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Chapter 9
SAK3-Induced Neuroprotection Is 
Mediated by Nicotinic Acetylcholine 
Receptors

Kohji Fukunaga and Yasushi Yabuki

Abstract  Cholinergic neurotransmission plays a critical role in neuronal plasticity 
and cell survival in the central nervous system (CNS). Two types of acetylcholine 
receptors (AChRs), muscarinic AChRs (mAChRs) and nicotinic AChRs (nAChRs), 
trigger intracellular signaling through G protein activity and ion influx, respectively. 
To assess mechanisms underlying neuroprotection through nAChRs, we developed 
SAK3, a novel modulator of nAChR activity. Recently, we found that SAK3 
enhances T-type calcium channel activity, promoting ACh release in the hippocam-
pal CA1 region of olfactory-bulbectomized mice. Here, we observed potent SAK3 
neuroprotective activity in mice with 20-min bilateral common carotid artery occlu-
sion (BCCAO) or hypothyroidism. Treatment of mice with the α7 nAChR-selective 
inhibitor methyllycaconitine (0.5  mg/kg/day, p.o.) antagonized SAK3-mediated 
neuroprotection and memory improvement in BCCAO mice. Single administration 
of the anti-Graves’ disease therapeutic methimazole (MMI) to female mice dis-
rupted olfactory bulb (OB) glomerular structure, and cholinergic neurons largely 
disappeared in the medial septum followed by memory loss. Chronic SAK3 
(0.5–1 mg/kg, p.o.) administration significantly rescued the number of cholinergic 
medial septum neurons in MMI-treated mice and improved cognitive deficits seen 
in those mice. Overall, our study suggests that, in mice, the novel nAChR modulator 
SAK3 can rescue neurons impaired by transient ischemia and hypothyroidism. We 
also address mechanisms common to SAK3-induced neuroprotection in both 
conditions.
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Abbreviations

Aβ	 Amyloid-β
ACh	 Acetylcholine
Akt	 Protein kinase B
BCCAO	 Bilateral common carotid artery occlusion
CNS	 Central nervous system
DhβE	 Dihydro-β-erythroidine
ERK	 Extracellular signal-regulated kinase
HO-1	 Heme-oxygenase 1
JAK2	 Janus-activated kinase 2
MEC	 Mecamylamine
MMI	 Methimazole
MLA	 Methyllycaconitine
mAChR	 Muscarinic ACh receptor
nAChR	 Nicotinic ACh receptor
OBX	 Olfactory-bulbectomized
PI3K	 Phosphatidylinositol 3 kinase
PKC	 Protein kinase C
RGC	 Retinal ganglion cell
SAK3	� Ethyl 8’-methyl-2’,4-dioxo-2- (piperidin-1-yl)-2’H-spiro[cyclopentane- 

1,3’-imidazo[1,2-a]pyridin]-2-ene-3-carboxylate
ST101	 Spiro[imidazo[1,2-a] pyridine-3,2-indan]-2(3H)-one

9.1  �Introduction

Acetylcholine (ACh) is a major neurotransmitter in the central nervous system 
(CNS) and transduces signals via two types of ACh receptors (AChRs): muscarinic 
(mAChRs) and nicotinic (nAChRs). While mAChRs are G-protein-coupled, 
nAChRs are ligand-gated cation channels consisting of five subunits (Zdanowski 
et  al. 2015). Both AChR pathways function in learning and memory (Melancon 
et al. 2013; Pandya and Yakel 2013) and play a critical role in cell survival in in vitro 
and in vivo models (Akaike et al. 2010; Tan et al. 2014; Zdanowski et al. 2015). 
Drugs that enhance ACh concentration in the CNS, including the acetylcholine 
esterase (AChE) inhibitors donepezil, galantamine and rivastigmine, are among 
widely used therapeutics used to treat early stage Alzheimer’s Disease (AD). 
However, it remains unclear whether the effects of AChE inhibitors are mediated by 
nAChRs or mAChRs in human brain. We recently developed the lead compound of 
the AD therapeutic SAK3 (ethyl 8′-methyl-2′,4-dioxo-2-(piperidin-1-yl)-2′H-
spiro[cyclopentane-1,3′-imidazo[1,2 a]pyridin] -2-ene-3-carboxylate) (Yabuki 
et al. 2017a, b). SAK3 primarily stimulates T-type voltage gated Ca2+ channels in 
brain, and importantly it enhances ACh release in hippocampus, thereby improving 
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memory in olfactory-bulbectomized (OBX) mice. We found that SAK3 effects on 
ACh release and memory improvement were antagonized by nAChR inhibitors, 
suggesting that SAK3 modulates nAChR. This review focuses primarily on SAK3 
neuroprotective activity mediated by nicotinic cholinergic pathways.

