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Chapter 1
Overview

Akinori Akaike and Yasuhiko Izumi

Abstract  The nicotinic acetylcholine receptor (nAChR) is a typical ion channel 
type receptor. nAChR agonists such as nicotine evoke rapid excitatory responses in 
order of milliseconds. In addition to acute responses, sustained stimulation of 
nAChRs induces delayed cellular responses leading to neuroprotection via intracel-
lular signal pathways probably triggered by Ca2+ influx. The most predominant sub-
types of nAChRs expressed in the central nervous system (CNS) are α4 (known as 
α4β2) and α7 nAChRs. Long-term exposure to nicotine or acetylcholinesterase 
(AChE) inhibitors exerts protection against neurotoxicity induced by glutamate, 
β-amyloid, and other toxic insults. Nicotinic neuroprotection is mediated by α7 
nAChR which shows high Ca2+ permeability, though contribution of α4 nAChR to 
nicotinic neuroprotection has also been suggested. Agonist stimulation of these 
receptors leads to activation of the phosphoinositide 3-kinase (PI3K)-Akt signaling 
pathway, downstream of neurotrophin receptors. AChE inhibitors including done-
pezil which is used for treatment of Alzheimer’s disease, also activate PI3K-Akt 
pathway via nAChRs. Neuroprotective effects induced by long-term nAChR stimu-
lation indicate that CNS nAChRs play important roles in promotion of neuronal 
survival under pathophysiological conditions such as brain ischemia and neurode-
generative diseases. Elucidation of neuroprotective mechanisms of nAChRs may 
enable development of novel therapies for neurodegenerative diseases.
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1.1  �Introduction

Acetylcholine (ACh) is a small molecule with a simple chemical structure compris-
ing an ester of choline and acetic acid. This molecule plays a crucial role in main-
taining homeostasis and brain functions by acting as a neurotransmitter in the 
peripheral nervous system including motor nerves and the autonomic and the cen-
tral nervous system (CNS). ACh is synthetized by choline acetyltransferase with 
choline and acetyl coenzyme A as substrates (Fig. 1.1). ACh released from nerve 
endings upon nerve excitation is rapidly degraded by acetylcholinesterase (AChE) 
into choline and acetic acid. ACh released in the synaptic cleft acts as an agonist to 
its specific receptors to evoke various cellular responses. ACh receptors are divided 
into two major classes, nicotinic ACh receptors (nAChRs) and muscarinic ACh 
receptors (mAChRs). The names of these receptors are derived from their specific 
agonists; nicotine contained in tobacco leaves and muscarine isolated from poison-
ous mushrooms, Amanita muscaria. nAChRs are ligand-gated ion channels, which 
evoke rapid depolarization responses to elicit neuronal excitation or skeletal muscle 
contraction. On the other hand, mAChRs are representative G-protein-coupled 
receptors classified as M1–M5 (Caulfield and Birdsall 1998). M1, M3, and M5 recep-
tors interact with Gq-type G proteins and primarily cause excitatory responses, 
whereas M2 and M4 receptors interact with Gi/Go type G proteins and cause sup-
pressive responses such as hyperpolarization. Responses mediated by mAChRs are 
relatively slow whereas opening of ligand-gated channels of nAChRs induces rapid 
cellular responses in the order of milliseconds.

nAChRs are highly expressed in skeletal muscle and the nervous system. 
Recently, expression of nAChRs in immune cells and glial cells has also attracted 
attention for potential therapeutic targeting in inflammation and neurodegenerative 
diseases (de Jonge and Ulloa 2007; Fujii et al. 2017; Jurado-Coronel et al. 2016). 

