received an ICD.  Control patients in the MUSTT registry have better survival earlier on, 
but more comparable (to the posterior predictive survival) in later years.   

Key points:  The above analysis illustrates that we can utilize Bayesian hierarchical 
models to predict survival from patients in subgroups.  This was an illustration and not a 
definitive examination of the strengths and weaknesses of the Bayesian approach to 
this problem.  Indeed, in this data set we observed that the predictions from the 
Bayesian model were not always consistent with the survival observed in the registry.  
Various interpretations of this observation are possible, among them being the 
possibility (independent of the particular statistical model being employed) that patients 
in the registry had a different prognosis than patients in the clinical trials. 
 
Analysis of Aggregate versus Patient-level Data 
 

Appendix Figure A5(a) (see also Appendix Table A28) shows the results from the 
analysis that combines aggregate data sequentially mimicking when the trials were 
completed and their data available.  Trials were combined in the following order (based 
on their publication date):  MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, 
DEFINITE, SCD-HeFT. 
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As we accumulate data from trials, the 95 percent posterior credible intervals under 
both priors get narrower.  The gain of information with accumulated data is greater 
under the less informative prior.  We demonstrate how under two priors, upon 
combining aggregate data from all trials, we can find only a borderline evidence of 
overall ICD efficacy under one prior, while we do not rule out no efficacy under the 
alternative prior. 

In contrast, Appendix Figure A5(b) (see also Appendix Table A29) shows the results 
from the analysis that combines patient-level data sequentially.  As we combine data 
from more trials, the estimates become more similar and precise.  Using the more 
informative prior we would have concluded overall ICD efficacy sooner with six trials.   

Key points:  In this section we examined the use of patient-level data versus 
aggregate data as information accrues over time.  Our analysis showed that the 
resulting inferences are not necessarily the same.  The analysis of aggregate data may 
be more sensitive to priors.   

Finally, we note that the above analysis which assesses the interactions between 
treatment and covariates defining the subgroups of interest may not be feasible with 
aggregate data (see Pocock et al.26 for a review on issues with published subgroup 
analysis). 

We now further examine the Bayesian hierarchical model that combines patient-level 
data from all eight trials.  In what follows we will state a sample of questions of clinical 
interest that we can examine with this model. 
Question 1: Is there evidence that the devices used in the different trials differ in terms 

of their efficacies?  
Answer: As we have discussed before, the Bayesian hierarchical model accounts for 

the variability within and between trials.  In particular, we assume that ICD efficacy is 
trial-specific, but allow for the borrowing of information about ICD efficacy across trials.  
Figure 13 shows the estimates of treatment effect for each trial and the overall effect 
across all trials.  There is evidence that treatment efficacy differs across trials.  Why 
this is the case is uncertain.  The differences in treatment efficacy could be due to 
differences in the devices used in the trials, but they could also be due to the patient 
population being different across trials – even after controlling for age, EF, NYHA 
class, and ischemia.  For example, additional information concerning the QRS interval, 
gender, or time from myocardial infarction could explain the differences in ICD 
efficacy.  Accounting for these differences, under prior 1 we estimate that the hazard 
of death in the ICD group is exp(-0.43) = 0.65 times the hazard in the control group.  
The 95 percent posterior credible interval is 0.41 to 1.02.  Under prior 2 we estimate 
the hazard of death in the ICD group is 0.66 times that in the control group, with a 95 
percent posterior credible interval of 0.49 to 0.90.  That is, under the more informative 
prior 2, our analysis supports the evidence of overall ICD efficacy across all trials.  
(Note that the two priors used above represent beliefs of no treatment effect.  Both 
priors are centered around no treatment effect.  We describe prior 2 as being more 
informative in the sense that it places heavier mass around no treatment effect). 

Question 2: Controlling for EF, ischemia, age, and NYHA class, are patients within the 
available trials similar?  

Answer: Another feature of our Bayesian hierarchical model is that it allows for the 
baseline survival functions to vary from trial-to-trial.  Figure 14 shows the estimated 
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posterior baseline survival functions under each trial and overall trials.  Even 
controlling for EF, ischemia, age, and NYHA class, the figure indicates that patients’ 
survival differs within the available trials.  Patients in the SCD-HeFT trial seem to have 
the best survival prognosis.  Patients in CABG-PATCH, AVID and MUSTT have poorer 
survival prognosis.  Again, as discussed under Question 1, there are several potential 
explanations for this difference.  The variation across trials could be due to differences 
in the implanted devices, in the underlying medical care of the patient populations, or 
in patient characteristics that are currently not included in our analysis (e.g., gender, 
QRS interval, time from myocardial infarction).  To gain further insight into these 
differences, additional patient-level data would be required from the trials, and the 
Bayesian hierarchical model would need to be updated to reflect this additional 
knowledge.  Our group currently has a research grant starting 12/1/09 to gain access 
to these needed data and to update our Bayesian model so as to allow exploration of 
these described differences.  

Also note that the variation across trials could be due in part to the fact that some of 
our trials were secondary prevention trials (CASH, AVID), while the remaining trials 
were primary prevention trials.  As we described earlier, we chose to combine data from 
all ICD trials and explored the effects of the four prognostic characteristics across these 
populations.  However, to explore the potential impact of a patient having previously 
experienced a sudden cardiac arrest, we performed additional sensitivity analyses to 
assess whether treatment may have a different effect in the primary versus secondary 
patient populations.  These analyses and their findings are detailed in the Appendix 
(see the discussion of Question 2 under “Analysis of Aggregate versus Patient-level 
Data”, “Key points”, and Appendix Tables A31 and A32).  They demonstrate that even 
though the patient populations may be different, there is no evidence for differences in 
treatment effect.  This supports our approach, which combined data from all trials. 
Question 3: Is there evidence that the ICD has different effects across patient 

subgroups?  
Answer: The Bayesian hierarchical model also allows for trial-specific interactions.  

From our analysis [see Appendix Table A30], there was no evidence for overall 
interactions between treatment and the covariates that define the subgroups of 
interest.  In other words, there was no evidence for treatment-covariate interaction 
across prognostic subgroups.  We again direct the reader to Tables 8 and 9 for easier 
interpretation of these results.  Table 8 provides the median hazard ratios and the 95 
percent credible intervals for the effect of treatment within the main subgroups defined 
by the prognostic variables for the individual trials and then for the entire population of 
trials.  We also provide the posterior probability that the hazard ratio for the total 
mortality reduction from the ICD treatment would be 0.80 or less, as this was 
considered a clinically important reduction in mortality by our technical expert panel.  
For sensitivity analysis, we also present probabilities when using different clinical 
cutoffs, that is, of 0.70 and 0.90.  So, for example, although the 95 percent credible 
interval for the overall hazard ratio for the reduction in mortality from ICD implant 
includes the value of no treatment efficacy (that is, a hazard ratio equal to 1), with 83 
percent posterior probability the hazard ratio is 0.80 or less, indicating a clinically 
significant reduction.  However, if we consider the findings for treatment and NHYA 
class IV patients, we observe that not only is there no evidence of a significant 
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interaction, but there is only a 49 percent probability that the hazard ratio is 0.80 or 
less.  Table 8 shows that the data from the combined trials do not demonstrate a 
significant treatment effect given the main prognostic variables.  Similarly, in Table 9, 
we provide the same information (median hazard ratios, 95 percent credible intervals, 
and posterior probability that the hazard ratio is less or equal to 0.70, 0.80, and 0.90) 
for each of the 48 subgroups.  Again, note that there is no evidence of treatment 
benefit in the individual subgroups.  The probability that the hazard ratio is 0.80 or less 
is, however, at least 75 percent in 11 of the subgroups indicated in red in the table. 

 
Methodological and Clinical Implications of Findings 

 
This case study illustrates Situations 1, 2, and 3 (described under CMS contexts).  

For example, corresponding to Situation 1, in the CASH trial there was no overall 
efficacy of the ICD, but with a naïve analysis one could find efficacy within the subgroup 
with patients < 65 years old, ≤ 30 percent, NYHA Class II and ischemic disease.  
Illustrating Situation 2, the AVID trial supports overall efficacy of the device.  However, 
concern may be raised in the subgroup of patients with < 65 years old, ≤ 30 percent, 
NYHA Class III and ischemic disease, even though the survival comparison within the 
subgroup was not significant.  Finally, illustrating Situation 3, some trials do not have all 
subgroups represented.  For example, the DEFINITE trial was only on non-ischemic 
patients.   

Regarding Situations 1 and 2, testing for interactions at the individual trials often did 
not support the presence of treatment-covariate interactions.  Combining data from the 
trials improves the power to detect interactions.  However, in this case study, the 
analysis that combined data from the trials generally did not support the presence of 
interactions.  Such conclusions are supported under different model formulations as well 
as different estimation approaches.  In particular, we note that our Bayesian estimation 
of the models that combined data from trials gave similar estimates to those obtained 
under the classical frequentist approaches.  This illustrates that for large studies, 
Bayesian inferences are less sensitive to prior choices.   

Utilizing the full Bayesian hierarchical model, we simulated the survival experience 
of hypothetical patients in a new clinical trial.  This accounts for both, the variation 
between and within clinical trials.  Because of the borrowing of information across trials, 
this model allows us to predict survival even if an individual trial does not include some 
of the subgroups (thus, addressing Situation 3).  Using this approach, we note that the 
survival in the registry data is better (relative to those predicted by our model) in early 
years.  We note, however, that such analysis has an exploratory feature as confounding 
might be present.  We also note that this model could not be estimated using classical 
frequentist approaches.   

Finally, we note that the individual ICD studies were challenging to interpret when 
considered in isolation because of sample size, inconsistent statistical significance, and 
inconsistent subgroup effects.  This is just the circumstance that Bayesian methods 
work well and, indeed, when the studies were considered together in a Bayesian 
context ("borrowing strength" from other studies and other subgroups), the results 
were much more consistent. 
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Chapter 6. Interpretation of Findings in the CMS 
Context 

Statement of Findings 
 

Based on our review of the literature, simulation studies, and case study, we 
conclude the following concerning the use of Bayesian statistical approaches in CMS 
policy- and decisionmaking. 

 
1. CMS should consider claims about differential subgroup effects only if 

they are accompanied by a formal statistical test for interaction.  In other 
words, aberrant subgroup results should not be taken at face value. 

a. Claims about differential subgroup effects based on stratified 
analysis should only be considered as exploratory.  These 
analyses are compromised by the small sample sizes and post hoc 
decisions regarding the number of tested subgroups.  [Evidence: In 
Table 5 we noted, for example, that there was no evidence of ICD 
efficacy in the DEFINITE trial.  However, in Table 6, using stratified 
analysis (and without adjustment for multiple testing) one could claim 
ICD efficacy in the subgroup age 75 or older, with EF less or equal to 
30 percent, NYHA III and non-ischemic.  However, Appendix Table A8 
shows that there is no significant interactions between treatment and 
prognostic variables in the DEFINITE trial] 

b. Subgroup effects observed in a specific trial should be placed 
into context by using a statistical model that combines 
information across trials and across subgroups.  The random-
effects/hierarchical models do both.  This will reduce the statistical 
error rates.  [Evidence: In Appendix Table A7, there was some 
evidence for an interaction between treatment and ejection fraction in 
the CASH trial.  However, other trials have not supported such an 
interaction.  We formally examined this interaction across trials and 
subgroups with models that assessed the interaction using the 
combined data.  Such models also did not support the interaction 
between treatment and ejection fraction (see Appendix Tables A14-
A17 and A18-A21, using models estimated using frequentist or 
Bayesian methods, respectively).  However, the evidence from the 
combined analysis has improved precision.  Simulation results also 
show increased power to detect interactions in the combined analysis.] 

2. To increase the statistical power to detect those interactions that in fact 
exist, consider using all sources of data in order to stipulate within the 
statistical model which types of interaction are likely.  For example, 
observational data and expert opinion might suggest that if an interaction is 
present it will take the form of decreasing ICD efficacy with increasing burden 
of disease.  Looking specifically for this type of interaction will increase 
statistical power.  [Evidence: See literature review in Chapter 3.] 
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3. Base study design and decisionmaking only on those subgroup effects 
that are likely to be strong.  The power to detect interactions is not 
universally high, and focusing attention on the most likely candidates will limit 
the number of subgroups that are analyzed, and thus limit the pernicious 
effects of random variation.  [Evidence: See literature review in Chapter 3.] 

4. If the trial-based data are sufficient, do not directly combine trial-based 
data with information from other sources such as observational data 
and expert opinion.  Instead, use these other sources as informal sources of 
validation, and also to help design the statistical model for the trials (see 
below).  [Evidence: See literature review in Chapter 3.] 

5. When little or no trial-based information about a subgroup is available, 
consider the use of other data (e.g., trial-based information from other 
subgroups, observational data, expert opinion) in order to specify a 
prior distribution.  Unless special circumstances such as small patient 
pools are present, do not use this information to make final decisions 
about efficacy within the subgroups in question, but instead use this 
information to plan further studies.  In essence, this finding suggests that 
the more controversial applications of Bayesian methodology should be 
reserved for those situations in which the decisionmaker has no other choice, 
and should, in any case, not be considered definitive.  [Evidence: See 
literature review in Chapter 3.]  We also note that in situations where a trial 
appears aberrant, one may adopt a cross-validation approach, considering 
the analysis with and without the data arising from that particular trial.  This 
would allow us to assess how influential the trial might be in the overall 
conclusions. 

6. Claims based on Bayesian methods should provide sensitivity analysis 
to the assumed priors.  While for large trials the results are not sensitive to 
prior choices, this is not the case for small size trials and therefore the 
sensitivity analyses to the assumed priors are needed.  [Evidence: To 
illustrate this point, consider results shown in Appendix Figure A5(b).  When 
only data from a single trial are considered, analysis results are more 
sensitive to the prior choices.  However, when we increase the sample size 
(in this case, by combining data from trials) we reduce the sensitivity to prior 
choices]. 

7. Results from aggregate data analysis are not necessarily consistent 
with those obtained using patient-level data.  Aggregate data analysis 
may ignore, for example, additional sources of variation; for example, those 
that explain patient-to-patient variation within a study.  This is a critical point 
particularly in observational studies, where aggregate data can lead to 
confounding, and explains why CMS should continue to encourage 
investigators to submit their raw data to facilitate analysis.  [Evidence: See the 
section on “Analysis of Aggregate versus Patient-level Data” in Chapter 5.] 

8. Combining data from trials sequentially may allow us to conclude 
overall efficacy sooner. As already pointed out under item 6, above, 
sensitivity analysis will clarify the role of the priors for reaching such a 
conclusion.  Although not illustrated here, a similar comment applies when 
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analyzing data within any trial sequentially (that is, when performing interim 
analysis).  [Evidence: See the section on “Analysis of Aggregate versus 
Patient-level Data” in Chapter 5.] 

 
Summary 

 
Bayesian statistical approaches provide a formal method of learning from evidence 

as it accumulates.  The potential benefits of Bayesian approaches – especially when 
good prior information is available have allowed the use of these techniques to become 
more popular within the clinical trial community.  The impact of these approaches on 
CMS policy-level decisionmaking however is uncertain. 

In this report we provide an overview of the published literature concerning the 
advantages and disadvantages of Bayesian techniques in clinical trial design and 
analysis, the use of these approaches in subgroup analysis, and their strengths in meta-
analysis of the clinical information as it accumulates.  We then evaluate Bayesian 
approaches compared with frequentist approaches through a series of simulation 
studies and a case study of ICD therapy in the prevention of sudden cardiac death.  
These analyses allow us to explore four decisional contexts in which CMS may consider 
the use of Bayesian approaches, namely where clinical trial results appear to 
demonstrate greater or lesser efficacy in particular subgroups (and applicants are 
wanting to determine whether the evidence supporting the intervention’s efficacy in 
these subgroups is sufficient from CMS’ viewpoint), where trial results focus on patient 
populations different from CMS beneficiaries, and where applicants are designing a new 
trial based on previous findings.  In addition, as CMS considers the use of Bayesian and 
frequentist approaches in their decisional contexts, Bayesian techniques allow for ease 
of integration and consistency with a decision analytic framework. 

Based on our work, we provide suggestions to CMS concerning the use of Bayesian 
statistical approaches in policymaking.  Incorporation of these findings into CMS 
decisionmaking process may enable policymakers to harness the power of the available 
sources of clinical evidence, explore subgroup effects within a trial and across trials in a 
methodologically rigorous manner, assess the uncertainty in clinical trial findings – and 
ideally improve health outcomes for Medicare beneficiaries. 
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Glossary of Terms 
 
Adaptive designs 

Adaptive design is a trial design that allows modifications to some aspects of the 
trial after its initiation without undermining the validity and integrity of the trial.  
The following are examples of modifications to a trial: sample size re-estimation, 
early stopping due to efficacy or futility, adaptive randomization, and dropping 
inferior treatment groups. 
 

Baseline hazard function 
 The hazard function in the absence of covariates. 
 
Bayesian analysis (or Bayesian statistics) 

An analysis that starts with a particular probability of an event (the prior 
probability) and incorporates new information to generate a revised probability (a 
posterior probability). 
 

Bayesian hierarchical model 
In a standard Bayesian model, the parameters are drawn from prior distributions, 
the parameters of which are fixed by the modeler.  In a hierarchical model, these 
parameters are also free to vary and are themselves drawn from priors.  This 
form of modeling is most useful for data that is composed of exchangeable 
groups for which the possibility is required that the parameters that describe each 
group might or might not be the same.  The basic idea in a hierarchical model is 
that when you look at the likelihood function, and decide on the right priors, it 
may be appropriate to use priors that themselves depend on other parameters 
not mentioned in the likelihood.  These parameters themselves will require priors, 
which themselves may (or may not) depend on new parameters.  Eventually the 
process terminates when we no longer introduce new parameters. 
 

Bayes’ theorem 
Bayes' theorem relates the conditional and marginal probabilities of events A and 
B: 
 
 P(A|B) = [P(B|A)P(A)]/P(B) 
 
where P(A) is the prior probability or marginal probability of A.  It is "prior" in the 
sense that it does not take into account any information about B.  P(A|B) is the 
conditional probability of A, given B.  It is also called the posterior probability 
because it is derived from or depends upon the specified value of B.  P(B|A) is 
the conditional probability of B given A.  P(B) is the prior or marginal probability of 
B.  Intuitively, Bayes' theorem in this form describes the way in which one's 
beliefs about observing 'A' are updated by having observed 'B'. 
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Bonferroni’s adjustment 
When performing multiple statistical significance tests on the same data, the 
Bonferroni adjustment can be applied to make it more "difficult" for any one test 
to be statistically significant.  For example, when reviewing multiple correlation 
coefficients form a correlation matrix, accepting and interpreting the correlations 
that are statistically significant at the conventional 0.05 level may be 
inappropriate, given that multiple tests are performed.  Specifically, the alpha 
error probability of erroneously accepting the observed correlation coefficient as 
not-equal-to-zero when in fact (in the population) it is equal to zero may be much 
larger than 0.05 in this case.  The Bonferroni adjustment usually is accomplished 
by dividing the alpha level (usually set to 0.05, 0.01, etc.) by the number of tests 
being performing.   
 

Borrowing strength 
This is the tendency in a Bayesian model for the posterior distributions of 
parameters among exchangeable units to become narrower as a result of pooling 
information across units. 
 

Confidence interval 
The confidence interval is an interval estimate of a population parameter.  
Instead of estimating the parameter by a single value, an interval likely to include 
the parameter is given.  Thus, confidence intervals are used to indicate the 
reliability of an estimate.  How likely the interval is to contain the parameter is 
determined by the confidence level or confidence coefficient.  Increasing the 
desired confidence level will widen the confidence interval. 
 

Cox proportional hazards model 
A model for ongoing risk over time in which the risks (hazards) are proportional 
among subgroups, but the base hazard may vary over time.   
 

Credible interval 
The calculated interval that has a specified (subjective) probability of containing a 
parameter of interest (such as a regression coefficient, or hazard ratio, for 
example), given the observed data.  For example, if one obtained a 95 percent 
credible interval for some parameter, say, hazard ratio, of 0.77 to 0.96, with a 
mode of 0.85, then we would conclude that the most likely value of hazard ratio 
was 0.85 and that we were 95 percent certain that the true value of hazard ratio 
was between 0.77 and 0.96. 
 

Fixed-effect model 
A model to generate a summary estimate of the magnitude of effect in a meta-
analysis that restricts inferences to the set of studies included in the meta-
analysis and assumes that a single true value underlies all of the primary study 
results.  The assumption is that if all studies were infinitely large, they would yield 
identical estimates of effect; thus, observed estimates of effect differ from one 
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another only because of random error.  This model takes only within-study 
variation into account and not between-study variation. 
 

Hazard ratio 
The ratio of ongoing risk, between two groups being compared, of an outcome 
(e.g., death) – assumed to be constant over the study period; often reported in 
the context of survival analysis. 
 

Informative prior 
Informative priors have a stronger influence on the posterior distribution.  The 
influence of the prior distribution on the posterior is related to the sample size of 
the data and the form of the prior.  Generally speaking, large sample sizes are 
required to modify strong priors, where weak priors are overwhelmed by even 
relatively small sample sizes.  Informative priors are typically obtained from past 
data. 
 

Interaction 
Statistical interaction means the effect of one independent variable(s) on the 
dependent variable depends on the value of another independent variable(s). 
 

Kaplan-Meier survival curves 
A plot of the Kaplan-Meier estimate of the survival function is a series of 
horizontal steps of declining magnitude which, when a large enough sample is 
taken, approaches the true survival function for that population.  The value of the 
survival function between successive distinct sampled observations is taken to 
be constant. 
 

Maximum likelihood estimation 
A method of parameter estimation in which a parameter is estimated to be that 
value for which the data are most likely.  For a fixed set of data and underlying 
probability model, maximum likelihood picks the value of the model parameters 
that make the data "more likely" than any other values of the parameters would 
make them.  Maximum likelihood estimation gives a unique and easy way to 
determine solution in the case of the normal distribution and many other 
problems, although in very complex problems this may not be the case.  If a 
uniform prior distribution is assumed over the parameters, the maximum 
likelihood estimate coincides with the most probable values thereof. 
 

Non-informative prior 
Non-informative prior distributions (a.k.a., vague, flat and diffuse) are 
distributions that have no population basis and play a minimal role in the 
posterior distribution.  The idea behind the use of non-informative prior 
distributions is to make inferences that are not greatly affected by external 
information or when external information is not available.  The uniform 
distribution is frequently used as a non-informative prior. 
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Posterior credible interval 
A Bayesian 95 percent posterior credible interval may be interpreted in a 
straightforward manner as an interval that contains the parameter of interest with 
95 percent probability given the observed data. 
 

Posterior predictive survival distribution 
The posterior predictive survival distribution is the survival distribution of 
unobserved observations (prediction) conditional on the observed data. 
 

Posterior probability 
Bayesian probability derived from the prior probability of an event and its 
likelihood, the latter derived from data. 
 

Prior (or “prior probability”) 
The prior (or prior probability) is interpreted as a description of what is known 
about a variable in the absence of further evidence. 
 

Prior distribution 
The prior distribution is a key part of Bayesian inference and represents the 
information about an uncertain parameter Θ that is combined with the probability 
distribution of new data to yield the posterior distribution, which in turn is used for 
future inferences and decisions involving Θ. 

 
Random-effects model 

A model used to give a summary estimate of the magnitude of an effect in a 
meta-analysis that assumes that the studies included are a random sample of a 
population of studies addressing the question posed in the meta-analysis.  Each 
study estimates a different underlying true effect, and the distribution of these 
effects is often assumed to be normal around a mean value.  Because a random-
effects model takes into account both within-study and between-study variability, 
the confidence interval around the point estimate is, when there is appreciable 
variability in results across studies, wider than it could be if a fixed-effects model 
were used. 
 

Spline 
The term “spline” is used to refer to a wide class of functions that are used in 
applications requiring data interpolation and/or smoothing. 
 

Variance 
The technical term for the statistical estimate of the variability in results. 
 

Weibull regression model 
A proportional hazards model which uses the Weibull distribution.  It is a versatile 
distribution that can take on the characteristics of other types of distributions, 
based on the value of the shape parameter. 
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Acronyms and Abbreviations 
 
ACC   American College of Cardiology 
AHA   American Heart Association 
AIDS   Acquired immune deficiency syndrome 
AVID   Antiarrhythmics Versus Implantable Defibrillators trial 
CABG   Coronary artery bypass graft 
CABG-PATCH Coronary Artery Bypass Graft Patch trial 
CASH   Cardiac Arrest Study Hamburg trial 
CDRH   Center for Devices and Radiological Health 
CIDS   Canadian Implantable Defibrillator Study 
CMS   Centers for Medicare & Medicaid Services 
CRT   Cardiac resynchronization therapy 
DEFINITE Defibrillators in Non-Ischemic Cardiomyopathy Treatment 

Evaluation trial 
DINAMIT  Defibrillator in Acute Myocardial Infarction Trial 
EF   Ejection fraction 
EP   Electrophysiology  
FDA   U.S. Food and Drug Administration 
HRS   Heart Rhythm Society 
ICD   Implantable cardioverter defibrillator 
ICDM   Ischemic dilated cardiomyopathy 
ISBA   International Society for Bayesian Analysis 
LVEF   Left ventricular ejection fraction 
MADIT-I  Multicenter Automatic Defibrillator Implantation Trial-I 
MADIT-II  Multicenter Automatic Defibrillator Implantation Trial-II 
MCMC  Markov chain Monte Carlo 
MI   Myocardial infarction 
MUSTT  Multicenter Unsustained Tachycardiac Trial 
NIDCM  Non-ischemic dilated cardiomyopathy 
NYHA   New York Heart Association 
PTCA   Percutaneous transluminal coronary angioplasty 
RCT   Randomized controlled trial 
SBP   Systolic blood pressure 
SCD   Sudden cardiac death 
SCD-HeFT  Sudden Cardiac Death in Heart Failure Trial 
VF   Ventricular fibrillation 
VT   Ventricular tachycardia



 

Figure 1.  Basic Bayesian paradigm
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Figure 2.  Diagnostic test – 20% prior probability of disease
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Figure 3.  Diagnostic test – 10% prior probability of disease
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Figure 4.  Meta-analysis of the results of 2 randomized trials
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Figure 5.  Non-informative prior distribution
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Figure 6.  Prior distribution is informative and skeptical
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Figure 7.  Prior distribution is informative and not skeptical 
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Figure 8.  Prior distribution is non-skeptical and dominates the analysis
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Figure 9.  Use of distributions
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Figure 10.  Dose-response curves
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Figure 11(a): Kaplan-Meier survival curves by treatment group. 
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Figure 11(b): Kaplan-Meier survival curves by treatment group. (Note that in the SCD-HeFT trial the 
dotted red line corresponds to the “placebo” arm of the trial.) 
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Figure 12(a). Posterior predictive survival distributions under the ICD and control group for hypothetical 
patients with age [65,75), ejection fraction < 30%, NYHA II and ischemic disease and empirical survival 
distribution from corresponding registry patients in the MUSTT registry.  
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Figure 12(b). Posterior predictive survival distributions under the ICD and control group (for hypothetical 
patients with age 75+, ejection fraction < 30%, NYHA II and ischemic disease and empirical survival 
distribution from corresponding registry patients in the MUSTT registry.  
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Figure 13. Posterior estimates (mean along with 95% posterior credible intervals) for the overall treatment 
effect under two priors (prior 2 is more informative than prior 1). 
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Figure 14. Estimated posterior baseline survival functions. 