9.2  �Neuroprotection Mediated by mAChRs

Subchronic treatment with the acetylcholinesterase inhibitor galantamine (3.5 mg/
kg, i.p.) prevents cell death and axonal injury after ocular hypertension surgery in 
rat retinal ganglion cells (RGCs), an effect blocked by the non-selective mAChR 
antagonist scopolamine, the M1-type mAChR antagonist pirenzepine, or the 
M4-type mAChR antagonist tropicamide, but not by nAChR inhibitors (Almasieh 
et al. 2010). In agreement with these results, the M1-type mAChR agonist pilocar-
pine protects RGCs from glutamate-induced neurotoxicity and ischemia/reperfu-
sion injury in rat primary retinal cultures and in rat retina (Tan et al. 2014). M1-type 
mAChR activation in PC12 cells promotes protein kinase C (PKC) activity and 
inhibits glycogen synthase kinase-3β (GSK-3β) activity, thereby increasing levels 
of NF-E2-related factor-2 (Nrf2) protein, which regulates transcription of the gene 
encoding the anti-oxidant protein hemeoxygenase I (HO-1) (Espada et al. 2009; Ma 
et al. 2013). Therefore, activation of that anti-oxidant pathway through Nrf2 stimu-
lation likely underlies mAChR-dependent neuroprotection. Likewise, the M1-type 
mAChR-selective agonist AF267B rescues rat primary hippocampal neurons 
exposed to amyloid-β (Aβ) from cell death by inhibiting increases in GSK-3β 
(Farías et al. 2004). On the other hand, the mAChR antagonist scopolamine does not 
block neuroprotection by acetylcholinesterase inhibitors on glutamate (1 mM) tox-
icity in primary rat cortical neurons (Takada-Takatori et  al. 2009). Thus, how 
mAChRs promote neuroprotection is not entirely clear.

9.3  �Neuroprotective Action Mediated by nAChRs

Nine different nAChR subunits (α2-7 and β2-4) are expressed in mammalian brain, 
and in mouse brain major nAChRs are comprised of homomeric α7 AChR and het-
eromeric α4β2 complexes (Dani and Bertrand 2007; Dineley et  al. 2015; Yakel 
2013). Many studies in cultured neurons support the idea that nAChRs have neuro-
protective effects. For example, nicotine (10 μM) treatment protects cultured rat 
primary cortical neurons from cell death by glutamate (1 mM) exposure by activat-
ing α4β2 and α7 nAChRs (Kaneko et  al. 1997). In addition, the α4β2 inhibitor 
dihydro-β-erythroidine (DHβE) and α7 inhibitor methyllycaconitine (MLA) both 
block neuroprotective effects of acetylcholinesterase inhibitors on glutamate 
(1  mM)-induced excitotoxicity in cultured neurons, an effect not seen following 
treatment of cells with the mAChR antagonist scopolamine (Takada-Takatori et al. 
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2009). In vivo, galantamine treatment prevents death of gerbil hippocampal CA1 
pyramidal neurons following transient bilateral common carotid artery occlusion 
(BCCAO), an effect blocked by the non-selective nAChR inhibitor mecamylamine 
(MEC) (Lorrio et al. 2007). Combined neostigmine and anisodamine treatment are 
neuroprotective against middle cerebral artery occlusion in wild type- but not in α7 
nAChR knock-out mice (Qian et al. 2015). We recently observed that the acetylcho-
linesterase inhibitor donepezil antagonizes loss of cholinergic neurons in the medial 
septum (MS) of OBX mice through nAChR stimulation (Yamamoto and Fuknaga 
2013). In addition, Hijioka et al. (2012) reported that the α7-specific agonist PNU-
282987 but not the α4-specific agonist RJR-2403 blocks neuronal loss following 
intracerebral hemorrhage in mouse striatum. Since MEC, DHβE and MLA do not 
block neuroprotective effects of galantamine following ocular hypertension surgery 
in rat RGCs, neuroprotection mediated by nAChRs may play a more predominant 
role in CNS than in peripheral neurons. We previously reported that galantamine 
stimulates glutamatergic and GABAnergic synaptic transmission via nAChR stimu-
lation in rat cortical neurons (Moriguchi et  al. 2009). Interestingly, galantamine 
increases hippocampal insulin-like growth factor 2 expression via the α7 nAChR in 
mice (Kita et al. 2013). Similarly, stimulation of α7 by the selective agonist PHA-
543613 or galantamine treatment enhances α7 channel activity and improves 
Aβ-induced cognitive deficits in mice (Sadigh-Eteghad et  al. 2015). In addition, 
galantamine treatment promotes survival of newborn neurons in the hippocampal 
dentate gyrus (DG) viaα7 nAChR but not via M1 mAChR activity (Kita et al. 2014). 
Taken together, the neuroprotective effect of galantamine is mediated both by 
mAChRs and nAChRs in the CNS.