Aectylcholine
(ACh)

Choline

Acetyl-CoA

Choline asetyl -
transpherase

(ChAT)

Acetylcholin -
esterase
(AChE)

Choline

Acetic acidHS

O

O
N+

N

N

-CoA

Nicotine

H

Fig. 1.1  Synthesis and metabolism of acetylcholine (ACh). Choline acetyltransferase (ChAT) and 
acetylcholinesterase (AChE) are involved in synthesis and metabolism of ACh. ACh is synthesized 
from Acetyl coenzyme A (Acetyl-CoA) and Choline, releasing Coenzyme A (HS-CoA)
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nAChRs are grouped into muscle-type (Nm), peripheral neuronal-type (Nn), and cen-
tral neuronal-type (CNS) based on their distribution, subunit composition, and 
selective antagonists, as per the classification in Goodman & Gilman’s “The 
Pharmacological Basis of Therapeutics” (12th Edition, 2011). In their classification, 
CNS AChRs are further divided into two subtypes: (α4)2(β2)3 (α-bungarotoxin-
insensitive) and (α7)5 (α-bungarotoxin-sensitive). Nn AChRs are widely expressed 
in autonomic ganglia and the adrenal medulla. CNS AChRs are expressed in neu-
rons and glia of various brain areas. One of the typical antagonists of Nm AChRs is 
d-tubocurarine, a toxic alkaloid derived from an arrow poison and clinically used as 
a non-depolarizing blocking agent of the neuromuscular junction. Hexamethonium 
and mecamylamine are selective antagonists of Nn and CNS AChRs.

In all types of nAChRs, agonists such as ACh itself or nicotine-induced ion chan-
nel opening and evoke influx of Na+ and Ca2+. This triggers cell depolarization and 
turns on various functional switches (Albuquerque et al. 2009). Nicotinic choliner-
gic responses correlated with fast neurotransmission are easily detected in the end-
plate at the neuromuscular junction and ganglion cells of the sympathetic nerves. 
By contrast, it is relatively difficult to detect postsynaptic nicotinic responses of 
neurons in the CNS because most neuronal nAChRs quickly desensitized when 
exposed to nicotinic agonists (Albuquerque et  al. 2009; Alkondon et  al. 1998; 
Frazier et  al. 1998). Development of drug-delivery devices that allow fast drug 
delivery and removal has made it possible to detect fast responses mediated by func-
tional CNS nAChRs. While peripheral nAChRs are involved in rapid responses such 
as skeletal muscle contraction, nAChRs expressed in the CNS tend to be involved in 
relatively slow functional changes. For example, in the cerebral cortex, persistent 
nAChR stimulation triggers signals to the phosphoinositide 3-kinase (PI3K) cas-
cade, which contributes to neuroprotection (Kihara et al. 2001; Dajas-Bailador and 
Wonnacott 2004). In the hippocampal neurons, nAChRs induce long-term potentia-
tion of synaptic transmission (Kenney and Gould 2008). nAChRs regulate dopa-
mine release in the striatum (Exley and Cragg 2008). Moreover, nAChRs are one of 
the important factors regulating memory and addiction (Molas et  al. 2017; Nees 
2015). Thus, in addition to rapid responses such as membrane depolarization 
induced by inward currents via ion channels, nAChR can generate longer-lasting 
effects in the CNS neurons, where rapid cation influx may trigger activation of com-
plex intracellular signaling pathways.

1.2  �Structural and Pharmacological Characterization 
of Nicotinic Acetylcholine Receptors

nAChRs are classified as members of the cysteine-loop (Cys-loop) family of ligand-
gated ion channels (Sine and Eagle 2006; Tsetlin et al. 2011). The Cys-loop ligand-
gated channels, also known as Cys-loop receptors, play prominent roles in generating 
excitatory and inhibitory postsynaptic potentials in the nervous system. nAChRs, 
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γ-aminobutyric acid type A (GABAA) receptors, glycine receptors, and 
5-hydroxytryptamine type-3 (5-HT3) receptors are classified as Cys-loop receptors. 
These receptors are composed of five subunits, forming a pentameric conformation 
around a central water-filled pore. The Cys-loop receptors have structurally com-
mon features with a characteristic loop formed by a disulfide bond between two 
cysteine residues. In nAChRs, the two cysteine residues separate 13 highly con-
served amino acids located in the extracellular N-terminal domain of the α-subunit. 
The four hydrophobic transmembrane domains are estimated to form α-helices that 
make up the ion channel pore. The channel pore is lined with residues from the 
second transmembrane domain (TM2) from each of the five subunits of the recep-
tors. The extracellular domain is largely composed of the N-terminus with binding 
sites for agonists.