 

 

 



 

Table 1. Included articles by theme 
 
Theme  Included Articles 

Advantages and disadvantages of Bayesian 
techniques in clinical trial design and 
analysis (n = 41) 

Austin et al., 200261 
Avins, 199822 
Berry, 199362 
Berry, 199863 
Berry, 200664 
Bloom et al., 200235 
Brophy and Joseph, 20059 
Brown et al., 198765 
Diamond and Kaul, 200466 
Dignam et al., 199818 
Dmitrienko and Wang, 200614 
Emerson et al., 200717 
Fisher, 19966 
Fisher, 199867 
Freedman and Spiegelhalter, 198916 
Freedman and Spiegelhalter, 199215 
Gennari et al., 20067 
George et al., 199419 
Goodman and Sladky, 200532 
Gould, 200568 
Greenhouse and Wasserman, 199569 
Grieve and Senn, 199870 
Howard, 200771 
Jones et al., 199830 
Kaul and Diamond, 200772 
Kpozehouen et al., 200510 
Lewis et al., 200713 
Lilford et al., 199573 
Localio et al., 200674 
Louis, 200575 
Matsuyama et al., 199876 
Maurer, 200577 
Piantadosi, 198878 
Pocock and Hughes, 199079 
Schmid et al., 200411 
Spiegelhalter et al., 20004 
Thall and Wathen, 200721 
Tyson et al., 20078 
Vail et al., 200180 
Wang et al., 200512 
Winkler, 200124 
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Table 1. Included articles by theme – continued 
 
Theme  Included Articles 

Use of Bayesian techniques in subgroup 
analyses (n = 13) 

Ades et al., 200638 
Brookes et al., 200127  
Dixon and Simon, 199181 
Dixon and Simon, 199282 
Goodman and Sladky, 200532  
Greenland, 200783  
Jones et al., 199830  
Moher et al., 200129 
Pocock et al., 200226   
Pocock and Hughes, 199079  
Rothwell, 200525   
Simon, 200231 
The European Agency for the Evaluation of Medicinal 
Products Committee for Proprietary Medicinal Products, 
200228 

Use of Bayesian techniques in meta-analysis 
(n = 10) 

Berry, 199863 
Bloom et al., 200235 
Burr et al., 200384 
Jones, 199585 
Lambert et al., 200586 
Nguyen et al., 200787 
Normand, 199988 
Senn, 200733 
Sung et al., 200689 
Sutton and Abrams, 200190 

Effect of using Bayesian techniques on 
policymaking/decisionmaking (n = 13) 

Ades et al., 200638 
Berry et al., 199420 
Briggs, 199941 
Briggs, 200142 
Hahn and Whitehead, 200336 
Harrell and Shi, 200144 
Heitjan and Li, 200437 
Nixon and Thompson, 200539 
O’Hagan et al., 200043 
Sheingold, 200123 
Stevens and O’Hagan, 200245 
Vanness and Kim, 200240 
Winkler, 200124 

 



 

Table 2. Patient recruitment and followup timing in ICD primary and secondary prevention trials†  
 

Trial 87 + 90 91 92 93 94 94 96 97 98 99 00 01 02 03 Pub Date 
MADIT-I*                12/26/1996 
AVID*                11/27/1997 
CABG-PATCH*                12/27/1997 
MUSTT*                12/16/1999 
CIDS                3/21/2000 
CASH*                8/15/2000 
MADIT-II*                3/21/2002 
DEFINITE*                5/20/2004 
DINAMIT                12/9/2004 
SCD-HeFT*                1/20/2005 

 
† Shaded areas indicate those years during which the given trial was recruiting and following patients.  Trials shaded in black are considered primary prevention 
trials; those in gray are considered secondary prevention trials.  The date of publication of the main trial results are listed in the final column. 
 
* Indicates that patient-level data from the trial are included in the case study analysis.  
 
Abbreviations for Table 2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = 
Cardiac Arrest Study Hamburg trial; CIDS = Canadian Implantable Defibrillator Study; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment 
Evaluation trial; DINAMIT = Defibrillator in Acute Myocardial Infarction Trial; ICD = Implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic 
Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-
HeFT = Sudden Cardiac Death in Heart Failure Trial 
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Table 3. ICD clinical trial characteristics 
 

Number of Patients Trial Inclusion Criteria Exclusion Criteria 
ICD Control 

Hazard Ratio for Death 
(95% CI) 

MADIT-I* MI 3 weeks or more before 
study; unsustained VT; EF ≤ 
35% 

Indication for ICD, NYHA class IV, 
coronary revascularization within 
3 months 

95 101 0.46 
(0.26 to 0.82) 

AVID* Resuscitated from near-fatal 
ventricular fibrillation, 
sustained ventricular 
tachycardia with syncope, or 
sustained ventricular 
tachycardia with EF ≤ 40% 

NYHA class IV, EF ≥ 40% 507 509 0.62 
(0.47 to 0.81) 

CABG-
PATCH* 

Scheduled for CABG, EF ≤ 
35%, abnormalities on 
SAECG 

History of sustained VT or VF 446 454 1.07 
(0.81 to 1.42) 

MUSTT* CAD, EF ≤ 40%, asymptomatic 
non-sustained VT within 6 
months and not within 4 days 
after an MI or CABG 

History of syncope or sustained 
VT or VF more than 48 hours 
after an MI, recent CABG or 
PTCA, NYHA IV symptoms 

161 353 0.45 
(0.32 to 0.63) 

CIDS Documented VF; out-of-hospital 
cardiac arrest requiring 
defibrillation or cardioversion; 
documented, sustained VT 
causing syncope; other 
documented, sustained VT at 
a rate ≥ 150 beats/min, 
causing presyncope or angina 
in a patient with a left 
ventricular EF ≤ 35% 

ICD or amiodarone not considered 
appropriate as a treatment for 
the tachyarrhythmia, excessive 
perioperative risk for ICD 
implantation; previous 
amiodarone therapy for ≥ 6 
weeks; non-arrhythmic medical 
condition making 1-year survival 
unlikely, or long-QT syndrome 

328 331 0.82 
(0.60 to 1.1) 

CASH* Resuscitated from cardiac 
arrest secondary to 
documented sustained 
ventricular arrhythmias  

Cardiac arrest occurred within 72 
hours of an acute MI, cardiac 
surgery, electrolyte 
abnormalities, or proarrhythmic 
drug effect 

99 189 0.766 
(upper bound 1.112) 

 
* Indicates that patient-level data from the trial are included in the case study analysis.  
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Table 3. ICD clinical trial characteristics – continued 
 

Number of Patients Trial Inclusion Criteria Exclusion Criteria 
ICD Control 

Hazard Ratio for Death 
(95% CI) 

MADIT-II* MI 1 month or more before 
study; EF ≤ 30%  

Indication for ICD, NYHA class IV, 
coronary revascularization within 
3 months, MI within 1 month 

742 490 0.69 
(0.51 to 0.93) 

DEFINITE* EF ≤ 35%, ambient 
arrhythmias, symptomatic 
heart failure, presence of non-
ischemic cardiomyopathy 

NYHA class IV, non-ICD 
candidates, undergone EP 
testing within 3 months prior or 
had permanent pacemakers 

229 229 0.65 
(0.40 to 1.06) 

DINAMIT Within 4 to 40 days of an MI, 
EF ≤ 35%, impaired 
autonomic tone by heart rate 
variability 

NYHA class IV symptoms, CABG 
done since the qualifying MI or 
planned to be done within 4 
weeks, 3-vessel PTCA since 
qualifying infarct, on heart 
transplant list 

332 342 1.08 
(0.76 to 1.55) 

SCD-HeFT* NYHA class II or III symptoms, 
EF ≤ 35% and on optimal 
medical therapy 

NYHA IV symptoms, a history of 
cardiac arrest or spontaneous 
sustained VT not associated with 
an MI 

829 847 0.77 
(0.62 to 0.96) 

 
* Indicates that patient-level data from the trial are included in the case study analysis.  
 
Abbreviations for Table 3:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG = coronary artery bypass graft; CABG-PATCH = Coronary Artery 
Bypass Graft-Patch trial; CAD = coronary artery disease; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; CIDS = Canadian Implantable 
Defibrillator Study; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; DINAMIT = Defibrillator in Acute Myocardial Infarction 
Trial; EF = ejection fraction; EP = electrophysiology; ICD = implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; 
MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MI = myocardial infarction; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New 
York Heart Association; PTCA = percutaneous transluminal coronary angioplasty; SAECG = signal averaging electrocardiogram; SCD-HeFT = Sudden Cardiac 
Death in Heart Failure Trial; VF = ventricular fibrillation; VT = ventricular tachycardia 
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Table 4. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 1 (AVID, CABG-PATCH, CASH, and 
DEFINITE)* 
 

AVID CABG-PATCH CASH DEFINITE 
Characteristic Control ICD Control ICD Control ICD Control ICD 
Number of Patients 509 507 454 446 189 99 229 229 

Mean 
(SD) 

65.33 
(10.19) 

64.83 
(10.82) 

64.95 
(9.39) 

64.07 
(9.21) 

57.83 
(10.59) 

57.46 
(11.18) 

58.11 
(11.96) 

58.41 
(13.84) 

< 65 215 
(42.24%) 

229 
(45.17%) 

227 
(50.00%) 

223 
(50.00%) 

145 
(76.72%) 

72 
(72.73%) 

153 
(66.81%) 

148 
(64.63%) 

[65,75) 203 
(39.88%) 

185 
(36.49%) 

174 
(38.33%) 

168 
(37.67%) 

37 
(19.58%) 

25 
(25.25%) 

63 
(27.51%) 

51 
(22.27%) 

[75,85) 86 
(16.90% 

85 
(16.77%) 

53 
(11.67%) 

55 
(12.33%) 6 (3.17%) 2 (2.02%) 13 

(5.68%) 
30 

(13.10%) 

Age 

≥ 85 5 
(00.98%) 8 (1.58%) 0 0 1 (0.53%) 0 0 0 

Mean 
(SD) 

30.82 
(13.24) 

32.15 
(13.46) 

27.05 
(5.82) 

27.13 
(5.75) 

45.18 
(17.21) 

45.89 
(19.51) 

21.84 
(6.08) 

20.88 
(5.93) 

≤ 30% 294 
(58.22%) 

273 
(54.17%) 

323 
(71.15%) 

317 
(71.08%) 

35 
(20.47%) 

23 
(24.21%) 

215 
(93.89%) 

219 
(95.63%) 

Ejection Fraction 

> 30% 211 
(32.76%) 

231 
(45.83%) 

131 
(28.85%) 

129 
(28.92%) 

136 
(79.53%) 

72 
(75.79%) 

14 
(6.11%) 

10 
(4.37%) 

Yes 433 
(85.07%) 

435 
(85.80%) 

454 
(100.00%) 

446 
(100.00%) 

167 
(88.83%) 

88 
(88.89%) 0 0 Ischemic Disease 

No 76 
(14.93%) 

72 
(14.20%) 0 0 21 

(11.17%) 
11 

(11.11%) 
229 

(100.00%) 
229 

(100.00%) 

I 313 
(61.49%) 

329 
(64.89%) 

258 
(56.95%) 

247 
(55.88%) 

54 
(29.35%) 

24 
(24.49%) 

41 
(17.90%) 

58 
(25.33%) 

II 136 
(26.72%) 

144 
(28.40%) 

85 
(18.76%) 

87 
(19.68%) 

106 
(57.61%) 

56 
(57.14%) 

139 
(60.70%) 

124 
(54.15%) 

III 60 
(11.79%) 

34 
(6.71%) 

81 
(17.88%) 

73 
(16.52%) 

24 
(13.04%) 

18 
(18.37%) 

49 
(21.40%) 

47 
(20.52%) 

NYHA Class 

IV 0 0 29 
(6.40%) 

35 
(7.92%) 0 0 0 0 

 
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables.
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Table 4. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 2 (MADIT-I, MADIT-II, MUSTT, and 
SCD-HeFT)* 
 

MADIT-I MADIT-II MUSTT SCD-HeFT 
Characteristic Control ICD Control ICD Control ICD Control ICD 
Number of Patients 101 95 490 742 353 167 847 829 

Mean 
(SD) 63.8 (8.82) 62.12 

(8.73) 
64.57 

(10.32) 
64.45 

(10.45) 
64.87 
(9.65) 

65.42 
(8.52) 

58.58 
(11.92) 

59.41 
(11.87) 

< 65 49 
(48.51%) 

53 
(55.79%) 

228 
(46.53%) 

345 
(46.50%) 

162 
(45.89%) 

72 
(43.11%) 

563 
(66.47%) 

535 
(64.54%) 

[65,75) 40 
(39.60%) 

36 
(37.89%) 

186 
(37.96%) 

269 
(36.25%) 

139 
(39.38%) 

77 
(46.11%) 

216 
(25.50%) 

215 
(25.93%) 

[75,85) 12 
(11.88%) 6 (6.32%) 69 

(14.08%) 
123 

(16.58%) 
50 

(14.16%) 
18 

(10.78%) 
64 

(7.56%) 
76 

(9.17%) 

Age 

≥ 85 0 0 7 (1.43%) 5 (0.67%) 2 (0.57%) 0 4 (0.47%) 3 (0.36%) 
Mean 
(SD) 

24.57 
(6.67) 

26.66 
(6.50) 

23.16 
(5.49) 

23.17 
(5.42) 

27.65 
(7.64) 

27.72 
(7.91) 

25.71 
(12.51) 

24.96 
(12.76) 

≤ 30% 84 
(83.17%) 

66 
(69.47%) 

488 
(99.59%) 

742 
(100.00%) 

229 
(64.87%) 

109 
(65.27%) 

513 
(60.57%) 

509 
(61.40%) 

Ejection Fraction 

> 30% 17 
(16.83%) 

29 
(30.53%) 

2  
(0.41%) 

0 
(0%) 

124 
(35.13%) 

58 
(34.73%) 

334 
(39.43%) 

320 
(38.60%) 

Yes 101 
(100.00%) 

95 
(100.00%) 

490 
(100.00%) 

742 
(100.00%) 

353 
(100.00%) 

167 
(100.00%) 

453 
(53.48%) 

431 
(51.99%) 

Ischemic Disease 

No 0 0 0 0 0 0 394 
(46.52%) 

398 
(48.01%) 

I 33 
(32.67%) 

36 
(37.89%) 

187 
(38.80%) 

256 
(34.83%) 

71 
(36.41%) 

38 
(34.55%) 0 0 

II 50 
(49.50%) 

44 
(46.32%) 

165 
(34.23%) 

259 
(35.24%) 

75 
(38.46%) 

43 
(39.09%) 

594 
(70.13%) 

566 
(68.28%) 

III 18 
(17.82%) 

15 
(15.79%) 

110 
(22.82%) 

187 
(25.44%) 

49 
(25.13%) 

29 
(29.36%) 

253 
(29.87%) 

263 
(31.72%) 

NYHA Class 

IV 0 0 20 
(4.15%) 

33 
(4.49%) 0 0 0 0 

 
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 
 
Abbreviations to Table 4 – Parts 1 and 2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch 
trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable 
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cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; 
MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = 
standard deviation 
 
 
 
 



 

Table 5. Comparison of overall survival by treatment group within each trial, unadjusted Cox-
Proportional Hazards Model 
 

Sample Size Number of Events 
Trial Control ICD Control ICD 

Hazard  
Ratio 95% CI P-value 

AVID 509 507 122 80 0.61 0.46 0.81 < 0.001 
CABG-
PATCH 454 446 95 101 1.07 0.81 1.42 0.635 
CASH 189 99 71 37 0.89 0.60 1.32 0.549 
DEFINITE 229 229 40 28 0.65 0.40 1.06 0.08 
MADIT-I 101 95 39 17 0.35 0.19 0.63 < 0.001 
MADIT-II 490 742 105 107 0.65 0.50 0.85 0.002 
MUSTT 353 167 158 35 0.42 0.29 0.60 < 0.001 
SCD-
HeFT 847 829 284 182 0.75 0.62 0.91 0.004 

 
Abbreviations for Table 5:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary 
Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; DEFINITE = 
Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable cardioverter defibrillator; 
MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator 
Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = Sudden Cardiac Death in 
Heart Failure Trial 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis*  
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

1 < 65 ≤ 30% 1 Non-Isch 
0.29 

(0.03, 
2.37) 

- - 
0.58 

(0.10, 
3.45) 

- - - - 

2 < 65 ≤ 30% 1 Isch 
0.65 

(0.23, 
1.79) 

0.54 
(0.22, 
1.36) 

- - - 
0.66 

(0.27, 
1.62) 

0.79 
(0.19, 
3.32) 

- 

3 < 65 ≤ 30% 2 Non-Isch 
0.69 

(0.04, 
11.1) 

- - 
0.85 

(0.34, 
2.15) 

- - - 
0.67 

(0.35, 
1.32) 

4 < 65 ≤ 30% 2 Isch 
0.62 

(0.21, 
1.82) 

1.27 
(0.46, 
3.51) 

0.14 
(0.03, 
0.64) 

- 
0.47 

(0.12, 
1.78) 

0.49 
(0.19, 
1.25) 

0.14 
(0.02, 
1.06) 

0.33 
(0.17, 
0.62) 

5 < 65 ≤ 30% 3 Non-Isch - - - 
0.49 

(0.12, 
2.04) 

- - - 
0.95 

(0.43, 
2.10) 

6 < 65 ≤ 30% 3 Isch 
0.51 

(0.14, 
1.87) 

0.84 
(0.23, 
3.16) 

5.88 
(0.61, 
56.9) 

- 
0.46 

(0.09, 
2.38) 

0.81 
(0.33, 
1.94) 

0.92 
(0.30, 
2.83) 

0.71 
(0.40, 
1.29) 

7 < 65 ≤ 30% 4 Non-Isch - - - - - - - - 

8 < 65 ≤ 30% 4 Isch - 
0.52 

(0.12, 
2.33) 

- - - 
1.92 

(0.36, 
10.1) 

- - 

9 < 65 > 30% 1 Non-Isch - - - - - - - - 

10 < 65 > 30% 1 Isch 
1.03 

(0.28, 
3.82) 

0.81 
(0.18, 
3.63) 

0.37 
(0.04, 
3.08) 

- - - 
2.00 

(0.12, 
32.9) 

- 

11 < 65 > 30% 2 Non-Isch 
0.80 

(0.07, 
8.90) 

- 
0.50 

(0.03, 
8.46) 

- - - - 
1.04 

(0.38, 
2.87) 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

12 < 65 > 30% 2 Isch 
1.24 

(0.11, 
13.8) 

- 
0.85 

(0.34, 
2.15) 

- 
0.14 

(0.01, 
1.59) 

- - 
0.86 

(0.40, 
1.86) 

13 < 65 > 30% 3 Non-Isch - - - - - - - 
0.21 

(0.02, 
1.86) 

14 < 65 > 30% 3 Isch - 
0.91 

(0.18, 
4.50) 

1.42 
(0.26, 
7.80) 

- - - 
0.47 

(0.04, 
5.35) 

1.60 
(0.68, 
3.81) 

15 < 65 > 30% 4 Non-Isch - - - - - - - - 
16 < 65 > 30% 4 Isch - - - - - - - - 

17 [65,75) ≤ 30% 1 Non-Isch - - - 
0.36 

(0.04, 
3.44) 

- - - - 

18 [65,75) ≤ 30% 1 Isch 
0.65 

(0.27, 
1.57) 

0.98 
(0.46, 
2.07) 

- - 
0.45 

(0.04, 
5.02) 

0.49 
(0.22, 
1.06) 

0.61 
(0.13, 
2.93) 

- 

19 [65,75) ≤ 30% 2 Non-Isch - - - 
1.24 

(0.31, 
4.98) 

- - - 
0.76 

(0.31, 
1.87) 

20 [65,75) ≤ 30% 2 Isch 
0.39 

(0.12, 
1.22) 

1.53 
(0.58, 
4.05) 

0.31 
(0.03, 
3.48) 

- 
0.38 

(0.11, 
1.32) 

0.89 
(0.42, 
1.90) 

0.38 
(0.10, 
1.44) 

0.71 
(0.36, 
1.40) 

21 [65,75) ≤ 30% 3 Non-Isch - - - 
0.60 

(0.15, 
2.33) 

- - - 
0.88 

(0.37, 
2.11) 

22 [65,75) ≤ 30% 3 Isch 
0.33 

(0.04, 
2.76) 

1.28 
(0.53, 
3.10) 

1.09 
(0.09, 
13.3) 

- 
0.23 

(0.04, 
1.32) 

0.29 
(0.13, 
0.68) 

0.14 
(0.03, 
0.64) 

1.42 
(0.70, 
2.86) 

23 [65,75) ≤ 30% 4 Non-Isch - - - - - - - - 
 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

24 [65,75) ≤ 30% 4 Isch - - - - - 
1.27 

(0.33, 
4.89) 

- - 

25 [65,75) > 30% 1 Non-Isch - - - - - - - - 

26 [65,75) > 30% 1 Isch 
0.83 

(0.34, 
2.00) 

1.01 
(0.30, 
3.34) 

- - - - 
1.60 

(0.10, 
25.7) 

- 

27 [65,75) > 30% 2 Non-Isch - - - - - - - 
0.80 

(0.19, 
3.35) 

28 [65,75) > 30% 2 Isch 
0.60 

(0.13, 
2.70) 

0.48 
(0.04, 
5.35) 

2.20 
(0.55, 
8.76) 

- - - - 
0.08 

(0.01, 
0.61) 

29 [65,75) > 30% 3 Non-Isch - - - - - - - - 

30 [65,75) > 30% 3 Isch - 
0.27 

(0.03, 
2.64) 

2.14 
(0.51, 
9.08) 

- - - - 
2.46 

(0.83, 
7.23) 

31 [65,75) > 30% 4 Non-Isch - - - - - - - - 

32 [65,75) > 30% 4 Isch - 
0.52 

(0.09, 
3.20) 

- - - - - - 

33 ≥ 75 ≤ 30% 1 Non-Isch -  - 
(0.18 
0.03, 
1.33) 

-  - - 

34 ≥ 75 ≤ 30% 1 Isch 
0.92 

(0.29, 
2.92) 

2.27 
(0.47, 
11.0) 

- - - 
0.74 

(0.27, 
1.99) 

6.36 
(0.38, 
106) 

- 

35 ≥ 75 ≤ 30% 2 Non-Isch 
0.47 

(0.03, 
7.86) 

- - 
1.27 

(0.12, 
14.0) 

- - - 
0.24 

(0.03, 
1.97) 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Table 6. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

36 ≥ 75 ≤ 30% 2 Isch 
1.03 

(0.36, 
2.98) 

2.31 
(0.21, 
25.5) 

- - - 
0.26 

(0.07, 
0.99) 

0.85 
(0.08, 
9.44) 

0.15 
(0.02, 
1.16) 

37 ≥ 75 ≤ 30% 3 Non-Isch - - - 
0.11 

(0.01, 
1.10) 

- - - 
0.18 

(0.01, 
2.93) 

38 ≥ 75 ≤ 30% 3 Isch 
0.62 

(0.06, 
5.96) 

1.14 
(0.40, 
3.27) 

- - - 
0.60 

(0.27, 
1.34) 

- 
0.88 

(0.33, 
2.36) 

39 ≥ 75 ≤ 30% 4 Non-Isch - - - - - - - - 
40 ≥ 75 ≤ 30% 4 Isch - - - - - - - - 
41 ≥ 75 > 30% 1 Non-Isch - - - - - - - - 

42 ≥ 75 > 30% 1 Isch 
1.25 

(0.35, 
4.43) 

0.38 
(0.04, 
3.63) 

- - - - - - 

43 ≥ 75 > 30% 2 Non-Isch - - - - - - - 
0.39 

(0.04, 
3.52) 

44 ≥ 75 > 30% 2 Isch 
1.08 

(0.10, 
11.9) 

- 
0.84 

(0.07, 
9.61) 

- - - 
3.47 

(0.31, 
38.4) 

0.75 
(0.15, 
3.70) 

45 ≥ 75 > 30% 3 Non-Isch - - - - - - - - 
46 ≥ 75 > 30% 3 Isch - - - - - - - - 
47 ≥ 75 > 30% 4 Non-Isch - - - - - - - - 
48 ≥ 75 > 30% 4 Isch - - - - - - - - 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
 
Abbreviations for Table 6:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = 
Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; Isch = ischemic; 
MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter 
Unsustained Tachycardiac Trial; Non-Isch = non-ischemic; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial
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Table 7. Subgroup composition by treatment group and trial – Part 1 (all trials) 
 

All Trials 
Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 45 9 42 3
2 < 65 ≤ 30% 1 Isch 247 39 295 28
3 < 65 ≤ 30% 2 Non-Isch 240 33 227 24
4 < 65 ≤ 30% 2 Isch 306 96 302 40
5 < 65 ≤ 30% 3 Non-Isch 92 21 82 17
6 < 65 ≤ 30% 3 Isch 171 68 188 51
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0
8 < 65 ≤ 30% 4 Isch 16 6 27 8
9 < 65 > 30% 1 Non-Isch 15 3 9 1

10 < 65 > 30% 1 Isch 173 15 156 10
11 < 65 > 30% 2 Non-Isch 94 10 98 10
12 < 65 > 30% 2 Isch 157 35 135 22
13 < 65 > 30% 3 Non-Isch 23 6 30 1
14 < 65 > 30% 3 Isch 58 19 50 19
15 < 65 > 30% 4 Non-Isch 0 0 0 0
16 < 65 > 30% 4 Isch 2 0 6 1
17 [65,75) ≤ 30% 1 Non-Isch 18 5 20 1
18 [65,75) ≤ 30% 1 Isch 222 53 211 34
19 [65,75) ≤ 30% 2 Non-Isch 74 14 78 14
20 [65,75) ≤ 30% 2 Isch 198 64 249 61
21 [65,75) ≤ 30% 3 Non-Isch 37 17 32 15
22 [65,75) ≤ 30% 3 Isch 128 65 133 49
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 20 4 24 8
25 [65,75) > 30% 1 Non-Isch 4 3 3 0
26 [65,75) > 30% 1 Isch 98 17 101 16
27 [65,75) > 30% 2 Non-Isch 21 5 19 4
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Table 7. Subgroup composition by treatment group and trial – Part 1 (all trials) – continued  
 

All Trials 
Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 110 35 74 8
29 [65,75) > 30% 3 Non-Isch 13 1 7 2
30 [65,75) > 30% 3 Isch 37 17 33 16
31 [65,75) > 30% 4 Non-Isch 0 0 0 0
32 [65,75) > 30% 4 Isch 5 3 4 2
33 ≥ 75 ≤ 30% 1 Non-Isch 3 2 12 3
34 ≥ 75 ≤ 30% 1 Isch 80 21 92 22
35 ≥ 75 ≤ 30% 2 Non-Isch 20 8 22 4
36 ≥ 75 ≤ 30% 2 Isch 77 28 76 16
37 ≥ 75 ≤ 30% 3 Non-Isch 5 4 16 3
38 ≥ 75 ≤ 30% 3 Isch 67 35 78 33
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 6 1 7 3
41 ≥ 75 > 30% 1 Non-Isch 2 0 1 1
42 ≥ 75 > 30% 1 Isch 42 8 43 7
43 ≥ 75 > 30% 2 Non-Isch 7 4 4 1
44 ≥ 75 > 30% 2 Isch 34 10 36 8
45 ≥ 75 > 30% 3 Non-Isch 3 1 6 0
46 ≥ 75 > 30% 3 Isch 10 5 11 5
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 2 (AVID and CABG-PATCH) 
 