9.4  �Development of the Novel nAChR Modulator SAK3

T-type calcium channels, which are encoded by the CACNA1G (Cav3.1), CACNA1H 
(Cav3.2) and CACNA1I (Cav3.3), are voltage-gated calcium channels that give rise 
to low-threshold calcium spikes, which in turn trigger burst firing mediated by 
sodium channels in many neurons (Huguenard 1996; Perez-Reyes 2003). Recently, 
we found that a novel AD therapeutic candidate, ST101 (spiro[imidazo[1,2-a]
pyridine-3,2-indan]-2(3H)-one), increases Cav3.1 T-type calcium channel currents 
(Moriguchi et  al. 2012). ST101 accelerated ACh release in the hippocampus of 
OBX mice, an effect inhibited by the T-type calcium channel blocker mibefradil and 
by nAChR inhibitors (Yamamoto et al. 2013). Moreover, intraventricular injection 
of mecamylamine inhibited ST101-elicited neurogenesis in the hippocampal DG of 
OBX mice (Shioda et al. 2010), suggesting that ST101 may activate nAChR and 
promote ACh release. However, clinical trials showed that administration of ST101 
alone was not sufficient to improve memory deficits in AD patients (Gauthier et al. 
2015). Therefore, we sought a more potent Cav3.1 and Cav3.3 T-type calcium chan-
nel enhancer, resulting in development of SAK3 (Yabuki et al. 2017b). We found 
that SAK3 promoted more potent ACh release in mouse hippocampal CA1 than did 
ST101 (Yabuki et al. 2017b).
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9.5  �SAK3-Induced Neuroprotection in Brain Ischemia

We confirmed SAK3 neuroprotection using a 20-min BCCAO mouse model. To do 
so, we administered SAK3 (at 0.1, 0.5 or 1.0 mg/kg, p.o.) orally to mice 24 h after 
BCCAO ischemia. SAK3 administration at 0.5 or 1.0  mg/kg/day significantly 
blocked loss of hippocampal CA1 neurons and memory deficits seen in BCCAO 
mice. Treatment with the α7 nAChR-selective inhibitor methyllycaconitine (MLA: 
6.0 mg/kg/day, i.p.) antagonized both neuroprotection and memory improvement 
seen in SAK3 (0.5 mg/kg/day, p.o.)-treated mice (Fig. 9.1). Since excess calcium 
influx enhances excitotoxic and proapoptotic pathways to induce ischemic neuronal 
death (Berliocchi et al. 2005; Bano and Nicotera 2007), the impact of T-type chan-
nel regulators on neuroprotection is unclear. For example, intraventricular injection 
of mibefradil and pimozide 6 h before 10-min BCCAO ischemia antagonizes hip-
pocampal injury in rats (Bancila et al. 2011). Other T-type calcium channel block-
ers, such as U-92032 and flunarizine, administered 1  h prior to BCCAO inhibit 
delayed neuronal death in the gerbil hippocampal CA1 region (Ito et al. 1994). Such 
varied effects of T-type calcium channel blockers may be due to differences in tim-
ing of drug administration. We administered SAK3 to animals 24 h after BCCAO, 
whereas others have administered T-type calcium channel blockers before brain 
ischemia (Bancila et al. 2011; Ito et al. 1994). Moreover, some T-type calcium chan-
nel inhibitors, such as mibefradil and flunarizine have affinities to other channel 
types such as L-type calcium, sodium or potassium channels (Liu et al. 1999; Bloc 
et al. 2000; McNulty and Hanck 2004). Therefore, SAK3 is neuroprotective against 
brain ischemia by a mechanism that differs from that of other drugs.