The International Union of Basic and Clinical Pharmacology Committee on 
Receptor Nomenclature and Drug Classification (NC-IUPHAR, URL: http://www.
guidetopharmacology.org/nciuphar.jsp) recommends a nomenclature and classifica-
tion scheme for nAChRs based on subunit composition of known, naturally occur-
ring and/or heterologously-expressed nAChR subtypes. A total of 17 subunits 
(α1–10, β1–4, γ, δ, and ε) have been identified in nAChRs. All subunits except α8, 
which is present in avian species, have been identified in mammals. ACh-binding 
sites are found at interfaces of the α subunit and the δ or γ subunit in Nm AChRs, and 
at interfaces of the α subunit and β subunit or two adjacent α subunits in Nn and CNS 
AChRs (Fig.  1.2). All α subunits possess two tandem cysteine residues near the 
ACh-binding site. By contrast, β, γ, δ, and ε subunits lack these cysteine residues. 
Nm AChRs of adult animals possess the stoichiometry (α1)2β1δε while Nm AChRs 
expressed in embryonic muscles and denervated adult muscles possess the stoichi-
ometry (α1)2β1γδ (Lukas et al. 1999). Other types of nAChRs are predominantly 
expressed in neurons (Table 1.1). They are assembled as combinations of α2–α6 and 
β2–β4 subunits or α7, α8, and α9 subunits forming functional homo-oligomers. Nm 
AChRs and some subtypes of CNS AChRs (α7, α8, α9, and α10) are sensitive to 
α-bungarotoxin, a well-known neurotoxic protein derived from the venom of kraits. 
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Fig. 1.2  Examples of subunit assembly and location of agonist-binding sites. Large circles indi-
cate subunits of nicotinic acetylcholine receptor (nAChR). Small filled circles indicate binding 
sites of acetylcholine. Muscle-type AChR (Nm AChR), central nervous system AChR (CNS AChR)
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For α2, α3, α4, and β2 and β4 subunits, pairwise combinations of α and β (e.g., α3β4 
and α4β2) are sufficient to form a functional receptor in vitro, but more complex 
isoforms may exist in vivo. Among those subunit combinations, the α3β4 subunit 
combination is dominant in nAChRs of autonomic ganglia neurons. The α5 and β3 
subunits participate in formation of functional hetero-oligomeric receptors when 
they are expressed as a third subunit with another α and β pair such as α4α5αβ2, 
α4αβ2β3, and α5α6β2. The α6 subunit can form a functional receptor when co-
expressed with β4 in vitro. The α7 subunit forms functional homo-oligomers. This 
subunit can also combine with a β subunit to form a hetero-oligomeric assembly 
such as α7β2. The α8 and α9 subunits show similar properties to the α7 subunit. For 
functional expression of the α10 subunit, co-assembly with α9 is necessary.

Subtypes of nAChRs can be classified based on the predominant α-subunits 
(α1–α10) because the α subunit plays a key role in agonist binding to trigger ion 
channel opening, and subtype-selective antagonists like α-bungarotoxin distinguish 
receptors based on the α subunit combination (see Table 1.1). As per this receptor 
classification, Nm AChRs can be defined as α1 nAChRs, because the α1 subunit is 
highly expressed only in skeletal muscle and other α subunits are not detected in 
this tissue. Nn and CNS AChRs can be broadly classified into two subgroups, α2–α6 
nAChRs, formed from the combination of α- and β-subunits, and α7–α9 nAChRs, 
forming homo-oligomers. The former subgroup, α2–α6 nAChRs, is insensitive to 
α-bungarotoxin whereas the latter subgroup, α7–α9 nAChRs, is sensitive to the toxin. 
Ion channels of homo-oligomeric receptors α7–α9 show high Ca2+ permeability. 
The α5 and α6 hetero-oligomeric receptors also show high Ca2+ permeability. 