AVID CABG-PATCH 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 16 6 8 1 0 0 0 0
2 < 65 ≤ 30% 1 Isch 38 7 62 8 84 13 83 7
3 < 65 ≤ 30% 2 Non-Isch 9 1 14 1 0 0 0 0
4 < 65 ≤ 30% 2 Isch 31 11 28 5 35 7 34 8
5 < 65 ≤ 30% 3 Non-Isch 9 0 4 2 0 0 0 0
6 < 65 ≤ 30% 3 Isch 15 10 8 3 28 5 24 6
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 4 12 3
9 < 65 > 30% 1 Non-Isch 7 0 5 0 0 0 0 0

10 < 65 > 30% 1 Isch 72 4 78 5 47 4 43 3
11 < 65 > 30% 2 Non-Isch 5 2 5 1 0 0 0 0
12 < 65 > 30% 2 Isch 11 1 13 2 12 1 8 0
13 < 65 > 30% 3 Non-Isch 0 0 1 0 0 0 0 0
14 < 65 > 30% 3 Isch 2 1 2 0 10 3 11 3
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 2 0 6 1
17 [65,75) ≤ 30% 1 Non-Isch 10 2 10 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 56 13 53 8 74 16 57 12
19 [65,75) ≤ 30% 2 Non-Isch 5 0 7 1 0 0 0 0
20 [65,75) ≤ 30% 2 Isch 31 11 24 4 21 6 30 13
21 [65,75) ≤ 30% 3 Non-Isch 3 0 1 1 0 0 0 0
22 [65,75) ≤ 30% 3 Isch 16 7 5 1 23 9 21 11
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 0 12 3
25 [65,75) > 30% 1 Non-Isch 3 2 3 0 0 0 0 0
26 [65,75) > 30% 1 Isch 52 11 52 9 28 5 31 6
27 [65,75) > 30% 2 Non-Isch 0 0 4 0 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 2 (AVID and CABG-PATCH) – continued  
 

AVID CABG-PATCH 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 19 4 21 3 8 2 7 1
29 [65,75) > 30% 3 Non-Isch 2 0 1 1 0 0 0 0
30 [65,75) > 30% 3 Isch 2 1 3 0 5 3 4 1
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 5 3 4 2
33 ≥ 75 ≤ 30% 1 Non-Isch 1 0 1 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 27 7 23 5 12 2 21 7
35 ≥ 75 ≤ 30% 2 Non-Isch 2 1 4 1 0 0 0 0
36 ≥ 75 ≤ 30% 2 Isch 17 9 14 6 8 1 7 4
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 3 1 0 0 0 0
38 ≥ 75 ≤ 30% 3 Isch 8 3 4 1 15 7 12 7
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 4 1 1 0
41 ≥ 75 > 30% 1 Non-Isch 2 0 1 1 0 0 0 0
42 ≥ 75 > 30% 1 Isch 25 4 30 6 13 3 12 1
43 ≥ 75 > 30% 2 Non-Isch 1 0 0 0 0 0 0 0
44 ≥ 75 > 30% 2 Isch 5 1 10 2 1 0 1 1
45 ≥ 75 > 30% 3 Non-Isch 1 1 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 2 1 2 0 0 0 1 1
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 3 (CASH and DEFINITE) 
 

CASH DEFINITE 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 29 3 34 2
2 < 65 ≤ 30% 1 Isch 3 1 1 1 0 0 0 0
3 < 65 ≤ 30% 2 Non-Isch 1 0 2 1 89 10 78 8
4 < 65 ≤ 30% 2 Isch 16 11 9 2 0 0 0 0
5 < 65 ≤ 30% 3 Non-Isch 2 2 1 0 24 5 29 3
6 < 65 ≤ 30% 3 Isch 5 2 5 4 0 0 0 0
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
9 < 65 > 30% 1 Non-Isch 7 3 1 0 1 0 3 1

10 < 65 > 30% 1 Isch 39 6 17 1 0 0 0 0
11 < 65 > 30% 2 Non-Isch 5 1 4 1 8 0 2 0
12 < 65 > 30% 2 Isch 45 13 26 7 0 0 0 0
13 < 65 > 30% 3 Non-Isch 1 1 0 0 2 1 2 0
14 < 65 > 30% 3 Isch 4 2 5 4 0 0 0 0
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 8 3 10 1
18 [65,75) ≤ 30% 1 Isch 0 0 0 0 0 0 0 0
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 34 4 30 4
20 [65,75) ≤ 30% 2 Isch 3 2 4 3 0 0 0 0
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 18 7 9 3
22 [65,75) ≤ 30% 3 Isch 4 3 1 1 0 0 0 0
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 1 1 0 0
26 [65,75) > 30% 1 Isch 1 0 5 0 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 1 1 1 0 2 0
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Table 7. Subgroup composition by treatment group and trial – Part 3 (CASH and DEFINITE) – continued 
 

CASH DEFINITE 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 19 8 5 3 0 0 0 0
29 [65,75) > 30% 3 Non-Isch 1 1 0 0 1 0 0 0
30 [65,75) > 30% 3 Isch 5 5 6 5 0 0 0 0
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 2 2 11 3
34 ≥ 75 ≤ 30% 1 Isch 0 0 0 0 0 0 0 0
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 7 1 11 2
36 ≥ 75 ≤ 30% 2 Isch 0 0 0 0 0 0 0 0
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 4 3 7 1
38 ≥ 75 ≤ 30% 3 Isch 1 1 0 0 0 0 0 0
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 0 0 0 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 0 0 1 0
44 ≥ 75 > 30% 2 Isch 5 2 2 1 0 0 0 0
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 1 1 0 0 0 0 0 0
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 4 (MADIT-I and MADIT-II) 
 

MADIT-I MADIT-II 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
2 < 65 ≤ 30% 1 Isch 14 3 12 0 91 10 124 9
3 < 65 ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
4 < 65 ≤ 30% 2 Isch 21 8 15 3 81 10 115 8
5 < 65 ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
6 < 65 ≤ 30% 3 Isch 9 5 7 2 44 8 87 13
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 2 15 5
9 < 65 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0

10 < 65 > 30% 1 Isch 2 0 11 0 1 0 0 0
11 < 65 > 30% 2 Non-Isch 0 0 0 0 0 0 0 0
12 < 65 > 30% 2 Isch 3 2 7 1 0 0 0 0
13 < 65 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
14 < 65 > 30% 3 Isch 0 0 1 1 0 0 0 0
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 7 2 7 1 67 15 86 11
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
20 [65,75) ≤ 30% 2 Isch 16 7 17 6 60 11 107 17
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
22 [65,75) ≤ 30% 3 Isch 6 4 6 3 46 19 62 8
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 4 12 5
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
26 [65,75) > 30% 1 Isch 5 0 5 0 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 0 0 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 4 (MADIT-I and MADIT-II) – continued  
 

MADIT-I MADIT-II 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 5 1 0 0 0 0 0 0
29 [65,75) > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
30 [65,75) > 30% 3 Isch 1 1 1 0 0 0 0 0
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 4 3 0 0 28 7 46 9
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
36 ≥ 75 ≤ 30% 2 Isch 5 1 2 0 23 7 37 3
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
38 ≥ 75 ≤ 30% 3 Isch 2 2 0 0 20 10 38 16
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 2 0 6 3
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 1 0 1 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 0 0 0 0
44 ≥ 75 > 30% 2 Isch 0 0 3 0 1 1 0 0
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 0 0 0 0 0 0 0 0
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Table 7. Subgroup composition by treatment group and trial – Part 5 (MUSTT and SCD-HeFT) 
 

MUSTT SCD-HeFT 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
2 < 65 ≤ 30% 1 Isch 17 5 13 3 0 0 0 0
3 < 65 ≤ 30% 2 Non-Isch 0 0 0 0 141 22 133 14
4 < 65 ≤ 30% 2 Isch 24 13 10 1 98 36 91 13
5 < 65 ≤ 30% 3 Non-Isch 0 0 0 0 57 14 48 12
6 < 65 ≤ 30% 3 Isch 15 9 10 5 55 29 47 18
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
9 < 65 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0

10 < 65 > 30% 1 Isch 12 1 7 1 0 0 0 0
11 < 65 > 30% 2 Non-Isch 0 0 0 0 76 7 87 8
12 < 65 > 30% 2 Isch 8 4 7 0 78 14 74 12
13 < 65 > 30% 3 Non-Isch 0 0 0 0 20 4 27 1
14 < 65 > 30% 3 Isch 4 2 3 1 38 11 28 10
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 18 7 8 2 0 0 0 0
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 35 10 41 9
20 [65,75) ≤ 30% 2 Isch 18 8 14 3 49 19 53 15
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 16 10 22 11
22 [65,75) ≤ 30% 3 Isch 13 11 8 2 20 12 30 23
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
26 [65,75) > 30% 1 Isch 12 1 8 1 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 0 0 20 5 12 3
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Table 7. Subgroup composition by treatment group and trial – Part 5 (MUSTT and SCD-HeFT) – continued  
 

MUSTT SCD-HeFT 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2  Isch 11 3 7 0 48 17 34 1
29 [65,75) > 30% 3 0 Non-Isch 0 0 0 9 0 6 1
30 [65,75) > 30% 3 2 Isch 5 2 0 19 5 17 10
31 [65,75) > 30% 4 0 Non-Isch 0 0 0 0 0 0 0
32 [65,75) > 30% 4 0 Isch 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 9 2 2 1 0 0 0 0
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 11 6 7 1
36 ≥ 75 ≤ 30% 2 Isch 6 2 4 1 18 8 12 2
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 1 1 6 1
38 ≥ 75 ≤ 30% 3 Isch 9 5 5 0 12 7 19 9
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 3 1 0 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 6 4 3 1
44 ≥ 75 > 30% 2 Isch 8 3 1 1 14 3 19 3
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 2 0 6 0
46 ≥ 75 > 30% 3 Isch 3 3 1 0 4 0 7 4
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0

 
Abbreviations for Table 7 – Parts 1-5:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ICD = 
implantable cardioverter defibrillator; Isch = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic 
Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; Non-Isch = non-ischemic; NYHA = New York Heart Association; SCD-
HeFT = Sudden Cardiac Death in Heart Failure Trial 
 
 



 

Table 8. Hazard ratios for the effect of treatment given main prognostic variables 
 

Hazard Ratio 
Variable Trial Lower Median Upper 

Probability
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability
HR ≤ 0.90 

AVID 0.50 0.64 0.85 0.71 0.93 0.98
CABG-PATCH 0.80 1.04 1.37 0.00 0.03 0.17
CASH 0.55 0.81 1.16 0.22 0.47 0.69
DEFINITE 0.36 0.58 0.90 0.78 0.92 0.97
MADIT-I 0.26 0.46 0.74 0.96 0.99 1.00
MADIT-II 0.47 0.62 0.82 0.78 0.96 0.99
MUSTT 0.27 0.41 0.62 0.99 1.00 1.00
SCD-HeFT 0.62 0.73 0.87 0.31 0.83 0.99

ICD Effect 

Overall 0.41 0.64 1.02 0.64 0.83 0.93
AVID 0.24 0.58 1.29 0.69 0.81 0.88
CABG-PATCH 0.31 0.76 1.83 0.44 0.55 0.65
CASH 0.24 0.67 1.76 0.56 0.63 0.70
DEFINITE 0.27 0.75 1.70 0.43 0.56 0.67
MADIT-I 0.16 0.50 1.73 0.73 0.79 0.84
MADIT-II 0.21 0.63 1.41 0.56 0.65 0.72
MUSTT 0.14 0.51 1.66 0.71 0.77 0.82
SCD-HeFT 0.51 0.96 1.79 0.19 0.31 0.43

ICD and Age 
[65,75) Effect 

Overall 0.30 0.67 1.48 0.55 0.68 0.79
AVID 0.41 0.84 2.04 0.31 0.43 0.57
CABG-PATCH 0.38 0.96 2.51 0.26 0.35 0.44
CASH 0.06 0.34 1.62 0.82 0.86 0.90
DEFINITE 0.15 0.48 1.37 0.76 0.81 0.86
MADIT-I 0.05 0.32 1.72 0.82 0.86 0.89
MADIT-II 0.20 0.71 1.75 0.49 0.60 0.69
MUSTT 0.13 0.56 2.16 0.62 0.68 0.73
SCD-HeFT 0.26 0.60 1.34 0.63 0.76 0.83

ICD and Age 
75+ Effect 

Overall 0.24 0.57 1.31 0.68 0.78 0.86
AVID 0.36 0.85 2.68 0.34 0.45 0.55
CABG-PATCH 0.19 0.49 1.20 0.81 0.90 0.93
CASH 0.23 0.60 1.41 0.66 0.77 0.84
DEFINITE 0.12 0.62 2.55 0.57 0.64 0.70
MADIT-I 0.07 0.36 1.74 0.79 0.82 0.85
MADIT-II 0.08 0.70 4.45 0.50 0.56 0.60
MUSTT 0.13 0.51 2.05 0.66 0.72 0.77
SCD-HeFT 0.48 0.99 2.04 0.22 0.32 0.41

ICD and EF ≥ 
30% Effect 

Overall 0.27 0.62 1.57 0.62 0.73 0.80
AVID 0.26 0.57 1.18 0.69 0.81 0.89
CABG-PATCH 0.36 0.84 2.32 0.34 0.46 0.56
CASH 0.15 0.39 0.90 0.90 0.95 0.97
DEFINITE 0.38 0.78 1.51 0.37 0.53 0.64
MADIT-I 0.18 0.60 2.02 0.61 0.70 0.76
MADIT-II 0.21 0.62 1.67 0.58 0.68 0.74
MUSTT 0.09 0.36 1.05 0.86 0.91 0.94
SCD-HeFT 0.30 0.45 0.67 0.98 1.00 1.00

ICD and 
NYHA II Effect 

Overall 0.24 0.55 1.24 0.72 0.82 0.88
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Table 8. Hazard ratios for the effect of treatment given main prognostic variables – continued 
 

Hazard Ratio  
Variable Trial Lower Median Upper 

Probability
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability
HR ≤ 0.90 

AVID 0.24 0.57 1.40 0.70 0.78 0.85
CABG-PATCH 0.27 0.65 1.64 0.56 0.67 0.74
CASH 0.29 0.80 1.99 0.40 0.50 0.60
DEFINITE 0.14 0.37 0.82 0.92 0.97 0.98
MADIT-I 0.12 0.48 1.71 0.72 0.78 0.83
MADIT-II 0.18 0.60 1.36 0.60 0.69 0.81
MUSTT 0.10 0.39 1.10 0.84 0.89 0.93
SCD-HeFT 0.58 0.86 1.31 0.16 0.37 0.58

ICD and 
NYHA III 
Effect 

Overall 0.26 0.58 1.33 0.68 0.80 0.87
AVID 0.04 0.86 14.52 0.42 0.46 0.51
CABG-PATCH 0.20 0.70 2.06 0.50 0.58 0.66
CASH 0.02 0.52 10.66 0.59 0.63 0.66
DEFINITE 0.05 0.88 12.87 0.42 0.46 0.51
MADIT-I 0.05 0.66 12.46 0.52 0.56 0.59
MADIT-II 0.49 1.58 5.10 0.12 0.16 0.21
MUSTT 0.06 0.86 16.81 0.42 0.47 0.52
SCD-HeFT 0.06 1.03 20.10 0.37 0.41 0.46

ICD and 
NYHA IV 
Effect 

Overall 0.21 0.81 3.17 0.41 0.49 0.56
AVID 0.36 0.62 1.09 0.66 0.82 0.90
CABG-PATCH 0.52 0.82 1.27 0.26 0.46 0.65
CASH 0.19 0.48 1.08 0.80 0.87 0.93
DEFINITE 0.12 0.67 3.42 0.53 0.61 0.67
MADIT-I 0.16 0.37 0.91 0.91 0.95 0.97
MADIT-II 0.40 0.70 1.25 0.49 0.70 0.82
MUSTT 0.28 0.64 1.41 0.60 0.73 0.81
SCD-HeFT 0.36 0.76 1.51 0.45 0.52 0.61

ICD and 
Ischemic 
Effect 

Overall 0.31 0.63 1.30 0.63 0.75 0.85
 
Abbreviations for Table 8:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary 
Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-
Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; HR = hazard ratio; ICD = implantable 
cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter 
Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York 
Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial



 

Table 9. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables 
 

Control ICD Hazard Ratio 
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# 
Events

#Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability 
HR ≤ 0.90 

1 < 65 <30% I 
Non-
Isch 45 9 42 3 0.34 0.60 1.13 0.69 0.83 0.90

2 < 65 <30% I Isch 247 39 295 28 0.31 0.63 1.30 0.63 0.75 0.85

3 < 65 <30% II 
Non-
Isch 240 33 227 24 0.24 0.55 1.24 0.72 0.82 0.88

4 < 65 <30% II Isch 306 96 302 40 0.23 0.58 1.35 0.67 0.78 0.86

5 < 65 <30% III 
Non-
Isch 92 21 82 17 0.26 0.58 1.33 0.68 0.80 0.87

6 < 65 <30% III Isch 171 68 188 51 0.25 0.61 1.39 0.65 0.75 0.83

7 < 65 <30% IV 
Non-
Isch 0 0 0 0 0.21 0.81 3.17 0.41 0.49 0.56

8 < 65 <30% IV Isch 16 6 27 8 0.18 0.84 3.70 0.38 0.46 0.53

9 < 65 ≥30% I 
Non-
Isch 15 3 9 1 0.27 0.62 1.57 0.62 0.73 0.80

10 < 65 ≥30% I Isch 173 15 156 10 0.26 0.65 1.57 0.57 0.68 0.77

11 < 65 ≥30% II 
Non-
Isch 94 10 98 10 0.20 0.57 1.56 0.66 0.74 0.80

12 < 65 ≥30% II Isch 157 35 135 22 0.21 0.58 1.58 0.64 0.72 0.79

13 < 65 ≥30% III 
Non-
Isch 23 6 30 1 0.21 0.60 1.72 0.63 0.73 0.79

14 < 65 ≥30% III Isch 58 19 50 19 0.21 0.61 1.76 0.59 0.69 0.77

15 < 65 ≥30% IV 
Non-
Isch 0 0 0 0 0.17 0.85 3.60 0.38 0.47 0.54

16 < 65 ≥30% IV Isch 2 0 6 1 0.17 0.91 3.72 0.36 0.42 0.49

17 [65,75) <30% I 
Non-
Isch 18 5 20 1 0.30 0.67 1.48 0.55 0.68 0.79

18 [65,75) <30% I Isch 222 53 211 34 0.28 0.69 1.58 0.51 0.64 0.75

19 [65,75) <30% II 
Non-
Isch 74 14 78 14 0.23 0.61 1.50 0.63 0.72 0.81

20 [65,75) <30% II Isch 198 64 249 61 0.23 0.63 1.58 0.58 0.70 0.78

21 [65,75) <30% III 
Non-
Isch 37 17 32 15 0.23 0.64 1.68 0.59 0.69 0.79
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Table 9. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables – continued 
 

Control ICD Hazard Ratio 
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# #Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 Events

Probability 
HR ≤ 0.90 

22 [65,75) <30% III Isch 128 65 133 49 0.25 0.65 1.77 0.55 0.67 0.75

23 [65,75) <30% 
Non-
Isch 0 0 0 0 0.21 0.87 4.25 0.37IV 0.45 0.52

24 [65,75) <30% IV Isch 20 4 24 8 0.18 0.93 4.26 0.35 0.42 0.49

25 [65,75) ≥30% I 
Non-
Isch 4 3 3 0 0.25 0.67 1.90 0.52 0.63 0.71

26 [65,75) ≥30% I Isch 98 17 101 16 0.25 0.69 2.02 0.51 0.61 0.69

27 [65,75) ≥30% II 
Non-
Isch 21 5 19 4 0.19 0.62 1.93 0.58 0.67 0.74

28 [65,75) ≥30% II Isch 110 35 74 8 0.21 0.63 1.96 0.56 0.66 0.73

29 [65,75) ≥30% III 
Non-
Isch 13 1 7 2 0.19 0.65 1.93 0.55 0.64 0.72

30 [65,75) ≥30% III Isch 37 17 33 16 0.21 0.65 2.13 0.54 0.63 0.70

31 [65,75) ≥30% IV 
Non-
Isch 0 0 0 0 0.17 0.94 4.11 0.35 0.42 0.48

32 [65,75) ≥30% IV Isch 5 3 4 2 0.18 0.98 4.42 0.33 0.40 0.46

33 75+ <30% I 
Non-
Isch 3 2 12 3 0.24 0.57 1.31 0.68 0.78 0.86

34 75+ <30% I Isch 80 21 92 22 0.23 0.60 1.44 0.62 0.74 0.81

35 75+ <30% II 
Non-
Isch 20 8 22 4 0.20 0.52 1.42 0.71 0.79 0.85

36 75+ <30% II Isch 77 28 76 16 0.19 0.54 1.48 0.68 0.76 0.83

37 75+ <30% III 
Non-
Isch 5 4 16 3 0.19 0.54 1.55 0.69 0.76 0.81

38 75+ <30% III Isch 67 35 78 33 0.20 0.56 1.62 0.66 0.72 0.80

39 75+ <30% IV 
Non-
Isch 0 0 0 0 0.16 0.78 3.53 0.44 0.52 0.58

40 75+ <30% IV Isch 6 1 7 3 0.15 0.83 3.71 0.42 0.48 0.54

41 75+ ≥30% I 
Non-
Isch 2 0 1 1 0.20 0.59 1.75 0.62 0.70 0.78

42 75+ ≥30% I Isch 42 8 43 7 0.20 0.60 1.80 0.61 0.69 0.75

43 75+ ≥30% II 
Non-
Isch 7 4 4 1 0.16 0.53 1.65 0.67 0.75 0.80
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Table 9. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables – continued 
 

Control ICD Hazard Ratio
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# 
Events

#Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability 
HR ≤ 0.90 

44 75+ ≥30% II  Isch 34 10 36 8 0.17 0.55 1.69 0.65 0.73 0.79

45 75+ ≥30% III Isch 3
Non-

1 6 0 0.15 0.55 1.98 0.64 0.72 0.77
46 75+ ≥30% III  Isch 10 5 11 5 0.16 0.58 1.99 0.62 0.69 0.76

47 75+ ≥30% IV Isch 0
Non-

0 0 0 0.14 0.82 3.59 0.41 0.48 0.56
48 75+ ≥30% IV Isch 0 0 0 0 0.15 0.87 3.92 0.40 0.46 0.52

 
Abbreviations for Table 9:  EF = ejection fraction; HR = hazard ratio; ICD = implantable cardioverter defibrillator; Isch = ischemic; Non-Isch = non-ischemic; NYHA = 
New York Heart Association 



 

Table 10. Descriptive statistics for CMS ICD registry 
 
Characteristic Value 
Age  

Mean, years 72.78
Median, years 73.5

Standard deviation, years 9.89
Ejection Fraction  

Mean, % 27.11
Median, % 25

Standard deviation, % 10.11
NYHA Class  

Class I 13,812 (11.38 %)
Class II 40,441 (33.31%)
Class III 59,656 (49.14%)
Class IV 6299 (5.19%)

Ischemic Disease  
Yes 87,055 (71.71%)
No 33,968 (27.98%)

 
Abbreviations for Table 10:  CMS = Centers for Medicare & Medicaid Services; ICD = implantable cardioverter 
defibrillator 
 
 
Table 11. Descriptive statistics for MUSTT registry* 
 
Characteristic Control ICD 
Number of patients 1414 84 

Mean 
(SD) 

65.1 (9.50) 63.0 (9.20) 

< 65 607 (42.93%) 41 (48.81%) 
[65,75) 618 (43.71%) 38 (45.24%) 
[75,85) 186 (13.15%) 5 (5.95%) 

Age 

≥ 85 3 (0.21%) 0 
Mean 
(SD) 

28 (7.90) 27.7 (8.00) 

≤ 30% 878 (62.09%) 55 (65.48%) 

Ejection Fraction 

> 30% 536 (37.91%) 29 (34.52%) 
Yes 1414 (100.00%) 84 (100.00%) Ischemic Disease 
No 0 0 
I 249 (36.89%) 18 (51.43%) 
II 263 (38.96%) 13 (37.14%) 
III 162 (24.00%) 4 (11.43%) 

NYHA Class 
  

IV 1 (0.15%) 0 
  
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by 
percentages for categorical variables. 
 
Abbreviations for Table 11:  ICD = implantable cardioverter defibrillator; MUSTT = Multicenter Unsustained 
Tachycardiac Trial; NYHA = New York Heart Association; SD = standard deviation 
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Appendix. ICD Case Study 
 

Introduction 
 

In this Appendix we detail for the interested reader the case study and our findings.  
More details will be available in a statistical manuscript.  An executive summary of these 
findings are included in the full report. 

Prior to the case study described in this section, we performed substantial simulation 
studies to demonstrate that while single trials may be adequately powered to detect 
main treatment effects, they often have low power to detect treatment-covariate 
interactions.  Furthermore, these studies demonstrated that combining data from trials 
improves the power to detect such treatment-covariate interactions.  Details about the 
simulation studies and our findings may be obtained from the authors and will be 
published in a statistical manuscript.  To explore the findings from our simulation studies 
and to provide evidence concerning the advantages and disadvantages of Bayesian 
techniques in clinical trial design and analysis, we performed a case study of the use of 
ICD therapy in the prevention of SCD using data from eight clinical trials. 

 
Methods and Assumptions 

 
For the purposes of this case study, we considered data from eight trials (AVID, 

CABG-PATCH, CASH, DEFINITE, MADIT-I, MADIT-II, MUSTT and SCD-HeFT).  For 
any trial, the overall survival (in years from randomization) is the primary outcome.  
There are two treatment groups (ICD versus control) and four baseline prognostic 
variables, namely, age (in years), ejection fraction (given as a percentage), NYHA class 
(classes I through IV) and ischemic disease (yes/no).  Data were analyzed according to 
the intention-to-treat.  Moreover, we assumed that the four prognostic variables also 
capture differences in the trial designs.  We omitted from our analysis patients who had 
missing entries in any of the above covariates.   

Besides the clinical trial data, we received data from the CMS on the CMS ICD 
Registry patients representing patients who have had an ICD implanted and are 
requesting coverage from CMS.  The data represent 121,398 implants between 
12/31/2004 and 6/30/2007.  We note, however, that the registry data are only on ICD 
patients; that is, there is no control group.  Moreover, the registry does not currently 
have follow-up information regarding patients’ overall survival.  Thus, for the purpose of 
illustration, we utilized registry data from the MUSTT study to address survival 
comparisons considering clinical trial and registry data. 
 
Analysis of Individual Trials 
 

We utilized Cox-Proportional hazards and Weibull regression models to compare 
overall survival by treatment groups.  An introductory text describing these types of 
survival models can be found here.91  The findings from these two models were 
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qualitatively similar and so in our discussion here we only present those from the 
Weibull regression models.  Although the Cox-Proportional hazards model is widely 
used, the Weibull regression model allows us to make comparisons of the estimation 
under Frequentist and Bayesian approaches on more similar modeling grounds.  Details 
of the other models are available from the authors and will be published in a statistical 
manuscript. 

First, we considered unadjusted analysis considering data from all patients in the 
trial as well as stratified analysis on subgroups.  Second, we considered analysis that 
adjusted for the common set of baseline prognostic variables, both, with and without the 
interaction between each of the baseline prognostic variables and treatment. 
 