9.6  �SAK3 Ameliorates Methimazole-Induced Cholinergic 
Neuronal Damage

The drug methimazole (MMI) is widely used to antagonize hyperthyroidism and 
manage Graves’ disease, an autoimmune condition promoting hyperthyroidism 
(Cano-Europa et al. 2011; Wu et al. 2013). Biochemically, MMI acts by preventing 
iodine incorporation into the thyroid hormone precursor, thyroglobulin, and thus 
interferes with conversion of thyroxine (T4) to triiodothyronine (T3) (Cooper 1984; 
Amara et al. 2012; Parisa and Fahimeh 2015). Importantly, treatment with moderate 
doses of MMI reportedly impairs olfactory function in rats, while high doses cause 
complete destruction of the olfactory epithelium (OE) (Genter et al. 1995). The OE 
is a critical site of regeneration of physically- or chemically-injured olfactory sen-
sory neurons (OSNs) (Schwob et al. 1992; Suzukawa et al. 2011). Thyroid hormone 
deficiency also causes significantly reduced levels of choline acetyltransferase 
(ChAT), a marker of cholinergic neurons, in various brain regions (Kojima et al. 
1981; Oh et al. 1991; Sawin et al. 1998). Since cholinergic neurons in the MS inner-
vate the olfactory bulb and hippocampus (Mesulam et  al. 1983a), olfactory 
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Fig. 9.1  Oral SAK3 administration antagonizes loss of CA1 neurons after BCCAO through α7 nAChR 
stimulation. (a) Representative histological sections of hippocampus in control, vehicle-administered 
BCCAO, SAK3 (0.1, 0.5 or 1.0 mg/kg, p.o.)-administered BCCAO mice or SAK3 (0.5 mg/kg, p.o.)-
administered BCCAO mice treated with MLA. Mice were sacrificed 11 days after BCCAO for histo-
pathological analysis. Scale bars: low magnification, 500 μm; high magnification, 100 μm. (b) Cell 
viability is expressed as a percent of the average number of viable hippocampal CA1 cells from control 
mice (n = 12–23 per group). Error bars represent SEM. ** p < 0.01 vs. control mice. ## p < 0.01 vs. 
vehicle-administered BCCAO mice. †† p < 0.01 vs. SAK3 (0.5 mg/kg, p.o.)-administered BCCAO 
mice. MLA, methllycaconitine (6.0 mg/kg, i.p.) treatment; SAK3 (0.1), SAK3 (0.1 mg/kg, p.o.) admin-
istration; SAK3 (0.5), SAK3 (0.5 mg/kg, p.o.) administration; SAK3 (1.0), SAK3 (1.0 mg/kg, p.o.) 
administration; and Veh, vehicle administration. (Modified from Yabuki et al. 2017a)
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bulbectomy leads to anterograde degeneration of MS cholinergic neurons and con-
comitant loss of hippocampal cholinergic nerve terminals (Han et al. 2008). Loss of 
MS cholinergic neurons is also associated with cognitive deficits seen in Alzheimer’s 
disease (Robinson et al. 2011). Indeed, single administration of MMI (75 mg/kg, 
i.p.) promotes hypothyroidism in mice, and SAK3 treatment prevents hypothyroid-
ism-induced loss of MS cholinergic neurons, thereby improving memory deficits 
seen in MMI-treated mice (Noreen et al. 2017). In humans, adult onset hypothyroid-
ism is associated with impaired spatial memory performance and cognitive function 
(Tong et al. 2007; Artis et al. 2012), although mechanisms underlying these impair-
ments remain unclear.

Our recent analysis of MMI-treated mice showed that SAK3 may be neuropro-
tective and antagonize these cognitive deficits (Fig. 9.2). We found that perturbation 
of OSN maturation by a single dose of MMI is accompanied by a decrease in the 
number of MS cholinergic neurons (Fig. 9.3), a loss that likely causes memory and 
cognitive deficits seen in these mice. Importantly, SAK3 administration to MMI-
treated mice rescued degeneration of MS cholinergic neurons and improved deficits 
in spatial reference memory and cognition.
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Fig. 9.2  MMI-induced decreases in OMP expression in olfactory bulb glomeruli are antagonized 
by SAK3 administration. (a) Coronal sections of olfactory bulb from indicated control (c), MMI-
treated, or MMI-treated and SAK3-treated (0.1, 0.5 and 1 mg/kg) mice were incubated with OMP 
antibody. (b) SAK3 treatment significantly restored OMP staining intensity (b) and increased 
glomerulus size (c) in the OB glomerular layer. Scale bar, 50 μm. Error bars represent S.E.M. 
(**p < 0.01 vs control, #p < 0.05 and ##p < 0.01 vs MMI). n = 7 per group. (Modified from Noreen 
et al. 2017)
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9.7  �SAK3 Is Neuroprotective Via nAChRs