Table 1.1  Characteristics of nAChR

Subtype
Primary subunit 
composition

Ca2+ 
permeability Major location

α-Bungarotoxin 
sensitivity

α1 (α1)2β1γδ, 
(α1)2β1δε

Low Neuromuscular 
junction

Sensitive

α2 α2β2, α2β4 Low CNS Insensitive
α3 α3β2, α3β4 Low Autonomic ganglion, 

CNS
Insensitive

α4 (α4)3(β2)2, 
(α4)2(β2)3

Low CNS Insensitive

α5 α3β2α5, α3β4α5, 
(α4)2(β2)2α5

High Autonomic ganglion, 
CNS

Insensitive

α6 α6β2β3, α6α4β2β3 High CNS Insensitive
α7 (α7)5 High CNS, Non-neuronal 

cells
Sensitive

α8 (avian only) (α8)5 High CNS Sensitive
α9 (α9)5, α9α10 High Mechanosensory hair 

cells
Sensitive

α10 α9α10 High Mechanosensory hair 
cells

Sensitive
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Among those neuronal receptors, α3 nAChR is highly expressed in autonomic ganglia 
though this subtype is also expressed in CNS. The most predominant subtypes of 
nAChRs expressed in CNS are α4, known as α4β2 and α7 nAChRs (Dani 2015). 
Expression of both subunits is detected across wide areas of the CNS (Table 1.2). 
In the cerebral cortex, α2 and α5 subunits are also detected. Accumulating evidence 
also suggests anti-inflammatory and neuroprotective roles of α7 nAChR expressed 
in immune cells and glial cells (Egea et al. 2015; Morioka et al. 2015).

1.3  �Neuroprotection Mediated by Nicotinic Acetylcholine 
Receptors

It is widely recognized that glutamate acts as an excitatory neurotransmitter but also 
exerts excitatory neurotoxicity in pathological conditions such as ischemia 
(Meldrum and Garthwaite 1990; Duggan and Choi 1994; Brassai et al. 2015). In 
addition to cerebral ischemia, glutamate neurotoxicity is also considered as one of 
the risk factors for neurodegenerative diseases, such as Alzheimer’s disease and 
Parkinson’s disease. Involvement of the cholinergic system in glutamate neurotox-
icity was first reported in Mattson’s study (1989), showing that glutamate neurotox-
icity in the hippocampus was enhanced by mAChR stimulation. Olney et al. (1991) 
showed evidence suggesting that N-methyl-D-aspartate (NMDA) receptor blockade 
by MK801 induces disinhibition of the central cholinergic system and causes exces-
sive stimulation of mAChRs. They hypothesized that MK801 occasionally induces 
neurotoxicity instead of neuroprotection due to such an indirect mAChR stimula-
tion. Thus, it is likely that mAChRs facilitate neuronal death in pathological states 
where glutamate neurotoxicity causes neurodegeneration.

On the other hand, accumulating evidence has suggested that nAChRs play a 
protective role in glutamate neurotoxicity. Approximately two decades ago, Akaike 
et al. (1994) and Kaneko et al. (1997) reported that glutamate neurotoxicity in the 

Table 1.2  Distribution of nAChR in CNS

α2 α3 α4 α5 α6 α7

Cortex Cortex Cortex Cortex
Hippocampus Hippocampus Hippocampus Hippocampus Hippocampus