Analysis of Data Combining All Trials 
 

We utilized Weibull regression models to compare overall survival by treatment 
groups in unadjusted and adjusted analysis.  For the latter we considered models that 
included or not the interactions between baseline prognostic variables and treatment.  
To combine data from all trials we considered four model variations: 1) combining data 
from all trials, but without adjusting for (potential) trial effects; 2) combining data from all 
trials adjusting for trial effects assuming a fixed effect for trial; 3) combining data from all 
trials assuming a random effect for trial and 4) combining data from all trials assuming 
trial-specific baseline hazard functions.  These models were estimated using maximum 
likelihood estimation.   

Bayesian estimation was also performed in the above Weibull regression models.  
Moreover, we additionally considered a full hierarchical model utilizing random-effects 
for baseline hazard functions, main and interaction effects.  We assumed normal priors 
for real-valued parameters (that is, parameters that can take on positive and negative 
values, such as the ICD effect).  Precision parameters were assigned Gamma priors.  
Moreover, scale and shape parameters of the baseline hazard were assigned log-
normal priors.  Fixed effect parameters were assigned priors with mean zero and 
variance one.  Random effects parameters were assigned priors with an overall 
population mean and population precision.  Population means were assigned priors with 
mean zero and variance one, while precision parameters were assigned priors with 
mean and variance equal to one.   
 
Using Registry Data 
 

We considered the random effects model (model 3 above) utilizing Bayesian 
estimation.  This model formally accounts for the variability within and between trials.  
Using the posterior samples of the model parameters, we simulated the survival 
experience of hypothetical patients in a hypothetical new trial under the ICD and control 
groups in given prognostic subgroups.  Using these samples we obtained the posterior 
predictive survival distributions for the ICD and control groups which can then be 
compared to the empirical survival distribution of the related subgroups in the registry 
data. 
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Analysis of Aggregate versus Patient-level Data 
 

One critical aspect of our analysis is the availability of patient-level data from ICD 
trials.  In practice, however, data analysts may face a situation in which only aggregate 
data are available; for example, in the form of estimates of the treatment effect along 
with estimated standard errors.  Moreover, such data become available sequentially as 
trial results get published.  We, thus, performed additional analyses to investigate two 
additional points: 

 
1. What are the implications of using aggregate data as opposed to using patient-

level data in assessing overall ICD efficacy? 
2. By considering the accumulated sequential evidence from trials, either using 

aggregate or patient-level data, would we be able to reach a conclusive decision 
of overall ICD efficacy sooner?   

 
To answer the above questions, we considered fixed and random effects models 

and estimated these models under two different priors.  Prior 2 has higher precision 
than prior 1.  We set prior 2 to have different precisions when comparing the analysis for 
aggregate or patient-level data as we clarify below when we discuss our findings.   

Finally, using patient-level data, we also considered the accumulated sequential 
evidence from trials to assess treatment-covariate interaction across prognostic 
subgroups.   

All analyses were performed in R (version 2.7.2) and Winbugs (version 1.4.3).  
Convergence diagnosis of our Bayesian models was performed using the package BOA 
available in R.  Additional details concerning the statistical models explored are 
available from the authors and will be published in a statistical manuscript. 

 
Findings 

 
Analysis of Individual Trials 
 

Summary statistics for each trial by treatment group are shown in Appendix Table 
A1 (Parts 1 and 2).  The table shows that the trials considered in this case study differ in 
sample size with the smallest trial having 196 patients (MADIT-I) and the largest with 
1676 (SCD-HeFT) patients randomized to ICD and control.  Moreover, participants have 
different compositions across trials.  For example, some trials such as CABG-PATCH, 
MADIT-I, MADIT-II and MUSTT had only ischemic patients while the DEFINITE trial 
only included non-ischemic patients. 

Appendix Figures A1(a) and A1(b) shows the Kaplan-Meier survival curves by trial 
and treatment group.  In the analysis of individual trials, without adjusting for prognostic 
variables, there is evidence of treatment effect on overall survival in five trials (AVID, 
MADIT-I, MADIT-II, MUSTT and SCD-HeFT) (see Appendix Table A2).  Among trials 
that showed treatment effect, the estimated hazard ratio (for death from all causes in 
the ICD group as compared to the control group) ranged from 0.35 to 0.75.  Among 
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trials that did not show treatment effect, the estimated hazard ratio ranged from 0.65 to 
1.07.   

Comparisons of overall survival by treatment group within prognostic subgroups in 
general failed to show an association between treatment and overall survival (see 
Appendix Table A3).  Moreover, most entries in the table with significant results were no 
longer significant when considering Bonferroni’s adjustment to account for multiple 
testing.  The only exception was in subgroup 4 (age < 65, EF < 30 percent, NYHA 2 and 
ischemic disease) in the SCD-HeFT trial (Bonferroni’s adjusted p-value < 0.001).  We 
note that these results are affected by the small sample sizes in each subgroup 
(Appendix Table A4 [Parts 1-5]).   

To adjust for prognostic variables, we utilized the Weibull regression model.  The 
model demonstrates evidence of treatment effect on overall survival in the trials 
previously identified as well as in the DEFINITE trial (Appendix Tables A5-A12).  We 
also fitted Weibull regression models including the interaction between treatment and 
each of the prognostic variables.  In general, there was no evidence of significant 
interactions.  The exception was in CASH which showed significant treatment 
interaction with EF and NYHA class, MADIT 1 with a significant interaction between 
treatment and EF and SCD-HeFT with a significant interaction between treatment and 
AGE and NYHA class.   

Before we move on to the next phase of the analysis we take a quick detour to 
explain in more detail the results we presented in Appendix Tables A5-A12.  Because 
all these tables have similar format, we do not discuss them individually, but focus on 
the results in Appendix Table A5.  The left side of the table shows results that only 
include main effects, while the right side of the table shows results that include main 
effects and interactions between treatment and prognostic variables.  The results 
include estimates of the model parameters, standard errors and p-values.  For example, 
for the model that utilizes only main effects, we estimate that the hazard of death from 
all causes for a patient in the ICD group is exp(-0.43) = 0.65 times the hazard of death 
for a patient in the control group.   

Appendix Figure A2 summarizes the analysis of the individual trials displaying 
estimates, along with the respective 95 percent confidence intervals, of the log-hazard 
of treatment effect for each trial.  The differences between estimates from models that 
do not adjust for covariates from those that do are, in general, relatively small.  Without 
covariate adjustment there is evidence of treatment effect on overall survival in five trials 
(AVID, MADIT-I, MADIT-II, MUSTT and SCD-HeFT) as shown in the figure with the 95 
percent CI excluding the null value (zero).  When considering covariate adjustment, we 
also find a (borderline) treatment effect in the DEFINITE trial.  We note, however, that 
the estimates vary from trial to trial.  Moreover, the precisions for these estimates vary, 
with more precision attained in the largest trial (SCD-HeFT) with the narrowest 95 
percent CI.   

Key points: The analysis of the individual trials shows that, out of eight trials, five 
showed evidence of treatment effect, but there is also a lot of variation in the estimates 
of ICD effect across trials.  Within any trial, the results are fairly robust to different model 
formulations.  Moreover, generally, there is no evidence of significant treatment-
covariate interactions in the prognostic subgroups. 
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Analysis of Data Combining All Trials 
 

Under all model formulations considered here, there is evidence of treatment effect 
on overall survival (Appendix Tables A13-A17, with results presented in similar format to 
those discussed in the previous section).   

Moreover, estimates from Bayesian models (Appendix Tables A18-A21) with priors 
as described before, are generally similar to those obtained under the frequentist 
Weibull regression models (compare results under Appendix Tables A18-A21 with those 
from Appendix Tables A13-A17).  We note that in Appendix Tables A18-A21 we present 
the posterior mean, posterior standard deviation and 95 percent posterior credible 
intervals.  Let us take the results under Appendix Table A18 for the model that only 
includes main effects for an example.  We estimate that the hazard of death in the ICD 
is approximately exp(-0.38) = 0.68 times the hazard of death in the control group.  
Moreover, we estimate that with 95 percent posterior probability the hazard ratio lies 
between 0.61 and 0.76. 

Appendix Figure A3 summarizes results displaying estimates, along with the 
corresponding 95 percent confidence/credible intervals, of the log-hazard of treatment 
effect across different models.  The results show evidence of treatment effect on overall 
survival and are very similar across all models considered here, that is, with or without 
covariate adjustment, and across different specifications for how trial data are 
combined, with Weibull regression models using frequentist or Bayesian approaches to 
estimation.  Moreover, the estimates have lower uncertainty as compared to those from 
the individual trials (compare Appendix Figure A3 with Appendix Figure A2). 

The models that we discussed so far rely on strong assumptions as to how we 
accommodate trial differences.  In one extreme end, we combine data assuming that 
trials are similar.  Next, we relax this assumption and assume that trial differences are 
accommodated with fixed and random trial effects or allowing for trial-specific baseline 
hazard functions.  However, we have allowed the effect of the prognostic variables, and 
the interactions to be similar across all trials.  Next, we discuss results from a Bayesian 
hierarchical model that will relax this assumption.  We note that an equivalent model, 
without priors in the population parameters, could not be estimated using classical 
frequentist approaches.  

Appendix Table A22 shows estimates under the full Bayesian hierarchical model that 
accounts for trial variation in the baseline-hazard, main effects and interaction effects.  
To summarize the results we present the population estimates, as well as, the trial-
specific estimates.  From Appendix Table A22 we estimate, under the model that only 
includes main effects, that the hazard of death in the ICD is approximately exp(-0.43) = 
0.65 times the hazard of death in the control group.  Moreover, we estimate that with 95 
percent posterior probability the hazard ratio lies between 0.40 and 1.03.  This model 
also allows us to obtain the trial-specific effects.  We find differential effect of ICD across 
trials.  In particular, we find no treatment effect in the CABG-PATCH and CASH (95 
percent posterior credible intervals include the null value) trials. There is no evidence of 
interactions between treatment and any of the prognostic variables.   

For ease of interpretation, in Appendix Table A23 we provide the median hazard 
ratios and the 95 percent credible intervals for the effect of treatment within the main 
subgroups defined by the prognostic variables for the individual trials and then for the 
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entire population of trials.  We also provide the posterior probability that the hazard ratio 
for the total mortality reduction from the ICD treatment would be 0.80 or less, as this 
was considered a clinically important reduction in mortality by members of our technical 
expert panel.  For sensitivity analysis, we also present probabilities when using different 
clinical cutoffs, that is, of 0.70 and 0.90.  So, for example, although the 95 percent 
credible interval for the overall hazard ratio for the reduction in mortality from ICD 
implant includes the value of no treatment efficacy (that is, a hazard ratio equal to 1), 
with 83 percent posterior probability the hazard ratio is 0.80 or less indicating a clinically 
significant reduction.  However, if one looks at the findings for treatment and NHYA 
class 4 patients we observe that not only there is no evidence of a significant 
interaction, but that there is only a 49 percent probability that the hazard ratio is 0.80 or 
less.  In Appendix Table A24, we provide the same information (median hazard ratios, 
95 percent credible intervals, and posterior probability that the hazard ratio is less or 
equal to 0.70, 0.80 and 0.90) for each of the 48 subgroups.  Again, note that there is no 
evidence of treatment benefit in the individual subgroups.  The probability that the 
hazard ratio is 0.80 or less however is at least 75 percent in 11 of the subgroups 
indicated in red in the table. 

While these results seem to contradict those arising from Appendix Tables A13-A17, 
we note that this full hierarchical model accounts for a variety of sources of variation not 
accounted for in the previous models; for example, that the interactions between 
treatment and say the presence of ischemia may not be the same across trials.  But in 
doing so, we deal with yet another issue in that some prognostic subgroups were not 
observed in all trials.  When accounting for all of these sources of variation, there is no 
longer evidential support for interactions.   

We computed the Deviance Information Criterion (DIC) for all four models and 
including or not the interactions between treatment and baseline prognostic variables 
(Appendix Table A25).  According to this criterion, models minimizing the DIC are 
preferred. We thus select the model with trial-specific baseline hazard functions.  The 
full Bayesian hierarchical model is a close second best according to this criterion.  
Because the full Bayesian hierarchical model accounts for more sources of variation we 
will utilize it for the upcoming discussions.  

Key points:  Combining data from trials improves our inferences by increasing the 
precision of our estimates as well as the power to detect main effects and interactions.  
There is a variety of modeling approaches that allow us to combine data from different 
trials, but they do not necessarily lead to the same inference.  

Understanding the underlying model assumptions and limitations is important when 
interpreting the results from the combined analysis.  For example, in this section we 
observed that some models showed evidence for an interaction between treatment and 
AGE in the combined analysis.  But this evidence arises from models that assume that 
this interaction is the same across all trials.  If this assumption is regarded 
unreasonable, and we consider instead a model that accounts for the variation of the 
interaction across trials, then the interaction between treatment and AGE is no longer 
significant.  

Finally, when considering Bayesian estimation, the role of priors should also be 
examined through a sensitivity analysis.  We delay the discussion on the effect of priors 
to the section on “Analysis of Aggregate vs. Patient-level data,” below.  
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Using Registry Data 
 

Appendix Table A26 provides descriptive characteristics of CMS ICD Registry 
patients.  As compared to patients recruited to the actual ICD trials, we note that 
patients in the registry are older and with worse prognosis.  Of particular note is that 
more than 87 percent of the patients in the CMS ICD Registry are NYHA Class II or 
greater while these patients represented approximately just two thirds of the trial 
patients. 

As we discussed before, the current CMS registry does not have overall survival.  
Thus, we utilized the registry data from the MUSTT study for illustrative purposes.  
Appendix Table A27 has descriptive statistics for the MUSTT registry.  We note that 
patients in the MUSTT registry also have different characteristics from those in the CMS 
registry.  We also note that only approximately 35 percent of the patients in the MUSTT 
registry received beta-adrenergic blocking agents perhaps influencing the cohort’s 
mortality. 

Appendix Figures A4(a) and A4(b) show the posterior predictive survival distribution 
for the ICD and control groups along with the empirical survival distribution from the 
registry data in two subgroups.  For these subgroups, there are few patients in the 
MUSTT registry who received an ICD.  Control patients in the MUSTT registry have 
better survival earlier on, but more comparable (to the posterior predictive survival) in 
later years.   

Key points:  The above analysis illustrates that we can utilize Bayesian hierarchical 
models to predict survival from patients in subgroups.  This was an illustration and not a 
definitive examination of the strengths and weaknesses of the Bayesian approach to 
this problem.  Indeed, in this data set we observed that the predictions from the 
Bayesian model were not always consistent with the survival observed in the registry.  
Various interpretations of this observation are possible, among them being the 
possibility (independent of the particular statistical model being employed) that patients 
in the registry had a different prognosis than patients in the clinical trials.   
 
Analysis of Aggregate versus Patient-level Data 
 

Appendix Figure A5(a) (see also Appendix Table A28) shows the results from the 
analysis that combines aggregate data sequentially mimicking when the trials were 
completed and their data available.  Trials were combined in the following order (based 
on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, 
DEFINITE, SCD-HeFT. 

The figure shows that both fixed and random effects models give similar estimates.  
The estimates are lower and more precise when using the more informative prior 2.  As 
we accumulate data from trials, the 95 percent posterior credible intervals under both 
priors get narrower.  The gain of information with accumulated data is greater under the 
less informative prior 1 than under prior 2.  Upon combining aggregate data from all 
trials, there is only a borderline evidence of overall ICD efficacy under prior 2.  We do 
not rule out no efficacy under prior 1. 
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In contrast, Appendix Figure A5(b) (see also Appendix Table A29) shows the results 
from the analysis that combines patient-level data sequentially.  Estimates from the 
fixed and random effects models are different when considering data from the first trial 
only (MADIT-1) which also has the smallest sample size.  This shows sensitivity to both 
models and priors.  However, as we combine data from more trials, the estimates 
become more similar and precise.  Moreover, using the more informative prior we would 
have concluded overall ICD efficacy sooner with six trials.   

Some additional comments are in order.  The informative prior used in Appendix 
Figure A5(b) has precision 5 while the informative prior used to produce the results 
shown in Appendix Figure A5(a) has precision 20.  Thus, to reach a conclusion of 
overall treatment effect using aggregate data would require an even more informative 
prior! However, Appendix Figure A5(a) also shows that the results are more sensitive to 
prior 2 as the estimates are pulled towards the prior mean (zero).  Now, when using the 
patient-level data, the point estimates under both priors are similar, but with higher 
precision under prior 2.   

Appendix Figure A6 (see also Appendix Table A30) shows the results from the 
analysis that combines patient-level data sequentially but accounting for covariates, 
under two priors, the same utilized to produce Appendix Figure A5(b), but considering 
the full Bayesian hierarchical model.  Here too we can see that under the more 
informative prior we would have concluded overall ICD efficacy after six trials.  
However, under neither prior, we would be able to conclude treatment-covariate 
interactions across subgroups.   

Key points:  In this section we examined the use of patient-level data versus 
aggregate data as information accrues over time.  Our analysis showed that the 
resulting inferences are not necessarily the same.  Moreover, the analysis of aggregate 
data may be more sensitive to priors.   

Finally, we note that the above analysis which assesses the interactions between 
treatment and covariates defining the subgroups of interest may not be feasible with 
aggregate data (see Pocock et al.26 for a review on issues with published subgroup 
analysis). 

We now further examine the Bayesian hierarchical model that combines patient-level 
data from all eight trials.  In what follows we will state a sample of questions of clinical 
interest that we can examine with this model. 
Question 1: Is there evidence that the devices used in the different trials differ in terms 

of their efficacies?  
Answer: As we have discussed before, the Bayesian hierarchical model accounts for 

the variability within and between trials.  In particular, we assume that ICD efficacy is 
trial-specific, but allow for the borrowing of information about ICD efficacy across trials.  
Appendix Figure A7 shows the estimates of treatment effect for each trial and the 
overall effect across all trials.  There is evidence that treatment efficacy differs across 
trials.  Why this is the case is uncertain.  The differences in treatment efficacy could be 
due to differences in the devices used in the trials, but they could also be due to the 
patient population being different across trials – even after controlling for age, EF, 
NYHA class, and ischemia.  For example, additional information concerning the QRS 
interval, gender, or time from myocardial infarction could explain the differences in ICD 
efficacy.  Accounting for these differences, under prior 1 we estimate that the hazard 
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of death in the ICD group is exp(-0.43) = 0.65 times the hazard in the control group.  
The 95 percent posterior credible interval is 0.41 to 1.02.  Under prior 2 we estimate 
the hazard of death in the ICD group is 0.66 times that in the control group, with a 95 
percent posterior credible interval of 0.49 to 0.90.  That is, under the more informative 
prior 2, our analysis supports the evidence of overall ICD efficacy across all trials. 

Question 2: Controlling for EF, ischemia, age, and NYHA class, are patients within the 
available trials similar?  

Answer: Another feature of our Bayesian hierarchical model is that it allows for the 
baseline survival functions to vary from trial-to-trial.  Appendix Figure A8 shows the 
estimated posterior baseline survival functions under each trial and overall trials.  Even 
controlling for EF, ischemia, age, and NYHA class, the figure indicates that patients’ 
survival differs within the available trials.  Patients in the SCDHEFT trial seem to have 
the best survival prognosis.  Patients in CABG-PATCH, AVID and MUSTT have poorer 
survival prognosis.  Again, as discussed under Question 1, there are several potential 
explanations for this difference.  The variation across trials could be due to differences 
in the implanted devices, in the underlying medical care of the patient populations, or 
in patient characteristics that are currently not included in our analysis (e.g., gender, 
QRS interval, time from myocardial infarction).  To gain further insight into these 
differences, additional patient-level data would be required from the trials, and the 
Bayesian hierarchical model would need to be updated to reflect this additional 
knowledge.  Our group currently has a research grant starting 12/1/09 to gain access 
to these needed data and to update our Bayesian model so as to allow exploration of 
these described differences. 

Also note that the variation across trials could be due in part to the fact that some of 
our trials were secondary prevention trials (CASH, AVID), while the remaining trials 
were primary prevention trials.  As we described earlier, we chose to combine data from 
all ICD trials and explored the effects of the four prognostic characteristics across these 
populations.  However, to explore the potential impact of a patient having previously 
experienced a sudden cardiac arrest, we have performed additional sensitivity analyses 
to assess whether treatment may have a different effect in the primary versus 
secondary patient populations.  

First, we considered an analysis, using the Weibull regression model, combining 
only primary prevention trials or only secondary prevention trials without adjustment for 
other covariates or trial effects. For comparison purposes, we also combined all trials 
without adjustment for other covariates or trial effects. The results are reported in 
Appendix Table A31. The estimated log hazard ratio is essentially the same when 
combining either only primary prevention trials or only secondary prevention trials. As 
expected, there is more uncertainty in the estimate when combining secondary 
prevention trials due to the smaller sample.  

Second, we considered an analysis that adjusted for our prognostic variables and 
included a term to indicate whether or not a trial was of primary or secondary prevention 
using a Weibull regression model with random trial effects. Appendix Table A32 shows 
the estimates from the model fit to the data. Our analysis indicated that adding the 
indicator of primary prevention improves the model fit (p < 0.001). However, while we 
estimate the hazard of death in primary prevention trials is exp(-0.65)=0.55 times the 
hazard in secondary prevention trials, the estimate for the hazard of death in the ICD 
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group is exp(-0.37) = 0.69 that for the control group – this estimate is essentially the 
same as that provided in Appendix Table A16 without adjusting for the indicator of 
primary prevention trials. Appendix Table A32 also shows that there is no evidence for 
significant interaction between treatment and the other prognostic variables – including 
the indicator of primary prevention trial.  

Both analyses indicate that, even though the patient populations may be different, 
there is no evidence for differences in treatment effect.  This supports our approach, 
which combined data from all trials. 
Question 3: Is there evidence that the ICD has different effects across patient 

subgroups?  
Answer: The Bayesian hierarchical model also allows for trial-specific interactions.  

From our analysis (see Appendix Table A30), there was no evidence for overall 
interactions between treatment and the covariates that define the subgroups of 
interest.  In other words, there was no evidence for treatment-covariate interactions 
across prognostic subgroups.   

 
Methodological and Clinical Implications of Findings 

 
This case study illustrates Situations 1, 2 and 3 (described under CMS contexts).  

For example, corresponding to Situation 1, in the CASH trial there was no overall 
efficacy of the ICD, but with a naïve analysis one could find efficacy within the subgroup 
with patients < 65 years-old, ≤ 30 percent, NYHA class II and ischemic disease.  
Illustrating Situation 2, the AVID trial supports overall efficacy of the device.  However, 
concern may be raised in the subgroup of patients with < 65 years-old, ≤ 30 percent, 
NYHA class 3 and ischemic disease, even though the survival comparison within the 
subgroup was not significant.  Finally, illustrating Situation 3, some trials do not have all 
subgroups represented.  For example, the DEFINITE trial was only on non-ischemic 
patients.   

Regarding Situations 1 and 2, testing for interactions at the individual trials often did 
not support the presence of treatment-covariate interactions.  Combining data from the 
trials improves the power to detect interactions.  However, in this case study, the 
analysis that combined data from the trials generally did not support the presence of 
interactions.  Such conclusions are supported under different model formulations as well 
as different estimation approaches.  In particular, we note that our Bayesian estimation 
of the models that combined data from trials gave similar estimates to those obtained 
under the classical frequentist approaches.  This illustrates that for large studies, 
Bayesian inferences are less sensitive to prior choices.   

Utilizing the full Bayesian hierarchical model, we simulated the survival experience 
of hypothetical patients in a new clinical trial.  This accounts for both, the variation 
between and within clinical trials.  Because of the borrowing of information across trials, 
this model allows us to predict survival even if an individual trial does not include some 
of the subgroups (thus, addressing Situation 3).  Using this approach, we note that the 
survival in the registry data is better (relative to those predicted by our model) in early 
years.  We note, however, that such analysis has an exploratory feature as confounding 
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might be present.  We also note that this model could not be estimated using classical 
frequentist approaches.  
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Appendix Figure A1(a): Kaplan-Meier survival curves by treatment group. 
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Appendix Figure A1(b): Kaplan-Meier survival curves by treatment group. (Note that in the SCD-HeFT 
trial the dotted red line corresponds to the “placebo” arm of the trial.) 
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Appendix Figure A2. Log-hazard of treatment effect from Weibull Regression model fit to individual trials 
with and without covariate adjustment. Vertical segments show the limits of the 95% confidence intervals. 
They are displayed in blocks of segments with different colors to differentiate results by trial. Within each 
block, the full line displays results without covariate adjustment; the dotted line displays results utilizing 
covariate adjustment (note AGE and EF are categorized).    
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Appendix Figure A3. Log-hazard of treatment effect from Weibull Regression models that combine data 
across trials with or without adjustment for covariates. Estimates obtained using Weibull Regression 
Models are shown with filled symbols, specifically, filled dots for frequentist estimates and filled squares 
for Bayesian estimates. Vertical segments give the limits of the 95% confidence/credible intervals. They 
are displayed in blocks of segments with different colors to differentiate results by the modeling 
approaches utilized to combine trials. Within each block, the full line displays results without covariate 
adjustment; the following set utilizes covariate adjustment.    
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Age [65,75), EF < 30%, NYHA II, ISCH 

Appendix Figure A4(a). Posterior predictive survival distributions under the ICD and control group for 
hypothetical patients with age [65,75), ejection fraction < 30%, NYHA II and ischemic disease and 
empirical survival distribution from corresponding registry patients in the MUSTT registry.  
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Appendix Figure A4(b). Posterior predictive survival distributions under the ICD and control group (for 
hypothetical patients with age 75+, ejection fraction < 30%, NYHA II and ischemic disease and empirical 
survival distribution from corresponding registry patients in the MUSTT registry.  

 A-126



 

0 2 4 6 8

-2
-1

0
1

2

Number of Trials

Tr
ea

tm
en

t E
ffe

ct

Model 1 & Prior 1
Model 2 & Prior 1
Model 1 & Prior 2
Model 2 & Prior 2

PRIORS

 

Appendix Figure A5(a). Posterior estimates (mean along with 95% posterior credible intervals) using 
aggregate data by number of combined trials. In this figure, each set of four vertical lines corresponds to 
results under the same number of combined trials, but under different models and prior assumptions. 
Model 1 (dashed lines) refers to a fixed-effects formulation, while model 2 (full lines) refers to a random-
effects formulation.  Corresponding prior densities are shown in the left-hand side of the figure. Prior 1 
(red) has precision 1 while prior 2 (blue) has precision 20.  
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Appendix Figure A5(b). Posterior estimates (mean along with 95% posterior credible intervals) using 
patient-level data by number of combined trials. In this figure, each set of four vertical lines corresponds 
to results under the same number of combined trials, but under different models and prior assumptions. 
Model 1 (dashed lines) refers to a fixed-effects formulation, while model (full line) 2 refers to a random-
effects formulation.  Corresponding prior densities are shown in the left-hand side of the figure. Prior 1 
(red) has precision 1 while prior 2 (blue) has precision 5. 
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Appendix Figure A6. Posterior estimates (mean along with 95% posterior credible intervals) for the overall 
treatment effect from Bayesian hierarchical models with covariate adjustment and using patient-level data 
by number of combined trials. In this figure, each set of two vertical lines corresponds to results under the 
same number of combined trials, but under different prior assumptions. Corresponding prior densities are 
shown in the left-hand side of the figure. Prior 1 (navy blue) has precision 1 for the model parameters, 
while prior 2 (brown) has precision 5. 
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Appendix Figure A7. Posterior estimates (mean along with 95% posterior credible intervals) for the overall 
treatment effect under two priors (prior 2 is more informative than prior 1). 
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Appendix Figure A8. Estimated posterior baseline survival functions. 
 