Several reports indicate that nAChR neuroprotective activity requires activation of 
protein kinase B (Akt) signaling, a critical cell survival pathway (Davis and 
Pennypacker 2016; Fan et al. 2017). The α7 but not the α4 nAChR subunit interacts 
with the non-receptor-type tyrosine kinase Fyn and janus-activated kinase 2 (JAK2) 
(Kihara et al. 2001; Shaw et al. 2002), and α7 nAChR stimulation triggers activation 
of both kinases and subsequently upregulates phosphatidylinositol 3 kinase (PI3K) 
(Kihara et al. 2001; Shaw et al. 2002). Activated PI3K in turn promotes Akt activity 
and downstream survival signaling, including Nrf2/HO-1 signaling in neurons 
(Franke et  al. 1997; Kihara et  al. 2001; Navarro et  al. 2015; Niture and Jaiswal 
2012; Shaw et  al. 2002). By contrast, α7 nAChR activation in microglia and/or 
astrocytes is neuroprotective by promoting release of anti-inflammatory cytokines 
and blocking release of inflammatory cytokines (Di Cesare et al. 2015; Shin and 
Dixon 2015). The observation that both SAK3-induced ACh release and SAK3-
induced neuroprotection are blocked by α7 nAChR inhibitors supports the idea that 
SAK3 effects are in large part mediated by nAChRs. SAK3-induced neuroprotec-
tion is closely associated with enhanced Akt rather than ERK activities (Yabuki 
et al. 2017a, b) (Fig. 9.4). In this context, α7 nAChR activation by SAK3 adminis-
tration is critical for neuroprotection.

#
##

**

#

A

B

Control

Control + 1 mg/kg SAK3

MMI

MMI +0.1 mg/kg SAK3

MMI+0.5 mg/kg SAK3

MMI+ 1 mg/kg SAK3

100 um 

0

50

100

150

200

Veh SAK3     Veh 0.1        0.5         1

SAK3 (mg/kg, p.o.)

Methimazole
C

hA
T-

po
si

tiv
e 

ce
lls

 (n
um

be
r/a

re
a)

Fig. 9.3  SAK3 administration rescues MMI-induced decreases in the number of ChAT-positive 
cells in the medial septum. Photomicrographs showing anti-ChAT staining in the medial septum 
(MS) area. (b) ChAT-positive cells were counted in the MS of control or MMI-treated mice with 
or without SAK3 administration (0.1, 0.5 and 1 mg/kg). Scale bar, 100 μm. Error bars represent 
S.E.M. (**p < 0.01 vs control, #p < 0.05 and ##p < 0.01 vs MMI). n = 7 per group. (Modified from 
Noreen et al. 2017)
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9.8  �Conclusion

Here, we have discussed neuroprotective activity of AChR signaling based on anal-
ysis of the novel modulator SAK3. SAK3 enhances activity of T-type calcium chan-
nels, promoting ACh release and activating hippocampal nAChRs, which are critical 
for memory formation. However, off-target analysis is required to determine 
whether SAK3 modulates nAChRs directly or indirectly. Since SAK3 activity in the 
CNS differs from that of cholinesterase inhibitors and from the nAChR modulator 
memantine, SAK3 is an attractive candidate to antagonize CNS neurodegenerative 
disorders such as Alzheimer’s or Lewy body Diseases.
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Fig. 9.4  Acute SAK3 administration rescues Akt phosphorylation in CA1 pyramidal neurons of 
BCCAO mice through α7 nAChR stimulation. (a) Representative images showing fluorescent 
immunostaining with phospho-Akt (Ser-473: green) and NeuN (red) antibodies. Phosphorylated 
Akt immunoreactivity decreased in CA1 NeuN-positive neurons 24 h after BCCAO. Treatment 
with MLA (6.0 mg/kg, i.p.) blocked SAK3-dependent increases in Akt phosphorylation in NeuN-
positive neurons. Scale bars: 20 μm. (b) Fluorescence intensity of Akt phosphorylation was mea-
sured in the hippocampal CA1 region. Immunofluorescence intensity of phosphorylated Akt 
significantly decreased in CA1 pyramidal cells (n = 4–5 per group). Error bars represent SEM. ** 
p < 0.01 vs. control mice. # P < 0.05 vs. vehicle-administered BCCAO mice. † p < 0.05 vs. SAK3 
(0.5 mg/kg, p.o.)-administered BCCAO mice. MLA, methllycaconitine (6.0 mg/kg, i.p.) treatment; 
SAK3 (0.5), SAK3 (0.5 mg/kg, p.o.) administration; and Veh, vehicle administration. (Modified 
from Yabuki et al. 2017a)
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