Striatum Striatum Striatum
Amygdala Amygdala Amygdala

Thalamus
Hypothalamus Hypothalamus Hypothalamus

Substantia 
nigra

Substantia 
nigra

Substantia 
nigra

Substantia 
nigra

Substantia 
nigra

Cerebellum Cerebellum Cerebellum
Spinal cord Spinal cord Spinal cord
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cerebral cortex was suppressed by nicotine and other nAChR agonists. Because 
NMDA receptors are acknowledged as a predominant route of glutamate cytotoxicity 
in the cerebral cortex, nicotine was suggested to prevent glutamate neurotoxicity by 
exerting a protective action against NMDA receptor-mediated intracellular responses 
to induce neuronal death. The neuroprotective effect of nicotine was antagonized by 
hexamethonium and mecamylamine, which are Nn and CNS nAChR antagonists, 
respectively, indicating that nicotine induces neuroprotection by its selective action 
on nAChRs. To our knowledge, our study (Akaike et al. 1994) was the first evidence 
for the neuroprotective role of nAChRs in the CNS. In this study, nicotine markedly 
reversed glutamate cytotoxicity, whereas muscarine exacerbated it. Carbachol, 
which acts on both nicotinic and muscarinic receptors, reduced glutamate cytotox-
icity although its effect was less potent than that of nicotine. These observations 
indicate that nAChRs and mAChRs exert opposing effects on glutamate cytotoxic-
ity. Moreover, findings of nAChR-mediated neuroprotection suggested a role of 
nicotinic cholinergic system in promoting neuronal survival under pathological 
conditions such as brain ischemia. A characteristic feature of the neuroprotective 
action of nicotine was that long-term exposure of more than an hour was necessary 
to ameliorate glutamate neurotoxicity. Following our findings in the cerebral cortex, 
neuroprotective effects mediated by nAChRs have been detected in various areas of 
the brain, including the hippocampus (Dajas-Bailador et  al. 2000; Liu and Zhao 
2004), the striatum (Ohnishi et al. 2009), dopaminergic neurons in the substantia 
nigra (Takeuchi et al. 2009), and the spinal cord (Nakamizo et al. 2005; Toborek 
et  al. 2007). Nicotinic neuroprotection detected in those studies is estimated to  
be mediated by nAChR expressed in neurons though contribution of microglia 
activation by α7 nAChR in nicotinic neuroprotection is also suggested (Morioka 
et al. 2015).

It is unlikely that nicotine-induced protection against glutamate neurotoxicity is 
due to its direct action on NMDA receptors though there are some reports indicating 
that nicotine partially inhibits NMDA receptors. Aizenman et al. (1991) have dem-
onstrated that nicotinic agonists partially inhibit whole cell NMDA-induced 
responses in cultured cortical neurons. Akaike et al. (1991) also reported modula-
tory action of cholinergic drugs on NMDA responses in the nucleus basalis of 
Meynert neurons. These studies suggest that nicotinic agonists have properties to 
directly interact with NMDA receptors and modulate their function. In this case, 
concomitant application of nicotine and glutamate or short-term nicotine exposure 
should affect glutamate neurotoxicity by direct modification of NMDA receptors. 
However, as described above, long-term exposure for more than an hour is neces-
sary to detect nicotinic neuroprotection (Akaike et al. 1994; Kaneko et al. 1997). 
Moreover, nicotine-induced protection against glutamate cytotoxicity was antago-
nized by CNS nAChR antagonists. Therefore, persistent stimulation of nAChRs, but 
not direct inhibition of NMDA receptors is estimated to be the major route of 
nicotine-induced neuroprotection though direct interaction of nicotine with NMDA 
receptors may potentiate nicotine-induced neuroprotection.
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In the forebrain including the cerebral cortex, α7 nAChRs, homo-oligomers of 
α7 subunits and α4β2 nAChRs, hetero-oligomers of α4 and β2 subunits are the 
major subtypes among CNS nAChRs (Albuquerque et al. 2009; Zoli et al. 2015). It 
has been reported that nicotine-induced protection against glutamate neurotoxicity 
was antagonized by selective α7 nAChR antagonists α-bungarotoxin and 
methyllycaconitine, as well as by the selective α4β2 nAChR antagonist dihydro-β-
erythroidine (Kaneko et  al. 1997). The α7 nAChR has attracted more attention 
because its mechanisms are thought to be involved in Alzheimer’s disease and 
β-amyloid (Aβ), a well-known risk factor of Alzheimer’s disease, is bound to α7 
nAChRs under several conditions including in post-mortem Alzheimer’s disease 
brains (Wang et  al. 2000; Parri et  al. 2011). A selective α7 nAChR agonist, 
3-(2,4)-dimethoxybenzylidene anabaseine (DMXB), exhibits potent neuroprotec-
tive action on glutamate neurotoxicity in  vitro and brain ischemia in  vivo 
(Shimohama et al. 1998). Aβ-induced neurotoxicity was suppressed by nicotine and 
DMXB (Kihara et  al. 1997). Protective effects of nicotine and DMXB against 
Aβ-induced toxicity were antagonized by α-bungarotoxin, indicating that stimula-
tion of α7 nAChRs is essential in suppressing Aβ-induced neurotoxicity. It is widely 
accepted that the β sheet conformation of Aβ is necessary in eliciting its neurotoxic-
ity (Fändrich et al. 2011). Nicotine might influence the β sheet conformation of Aβ 
to attenuate its toxicity or to modulate survival signals. However, it has been reported 
that neither nicotine nor DMXB influences the β sheet conformation (Kihara et al. 
1999). Thus, signal transduction downstream of α7 nAChRs is likely to be involved 
in the protective effect of nicotine against Aβ neurotoxicity.