 



 

Appendix Table A1. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 1 (AVID, CABG-PATCH, 
CASH, and DEFINITE)* 
 

AVID CABG-PATCH CASH DEFINITE 
Characteristic Control ICD Control ICD Control ICD Control ICD 
Number of Patients 509 507 454 446 189 99 229 229 

Mean 
(SD) 

65.33 
(10.19) 

64.83 
(10.82) 

64.95 
(9.39) 

64.07 
(9.21) 

57.83 
(10.59) 

57.46 
(11.18) 

58.11 
(11.96) 

58.41 
(13.84) 

< 65 215 
(42.24%) 

229 
(45.17%) 

227 
(50.00%) 

223 
(50.00%) 

145 
(76.72%) 

72 
(72.73%) 

153 
(66.81%) 

148 
(64.63%) 

[65,75) 203 
(39.88%) 

185 
(36.49%) 

174 
(38.33%) 

168 
(37.67%) 

37 
(19.58%) 

25 
(25.25%) 

63 
(27.51%) 

51 
(22.27%) 

[75,85) 86 
(16.90% 

85 
(16.77%) 

53 
(11.67%) 

55 
(12.33%) 6 (3.17%) 2 (2.02%) 13 

(5.68%) 
30 

(13.10%) 

Age 

≥ 85 5 
(00.98%) 8 (1.58%) 0 0 1 (0.53%) 0 0 0 

Mean 
(SD) 

30.82 
(13.24) 

32.15 
(13.46) 

27.05 
(5.82) 

27.13 
(5.75) 

45.18 
(17.21) 

45.89 
(19.51) 

21.84 
(6.08) 

20.88 
(5.93) 

≤ 30% 294 
(58.22%) 

273 
(54.17%) 

323 
(71.15%) 

317 
(71.08%) 

35 
(20.47%) 

23 
(24.21%) 

215 
(93.89%) 

219 
(95.63%) 

Ejection Fraction 

> 30% 211 
(32.76%) 

231 
(45.83%) 

131 
(28.85%) 

129 
(28.92%) 

136 
(79.53%) 

72 
(75.79%) 

14 
(6.11%) 

10 
(4.37%) 

Yes 433 
(85.07%) 

435 
(85.80%) 

454 
(100.00%) 

446 
(100.00%) 

167 
(88.83%) 

88 
(88.89%) 0 0 Ischemic Disease 

No 76 
(14.93%) 

72 
(14.20%) 0 0 21 

(11.17%) 
11 

(11.11%) 
229 

(100.00%) 
229 

(100.00%) 

I 313 
(61.49%) 

329 
(64.89%) 

258 
(56.95%) 

247 
(55.88%) 

54 
(29.35%) 

24 
(24.49%) 

41 
(17.90%) 

58 
(25.33%) 

II 136 
(26.72%) 

144 
(28.40%) 

85 
(18.76%) 

87 
(19.68%) 

106 
(57.61%) 

56 
(57.14%) 

139 
(60.70%) 

124 
(54.15%) 

III 60 
(11.79%) 

34 
(6.71%) 

81 
(17.88%) 

73 
(16.52%) 

24 
(13.04%) 

18 
(18.37%) 

49 
(21.40%) 

47 
(20.52%) 

NYHA Class 

IV 0 0 29 
(6.40%) 

35 
(7.92%) 0 0 0 0 

 
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables.
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Appendix Table A1. Descriptive statistics for prognostic variables stratified by trial and treatment groups – Part 2 (MADIT-I, MADIT-II, 
MUSTT, and SCD-HeFT)* 
 

MADIT-I MADIT-II MUSTT SCD-HeFT 
Characteristic Control ICD Control ICD Control ICD Control ICD 
Number of Patients 101 95 490 742 353 167 847 829 

Mean 
(SD) 63.8 (8.82) 62.12 

(8.73) 
64.57 

(10.32) 
64.45 

(10.45) 
64.87 
(9.65) 

65.42 
(8.52) 

58.58 
(11.92) 

59.41 
(11.87) 

< 65 49 
(48.51%) 

53 
(55.79%) 

228 
(46.53%) 

345 
(46.50%) 

162 
(45.89%) 

72 
(43.11%) 

563 
(66.47%) 

535 
(64.54%) 

[65,75) 40 
(39.60%) 

36 
(37.89%) 

186 
(37.96%) 

269 
(36.25%) 

139 
(39.38%) 

77 
(46.11%) 

216 
(25.50%) 

215 
(25.93%) 

[75,85) 12 
(11.88%) 6 (6.32%) 69 

(14.08%) 
123 

(16.58%) 
50 

(14.16%) 
18 

(10.78%) 
64 

(7.56%) 
76 

(9.17%) 

Age 

≥ 85 0 0 7 (1.43%) 5 (0.67%) 2 (0.57%) 0 4 (0.47%) 3 (0.36%) 
Mean 
(SD) 

24.57 
(6.67) 

26.66 
(6.50) 

23.16 
(5.49) 

23.17 
(5.42) 

27.65 
(7.64) 

27.72 
(7.91) 

25.71 
(12.51) 

24.96 
(12.76) 

≤ 30% 84 
(83.17%) 

66 
(69.47%) 

488 
(99.59%) 

742 
(100.00%) 

229 
(64.87%) 

109 
(65.27%) 

513 
(60.57%) 

509 
(61.40%) 

Ejection Fraction 

> 30% 17 
(16.83%) 

29 
(30.53%) 

2  
(0.41%) 

0 
(0%) 

124 
(35.13%) 

58 
(34.73%) 

334 
(39.43%) 

320 
(38.60%) 

Yes 101 
(100.00%) 

95 
(100.00%) 

490 
(100.00%) 

742 
(100.00%) 

353 
(100.00%) 

167 
(100.00%) 

453 
(53.48%) 

431 
(51.99%) 

Ischemic Disease 

No 0 0 0 0 0 0 394 
(46.52%) 

398 
(48.01%) 

I 33 
(32.67%) 

36 
(37.89%) 

187 
(38.80%) 

256 
(34.83%) 

71 
(36.41%) 

38 
(34.55%) 0 0 

II 50 
(49.50%) 

44 
(46.32%) 

165 
(34.23%) 

259 
(35.24%) 

75 
(38.46%) 

43 
(39.09%) 

594 
(70.13%) 

566 
(68.28%) 

III 18 
(17.82%) 

15 
(15.79%) 

110 
(22.82%) 

187 
(25.44%) 

49 
(25.13%) 

29 
(29.36%) 

253 
(29.87%) 

263 
(31.72%) 

NYHA Class 

IV 0 0 20 
(4.15%) 

33 
(4.49%) 0 0 0 0 

 
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by percentages for categorical variables. 
 
Abbreviations to Appendix Table A1 – Parts 1 and 2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass 
Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = 

 A-133



 

 A-134

implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation 
Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; 
SD = standard deviation 
 
 
 
 



 

Appendix Table A2. Comparison of overall survival by treatment group within each trial, 
unadjusted Cox-Proportional Hazards Model 
 

Sample Size Number of Events 
Trial Control ICD Control ICD 

Hazard  
Ratio 95% CI P-value 

AVID 509 507 122 80 0.61 0.46 0.81 < 0.001 
CABG-
PATCH 454 446 95 101 1.07 0.81 1.42 0.635 
CASH 189 99 71 37 0.89 0.60 1.32 0.549 
DEFINITE 229 229 40 28 0.65 0.40 1.06 0.08 
MADIT-I 101 95 39 17 0.35 0.19 0.63 < 0.001 
MADIT-II 490 742 105 107 0.65 0.50 0.85 0.002 
MUSTT 353 167 158 35 0.42 0.29 0.60 < 0.001 
SCD-
HeFT 847 829 284 182 0.75 0.62 0.91 0.004 

 
Abbreviations for Appendix Table A2:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = 
Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; CI = confidence interval; 
DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; ICD = implantable 
cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter 
Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; SCD-HeFT = 
Sudden Cardiac Death in Heart Failure Trial 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis*  
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

1 < 65 ≤ 30% 1 Non-Isch 
0.29 

(0.03, 
2.37) 

- - 
0.58 

(0.10, 
3.45) 

- - - - 

2 < 65 ≤ 30% 1 Isch 
0.65 

(0.23, 
1.79) 

0.54 
(0.22, 
1.36) 

- - - 
0.66 

(0.27, 
1.62) 

0.79 
(0.19, 
3.32) 

- 

3 < 65 ≤ 30% 2 Non-Isch 
0.69 

(0.04, 
11.1) 

- - 
0.85 

(0.34, 
2.15) 

- - - 
0.67 

(0.35, 
1.32) 

4 < 65 ≤ 30% 2 Isch 
0.62 

(0.21, 
1.82) 

1.27 
(0.46, 
3.51) 

0.14 
(0.03, 
0.64) 

- 
0.47 

(0.12, 
1.78) 

0.49 
(0.19, 
1.25) 

0.14 
(0.02, 
1.06) 

0.33 
(0.17, 
0.62) 

5 < 65 ≤ 30% 3 Non-Isch - - - 
0.49 

(0.12, 
2.04) 

- - - 
0.95 

(0.43, 
2.10) 

6 < 65 ≤ 30% 3 Isch 
0.51 

(0.14, 
1.87) 

0.84 
(0.23, 
3.16) 

5.88 
(0.61, 
56.9) 

- 
0.46 

(0.09, 
2.38) 

0.81 
(0.33, 
1.94) 

0.92 
(0.30, 
2.83) 

0.71 
(0.40, 
1.29) 

7 < 65 ≤ 30% 4 Non-Isch - - - - - - - - 

8 < 65 ≤ 30% 4 Isch - 
0.52 

(0.12, 
2.33) 

- - - 
1.92 

(0.36, 
10.1) 

- - 

9 < 65 > 30% 1 Non-Isch - - - - - - - - 

10 < 65 > 30% 1 Isch 
1.03 

(0.28, 
3.82) 

0.81 
(0.18, 
3.63) 

0.37 
(0.04, 
3.08) 

- - - 
2.00 

(0.12, 
32.9) 

- 

11 < 65 > 30% 2 Non-Isch 
0.80 

(0.07, 
8.90) 

- 
0.50 

(0.03, 
8.46) 

- - - - 
1.04 

(0.38, 
2.87) 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

12 < 65 > 30% 2 Isch 
1.24 

(0.11, 
13.8) 

- 
0.85 

(0.34, 
2.15) 

- 
0.14 

(0.01, 
1.59) 

- - 
0.86 

(0.40, 
1.86) 

13 < 65 > 30% 3 Non-Isch - - - - - - - 
0.21 

(0.02, 
1.86) 

14 < 65 > 30% 3 Isch - 
0.91 

(0.18, 
4.50) 

1.42 
(0.26, 
7.80) 

- - - 
0.47 

(0.04, 
5.35) 

1.60 
(0.68, 
3.81) 

15 < 65 > 30% 4 Non-Isch - - - - - - - - 
16 < 65 > 30% 4 Isch - - - - - - - - 

17 [65,75) ≤ 30% 1 Non-Isch - - - 
0.36 

(0.04, 
3.44) 

- - - - 

18 [65,75) ≤ 30% 1 Isch 
0.65 

(0.27, 
1.57) 

0.98 
(0.46, 
2.07) 

- - 
0.45 

(0.04, 
5.02) 

0.49 
(0.22, 
1.06) 

0.61 
(0.13, 
2.93) 

- 

19 [65,75) ≤ 30% 2 Non-Isch - - - 
1.24 

(0.31, 
4.98) 

- - - 
0.76 

(0.31, 
1.87) 

20 [65,75) ≤ 30% 2 Isch 
0.39 

(0.12, 
1.22) 

1.53 
(0.58, 
4.05) 

0.31 
(0.03, 
3.48) 

- 
0.38 

(0.11, 
1.32) 

0.89 
(0.42, 
1.90) 

0.38 
(0.10, 
1.44) 

0.71 
(0.36, 
1.40) 

21 [65,75) ≤ 30% 3 Non-Isch - - - 
0.60 

(0.15, 
2.33) 

- - - 
0.88 

(0.37, 
2.11) 

22 [65,75) ≤ 30% 3 Isch 
0.33 

(0.04, 
2.76) 

1.28 
(0.53, 
3.10) 

1.09 
(0.09, 
13.3) 

- 
0.23 

(0.04, 
1.32) 

0.29 
(0.13, 
0.68) 

0.14 
(0.03, 
0.64) 

1.42 
(0.70, 
2.86) 

23 [65,75) ≤ 30% 4 Non-Isch - - - - - - - - 
 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

24 [65,75) ≤ 30% 4 Isch - - - - - 
1.27 

(0.33, 
4.89) 

- - 

25 [65,75) > 30% 1 Non-Isch - - - - - - - - 

26 [65,75) > 30% 1 Isch 
0.83 

(0.34, 
2.00) 

1.01 
(0.30, 
3.34) 

- - - - 
1.60 

(0.10, 
25.7) 

- 

27 [65,75) > 30% 2 Non-Isch - - - - - - - 
0.80 

(0.19, 
3.35) 

28 [65,75) > 30% 2 Isch 
0.60 

(0.13, 
2.70) 

0.48 
(0.04, 
5.35) 

2.20 
(0.55, 
8.76) 

- - - - 
0.08 

(0.01, 
0.61) 

29 [65,75) > 30% 3 Non-Isch - - - - - - - - 

30 [65,75) > 30% 3 Isch - 
0.27 

(0.03, 
2.64) 

2.14 
(0.51, 
9.08) 

- - - - 
2.46 

(0.83, 
7.23) 

31 [65,75) > 30% 4 Non-Isch - - - - - - - - 

32 [65,75) > 30% 4 Isch - 
0.52 

(0.09, 
3.20) 

- - - - - - 

33 ≥ 75 ≤ 30% 1 Non-Isch -  - 
(0.18 
0.03, 
1.33) 

-  - - 

34 ≥ 75 ≤ 30% 1 Isch 
0.92 

(0.29, 
2.92) 

2.27 
(0.47, 
11.0) 

- - - 
0.74 

(0.27, 
1.99) 

6.36 
(0.38, 
106) 

- 

35 ≥ 75 ≤ 30% 2 Non-Isch 
0.47 

(0.03, 
7.86) 

- - 
1.27 

(0.12, 
14.0) 

- - - 
0.24 

(0.03, 
1.97) 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
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Appendix Table A3. Comparison of overall survival by treatment group within each trial, stratified analysis* – continued 
 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch AVID 

CABG-
PATCH CASH DEFINITE MADIT-I MADIT-II MUSTT 

SCD-
HeFT 

36 ≥ 75 ≤ 30% 2 Isch 
1.03 

(0.36, 
2.98) 

2.31 
(0.21, 
25.5) 

- - - 
0.26 

(0.07, 
0.99) 

0.85 
(0.08, 
9.44) 

0.15 
(0.02, 
1.16) 

37 ≥ 75 ≤ 30% 3 Non-Isch - - - 
0.11 

(0.01, 
1.10) 

- - - 
0.18 

(0.01, 
2.93) 

38 ≥ 75 ≤ 30% 3 Isch 
0.62 

(0.06, 
5.96) 

1.14 
(0.40, 
3.27) 

- - - 
0.60 

(0.27, 
1.34) 

- 
0.88 

(0.33, 
2.36) 

39 ≥ 75 ≤ 30% 4 Non-Isch - - - - - - - - 
40 ≥ 75 ≤ 30% 4 Isch - - - - - - - - 
41 ≥ 75 > 30% 1 Non-Isch - - - - - - - - 

42 ≥ 75 > 30% 1 Isch 
1.25 

(0.35, 
4.43) 

0.38 
(0.04, 
3.63) 

- - - - - - 

43 ≥ 75 > 30% 2 Non-Isch - - - - - - - 
0.39 

(0.04, 
3.52) 

44 ≥ 75 > 30% 2 Isch 
1.08 

(0.10, 
11.9) 

- 
0.84 

(0.07, 
9.61) 

- - - 
3.47 

(0.31, 
38.4) 

0.75 
(0.15, 
3.70) 

45 ≥ 75 > 30% 3 Non-Isch - - - - - - - - 
46 ≥ 75 > 30% 3 Isch - - - - - - - - 
47 ≥ 75 > 30% 4 Non-Isch - - - - - - - - 
48 ≥ 75 > 30% 4 Isch - - - - - - - - 

 
*For each cell, entries give estimated hazard ratio and 95% confidence interval (unadjusted for multiple testing) comparing survival by treatment in the subgroups 
of interest.  Missing entries indicate unavailable data for the particular subgroup.  Entries highlighted in red indicate significant results at the unadjusted 
significance level of 5%. 
 
Abbreviations for Appendix Table A23:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; Isch = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; Non-Isch = non-ischemic; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure 
Trial
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 1 (all trials) 
 

All Trials 
Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 45 9 42 3
2 < 65 ≤ 30% 1 Isch 247 39 295 28
3 < 65 ≤ 30% 2 Non-Isch 240 33 227 24
4 < 65 ≤ 30% 2 Isch 306 96 302 40
5 < 65 ≤ 30% 3 Non-Isch 92 21 82 17
6 < 65 ≤ 30% 3 Isch 171 68 188 51
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0
8 < 65 ≤ 30% 4 Isch 16 6 27 8
9 < 65 > 30% 1 Non-Isch 15 3 9 1

10 < 65 > 30% 1 Isch 173 15 156 10
11 < 65 > 30% 2 Non-Isch 94 10 98 10
12 < 65 > 30% 2 Isch 157 35 135 22
13 < 65 > 30% 3 Non-Isch 23 6 30 1
14 < 65 > 30% 3 Isch 58 19 50 19
15 < 65 > 30% 4 Non-Isch 0 0 0 0
16 < 65 > 30% 4 Isch 2 0 6 1
17 [65,75) ≤ 30% 1 Non-Isch 18 5 20 1
18 [65,75) ≤ 30% 1 Isch 222 53 211 34
19 [65,75) ≤ 30% 2 Non-Isch 74 14 78 14
20 [65,75) ≤ 30% 2 Isch 198 64 249 61
21 [65,75) ≤ 30% 3 Non-Isch 37 17 32 15
22 [65,75) ≤ 30% 3 Isch 128 65 133 49
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 20 4 24 8
25 [65,75) > 30% 1 Non-Isch 4 3 3 0
26 [65,75) > 30% 1 Isch 98 17 101 16
27 [65,75) > 30% 2 Non-Isch 21 5 19 4
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 1 (all trials) – continued  
 

All Trials 
Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 110 35 74 8
29 [65,75) > 30% 3 Non-Isch 13 1 7 2
30 [65,75) > 30% 3 Isch 37 17 33 16
31 [65,75) > 30% 4 Non-Isch 0 0 0 0
32 [65,75) > 30% 4 Isch 5 3 4 2
33 ≥ 75 ≤ 30% 1 Non-Isch 3 2 12 3
34 ≥ 75 ≤ 30% 1 Isch 80 21 92 22
35 ≥ 75 ≤ 30% 2 Non-Isch 20 8 22 4
36 ≥ 75 ≤ 30% 2 Isch 77 28 76 16
37 ≥ 75 ≤ 30% 3 Non-Isch 5 4 16 3
38 ≥ 75 ≤ 30% 3 Isch 67 35 78 33
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 6 1 7 3
41 ≥ 75 > 30% 1 Non-Isch 2 0 1 1
42 ≥ 75 > 30% 1 Isch 42 8 43 7
43 ≥ 75 > 30% 2 Non-Isch 7 4 4 1
44 ≥ 75 > 30% 2 Isch 34 10 36 8
45 ≥ 75 > 30% 3 Non-Isch 3 1 6 0
46 ≥ 75 > 30% 3 Isch 10 5 11 5
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 2 (AVID and CABG-PATCH) 
 

AVID CABG-PATCH 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 16 6 8 1 0 0 0 0
2 < 65 ≤ 30% 1 Isch 38 7 62 8 84 13 83 7
3 < 65 ≤ 30% 2 Non-Isch 9 1 14 1 0 0 0 0
4 < 65 ≤ 30% 2 Isch 31 11 28 5 35 7 34 8
5 < 65 ≤ 30% 3 Non-Isch 9 0 4 2 0 0 0 0
6 < 65 ≤ 30% 3 Isch 15 10 8 3 28 5 24 6
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 4 12 3
9 < 65 > 30% 1 Non-Isch 7 0 5 0 0 0 0 0

10 < 65 > 30% 1 Isch 72 4 78 5 47 4 43 3
11 < 65 > 30% 2 Non-Isch 5 2 5 1 0 0 0 0
12 < 65 > 30% 2 Isch 11 1 13 2 12 1 8 0
13 < 65 > 30% 3 Non-Isch 0 0 1 0 0 0 0 0
14 < 65 > 30% 3 Isch 2 1 2 0 10 3 11 3
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 2 0 6 1
17 [65,75) ≤ 30% 1 Non-Isch 10 2 10 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 56 13 53 8 74 16 57 12
19 [65,75) ≤ 30% 2 Non-Isch 5 0 7 1 0 0 0 0
20 [65,75) ≤ 30% 2 Isch 31 11 24 4 21 6 30 13
21 [65,75) ≤ 30% 3 Non-Isch 3 0 1 1 0 0 0 0
22 [65,75) ≤ 30% 3 Isch 16 7 5 1 23 9 21 11
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 0 12 3
25 [65,75) > 30% 1 Non-Isch 3 2 3 0 0 0 0 0
26 [65,75) > 30% 1 Isch 52 11 52 9 28 5 31 6
27 [65,75) > 30% 2 Non-Isch 0 0 4 0 0 0 0 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 2 (AVID and CABG-PATCH) – continued  
 

AVID CABG-PATCH 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 19 4 21 3 8 2 7 1
29 [65,75) > 30% 3 Non-Isch 2 0 1 1 0 0 0 0
30 [65,75) > 30% 3 Isch 2 1 3 0 5 3 4 1
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 5 3 4 2
33 ≥ 75 ≤ 30% 1 Non-Isch 1 0 1 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 27 7 23 5 12 2 21 7
35 ≥ 75 ≤ 30% 2 Non-Isch 2 1 4 1 0 0 0 0
36 ≥ 75 ≤ 30% 2 Isch 17 9 14 6 8 1 7 4
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 3 1 0 0 0 0
38 ≥ 75 ≤ 30% 3 Isch 8 3 4 1 15 7 12 7
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 4 1 1 0
41 ≥ 75 > 30% 1 Non-Isch 2 0 1 1 0 0 0 0
42 ≥ 75 > 30% 1 Isch 25 4 30 6 13 3 12 1
43 ≥ 75 > 30% 2 Non-Isch 1 0 0 0 0 0 0 0
44 ≥ 75 > 30% 2 Isch 5 1 10 2 1 0 1 1
45 ≥ 75 > 30% 3 Non-Isch 1 1 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 2 1 2 0 0 0 1 1
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 3 (CASH and DEFINITE) 
 

CASH DEFINITE 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 29 3 34 2
2 < 65 ≤ 30% 1 Isch 3 1 1 1 0 0 0 0
3 < 65 ≤ 30% 2 Non-Isch 1 0 2 1 89 10 78 8
4 < 65 ≤ 30% 2 Isch 16 11 9 2 0 0 0 0
5 < 65 ≤ 30% 3 Non-Isch 2 2 1 0 24 5 29 3
6 < 65 ≤ 30% 3 Isch 5 2 5 4 0 0 0 0
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
9 < 65 > 30% 1 Non-Isch 7 3 1 0 1 0 3 1

10 < 65 > 30% 1 Isch 39 6 17 1 0 0 0 0
11 < 65 > 30% 2 Non-Isch 5 1 4 1 8 0 2 0
12 < 65 > 30% 2 Isch 45 13 26 7 0 0 0 0
13 < 65 > 30% 3 Non-Isch 1 1 0 0 2 1 2 0
14 < 65 > 30% 3 Isch 4 2 5 4 0 0 0 0
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 8 3 10 1
18 [65,75) ≤ 30% 1 Isch 0 0 0 0 0 0 0 0
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 34 4 30 4
20 [65,75) ≤ 30% 2 Isch 3 2 4 3 0 0 0 0
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 18 7 9 3
22 [65,75) ≤ 30% 3 Isch 4 3 1 1 0 0 0 0
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 1 1 0 0
26 [65,75) > 30% 1 Isch 1 0 5 0 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 1 1 1 0 2 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 3 (CASH and DEFINITE) – continued 
 

CASH DEFINITE 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 19 8 5 3 0 0 0 0
29 [65,75) > 30% 3 Non-Isch 1 1 0 0 1 0 0 0
30 [65,75) > 30% 3 Isch 5 5 6 5 0 0 0 0
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 2 2 11 3
34 ≥ 75 ≤ 30% 1 Isch 0 0 0 0 0 0 0 0
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 7 1 11 2
36 ≥ 75 ≤ 30% 2 Isch 0 0 0 0 0 0 0 0
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 4 3 7 1
38 ≥ 75 ≤ 30% 3 Isch 1 1 0 0 0 0 0 0
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 0 0 0 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 0 0 1 0
44 ≥ 75 > 30% 2 Isch 5 2 2 1 0 0 0 0
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 1 1 0 0 0 0 0 0
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 4 (MADIT-I and MADIT-II) 
 

MADIT-I MADIT-II 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
2 < 65 ≤ 30% 1 Isch 14 3 12 0 91 10 124 9
3 < 65 ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
4 < 65 ≤ 30% 2 Isch 21 8 15 3 81 10 115 8
5 < 65 ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
6 < 65 ≤ 30% 3 Isch 9 5 7 2 44 8 87 13
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 8 2 15 5
9 < 65 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0

10 < 65 > 30% 1 Isch 2 0 11 0 1 0 0 0
11 < 65 > 30% 2 Non-Isch 0 0 0 0 0 0 0 0
12 < 65 > 30% 2 Isch 3 2 7 1 0 0 0 0
13 < 65 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
14 < 65 > 30% 3 Isch 0 0 1 1 0 0 0 0
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 7 2 7 1 67 15 86 11
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
20 [65,75) ≤ 30% 2 Isch 16 7 17 6 60 11 107 17
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
22 [65,75) ≤ 30% 3 Isch 6 4 6 3 46 19 62 8
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 10 4 12 5
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
26 [65,75) > 30% 1 Isch 5 0 5 0 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 0 0 0 0 0 0

 A-146



 

Appendix Table A4. Subgroup composition by treatment group and trial – Part 4 (MADIT-I and MADIT-II) – continued  
 

MADIT-I MADIT-II 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2 Isch 5 1 0 0 0 0 0 0
29 [65,75) > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
30 [65,75) > 30% 3 Isch 1 1 1 0 0 0 0 0
31 [65,75) > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
32 [65,75) > 30% 4 Isch 0 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 4 3 0 0 28 7 46 9
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 0 0 0 0
36 ≥ 75 ≤ 30% 2 Isch 5 1 2 0 23 7 37 3
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 0 0 0 0
38 ≥ 75 ≤ 30% 3 Isch 2 2 0 0 20 10 38 16
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 2 0 6 3
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 1 0 1 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 0 0 0 0
44 ≥ 75 > 30% 2 Isch 0 0 3 0 1 1 0 0
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 0 0 0 0
46 ≥ 75 > 30% 3 Isch 0 0 0 0 0 0 0 0
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 5 (MUSTT and SCD-HeFT) 
 

MUSTT SCD-HeFT 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

1 < 65 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
2 < 65 ≤ 30% 1 Isch 17 5 13 3 0 0 0 0
3 < 65 ≤ 30% 2 Non-Isch 0 0 0 0 141 22 133 14
4 < 65 ≤ 30% 2 Isch 24 13 10 1 98 36 91 13
5 < 65 ≤ 30% 3 Non-Isch 0 0 0 0 57 14 48 12
6 < 65 ≤ 30% 3 Isch 15 9 10 5 55 29 47 18
7 < 65 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
8 < 65 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
9 < 65 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0