1.4  �Intracellular Signal Transduction Triggered by Nicotinic 
Acetylcholine Receptors

On exposure to agonists, nAChR exists in an active, open state, and elicits rapid 
depolarization in order of milliseconds. Thus, nAChR is classified as an excitatory 
receptor that evokes rapid excitation in neuronal, muscular, and secreting cells. 
Progressive decline of agonist-evoked current indicates closure of the channel. 
Upon further exposure to agonists, nAChRs exist in desensitized, non-functional 
states. Besides such short-term response, it is also recognized that nAChRs mediate 
long-term modification of cell functions via specific signaling pathways (Dajas-
Bailador and Wonnacott 2004). nAChRs, especially α7 nAChRs, generate specific 
and complex Ca2+ signals that include adenylyl cyclase, protein kinase A, protein 
kinase C, Ca2+-calmodulin-dependent kinase, and phosphatidylinositol 3-kinase (PI3K) 
(Fig.  1.3). These phosphorylated downstream targets activate cellular signaling 
related to exocytosis and extracellular signal-regulated mitogen-activated protein 
kinase (ERK)-linked neuronal functions. Kihara et al. (2001) showed that α7 nAChR 
stimulation promoted PI3K-Akt signal transduction and inhibited Aβ neurotoxicity. 

A. Akaike and Y. Izumi
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PI3K phosphorylates Akt (or known as protein kinase B), a serine/threonine kinase. 
Activation of PI3-Akt cascade stimulates B-cell lymphoma 2 (Bcl-2) family mem-
bers, which act as anti-apoptotic factors. It has been shown that Fyn, a member of 
the non-receptor type Src tyrosine kinase family, is associated with α7 nAChRs, 
though it is not clear whether other Src family members are involved in the cascade 
downstream of nAChRs. A relationship between nAChRs and Fyn was also impli-
cated in a study, showing that catecholamine release induced by nicotine was depen-
dent on the presence of Fyn and extracellular Ca2+ (Allen et al. 1996). In the study 
by Kihara et al. (2001), an inhibitor of Src tyrosine kinase reduced Akt phosphoryla-
tion. In addition, PI3K and Fyn were physically associated with α7 nAChRs. These 
findings suggest that nAChR stimulation causes Akt phosphorylation via signal 
transduction through Fyn to PI3K. Ca2+ influx through the α7 nAChR ion channels 
might contribute to this process. It has been proposed that PI3K-Akt activation leads 
to up-regulation of Bcl-2 to promote neuronal survival (Matsuzaki et  al. 1999; 
Kihara et al. 2001).