10 < 65 > 30% 1 Isch 12 1 7 1 0 0 0 0
11 < 65 > 30% 2 Non-Isch 0 0 0 0 76 7 87 8
12 < 65 > 30% 2 Isch 8 4 7 0 78 14 74 12
13 < 65 > 30% 3 Non-Isch 0 0 0 0 20 4 27 1
14 < 65 > 30% 3 Isch 4 2 3 1 38 11 28 10
15 < 65 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
16 < 65 > 30% 4 Isch 0 0 0 0 0 0 0 0
17 [65,75) ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
18 [65,75) ≤ 30% 1 Isch 18 7 8 2 0 0 0 0
19 [65,75) ≤ 30% 2 Non-Isch 0 0 0 0 35 10 41 9
20 [65,75) ≤ 30% 2 Isch 18 8 14 3 49 19 53 15
21 [65,75) ≤ 30% 3 Non-Isch 0 0 0 0 16 10 22 11
22 [65,75) ≤ 30% 3 Isch 13 11 8 2 20 12 30 23
23 [65,75) ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
24 [65,75) ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
25 [65,75) > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
26 [65,75) > 30% 1 Isch 12 1 8 1 0 0 0 0
27 [65,75) > 30% 2 Non-Isch 0 0 0 0 20 5 12 3
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Appendix Table A4. Subgroup composition by treatment group and trial – Part 5 (MUSTT and SCD-HeFT) – continued  
 

MUSTT SCD-HeFT 
Control ICD Control ICD 

Sub-
groups Age EF NYHA 

Isch/ 
Non-Isch 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

#Sub-
jects #Events 

28 [65,75) > 30% 2  Isch 11 3 7 0 48 17 34 1
29 [65,75) > 30% 3 0 Non-Isch 0 0 0 9 0 6 1
30 [65,75) > 30% 3 2 Isch 5 2 0 19 5 17 10
31 [65,75) > 30% 4 0 Non-Isch 0 0 0 0 0 0 0
32 [65,75) > 30% 4 0 Isch 0 0 0 0 0 0 0
33 ≥ 75 ≤ 30% 1 Non-Isch 0 0 0 0 0 0 0 0
34 ≥ 75 ≤ 30% 1 Isch 9 2 2 1 0 0 0 0
35 ≥ 75 ≤ 30% 2 Non-Isch 0 0 0 0 11 6 7 1
36 ≥ 75 ≤ 30% 2 Isch 6 2 4 1 18 8 12 2
37 ≥ 75 ≤ 30% 3 Non-Isch 0 0 0 0 1 1 6 1
38 ≥ 75 ≤ 30% 3 Isch 9 5 5 0 12 7 19 9
39 ≥ 75 ≤ 30% 4 Non-Isch 0 0 0 0 0 0 0 0
40 ≥ 75 ≤ 30% 4 Isch 0 0 0 0 0 0 0 0
41 ≥ 75 > 30% 1 Non-Isch 0 0 0 0 0 0 0 0
42 ≥ 75 > 30% 1 Isch 3 1 0 0 0 0 0 0
43 ≥ 75 > 30% 2 Non-Isch 0 0 0 0 6 4 3 1
44 ≥ 75 > 30% 2 Isch 8 3 1 1 14 3 19 3
45 ≥ 75 > 30% 3 Non-Isch 0 0 0 0 2 0 6 0
46 ≥ 75 > 30% 3 Isch 3 3 1 0 4 0 7 4
47 ≥ 75 > 30% 4 Non-Isch 0 0 0 0 0 0 0 0
48 ≥ 75 > 30% 4 Isch 0 0 0 0 0 0 0 0

 
Abbreviations for Appendix Table A4 – Parts 1-5:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-
Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection 
fraction; ICD = implantable cardioverter defibrillator; Isch = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter 
Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; Non-Isch = non-ischemic; NYHA = New York Heart Association; 
SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial 
 
 



 

Appendix Table A5. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the AVID trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.43 0.15 0.00 -0.36 0.49 0.46 
AGE [65,75) 0.30 0.17 0.07 0.32 0.21 0.13 
AGE ≥ 75 0.64 0.19 0.00 0.46 0.25 0.06 
EF > 30% -0.51 0.16 0.00 -0.62 0.21 0.00 
NYHA II 0.47 0.16 0.00 0.54 0.21 0.01 
NYHA III 0.98 0.21 0.00 1.02 0.25 0.00 
NYHA IV - - - - - - 
ISCH 0.31 0.22 0.14 0.37 0.28 0.19 
TRT*AGE [65,75) - - - -0.05 0.34 0.89 
TRT*AGE ≥ 75 - - - 0.44 0.38 0.25 
TRT*EF > 30% - - - 0.24 0.32 0.45 
TRT*NYHA II - - - -0.21 0.33 0.53 
TRT*NYHA III - - - -0.19 0.44 0.67 
TRT*NYHA IV - - - - - - 
TRT*ISCH - - - -0.17 0.44 0.69 
 
Abbreviations for Appendix Table A5:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; EF = ejection 
fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
 
 
Appendix Table A6. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the CABG-PATCH trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT 0.09 0.14 0.53 -0.27 0.32 0.40 
AGE [65,75) 0.64 0.16 0.00 0.49 0.23 0.03 
AGE ≥ 75 0.71 0.21 0.00 0.38 0.32 0.23 
EF > 30% -0.25 0.17 0.16 -0.08 0.24 0.75 
NYHA II 0.55 0.19 0.00 0.25 0.29 0.39 
NYHA III 0.93 0.18 0.00 0.87 0.25 0.00 
NYHA IV 0.53 0.27 0.05 0.49 0.39 0.21 
ISCH - - - - - - 
TRT*AGE [65,75) - - - 0.31 0.32 0.34 
TRT*AGE ≥ 75 - - - 0.63 0.43 0.14 
TRT*EF > 30% - - - -0.33 0.35 0.35 
TRT*NYHA II - - - 0.54 0.39 0.16 
TRT*NYHA III - - - 0.15 0.36 0.67 
TRT*NYHA IV - - - 0.15 0.54 0.78 
TRT*ISCH - - - - - - 
 
Abbreviations forAppendix Table A6:  CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; EF = ejection 
fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A7. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the CASH trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.13 0.21 0.55 -3.21 1.17 0.01 
AGE [65,75) 0.64 0.23 0.00 0.48 0.30 0.10 
AGE ≥ 75 0.88 0.48 0.07 1.11 0.55 0.04 
EF > 30% -0.16 0.25 0.51 -0.64 0.33 0.05 
NYHA II 0.70 0.33 0.03 0.58 0.38 0.13 
NYHA III 1.74 0.38 0.00 1.08 0.48 0.02 
NYHA IV - - - - - - 
ISCH -0.23 0.33 0.49 -0.74 0.39 0.06 
TRT*AGE [65,75) - - - 0.77 0.47 0.10 
TRT*AGE ≥ 75 - - - -0.50 1.18 0.67 
TRT*EF > 30% - - - 1.06 0.50 0.04 
TRT*NYHA II - - - 0.97 0.84 0.25 
TRT*NYHA III - - - 2.06 0.92 0.03 
TRT*NYHA IV - - - - - - 
TRT*ISCH - - - 1.06 0.73 0.15 
 
Abbreviations for Appendix Table A7:  CASH = Cardiac Arrest Study Hamburg trial; EF = ejection fraction; ISCH = 
ischemic; NYHA = New York Heart Association; SE = standard error; TRT = treatment  
 
 
Appendix Table A8. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the DEFINITE trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.58 0.26 0.03 -0.62 0.56 0.26 
AGE [65,75) 0.43 0.28 0.12 0.38 0.35 0.28 
AGE ≥ 75 1.16 0.35 0.00 1.68 0.48 0.00 
EF > 30% -0.08 0.59 0.89 0.06 0.73 0.93 
NYHA II -0.22 0.32 0.50 -0.54 0.42 0.20 
NYHA III 0.60 0.33 0.07 0.74 0.42 0.08 
NYHA IV - - - - - - 
ISCH - - - - - - 
TRT*AGE [65,75) - - - 0.09 0.57 0.88 
TRT*AGE ≥ 75 - - - -0.82 0.68 0.23 
TRT*EF > 30% - - - -0.30 1.26 0.81 
TRT*NYHA II - - - 0.71 0.63 0.26 
TRT*NYHA III - - - -0.41 0.68 0.55 
TRT*NYHA IV - - - - - - 
TRT*ISCH - - - - - - 
 
Abbreviations for Appendix Table A8:  DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment 
Evaluation trial; EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SE = standard error; 
TRT = treatment 

 A-151



 

Appendix Table A9. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MADIT-I trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.87 0.30 0.00 -2.19 1.16 0.06 
AGE [65,75) 0.61 0.29 0.04 0.59 0.38 0.11 
AGE ≥ 75 0.71 0.46 0.13 0.81 0.48 0.09 
EF > 30% -0.67 0.45 0.13 -0.59 0.57 0.30 
NYHA II 0.56 0.39 0.15 0.22 0.43 0.60 
NYHA III 1.48 0.42 0.00 1.26 0.47 0.01 
NYHA IV - - - - - - 
ISCH - - - - - - 
TRT*AGE [65,75) - - - 0.02 0.63 0.97 
TRT*AGE ≥ 75 - - - -12.79 647.85 0.98 
TRT*EF > 30% - - - 0.21 0.97 0.83 
TRT*NYHA II - - - 1.67 1.16 0.15 
TRT*NYHA III - - - 1.29 1.20 0.29 
TRT*NYHA IV - - - - - - 
TRT*ISCH - - - - - - 
 
Abbreviations for Appendix Table A9:  EF = ejection fraction; ISCH = ischemic; MADIT-I = Multicenter Automatic 
Defibrillator Implantation Trial-I; NYHA = New York Heart Association; SE = standard error; TRT = treatment  
 
 
Appendix Table A10. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MADIT-II trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.47 0.14 0.00 -0.28 0.33 0.39 
AGE [65,75) 0.63 0.16 0.00 0.77 0.23 0.00 
AGE ≥ 75 1.12 0.18 0.00 1.22 0.27 0.00 
EF > 30% 0.75 1.01 0.46 0.74 1.02 0.47 
NYHA II 0.02 0.19 0.91 0.05 0.26 0.85 
NYHA III 0.74 0.17 0.00 0.85 0.24 0.00 
NYHA IV 1.02 0.26 0.00 0.50 0.45 0.26 
ISCH - - - - - - 
TRT*AGE [65,75) - - - -0.29 0.33 0.37 
TRT*AGE ≥ 75 - - - -0.20 0.37 0.59 
TRT*EF > 30% - - -  
TRT*NYHA II - - - -0.06 0.37 0.88 
TRT*NYHA III - - - -0.22 0.35 0.54 
TRT*NYHA IV - - - 0.91 0.56 0.10 
TRT*ISCH - - - - - - 
 
Abbreviations for Appendix Table A10:  EF = ejection fraction; ISCH = ischemic; MADIT-II = Multicenter Automatic 
Defibrillator Implantation Trial-II; NYHA = New York Heart Association; SE = standard error; TRT = treatment 
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Appendix Table A11. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the MUSTT trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.97 0.24 0.00 0.05 0.50 0.93 
AGE [65,75) 0.07 0.22 0.75 0.17 0.25 0.49 
AGE ≥ 75 -0.10 0.28 0.71 -0.07 0.30 0.83 
EF > 30% -0.57 0.24 0.02 -0.54 0.26 0.04 
NYHA II 0.52 0.26 0.04 0.79 0.30 0.01 
NYHA III 1.07 0.26 0.00 1.32 0.30 0.00 
NYHA IV - - - - - - 
ISCH - - - - - - 
TRT*AGE [65,75) - - - -0.35 0.53 0.51 
TRT*AGE ≥ 75 - - - 0.06 0.74 0.94 
TRT*EF > 30% - - - -0.24 0.62 0.69 
TRT*NYHA II - - - -1.21 0.62 0.05 
TRT*NYHA III - - - -1.07 0.60 0.08 
TRT*NYHA IV - -  - - - - 
TRT*ISCH - - - - - - 
 
Abbreviations for Appendix Table A11:  EF = ejection fraction; ISCH = ischemic; MUSTT = Multicenter Unsustained 
Tachycardiac Trial; NYHA = New York Heart Association; SE = standard error; TRT = treatment  
 
 
Appendix Table A12. Comparison of overall survival by treatment group adjusted by baseline 
prognostic variables using the Weibull regression model. Estimates from Weibull regression 
models fit to the SCD-HeFT trial. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.30 0.10 0.00 -0.78 0.21 0.00 
AGE [65,75) 0.52 0.11 0.00 0.39 0.14 0.01 
AGE ≥ 75 0.52 0.16 0.00 0.59 0.21 0.00 
EF > 30% -0.58 0.11 0.00 -0.69 0.14 0.00 
NYHA II - - - - - - 
NYHA III 0.72 0.10 0.00 0.41 0.13 0.00 
NYHA IV - - - - - - 
ISCH 0.58 0.10 0.00 0.59 0.14 0.00 
TRT*AGE [65,75) - - - 0.28 0.22 0.19 
TRT*AGE ≥ 75 - - - -0.22 0.32 0.49 
TRT*EF > 30% - - - 0.29 0.22 0.18 
TRT*NYHA II - - - - - - 
TRT*NYHA III - - - 0.71 0.20 0.00 
TRT*NYHA IV - - - - - - 
TRT*ISCH - - - -0.01 0.21 0.95 
 
Abbreviations for Appendix Table A12:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart 
Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SE = standard error; TRT = treatment



 

Appendix Table A13. Combined analysis without covariate adjustment (except for trial effects) 
 

Weibull Regression 
Model 

Bayesian Weibull Regression 
Model   

  
  Estimate 

95% CI 
Lower 

95% CI 
Upper Estimate 

95% CI 
Lower 

95% CI 
Upper 

Without adjustment for trial effect -0.38 -0.48 -0.27 -0.36 -0.46 -0.26 
Fixed trial effects -0.36 -0.47 -0.26 -0.35 -0.45 -0.23 
Random trial effects -0.38 -0.48 -0.28 -0.36 -0.46 -0.25 
Trial-specific baseline hazard -0.36 -0.47 -0.26 -0.37 -0.48 -0.25 

 
Abbreviation for Appendix Table A13:  CI = confidence interval 
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Appendix Table A14. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials without adjustment for trial effects. 
   

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.38 0.06 0.00 -0.42 0.19 0.03 
AGE [65,75) 0.48 0.06 0.00 0.43 0.08 0.00 
AGE ≥ 75 0.67 0.08 0.00 0.62 0.11 0.00 
EF > 30% -0.35 0.06 0.00 -0.43 0.08 0.00 
NYHA II 0.26 0.07 0.00 0.33 0.10 0.00 
NYHA III 0.87 0.08 0.00 0.85 0.10 0.00 
NYHA IV 0.60 0.18 0.00 0.24 0.28 0.38 
ISCH 0.52 0.07 0.00 0.55 0.10 0.00 
TRT*AGE [65,75) - - - 0.14 0.12 0.26 
TRT*AGE ≥ 75 - - - 0.12 0.16 0.44 
TRT*EF > 30% - - - 0.20 0.13 0.13 
TRT*NYHA II - - - -0.16 0.15 0.28 
TRT*NYHA III - - - 0.05 0.15 0.74 
TRT*NYHA IV - - - 0.67 0.36 0.07 
TRT*ISCH - - - -0.07 0.15 0.65 

 
Abbreviations for Appendix Table A14:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart 
Association; SE = standard error; TRT = treatment 
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Appendix Table A15. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with fixed trial effects. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.35 0.06 0.00 -0.44 0.19 0.02 
AGE [65,75) 0.49 0.06 0.00 0.44 0.08 0.00 
AGE ≥ 75 0.68 0.08 0.00 0.62 0.11 0.00 
EF > 30% -0.49 0.07 0.00 -0.57 0.09 0.00 
NYHA II 0.33 0.08 0.00 0.40 0.10 0.00 
NYHA III 0.99 0.08 0.00 0.96 0.10 0.00 
NYHA IV 0.85 0.18 0.00 0.50 0.28 0.08 
ISCH 0.45 0.09 0.00 0.46 0.11 0.00 
CABG-PATCH -0.63 0.11 0.00 -0.63 0.11 0.00 
CASH 0.11 0.13 0.39 0.12 0.13 0.36 
DEFINITE -0.63 0.16 0.00 -0.63 0.17 0.00 
MADIT-I -0.21 0.15 0.17 -0.22 0.16 0.16 
MADIT-II -0.73 0.10 0.00 -0.73 0.11 0.00 
MUSTT -0.37 0.12 0.00 -0.37 0.12 0.00 
SCD-HeFT -0.60 0.10 0.00 -0.60 0.10 0.00 
TRT*AGE [65,75) - - - 0.13 0.12 0.29 
TRT*AGE ≥ 75 - - - 0.15 0.16 0.34 
TRT*EF > 30% - - - 0.19 0.13 0.14 
TRT*NYHA II - - - -0.15 0.15 0.32 
TRT*NYHA III - - - 0.08 0.15 0.60 
TRT*NYHA IV - - - 0.66 0.36 0.07 
TRT*ISCH - - - -0.02 0.15 0.88 

 
Abbreviations for Appendix Table A15:  CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac 
Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; 
EF = ejection fraction; ISCH = ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = 
Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA 
= New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SE = standard error; TRT 
= treatment 
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Appendix Table A16. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with random trial effects. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.38 0.06 0.00 -0.43 0.19 0.03 
AGE [65,75) 0.47 0.06 0.00 0.41 0.08 0.00 
AGE ≥ 75 0.66 0.08 0.00 0.60 0.11 0.00 
EF > 30% -0.35 0.06 0.00 -0.42 0.08 0.00 
NYHA II 0.40 0.08 0.00 0.47 0.10 0.00 
NYHA III 1.01 0.08 0.00 0.99 0.10 0.00 
NYHA IV 0.62 0.18 0.00 0.26 0.28 0.35 
ISCH 0.48 0.07 0.00 0.51 0.10 0.00 
TRT*AGE [65,75) - - - 0.15 0.12 0.23 
TRT*AGE ≥ 75 - - - 0.13 0.16 0.42 
TRT*EF > 30% - - - 0.18 0.13 0.16 
TRT*NYHA II - - - -0.16 0.15 0.30 
TRT*NYHA III - - - 0.06 0.15 0.69 
TRT*NYHA IV - - - 0.68 0.36 0.06 
TRT*ISCH - - - -0.06 0.15 0.67 

 
Abbreviations for Appendix Table A16:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart 
Association; SE = standard error; TRT = treatment  
 
 
Appendix Table A17. Combined analysis. Comparison of overall survival by treatment group 
adjusted by baseline prognostic variables using the Weibull regression model. Estimates from the 
Weibull regression models fit to all trials with trial-specific baseline hazard functions. 
 

Model with Main Effects Only Model with Interactions 
Parameter Estimate SE P-value Estimate SE P-value 
TRT -0.35 0.06 0.00 -0.46 0.19 0.02 
AGE [65,75) 0.50 0.06 0.00 0.44 0.08 0.00 
AGE ≥ 75 0.69 0.08 0.00 0.63 0.11 0.00 
EF > 30% -0.49 0.07 0.00 -0.58 0.09 0.00 
NYHA II 0.32 0.08 0.00 0.38 0.10 0.00 
NYHA III 0.99 0.08 0.00 0.94 0.10 0.00 
NYHA IV 0.83 0.18 0.00 0.47 0.28 0.09 
ISCH 0.46 0.09 0.00 0.47 0.11 0.00 
TRT*AGE [65,75) - - - 0.13 0.12 0.28 
TRT*AGE ≥ 75 - - - 0.15 0.16 0.34 
TRT*EF > 30% - - - 0.20 0.13 0.12 
TRT*NYHA II - - - -0.14 0.15 0.34 
TRT*NYHA III - - - 0.10 0.15 0.53 
TRT*NYHA IV - - - 0.68 0.36 0.06 
TRT*ISCH - - - -0.01 0.15 0.93 

 
Abbreviations for Appendix Table A17:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart 
Association; SE = standard error; TRT = treatment 



 

Appendix Table A18. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials without adjustment 
for trial effects. 
 

Model with Main Effects Only Model with Interactions 

Parameter Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.38 0.06 -0.50 -0.27 -0.35 0.20 -0.80 0.00
AGE [65,75) 0.47 0.06 0.36 0.58 0.42 0.07 0.29 0.57
AGE ≥ 75 0.66 0.08 0.50 0.81 0.61 0.10 0.39 0.80
EF > 30% -0.35 0.06 -0.47 -0.23 -0.43 0.09 -0.61 -0.26
NYHA II 0.23 0.07 0.10 0.39 0.33 0.09 0.13 0.50
NYHA III 0.85 0.07 0.70 0.98 0.85 0.10 0.64 1.04
NYHA IV 0.56 0.17 0.24 0.89 0.19 0.24 -0.32 0.66
ISCH 0.51 0.07 0.36 0.65 0.55 0.09 0.35 0.72
TRT*AGE [65,75) - - - - 0.13 0.12 -0.12 0.35
TRT*AGE ≥ 75 - - - - 0.12 0.15 -0.16 0.40
TRT*EF > 30% - - - - 0.16 0.13 -0.11 0.40
TRT*NYHA II - - - - -0.21 0.15 -0.46 0.09
TRT*NYHA III - - - - 0.00 0.15 -0.28 0.32
TRT*NYHA IV - - - - 0.66 0.33 0.00 1.28
TRT*ISCH - - - - -0.09 0.15 -0.40 0.17

 
Abbreviations for Appendix Table A18:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment
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Appendix Table A19. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with fixed trial 
effects. 
 

Model with Main Effects Only Model with Interactions 

Parameter Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.35 0.05 -0.45 -0.25 -0.43 0.19 -0.82 -0.08
AGE [65,75) 0.49 0.06 0.37 0.61 0.42 0.07 0.28 0.56
AGE ≥ 75 0.67 0.08 0.51 0.83 0.60 0.10 0.38 0.78
EF > 30% -0.49 0.07 -0.62 -0.36 -0.57 0.09 -0.75 -0.38
NYHA II 0.32 0.09 0.16 0.50 0.39 0.12 0.16 0.60
NYHA III 0.98 0.09 0.81 1.16 0.96 0.11 0.72 1.17
NYHA IV 0.82 0.17 0.50 1.16 0.51 0.28 -0.08 1.00
ISCH 0.43 0.09 0.24 0.64 0.45 0.10 0.26 0.64
AVID 0.19 0.53 -0.69 0.96 0.14 0.23 -0.29 0.51
CABG-PATCH -0.43 0.52 -1.32 0.29 -0.49 0.23 -0.91 -0.12
CASH 0.30 0.52 -0.62 1.07 0.25 0.25 -0.27 0.69
DEFINITE -0.46 0.55 -1.44 0.38 -0.51 0.26 -1.01 -0.02
MADIT-I -0.02 0.53 -0.95 0.77 -0.07 0.25 -0.57 0.36
MADIT-II -0.52 0.53 -1.40 0.26 -0.57 0.23 -1.00 -0.20
MUSTT -0.18 0.53 -1.07 0.61 -0.22 0.25 -0.70 0.19
SCD-HeFT -0.41 0.52 -1.26 0.38 -0.46 0.24 -0.92 -0.08
TRT*AGE [65,75) - - - - 0.15 0.11 -0.06 0.37
TRT*AGE ≥ 75 - - - - 0.15 0.15 -0.13 0.45
TRT*EF > 30% - - - - 0.20 0.12 -0.04 0.42
TRT*NYHA II - - - - -0.16 0.16 -0.48 0.18
TRT*NYHA III - - - - 0.06 0.17 -0.25 0.43
TRT*NYHA IV - - - - 0.60 0.35 -0.05 1.29
TRT*ISCH - - - - -0.04 0.16 -0.32 0.31

 
Abbreviations for Appendix Table A19:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard 
deviation; TRT = treatment 
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Appendix Table A20. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with random trial 
effects. 
 

Model with Main Effects Only Model with Interactions 
95% Credible 

Interval Parameter Estimate SD Estimate SD 
95% Credible 

Interval 
TRT -0.36 0.05 -0.47 -0.26 -0.58 0.18 -0.92 -0.21
AGE [65,75) 0.49 0.06 0.38 0.61 0.43 0.07 0.31 0.57
AGE ≥ 75 0.68 0.08 0.53 0.84 0.59 0.11 0.36 0.80
EF > 30% -0.49 0.07 -0.62 -0.36 -0.58 0.08 -0.74 -0.42
NYHA II 0.31 0.08 0.15 0.44 0.34 0.09 0.19 0.51
NYHA III 0.96 0.08 0.80 1.12 0.91 0.09 0.73 1.08
NYHA IV 0.78 0.18 0.43 1.12 0.45 0.25 -0.07 0.92
ISCH 0.44 0.09 0.26 0.64 0.38 0.10 0.18 0.56
TRT*AGE [65,75) - - - - 0.16 0.11 -0.07 0.37
TRT*AGE ≥ 75 - - - - 0.17 0.16 -0.14 0.48
TRT*EF > 30% - - - - 0.19 0.14 -0.07 0.44
TRT*NYHA II - - - - -0.09 0.14 -0.40 0.16
TRT*NYHA III - - - - 0.13 0.13 -0.12 0.38
TRT*NYHA IV - - - - 0.64 0.33 0.01 1.30
TRT*ISCH - - - - 0.07 0.16 -0.25 0.33

 
Abbreviations for Appendix Table A20:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment 
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Appendix Table A21. Combined analysis. Comparison of overall survival by treatment group adjusted by baseline prognostic variables 
using the Bayesian Weibull regression model. Estimates from the Bayesian Weibull regression models fit to all trials with trial-specific 
baseline hazard functions. 
 