The intracellular signal pathway downstream of CNS nAChRs is known as a 
major pathway of neuroprotective action of neurotrophins including nerve growth 
factor (NGF) and brain-derived neurotrophic factor (BDNF) (Dajas-Bailador and 
Wonnacott 2004; Lim et al. 2008). NGF and BDNF are known to affect survival and 
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Fig. 1.3  Nicotinic acetylcholine receptor (nAChR)-mediated signaling pathway in the brain. 
Adenylate cyclase (AC), acetylcholine (ACh), nAChR, AKT8 virus oncogene cellular homolog 
(Akt), B-cell lymphoma 2 (Bcl-2), calcium/calmodulin-dependent protein kinase (CaMK), cal-
cium/calmodulin-dependent protein kinase kinase (CaMKK), cAMP-responsive element binding 
protein (CREB), extracellular signal-regulated kinase (ERK), Fgr/Yes-related novel protein (Fyn), 
Janus-activated kinase (JAK), MAPK/ERK kinase (MEK), nicotinic acetylcholine receptor 
(nAChR), phosphoinositide 3-kinase (PI3K), protein kinase A (PKA), SH2-containing collagen-
related proteins (Shc), tropomyosin receptor kinase (Trk)
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differentiation of central and peripheral neurons. The PI3K/Akt signaling cascades 
play a key role in neuronal survival due to neurotrophins (Chan et al. 2014). It has 
been reported that NGF and BDNF prevent glutamate neurotoxicity in a time-
dependent manner, exhibiting significant neuroprotection in a period >1  h 
(Shimohama et al. 1993a, b; Kume et al. 1997, 2000). Each neurotrophin interacts 
with specific tropomyosin receptor kinase (Trk) receptors. Trk receptors show 
selectivity to members of the neurotrophin family. TrkA, TrkB, and TrkC serve as 
preferential receptors for NGF, BDNF, and neurotrophin-3, respectively (Kalb 
2005). In contrast to these high-affinity receptors, the low-affinity neurotrophin 
receptor, p75, interacts with all neurotrophin members. BDNF promotes survival of 
neurons via TrkB in several brain regions including the cerebral cortex. Moreover, 
nAChRs appear to transduce survival signals similar to signals downstream of the 
Trk receptors of neurotrophins (Dajas-Bailador and Wonnacott 2004). Thus, nico-
tine and neurotrophins show similar properties in terms of time-course and signal 
pathways of neuroprotection.

1.5  �Acetylcholinesterase Inhibitors Used for Treatment 
of Alzheimer’ Disease

The finding that glutamate neurotoxicity is suppressed by continuous stimulation of 
nAChRs suggests a possible function of the nicotinic cholinergic system as a factor 
promoting neuron survival in the CNS. AChE inhibitors including donepezil, which 
easily permeates the blood–brain barrier, are used for Alzheimer’s disease. Takada 
et al. (2003) reported that in cultured cortical neurons, AChE inhibitors including 
donepezil, galantamine, and tacrine inhibited glutamate neurotoxicity, though con-
comitant addition of AChE inhibitors and glutamate did not exhibit neuroprotection. 
Neuroprotective effects of AChE inhibitors were antagonized by Nn and CNS AChR 
antagonists including mecamylamine and methyllycaconitine, but not by a mAChR 
antagonist, scopolamine. Thus, AChE inhibitors appeared to possess neuroprotec-
tive effects similar to properties of nicotinic neuroprotection. AChE inhibitors such 
as donepezil remarkably suppress apoptosis of neurons induced by long-term 
administration of low concentrations of glutamate. Investigation of the involvement 
of PI3K on the protective action of AChE inhibitors revealed that the neuroprotec-
tive action of donepezil and galantamine is associated with Fyn, Janus Activating 
Kinase 2 (JAK2), and PI3K (Takada-Takatori et al. 2006; Akaike et al. 2010). In 
addition, these central AChE inhibitors promoted phosphorylation of Akt and 
increased the expression level of Bcl-2 protein. These results indicate that the PI3K-
Akt signaling pathway is important for protection mechanisms of AChE inhibitors.