Model with Main Effects Only Model with Interactions 

Parameter Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT -0.35 0.06 -0.45 -0.24 -0.50 -0.850.18 -0.19
AGE [65,75) 0.49 0.06 0.37 0.61 0.42 0.08 0.27 0.58
AGE ≥ 75 0.68 0.08 0.53 0.84 0.60 0.10 0.41 0.79
EF > 30% -0.50 0.07 -0.65 -0.37 -0.58 0.09 -0.76 -0.42
NYHA II 0.29 0.08 0.12 0.44 0.36 0.09 0.19 0.55
NYHA III 0.96 0.09 0.78 1.11 0.92 0.09 0.74 1.09
NYHA IV 0.77 0.19 0.38 1.13 0.46 0.27 -0.12 0.94
ISCH 0.42 0.43 0.090.09 0.23 0.59 0.25 0.62
TRT*AGE [65,75) - - - - 0.16 0.12 -0.08 0.37
TRT*AGE ≥ 75 - - - - 0.17 0.15 -0.12 0.48
TRT*EF > 30% - - - - 0.20 0.12 -0.05 0.44
TRT*NYHA II - - - - -0.13 0.14 -0.40 0.15
TRT*NYHA III - - - - 0.11 0.13 -0.13 0.38
TRT*NYHA IV - - - - 0.63 0.33 -0.01 1.29
TRT*ISCH - - - - 0.01 0.14 -0.30 0.26

 
Abbreviations for Appendix Table A21:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart Association; SD = standard deviation; TRT = treatment



 

Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF). 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
TRT Population - -0.43 0.23 -0.88 0.02 -0.50 0.30 -1.07 0.12
AGE [65,75) Population - 0.45 0.21 0.02 0.85 0.41 0.21 -0.01 0.83
AGE ≥ 75 Population - 0.60 0.26 0.09 1.11 0.62 0.27 0.07 1.13
EF > 30% Population - -0.41 0.26 -0.89 0.14 -0.41 0.27 -0.94 0.17
NYHA II Population - 0.27 0.22 -0.20 0.68 0.36 0.24 -0.11 0.83
NYHA III Population - 0.92 0.24 0.44 1.37 1.01 0.24 0.55 1.45
NYHA IV Population - 0.44 0.61 -0.85 1.61 0.33 0.62 -0.92 1.55
ISCH Population - -0.07 0.34 -0.77 0.58 -0.01 0.34 -0.69 0.61
TRT*AGE 
[65,75) Population -         0.08 0.26 -0.48 0.58
TRT*AGE ≥ 75 Population -         -0.06 0.32 -0.72 0.55
TRT*EF > 30% Population -         0.02 0.33 -0.63 0.64
TRT*NYHA II Population -         -0.09 0.30 -0.65 0.47
TRT*NYHA III Population -         -0.05 0.30 -0.64 0.54
TRT*NYHA IV Population -         0.31 0.65 -0.99 1.65
TRT*ISCH Population -         0.04 0.33 -0.63 0.68
    

AVID -0.44 0.14 -0.70 -0.16 -0.40 0.40 -1.05 0.64
CABG-
PATCH 0.04 0.14 -0.23 0.32 -0.51 0.42 -1.27 0.39
CASH -0.21 0.20 -0.60 0.15 -0.95 0.42 -1.73 -0.10
DEFINITE -0.54 0.23 -1.03 -0.11 -0.45 0.38 -1.36 0.25
MADIT-I -0.79 0.27 -1.34 -0.30 -0.77 0.52 -1.82 0.35
MADIT-II -0.47 0.15 -0.75 -0.20 -0.34 0.49 -1.29 0.51
MUSTT -0.89 0.22 -1.31 -0.49 -0.47 0.52 -1.57 0.52

TRT 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT -0.31 0.09 -0.49 -0.14 -0.31 0.29 -0.88 0.22
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AVID 0.32 0.15 0.03 0.62 0.36 0.20 0.03 0.80
CABG-
PATCH 0.60 0.15 0.30 0.88 0.49 0.18 0.15 0.82
CASH 0.62 0.22 0.17 1.03 0.51 0.23 0.03 0.96
DEFINITE 0.39 0.24 -0.07 0.89 0.36 0.26 -0.15 0.86
MADIT-I 0.55 0.26 0.06 1.07 0.52 0.29 -0.09 1.06
MADIT-II 0.61 0.15 0.34 0.94 0.68 0.22 0.25 1.14
MUSTT 0.15 0.19 -0.24 0.53 0.20 0.21 -0.24 0.60

AGE [65,75) 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT 0.51 0.10 0.31 0.70 0.40 0.14 0.13 0.66
AVID 0.64 0.17 0.30 0.97 0.55 0.23 0.12 1.02
CABG-
PATCH 0.66 0.20 0.30 1.04 0.43 0.27 -0.08 0.94
CASH 0.78 0.39 -0.06 1.50 0.79 0.45 -0.12 1.62
DEFINITE 0.99 0.31 0.43 1.59 1.21 0.43 0.35 2.06
MADIT-I 0.63 0.37 -0.10 1.33 0.64 0.39 -0.15 1.37
MADIT-II 1.07 0.18 0.72 1.43 1.08 0.26 0.58 1.59
MUSTT 0.04 0.25 -0.46 0.49 0.03 0.25 -0.50 0.52

AGE ≥ 75 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT 0.52 0.15 0.24 0.79 0.59 0.20 0.19 0.97
AVID -0.53 0.15 -0.82 -0.26 -0.67 0.19 -1.03 -0.31
CABG-
PATCH -0.26 0.17 -0.61 0.07 -0.18 0.21 -0.60 0.23
CASH -0.27 0.22 -0.67 0.16 -0.36 0.23 -0.81 0.05
DEFINITE -0.31 0.45 -1.24 0.52 -0.34 0.47 -1.27 0.56
MADIT-I -0.63 0.35 -1.39 0.05 -0.58 0.40 -1.40 0.12
MADIT-II -0.19 0.60 -1.36 1.07 -0.23 0.65 -1.42 1.10
MUSTT -0.56 0.22 -0.98 -0.12 -0.52 0.23 -1.00 -0.07

EF > 30% 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT -0.59 0.11 -0.80 -0.38 -0.69 0.14 -1.00 -0.42
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AVID 0.43 0.16 0.13 0.75 0.51 0.18 0.15 0.88
CABG-
PATCH 0.49 0.19 0.10 0.84 0.34 0.24 -0.13 0.78
CASH 0.55 0.23 0.09 1.00 0.62 0.27 0.10 1.14
DEFINITE -0.10 0.26 -0.57 0.41 -0.07 0.29 -0.62 0.46
MADIT-I 0.46 0.29 -0.11 1.04 0.37 0.29 -0.23 0.94
MADIT-II 0.05 0.18 -0.31 0.39 0.14 0.24 -0.30 0.58
MUSTT 0.44 0.24 -0.04 0.91 0.63 0.25 0.17 1.17

NYHA II 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT 0.04 0.34 -0.61 0.71 0.39 0.37 -0.34 1.19
AVID 0.94 0.19 0.57 1.28 0.98 0.21 0.58 1.38
CABG-
PATCH 0.90 0.18 0.55 1.23 0.88 0.22 0.44 1.25
CASH 1.48 0.29 0.92 2.06 1.32 0.31 0.70 1.92
DEFINITE 0.70 0.28 0.13 1.21 0.98 0.31 0.42 1.63
MADIT-I 1.31 0.33 0.69 1.97 1.30 0.32 0.66 1.98
MADIT-II 0.75 0.17 0.39 1.06 0.90 0.20 0.53 1.29
MUSTT 0.98 0.23 0.52 1.47 1.17 0.25 0.73 1.67

NYHA III 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT 0.76 0.34 0.13 1.41 0.83 0.38 0.06 1.63
AVID 0.38 1.33 -2.48 3.08 0.35 1.25 -2.32 2.72
CABG-
PATCH 0.45 0.28 -0.12 0.96 0.42 0.35 -0.31 1.07
CASH 0.38 1.34 -2.35 3.02 0.29 1.32 -2.21 2.70
DEFINITE 0.41 1.36 -2.33 2.97 0.31 1.44 -2.57 3.07
MADIT-I 0.45 1.36 -2.55 3.26 0.37 1.32 -2.39 2.75
MADIT-II 0.97 0.26 0.43 1.44 0.54 0.40 -0.21 1.33
MUSTT 0.44 1.37 -2.45 3.01 0.36 1.34 -2.32 2.98

NYHA IV 
  
  
  
  
  
  
  

Trial-
specific 
  
  
 
  
  
  

SCD-
HeFT 0.49 1.35 -2.41 3.11 0.33 1.29 -2.34 2.79
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AVID 0.28 0.21 -0.11 0.66 0.33 0.19 -0.04 0.70
CABG-
PATCH -1.01 0.39 -1.75 -0.15 -0.96 0.38 -1.60 -0.36
CASH -0.20 0.29 -0.70 0.40 -0.27 0.32 -0.86 0.36
DEFINITE -0.06 0.98 -2.08 1.93 -0.06 0.88 -1.88 1.63
MADIT-I -0.01 0.69 -1.35 1.65 -0.10 0.57 -1.10 1.11
MADIT-II -0.11 0.32 -0.66 0.54 0.11 0.43 -0.79 0.99
MUSTT 0.00 0.56 -1.05 1.04 0.19 0.47 -0.66 1.12

ISCH 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT 0.56 0.10 0.38 0.77 0.55 0.14 0.26 0.81
AVID - - - - -0.15 0.32 -0.86 0.47
CABG-
PATCH - - - - 0.23 0.23 -0.24 0.70
CASH - - - - 0.53 0.37 -0.18 1.27
DEFINITE - - - - 0.14 0.43 -0.82 1.01
MADIT-I - - - - 0.08 0.43 -0.73 0.89
MADIT-II - - - - -0.16 0.29 -0.77 0.43
MUSTT - - - - -0.23 0.40 -1.05 0.52

TRT*AGE 
[65,75) 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT - - - - 0.27 0.20 -0.10 0.66
AVID  -  -  -  - 0.25 0.33 -0.42 0.91
CABG-
PATCH  - - - -    0.48 0.35 -0.23 1.14
CASH  -  -  -  - -0.13 0.64 -1.40 1.04
DEFINITE  -  -  -  - -0.31 0.54 -1.44 0.64
MADIT-I  -  -  -  - -0.37 0.73 -1.93 0.91
MADIT-II  -  -  -  - -0.05 0.33 -0.69 0.59
MUSTT  -  -  -  - -0.11 0.50 -1.17 0.80

TRT*AGE ≥ 75 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT  - - - -    -0.20 0.29 -0.76 0.36
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AVID  -  -  -  - 0.27 0.27 -0.30 0.79
CABG-
PATCH  - - - -    -0.22 0.29 -0.75 0.36
CASH  -  -  -  - 0.41 0.34 -0.24 1.11
DEFINITE  -  -  -  - -0.05 0.71 -1.64 1.23
MADIT-I  -  -  -  - -0.24 0.65 -1.66 0.93
MADIT-II  -  -  -  - -0.04 0.87 -1.91 1.56
MUSTT  -  -  -  - -0.21 0.48 -1.10 0.71

TRT*EF > 30% 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  

SCD-
HeFT  - - - -    0.28 0.20 -0.10 0.68
AVID  -  -  -  - -0.17 0.31 -0.78 0.44
CABG-
PATCH  - - - -    0.37 0.29 -0.17 0.93
CASH - - - - -0.01 0.41 -0.77 0.81
DEFINITE - - - - 0.19 0.40 -0.56 1.06
MADIT-I - - - - 0.25 0.42 -0.58 1.08
MADIT-II - - - - -0.16 0.29 -0.69 0.37
MUSTT - - - - -0.60 0.48 -1.56 0.35

TRT*NYHA II 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT - - - - -0.49 0.38 -1.12 0.24
AVID - - - - -0.16 0.37 -0.91 0.52
CABG-
PATCH - - - - 0.09 0.32 -0.52 0.74
CASH - - - - 0.70 0.46 -0.13 1.70
DEFINITE - - - - -0.56 0.47 -1.54 0.27
MADIT-I - - - - 0.03 0.50 -1.01 0.97
MADIT-II - - - - -0.26 0.28 -0.80 0.29
MUSTT - - - - -0.51 0.47 -1.51 0.38

TRT*NYHA III 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT - - - - 0.17 0.38 -0.45 0.91
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Appendix Table A22. Combined analysis. Estimates from the Bayesian Hierarchical Weibull Regression Model with categorical (AGE 
and EF) – continued. 
 

Model with Main Effects Only Model with Interactions 

Effect Source Trial Estimate SD 
95% Credible 

Interval Estimate SD 
95% Credible 

Interval 
AVID - - - - 0.25 1.49 -2.75 3.10
CABG-
PATCH - - - - 0.16 0.47 -0.80 1.08
CASH - - - - 0.31 1.42 -2.58 3.16
DEFINITE - - - - 0.31 1.42 -2.51 2.98
MADIT-I - - - - 0.40 1.37 -2.09 3.34
MADIT-II - - - - 0.80 0.47 -0.12 1.70
MUSTT - - - - 0.40 1.46 -2.07 3.10

TRT*NYHA IV 
  
  
  
  
  
  
  

Trial-
specific 
  
  
  
  
  
  

SCD-
HeFT - - - - 0.30 1.42 -2.42 3.26
AVID - - - - -0.08 0.33 -0.84 0.49
CABG-
PATCH - - - - 0.31 0.38 -0.50 1.01
CASH - - - - 0.21 0.39 -0.49 1.03
DEFINITE - - - - 0.05 0.77 -1.49 1.70
MADIT-I - - - - -0.21 0.51 -1.30 0.77
MADIT-II - - - - -0.01 0.50 -0.75 1.02
MUSTT - - - - 0.01 0.55 -1.02 1.20

TRT*ISCH 
  

Trial-
specific 
  
  
  
  
  
 
 

SCD-
HeFT - - - - 0.05 0.20 -0.36 0.45

 
Abbreviations for Appendix Table A22:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard 
deviation; TRT = treatment 
 



 

Appendix Table A23. Hazard ratios for the effect of treatment given main prognostic variables 
 

Hazard Ratio 
Variable Trial Lower Median Upper 

Probability
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability
HR ≤ 0.90 

AVID 0.50 0.64 0.85 0.71 0.93 0.98
CABG-PATCH 0.80 1.04 1.37 0.00 0.03 0.17

ICD Effect 

CASH 0.55 0.81 1.16 0.22 0.47 0.69
DEFINITE 0.36 0.58 0.90 0.78 0.92 0.97
MADIT-I 0.26 0.46 0.74 0.96 0.99 1.00
MADIT-II 0.47 0.62 0.82 0.78 0.96 0.99
MUSTT 0.27 0.41 0.62 0.99 1.00 1.00
SCD-HeFT 0.62 0.73 0.87 0.31 0.83 0.99
Overall 0.41 0.64 1.02 0.64 0.83 0.93
AVID 0.24 0.58 1.29 0.69 0.81 0.88
CABG-PATCH 0.31 0.76 1.83 0.44 0.55 0.65
CASH 0.24 0.67 1.76 0.56 0.63 0.70
DEFINITE 0.27 0.75 1.70 0.43 0.56 0.67
MADIT-I 0.16 0.50 1.73 0.73 0.79 0.84
MADIT-II 0.21 0.63 1.41 0.56 0.65 0.72
MUSTT 0.14 0.51 1.66 0.71 0.77 0.82
SCD-HeFT 0.51 0.96 1.79 0.19 0.31 0.43

ICD and Age 
[65,75) Effect 

Overall 0.30 0.67 1.48 0.55 0.68 0.79
AVID 0.41 0.84 2.04 0.31 0.43 0.57
CABG-PATCH 0.38 0.96 2.51 0.26 0.35 0.44
CASH 0.06 0.34 1.62 0.82 0.86 0.90

ICD and Age 
75+ Effect 

DEFINITE 0.15 0.48 1.37 0.76 0.81 0.86
MADIT-I 0.05 0.32 1.72 0.82 0.86 0.89
MADIT-II 0.20 0.71 1.75 0.49 0.60 0.69
MUSTT 0.13 0.56 2.16 0.62 0.68 0.73
SCD-HeFT 0.26 0.60 1.34 0.63 0.76 0.83
Overall 0.24 0.57 1.31 0.68 0.78 0.86
AVID 0.36 0.85 2.68 0.34 0.45 0.55
CABG-PATCH 0.19 0.49 1.20 0.81 0.90 0.93
CASH 0.23 0.60 1.41 0.66 0.77 0.84
DEFINITE 0.12 0.62 2.55 0.57 0.64 0.70
MADIT-I 0.07 0.36 1.74 0.79 0.82 0.85
MADIT-II 0.08 0.70 4.45 0.50 0.56 0.60
MUSTT 0.13 0.51 2.05 0.66 0.72 0.77
SCD-HeFT 0.48 0.99 2.04 0.22 0.32 0.41

ICD and EF ≥ 
30% Effect 

Overall 0.27 0.62 1.57 0.62 0.73 0.80
AVID 0.26 0.57 1.18 0.69 0.81 0.89
CABG-PATCH 0.36 0.84 2.32 0.34 0.46 0.56
CASH 0.15 0.39 0.90 0.90 0.95 0.97
DEFINITE 0.38 0.78 1.51 0.37 0.53 0.64
MADIT-I 0.18 0.60 2.02 0.61 0.70 0.76
MADIT-II 0.21 0.62 1.67 0.58 0.68 0.74
MUSTT 0.09 0.36 1.05 0.86 0.91 0.94
SCD-HeFT 0.30 0.45 0.67 0.98 1.00 1.00

ICD and 
NYHA II Effect 

Overall 0.24 0.55 1.24 0.72 0.82 0.88
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Appendix Table A23. Hazard ratios for the effect of treatment given main prognostic variables – 
continued 
 

Hazard Ratio  
Variable Trial Lower Median Upper 

Probability
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability
HR ≤ 0.90 

AVID 0.24 0.57 1.40 0.70 0.78 0.85
CABG-PATCH 0.27 0.65 1.64 0.56 0.67 0.74
CASH 0.29 0.80 1.99 0.40 0.50 0.60
DEFINITE 0.14 0.37 0.82 0.92 0.97 0.98
MADIT-I 0.12 0.48 1.71 0.72 0.78 0.83
MADIT-II 0.18 0.60 1.36 0.60 0.69 0.81
MUSTT 0.10 0.39 1.10 0.84 0.89 0.93
SCD-HeFT 0.58 0.86 1.31 0.16 0.37 0.58

ICD and 
NYHA III 
Effect 

Overall 0.26 0.58 1.33 0.68 0.80 0.87
AVID 0.04 0.86 14.52 0.42 0.46 0.51
CABG-PATCH 0.20 0.70 2.06 0.50 0.58 0.66
CASH 0.02 0.52 10.66 0.59 0.63 0.66
DEFINITE 0.05 0.88 12.87 0.42 0.46 0.51
MADIT-I 0.05 0.66 12.46 0.52 0.56 0.59
MADIT-II 0.49 1.58 5.10 0.12 0.16 0.21
MUSTT 0.06 0.86 16.81 0.42 0.47 0.52
SCD-HeFT 0.06 1.03 20.10 0.37 0.41 0.46

ICD and 
NYHA IV 
Effect 

Overall 0.21 0.81 3.17 0.41 0.49 0.56
AVID 0.36 0.62 1.09 0.66 0.82 0.90
CABG-PATCH 0.52 0.82 1.27 0.26 0.46 0.65
CASH 0.19 0.48 1.08 0.80 0.87 0.93
DEFINITE 0.12 0.67 3.42 0.53 0.61 0.67
MADIT-I 0.16 0.37 0.91 0.91 0.95 0.97
MADIT-II 0.40 0.70 1.25 0.49 0.70 0.82
MUSTT 0.28 0.64 1.41 0.60 0.73 0.81
SCD-HeFT 0.36 0.76 1.51 0.45 0.52 0.61

ICD and 
Ischemic 
Effect 

Overall 0.31 0.63 1.30 0.63 0.75 0.85
 
Abbreviations for Appendix Table A23:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH 
= Coronary Artery Bypass Graft-Patch trial; CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in 
Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; HR = hazard ratio; ICD = 
implantable cardioverter defibrillator; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = 
Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac Trial; NYHA 
= New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial



 

Appendix Table A24. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables 
 

Control ICD Hazard Ratio 
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# 
Events

#Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability 
HR ≤ 0.90 

1 < 65 <30% I 
Non-
Isch 45 9 42 3 0.34 0.60 1.13 0.69 0.83 0.90

2 < 65 <30% I Isch 247 39 295 28 0.31 0.63 1.30 0.63 0.75 0.85

3 < 65 <30% II 
Non-
Isch 240 33 227 24 0.24 0.55 1.24 0.72 0.82 0.88

4 < 65 <30% II Isch 306 96 302 40 0.23 0.58 1.35 0.67 0.78 0.86

5 < 65 <30% III 
Non-
Isch 92 21 82 17 0.26 0.58 1.33 0.68 0.80 0.87

6 < 65 <30% III Isch 171 68 188 51 0.25 0.61 1.39 0.65 0.75 0.83

7 < 65 <30% IV 
Non-
Isch 0 0 0 0 0.21 0.81 3.17 0.41 0.49 0.56

8 < 65 <30% IV Isch 16 6 27 8 0.18 0.84 3.70 0.38 0.46 0.53

9 < 65 ≥30% I 
Non-
Isch 15 3 9 1 0.27 0.62 1.57 0.62 0.73 0.80

10 < 65 ≥30% I Isch 173 15 156 10 0.26 0.65 1.57 0.57 0.68 0.77

11 < 65 ≥30% II 
Non-
Isch 94 10 98 10 0.20 0.57 1.56 0.66 0.74 0.80

12 < 65 ≥30% II Isch 157 35 135 22 0.21 0.58 1.58 0.64 0.72 0.79

13 < 65 ≥30% III 
Non-
Isch 23 6 30 1 0.21 0.60 1.72 0.63 0.73 0.79

14 < 65 ≥30% III Isch 58 19 50 19 0.21 0.61 1.76 0.59 0.69 0.77

15 < 65 ≥30% IV 
Non-
Isch 0 0 0 0 0.17 0.85 3.60 0.38 0.47 0.54

16 < 65 ≥30% IV Isch 2 0 6 1 0.17 0.91 3.72 0.36 0.42 0.49

17 [65,75) <30% I 
Non-
Isch 18 5 20 1 0.30 0.67 1.48 0.55 0.68 0.79

18 [65,75) <30% I Isch 222 53 211 34 0.28 0.69 1.58 0.51 0.64 0.75

19 [65,75) <30% II 
Non-
Isch 74 14 78 14 0.23 0.61 1.50 0.63 0.72 0.81

20 [65,75) <30% II Isch 198 64 249 61 0.23 0.63 1.58 0.58 0.70 0.78

21 [65,75) <30% III 
Non-
Isch 37 17 32 15 0.23 0.64 1.68 0.59 0.69 0.79
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Appendix Table A24. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables – continued 
 

Control ICD Hazard Ratio 
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# 
Events

#Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability 
HR ≤ 0.90 

22 [65,75) <30% III Isch 128 65 133 49 0.25 0.65 1.77 0.55 0.67 0.75

23 [65,75) <30% IV 
Non-
Isch 0 0 0 0 0.21 0.87 4.25 0.37 0.45 0.52

24 [65,75) <30% IV Isch 20 4 24 8 0.18 0.93 4.26 0.35 0.42 0.49

25 [65,75) ≥30% I 
Non-
Isch 4 3 3 0 0.25 0.67 1.90 0.52 0.63 0.71

26 [65,75) ≥30% I Isch 98 17 101 16 0.25 0.69 2.02 0.51 0.61 0.69

27 [65,75) ≥30% II 
Non-
Isch 21 5 19 4 0.19 0.62 1.93 0.58 0.67 0.74

28 [65,75) ≥30% II Isch 110 35 74 8 0.21 0.63 1.96 0.56 0.66 0.73

29 [65,75) ≥30% III 
Non-
Isch 13 1 7 2 0.19 0.65 1.93 0.55 0.64 0.72

30 [65,75) ≥30% III Isch 37 17 33 16 0.21 0.65 2.13 0.54 0.63 0.70

31 [65,75) ≥30% IV 
Non-
Isch 0 0 0 0 0.17 0.94 4.11 0.35 0.42 0.48

32 [65,75) ≥30% IV Isch 5 3 4 2 0.18 0.98 4.42 0.33 0.40 0.46

33 75+ <30% I 
Non-
Isch 3 2 12 3 0.24 0.57 1.31 0.68 0.78 0.86

34 75+ <30% I Isch 80 21 92 22 0.23 0.60 1.44 0.62 0.74 0.81

35 75+ <30% II 
Non-
Isch 20 8 22 4 0.20 0.52 1.42 0.71 0.79 0.85

36 75+ <30% II Isch 77 28 76 16 0.19 0.54 1.48 0.68 0.76 0.83

37 75+ <30% III 
Non-
Isch 5 4 16 3 0.19 0.54 1.55 0.69 0.76 0.81

38 75+ <30% III Isch 67 35 78 33 0.20 0.56 1.62 0.66 0.72 0.80

39 75+ <30% IV 
Non-
Isch 0 0 0 0 0.16 0.78 3.53 0.44 0.52 0.58

40 75+ <30% IV Isch 6 1 7 3 0.15 0.83 3.71 0.42 0.48 0.54

41 75+ ≥30% I 
Non-
Isch 2 0 1 1 0.20 0.59 1.75 0.62 0.70 0.78

42 75+ ≥30% I Isch 42 8 43 7 0.20 0.60 1.80 0.61 0.69 0.75

43 75+ ≥30% II 
Non-
Isch 7 4 4 1 0.16 0.53 1.65 0.67 0.75 0.80
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Appendix Table A24. Hazard ratios for the effect of treatment given 48 subgroups of prognostic variables – continued 
 

Control ICD Hazard Ratio
Sub-

group 
Age 

Group EF NYHA 

Isch/ 
Non-
Isch 

#Sub-
jects 

# 
Events

#Sub-
jects 

# 
Events Lower Median Upper

Probability 
HR ≤ 0.70 

Probability 
HR ≤ 0.80 

Probability 
HR ≤ 0.90 

44 75+ ≥30% II  Isch 34 10 36 8 0.17 0.55 1.69 0.65 0.73 0.79

45 75+ ≥30% III Isch 3 0.15 
Non-

1 6 0 0.55 1.98 0.64 0.72 0.77
46 75+ ≥30% III  Isch 10 5 11 5 0.16 0.58 1.99 0.62 0.69 0.76

47 75+ ≥30% IV Isch 0 0.14 
Non-

0 0 0 0.82 3.59 0.41 0.48 0.56
48 75+ ≥30% IV Isch 0 0 0 0 0.15 0.87 3.92 0.40 0.46 0.52

 
Abbreviations for Appendix Table A24:  EF = ejection fraction; HR = hazard ratio; ICD = implantable cardioverter defibrillator; Isch = ischemic; Non-Isch = non-
ischemic; NYHA = New York Heart Association



 

Appendix Table A25. Model selection based on Deviance Information Criterion (DIC) 
 

Model 
Main Effects 

Only 
Including 

Interactions 
No adjustment for trial effects 8786.20 8743.20
Fixed trial effects 8712.40 8711.30
Random trial effects 8690.00 8710.40
Trial-specific baseline hazard 8591.17 8596.68
Fully hierarchical  8594.30 8598.90

 
 
 
Appendix Table A26. Descriptive statistics for CMS ICD registry 
 
Characteristic Value 
Age  

Mean, years 72.78
Median, years 73.5

Standard deviation, years 9.89
Ejection Fraction  

Mean, % 27.11
Median, % 25

Standard deviation, % 10.11
NYHA Class  

Class I 13,812 (11.38 %)
Class II 40,441 (33.31%)
Class III 59,656 (49.14%)
Class IV 6299 (5.19%)

Ischemic Disease  
Yes 87,055 (71.71%)
No 33,968 (27.98%)

 
Abbreviations for Appendix Table A26:  CMS = Centers for Medicare & Medicaid Services; ICD = implantable 
cardioverter defibrillator 
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Appendix Table A27. Descriptive statistics for MUSTT registry  
 
Characteristic Control ICD 
Number of patients 1414 84 

Mean 
(SD) 

65.1 (9.50) 63.0 (9.20) 

< 65 607 (42.93%) 41 (48.81%) 
[65,75) 618 (43.71%) 38 (45.24%) 
[75,85) 186 (13.15%) 5 (5.95%) 

Age 

≥ 85 3 (0.21%) 0 
Mean 
(SD) 

28 (7.90) 27.7 (8.00) 

≤ 30% 878 (62.09%) 55 (65.48%) 

Ejection Fraction 

> 30% 536 (37.91%) 29 (34.52%) 
Yes 1414 (100.00%) 84 (100.00%) Ischemic Disease 
No 0 0 
I 249 (36.89%) 18 (51.43%) 
II 263 (38.96%) 13 (37.14%) 
III 162 (24.00%) 4 (11.43%) 

NYHA Class 
  

IV 1 (0.15%) 0 
  
* Entries refer to means accompanied by standard deviations for continuous variables, or counts followed by 
percentages for categorical variables. 
 