nAChRs are also recognized as major functional molecules mediating pharma-
cological action of tobacco smoking. Nicotine is a major ingredient of tobacco  
and stimulates all subtypes of nAChRs, though nicotine induces more rapid  
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desensitization of nAChRs than ACh (Albuquerque et  al. 2009). Several clinical 
studies have shown a negative correlation between prevalence of sporadic Parkinson’s 
disease and smoking history in relation to nAChR and neurodegenerative diseases, 
although no clear conclusion can be reached as to the relationship between 
Alzheimer’s disease and smoking (Godwin-Austen et al. 1982; Tanner et al. 2002; 
Ulrich et al. 1997). Moreover, galantamine, possessing allosteric potentiating action 
on α7 nAChR, is used as a treatment for Alzheimer’s disease (Albuquerque et al. 
2001; Santos et  al. 2002). Interestingly, long-term tobacco smoking or nicotine 
application induces up-regulation of nAChRs and, in most cases, facilitates their 
functions (Brody et al. 2013; Govind et al. 2009). This phenomenon is quite unique 
because, in most neuronal receptors including mAChRs, long-term receptor stimu-
lation by specific agonists usually induces down-regulation of receptors and reduc-
tion of receptor functions. Moreover, AChE inhibitors including donepezil induce 
significant up-regulation of nAChRs (Kume et  al. 2005; Takada-Takatori et  al. 
2010). Activation of the PI3-Akt pathway is necessary for nAChR up-regulation 
following long-term donepezil exposure. Receptor up-regulation following long-
term exposure to nicotine and AChE inhibitors may be linked to diverse properties 
of nAChRs, from enhancement of learning and memory to addiction and neuropro-
tection, although precise mechanisms of up-regulation are not fully understood.

1.6  �Conclusion

Nicotine induces fast nAChR currents of the order of milliseconds, while sustained 
nicotine exposure induces delayed intracellular responses. Neuroprotection is one 
of the dominant delayed responses mediated by CNS nAChRs. Mechanisms of neu-
roprotective effects exerted by persistent nAChR stimulation cannot be described 
only by simple excitatory reactions following depolarization induced by ion chan-
nel openings, but rather by activation of the intracellular PI3K-Akt signaling path-
way leading to up-regulation of the anti-apoptotic protein Bcl-2. α7 nAChR, which 
shows high Ca2+ permeability, plays a crucial role in nicotinic neuroprotection. The 
metabolic change with Ca2+ as the second messenger may play an important role in 
triggering signals downstream of nAChRs. Therefore, it can be proposed that 
nAChRs are apparently implicated in two types of cellular functions; one for fast 
depolarization and the other for slow intracellular responses leading to neuroprotec-
tion (Fig. 1.4). Nicotine and other nAChR agonists evoke both acute and delayed 
responses; the former involves receptor desensitization and the latter involves recep-
tor up-regulation. On the other hand, AChE inhibitors directly or indirectly stimu-
late nAChRs without evoking apparent acute responses (Akaike et  al. 2010; 
Takada-Takatori et al. 2010). Neuroprotection and nAChR up-regulation by long-
term exposure to AChE inhibitors, used in treatment of Alzheimer’s disease, suggest 
that CNS nAChRs are an important component of defense mechanisms of neurons 
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against risk factors of neurodegeneration in pathophysiological conditions. 
Manipulation of neuroprotective properties of nAChRs may be a novel therapeutic 
approach for treatment of neurodegenerative diseases including Alzheimer’s 
disease.
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