Abbreviations for Appendix Table A27:  ICD = implantable cardioverter defibrillator; MUSTT = Multicenter 
Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SD = standard deviation 
 



 

Appendix Table A28. Posterior estimates from Bayesian models, with fixed-effect and random-effects formulation, using aggregate data 
by number of combined trials. We utilize two priors: prior 1 has precision 1, while prior 2 has precision 20. Trials were combined in the 
following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-HeFT. 
 

Prior 1 Prior 2 
Fixed Effect Random Effects Fixed Effect Random Effects 

  
Trials 
Combined 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

1 -0.45 0.75 -1.91 1.07 -0.41 0.81 -1.94 1.30 -0.13 0.21 -0.53 0.27 -0.13 0.21 -0.54 0.29
2 -0.47 0.63 -1.70 0.77 -0.47 0.62 -1.66 0.84 -0.20 0.19 -0.58 0.18 -0.20 0.19 -0.56 0.18
3 -0.32 0.53 -1.37 0.74 -0.34 0.53 -1.35 0.73 -0.15 0.18 -0.50 0.18 -0.16 0.17 -0.50 0.18
4 -0.44 0.48 -1.38 0.50 -0.46 0.45 -1.34 0.46 -0.24 0.16 -0.56 0.09 -0.24 0.17 -0.56 0.09
5 -0.37 0.44 -1.24 0.49 -0.40 0.39 -1.14 0.38 -0.22 0.16 -0.53 0.08 -0.23 0.16 -0.54 0.08
6 -0.38 0.41 -1.18 0.43 -0.41 0.34 -1.05 0.27 -0.25 0.15 -0.54 0.04 -0.25 0.15 -0.54 0.04
7 -0.38 0.38 -1.13 0.37 -0.42 0.30 -1.02 0.19 -0.26 0.14 -0.54 0.02 -0.26 0.14 -0.54 0.01
8 -0.38 0.36 -1.10 0.35 -0.40 0.27 -0.94 0.13 -0.26 0.13 -0.52 0.00 -0.26 0.13 -0.53 0.00

 
Abbreviations for Appendix Table A28:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; MADIT-I = Multicenter 
Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac 
Trial; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard deviation 
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Appendix Table A29. Posterior estimates from Bayesian models, with fixed-effect and random-effects formulation, using patient-level 
data by number of combined trials. We utilize two priors: prior 1 has precision 1, while prior 2 has precision 5. Trials were combined in the 
following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-HeFT. 
 

Prior 1 Prior 2 
Fixed Effect Random Effects Fixed Effect Random Effects 

  
Trials 
Combined 

Esti-
mate SD  SD  SD  

95% 
Credible 
Interval 

Esti-
mate

95% 
Credible 
Interval 

Esti-
mate

95% 
Credible 
Interval 

Esti-
mate SD

95% 
Credible 
Interval 

1 -0.94 0.27 -1.49 -0.43 -0.46 0.75 -1.79 1.15 -0.82 0.23 -1.27 -0.39 -0.37 0.36 -1.02 0.33
2 -0.40 0.70 -1.73 1.06 -0.49 0.59 -1.62 0.66 -0.40 0.32 -1.06 0.21 -0.45 0.29 -0.99 0.15
3 -0.27 0.62 -1.52 0.96 -0.33 0.46 -1.24 0.67 -0.36 0.29 -0.94 0.20 -0.30 0.25 -0.79 0.19
4 -0.38 0.57 -1.51 0.75 -0.45 0.40 -1.26 0.35 -0.44 0.27 -0.95 0.10 -0.43 0.23 -0.88 0.03
5 -0.40 0.54 -1.46 0.68 -0.42 0.34 -1.08 0.25 -0.44 0.25 -0.92 0.04 -0.39 0.20 -0.76 0.04
6 -0.35 0.50 -1.31 0.65 -0.40 0.28 -0.95 0.13 -0.45 0.23 -0.91 0.00 -0.40 0.18 -0.73 -0.04
7 -0.39 0.49 -1.34 0.58 -0.43 0.26 -0.97 0.14 -0.48 0.22 -0.89 -0.04 -0.41 0.17 -0.74 -0.06
8 -0.42 0.44 -1.31 0.46 -0.42 0.23 -0.85 0.06 -0.45 0.20 -0.84 -0.05 -0.39 0.16 -0.70 -0.08

 
Abbreviations for Appendix Table A29:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; MADIT-I = Multicenter 
Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = Multicenter Unsustained Tachycardiac 
Trial; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard deviation 
 



 

Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5. Trials were 
combined in the following order (based on their publication date): MADIT-I, AVID, CABG-PATCH, MUSTT, CASH, MADIT-II, DEFINITE, SCD-
HeFT. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

TRT -0.40 0.78 -1.79 1.26 -0.22 0.90 -1.95 1.56 -0.38 0.35 -1.05 0.32 -0.25 0.40 -1.02 0.54 
AGE 
[65,75) 0.25 0.74 -1.26 1.64 0.24 0.75 -1.30 1.63 0.18 0.35 -0.52 0.85 0.17 0.35 -0.50 0.86 
AGE ≥ 75 0.23 0.78 -1.30 1.81 0.26 0.77 -1.32 1.72 0.15 0.37 -0.60 0.89 0.15 0.37 -0.56 0.89 
EF > 30% -0.32 0.77 -1.80 1.26 -0.34 0.78 -1.85 1.28 -0.26 0.37 -0.99 0.47 -0.23 0.39 -1.03 0.50 
NYHA II 0.18 0.76 -1.32 1.64 0.14 0.74 -1.31 1.59 0.10 0.34 -0.56 0.78 0.04 0.36 -0.70 0.75 
NYHA III 0.60 0.80 -1.04 2.10 0.51 0.81 -1.16 2.00 0.44 0.37 -0.29 1.14 0.43 0.38 -0.30 1.12 
NYHA IV -0.03 1.04 -2.09 1.92 0.00 1.02 -2.05 1.99 -0.02 0.46 -0.91 0.95 -0.01 0.44 -0.89 0.79 
ISCH -0.59 0.89 -2.18 1.30 -0.67 0.94 -2.36 1.31 -0.46 0.42 -1.23 0.38 -0.43 0.42 -1.23 0.44 
TRT*AGE 
[65,75) - - - - 0.05 0.75 -1.46 1.49 - - - - 0.06 0.39 -0.67 0.83 
TRT*AGE ≥ 
75 - - - - -0.43 0.91 -2.20 1.28 - - - - -0.13 0.44 -0.98 0.77 
TRT*EF > 
30% - - - - -0.04 0.84 -1.65 1.53 - - - - -0.18 0.41 -0.98 0.62 
TRT*NYHA 
II - - - - 0.40 0.85 -1.26 1.93 - - - - 0.16 0.40 -0.59 0.97 
TRT*NYHA 
III - - - - 0.36 0.84 -1.23 1.94 - - - - 0.07 0.39 -0.72 0.84 
TRT*NYHA 
IV - - - - 0.02 1.02 -1.87 2.11 - - - - -0.03 0.44 -0.86 0.81 

1 

TRT*ISCH - - - - -0.39 0.89 -2.09 1.39 - - - - -0.25 0.42 -1.09 0.56 
TRT -0.48 0.55 -1.56 0.69 -0.43 0.71 -1.81 1.05 -0.39 0.29 -0.93 0.19 -0.40 0.32 -0.99 0.24 
AGE 
[65,75) 0.27 0.61 -0.99 1.42 0.29 0.58 -0.86 1.43 0.23 0.28 -0.32 0.76 0.19 0.29 -0.41 0.72 
AGE ≥ 75 0.42 0.60 -0.89 1.56 0.38 0.61 -0.92 1.60 0.33 0.29 -0.24 0.88 0.27 0.31 -0.33 0.85 

2 

EF > 30% -0.41 0.60 -1.55 0.85 -0.38 0.62 -1.50 0.84 -0.41 0.29 -0.98 0.15 -0.38 0.30 -0.94 0.24 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

NYHA II 0.35 0.59 -0.86 1.56 0.27 0.60 -0.91 1.49 0.20 0.29 -0.43 0.74 0.19 0.31 -0.44 0.78 
NYHA III 0.78 0.64 -0.58 1.87 0.74 0.66 -0.71 1.97 0.60 0.31 -0.01 1.20 0.59 0.30 -0.02 1.17 
NYHA IV 0.00 1.00 -1.84 1.96 0.02 0.97 -1.88 1.82 0.00 0.42 -0.87 0.83 -0.03 0.46 -0.97 0.85 
ISCH 0.10 0.64 -1.18 1.34 -0.08 0.69 -1.44 1.28 -0.07 0.30 -0.63 0.49 -0.05 0.31 -0.66 0.58 
TRT*AGE 
[65,75) - - - - 0.00 0.60 -1.17 1.21 - - - - 0.06 0.32 -0.58 0.72 
TRT*AGE ≥ 
75 - - - - -0.06 0.73 -1.58 1.34 - - - - 0.16 0.35 -0.54 0.87 
TRT*EF > 
30% - - - - -0.02 0.63 -1.29 1.22 - - - - 0.02 0.34 -0.69 0.68 
TRT*NYHA 
II - - - - 0.14 0.65 -1.16 1.38 - - - - 0.05 0.31 -0.55 0.63 
TRT*NYHA 
III - - - - 0.09 0.63 -1.17 1.27 - - - - 0.07 0.32 -0.53 0.70 
TRT*NYHA 
IV - - - - 0.01 0.97 -1.86 1.92 - - - - 0.04 0.46 -0.91 0.92 

 TRT*ISCH - - - - -0.12 0.70 -1.46 1.24 - - - - -0.15 0.32 -0.80 0.47 
TRT -0.31 0.45 -1.23 0.57 -0.48 0.60 -1.62 0.71 -0.28 0.25 -0.75 0.23 -0.41 0.30 -0.97 0.19 
AGE 
[65,75) 0.39 0.48 -0.57 1.24 0.30 0.46 -0.62 1.18 0.34 0.24 -0.14 0.77 0.28 0.25 -0.19 0.74 
AGE ≥ 75 0.53 0.49 -0.46 1.43 0.35 0.52 -0.70 1.45 0.42 0.27 -0.13 0.95 0.28 0.26 -0.21 0.79 
EF > 30% -0.39 0.45 -1.25 0.57 -0.33 0.47 -1.23 0.67 -0.34 0.25 -0.85 0.14 -0.33 0.26 -0.85 0.16 
NYHA II 0.39 0.47 -0.52 1.27 0.30 0.47 -0.70 1.23 0.29 0.23 -0.17 0.71 0.20 0.25 -0.32 0.67 
NYHA III 0.80 0.49 -0.30 1.71 0.81 0.51 -0.31 1.70 0.72 0.26 0.20 1.21 0.65 0.27 0.13 1.16 
NYHA IV 0.22 0.73 -1.32 1.65 0.16 0.73 -1.31 1.52 0.21 0.35 -0.51 0.88 0.16 0.36 -0.55 0.85 
ISCH -0.59 0.75 -1.96 1.11 -0.50 0.59 -1.60 0.72 -0.41 0.32 -1.03 0.23 -0.46 0.30 -1.03 0.19 

3 

TRT*AGE 
[65,75) - - - - 0.11 0.52 -0.92 1.17 - - - - 0.10 0.27 -0.42 0.60 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

TRT*AGE ≥ 
75 - - - - 0.21 0.60 -1.07 1.32 - - - - 0.29 0.31 -0.32 0.87 
TRT*EF > 
30% - - - - -0.05 0.51 -1.10 0.93 - - - - -0.07 0.29 -0.61 0.50 
TRT*NYHA 
II - - - - 0.21 0.55 -0.94 1.28 - - - - 0.17 0.29 -0.40 0.73 
TRT*NYHA 
III - - - - 0.11 0.53 -0.87 1.12 - - - - 0.08 0.29 -0.49 0.63 
TRT*NYHA 
IV - - - - 0.06 0.77 -1.45 1.58 - - - - 0.08 0.37 -0.62 0.85 

 TRT*ISCH - - - - -0.14 0.58 -1.28 0.96 - - - - -0.07 0.29 -0.65 0.50 
TRT -0.44 0.41 -1.27 0.47 -0.44 0.63 -1.71 0.75 -0.41 0.23 -0.84 0.03 -0.30 0.34 -0.97 0.35 
AGE 
[65,75) 0.34 0.38 -0.41 1.08 0.29 0.39 -0.47 1.08 0.28 0.21 -0.14 0.67 0.27 0.21 -0.17 0.68 
AGE ≥ 75 0.37 0.42 -0.49 1.15 0.24 0.40 -0.62 1.02 0.32 0.23 -0.13 0.76 0.22 0.24 -0.26 0.70 
EF > 30% -0.46 0.43 -1.27 0.44 -0.38 0.40 -1.13 0.49 -0.42 0.23 -0.87 0.04 -0.41 0.22 -0.83 0.05 
NYHA II 0.44 0.38 -0.37 1.24 0.40 0.38 -0.41 1.15 0.32 0.22 -0.11 0.73 0.29 0.21 -0.17 0.70 
NYHA III 0.92 0.40 0.09 1.68 0.95 0.41 0.10 1.68 0.76 0.23 0.27 1.19 0.74 0.23 0.26 1.15 
NYHA IV 0.21 0.76 -1.38 1.65 0.23 0.78 -1.33 1.71 0.18 0.35 -0.55 0.87 0.15 0.36 -0.59 0.85 
ISCH -0.25 0.51 -1.26 0.81 -0.37 0.52 -1.39 0.76 -0.53 0.30 -1.13 0.07 -0.48 0.29 -1.02 0.08 
TRT*AGE 
[65,75) - - - - 0.03 0.44 -0.79 0.88 - - - - 0.02 0.27 -0.51 0.58 
TRT*AGE ≥ 
75 - - - - 0.14 0.55 -1.10 1.12 - - - - 0.23 0.28 -0.34 0.77 
TRT*EF > 
30% - - - - -0.12 0.46 -1.04 0.74 - - - - -0.06 0.27 -0.55 0.45 

4 

TRT*NYHA 
II - - - - -0.02 0.47 -1.01 0.94 - - - - 0.06 0.26 -0.48 0.54 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

TRT*NYHA 
III - - - - -0.09 0.45 -0.96 0.82 - - - - -0.03 0.26 -0.57 0.48 
TRT*NYHA 
IV - - - - 0.07 0.74 -1.41 1.55 - - - - 0.08 0.39 -0.64 0.88 

 TRT*ISCH - - - - -0.04 0.60 -1.23 1.11 - - - - -0.20 0.33 -0.83 0.44 
TRT -0.40 0.35 -1.08 0.27 -0.78 0.44 -1.63 0.10 -0.38 0.20 -0.79 0.00 -0.62 0.25 -1.12 -0.10 
AGE 
[65,75) 0.42 0.33 -0.24 1.03 0.36 0.31 -0.25 0.98 0.34 0.19 -0.03 0.71 0.28 0.20 -0.10 0.67 
AGE ≥ 75 0.47 0.35 -0.25 1.16 0.36 0.37 -0.36 1.01 0.38 0.23 -0.08 0.83 0.30 0.22 -0.14 0.74 
EF > 30% -0.42 0.33 -1.05 0.23 -0.43 0.33 -1.09 0.19 -0.39 0.20 -0.77 0.02 -0.40 0.22 -0.81 0.01 
NYHA II 0.47 0.30 -0.10 1.12 0.44 0.33 -0.24 1.05 0.34 0.19 -0.07 0.69 0.33 0.21 -0.12 0.72 
NYHA III 1.04 0.36 0.28 1.65 1.02 0.36 0.28 1.65 0.85 0.21 0.40 1.22 0.82 0.24 0.33 1.24 
NYHA IV 0.21 0.72 -1.21 1.52 0.18 0.75 -1.31 1.65 0.18 0.34 -0.49 0.84 0.16 0.35 -0.55 0.82 
ISCH -0.35 0.44 -1.25 0.49 -0.48 0.44 -1.40 0.39 -0.47 0.25 -0.95 0.05 -0.48 0.24 -0.93 -0.02 
TRT*AGE 
[65,75) - - - - 0.13 0.38 -0.61 0.87 - - - - 0.17 0.22 -0.29 0.59 
TRT*AGE ≥ 
75 - - - - 0.13 0.48 -0.89 1.02 - - - - 0.23 0.28 -0.34 0.76 
TRT*EF > 
30% - - - - 0.01 0.40 -0.81 0.81 - - - - 0.01 0.25 -0.47 0.51 
TRT*NYHA 
II - - - - 0.06 0.40 -0.72 0.89 - - - - 0.03 0.25 -0.46 0.52 
TRT*NYHA 
III - - - - 0.12 0.42 -0.65 0.96 - - - - 0.11 0.26 -0.43 0.61 
TRT*NYHA 
IV - - - - 0.10 0.78 -1.50 1.58 - - - - 0.08 0.36 -0.62 0.81 

5 

TRT*ISCH - - - - 0.22 0.43 -0.59 1.07 - - - - 0.09 0.25 -0.42 0.60 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

TRT -0.42 0.30 -0.96 0.21 -0.52 0.43 -1.41 0.31 -0.39 0.18 -0.74 -0.01 -0.65 0.29 -1.19 -0.06 
AGE 
[65,75) 0.44 0.28 -0.15 1.01 0.41 0.28 -0.17 0.95 0.38 0.17 0.03 0.72 0.35 0.19 -0.04 0.72 
AGE ≥ 75 0.57 0.32 -0.12 1.19 0.52 0.32 -0.12 1.11 0.49 0.19 0.08 0.86 0.42 0.20 0.02 0.80 
EF > 30% -0.36 0.31 -0.97 0.27 -0.39 0.31 -0.97 0.26 -0.37 0.19 -0.72 0.04 -0.40 0.21 -0.79 0.02 
NYHA II 0.40 0.27 -0.15 0.94 0.41 0.29 -0.18 0.96 0.30 0.18 -0.06 0.65 0.29 0.18 -0.07 0.63 
NYHA III 1.01 0.29 0.43 1.58 1.01 0.30 0.43 1.56 0.85 0.18 0.48 1.21 0.81 0.19 0.42 1.15 
NYHA IV 0.48 0.62 -0.92 1.63 0.25 0.62 -0.99 1.40 0.41 0.30 -0.19 0.98 0.27 0.29 -0.33 0.86 
ISCH -0.40 0.43 -1.27 0.45 -0.66 0.42 -1.48 0.22 -0.41 0.25 -0.92 0.11 -0.57 0.23 -1.02 -0.08 
TRT*AGE 
[65,75) - - - - 0.08 0.32 -0.54 0.72 - - - - 0.11 0.21 -0.29 0.53 
TRT*AGE ≥ 
75 - - - - 0.12 0.39 -0.67 0.95 - - - - 0.18 0.25 -0.34 0.65 
TRT*EF > 
30% - - - - 0.01 0.42 -0.79 0.79 - - - - 0.05 0.25 -0.43 0.54 
TRT*NYHA 
II - - - - 0.00 0.36 -0.72 0.73 - - - - 0.02 0.22 -0.44 0.44 
TRT*NYHA 
III - - - - 0.03 0.36 -0.70 0.76 - - - - 0.07 0.22 -0.34 0.49 
TRT*NYHA 
IV - - - - 0.39 0.65 -0.95 1.63 - - - - 0.31 0.35 -0.36 0.99 

6 

TRT*ISCH - - - - -0.01 0.41 -0.76 0.89 - - - - 0.10 0.28 -0.47 0.62 
TRT -0.43 0.25 -0.92 0.11 -0.47 0.55 -1.45 0.63 -0.42 0.17 -0.76 -0.09 -0.57 0.25 -1.03 -0.08 
AGE 
[65,75) 0.45 0.26 -0.07 0.95 0.35 0.25 -0.12 0.85 0.41 0.17 0.08 0.72 0.34 0.17 -0.02 0.66 
AGE ≥ 75 0.65 0.28 0.09 1.18 0.59 0.30 0.00 1.20 0.57 0.19 0.18 0.93 0.50 0.20 0.13 0.90 
EF > 30% -0.37 0.29 -0.96 0.21 -0.37 0.31 -0.97 0.23 -0.36 0.19 -0.73 0.03 -0.36 0.19 -0.73 0.03 

7 

NYHA II 0.33 0.26 -0.18 0.84 0.25 0.29 -0.37 0.80 0.24 0.16 -0.07 0.55 0.20 0.19 -0.16 0.55 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

Esti-
mate SD 

95% 
Credible 
Interval 

NYHA III 0.96 0.26 0.44 1.45 0.96 0.28 0.38 1.48 0.82 0.18 0.46 1.17 0.83 0.19 0.47 1.20 
NYHA IV 0.47 0.63 -0.85 1.59 0.30 0.62 -0.99 1.42 0.42 0.30 -0.17 0.96 0.29 0.30 -0.32 0.89 
ISCH -0.47 0.42 -1.31 0.35 -0.57 0.43 -1.40 0.27 -0.35 0.26 -0.89 0.15 -0.38 0.21 -0.81 0.03 
TRT*AGE 
[65,75) - - - - 0.13 0.31 -0.50 0.75 - - - - 0.11 0.20 -0.28 0.50 
TRT*AGE ≥ 
75 - - - - 0.03 0.36 -0.71 0.71 - - - - 0.14 0.23 -0.31 0.58 
TRT*EF > 
30% - - - - -0.01 0.40 -0.79 0.78 - - - - 0.01 0.23 -0.44 0.46 
TRT*NYHA 
II - - - - 0.10 0.32 -0.50 0.76 - - - - 0.06 0.22 -0.37 0.47 
TRT*NYHA 
III - - - - -0.04 0.33 -0.67 0.62 - - - - 0.00 0.21 -0.41 0.42 
TRT*NYHA 
IV - - - - 0.34 0.66 -1.00 1.59 - - - - 0.30 0.32 -0.34 0.93 

 TRT*ISCH - - - - -0.12 0.52 -1.21 0.84 - - - - 0.04 0.26 -0.47 0.54 
TRT -0.43 0.23 -0.88 0.02 -0.50 0.30 -1.07 0.12 -0.41 0.15 -0.71 -0.11 -0.67 0.24 -1.12 -0.19 
AGE 
[65,75) 0.45 0.21 0.02 0.85 0.41 0.21 -0.01 0.83 0.39 0.15 0.08 0.68 0.36 0.16 0.05 0.67 
AGE ≥ 75 0.60 0.26 0.09 1.11 0.62 0.27 0.07 1.13 0.56 0.17 0.24 0.89 0.53 0.19 0.16 0.90 
EF > 30% -0.41 0.26 -0.89 0.14 -0.41 0.27 -0.94 0.17 -0.41 0.17 -0.73 -0.06 -0.43 0.18 -0.78 -0.07 
NYHA II 0.27 0.22 -0.20 0.68 0.36 0.24 -0.11 0.83 0.18 0.17 -0.16 0.48 0.20 0.16 -0.13 0.52 
NYHA III 0.92 0.24 0.44 1.37 1.01 0.24 0.55 1.45 0.78 0.17 0.44 1.10 0.79 0.17 0.44 1.12 
NYHA IV 0.44 0.61 -0.85 1.61 0.33 0.62 -0.92 1.55 0.42 0.32 -0.21 1.03 0.29 0.31 -0.29 0.90 
ISCH -0.07 0.34 -0.77 0.58 -0.01 0.34 -0.69 0.61 -0.16 0.22 -0.62 0.27 -0.22 0.20 -0.61 0.15 

8 

TRT*AGE 
[65,75) - - - - 0.08 0.26 -0.48 0.58 - - - - 0.12 0.19 -0.27 0.49 
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Appendix Table A30. Population parameter estimates from Bayesian hierarchical models, with or without interactions, by number of 
combined trials with categorized covariates. We utilized two priors: prior 1 has precision 1, while prior 2 has precision 5 – continued. 
 

Prior 1 Prior 2 
Main Effects Only Interactions Main Effects Only Interactions 

No. 
of 
trials Variable 

Esti-
mate SD    

95% 
Credible 
Interval 

Esti-
mate SD

95% 
Credible 
Interval 

Esti-
mate SD

95% 
Credible 
Interval 

Esti-
mate SD

95% 
Credible 
Interval 

TRT*AGE ≥ 
75 - - - - 0.32 55 - - - - 0.06 0.22 0.48 -0.06 -0.72 0. -0.36 
TRT*EF > 
30% - - - - 0.02 0.33 0.64 - - - - 0.05 0.22 0.48 -0.63 -0.40 
TRT*NYHA 
II - - - - 0.30 47 - - - - 0.09 0.19 0.48 -0.09 -0.65 0. -0.29 
TRT*NYHA 
III - - - - 0.30 0.54 - - - - 0.12 0.21 0.55 -0.05 -0.64 -0.26 
TRT*NYHA 
IV - - - - 0.31 0.65 65 - - - - 0.28 0.33 0.92 -0.99 1. -0.37 

 TRT*ISCH - - - - 0.04 0.33 0.68 - - - - 0.08 0.23 0.51 -0.63 -0.37 
 
Abbreviations for Appendix Table A30:  AVID = Antiarrhythmics Versus Implantable Defibrillators trial; CABG-PATCH = Coronary Artery Bypass Graft-Patch trial; 
CASH = Cardiac Arrest Study Hamburg trial; DEFINITE = Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation trial; EF = ejection fraction; ISCH = 
ischemic; MADIT-I = Multicenter Automatic Defibrillator Implantation Trial-I; MADIT-II = Multicenter Automatic Defibrillator Implantation Trial-II; MUSTT = 
Multicenter Unsustained Tachycardiac Trial; NYHA = New York Heart Association; SCD-HeFT = Sudden Cardiac Death in Heart Failure Trial; SD = standard 
deviation; TRT = treatment 
 



 

Appendix Table A31. Estimates from the Weibull regression model (without adjustments) 
 
Trials Estimate SE P-value 
Primary prevention trials only -0.37 0.06 0.00 
Secondary prevention trials only -0.38 0.12 0.00 
All trials combined -0.38 0.05 0.00 

 
Abbreviation for Appendix Table A31:  SE = standard error 
 
 
Appendix Table A32. Estimates from the Weibull regression random-effects model including 
indicator for primary prevention models 
 

Main Effects Only Interactions 
Variable Estimate SE P-value Estimate SE P-value 
TRT -0.37 0.06 0.00 -0.44 0.22 0.04 
PRIMARY -0.65 0.09 0.00 -0.65 0.11 0.00 
AGE [65,75) 0.49 0.06 0.00 0.44 0.08 0.00 
AGE ≥ 75 0.67 0.08 0.00 0.62 0.11 0.00 
EF > 30% -0.46 0.07 0.00 -0.55 0.09 0.00 
NYHA II 0.35 0.08 0.00 0.41 0.10 0.00 
NYHA III 1.00 0.08 0.00 0.96 0.10 0.00 
NYHA IV 0.80 0.18 0.00 0.44 0.28 0.12 
ISCH 0.48 0.07 0.00 0.50 0.10 0.00 
TRT*PRIMARY - - - -0.01 0.14 0.95 
TRT*AGE [65,75) - - - 0.14 0.12 0.26 
TRT*AGE ≥ 75 - - - 0.13 0.16 0.43 
TRT*EF > 30% - - - 0.20 0.13 0.13 
TRT*NYHA II - - - -0.15 0.15 0.34 
TRT*NYHA III - - - 0.09 0.16 0.59 
TRT*NYHA IV - - - 0.68 0.37 0.07 
TRT*ISCH - - - -0.05 0.15 0.76 

 
Abbreviations for Appendix Table A32:  EF = ejection fraction; ISCH = ischemic; NYHA = New York Heart 
Association; SE = standard error; TRT = treatment 
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