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      TGF-β LAP Degradation Products, a Novel 
Biomarker and Promising Therapeutic 
Target for Liver Fibrogenesis                     

       Mitsuko     Hara     ,     Tomokazu     Matsuura     , and     Soichi     Kojima     

    Abstract     While there are many blood and/or tissue biomarkers as well as algorithms 
clinically used to assess hepatic fi brosis, a good biomarker and therapeutic target of 
hepatic fi brogenesis, which refl ects prefi brotic changes, has not been established. 
The most fi brogenic cytokine, transforming growth factor (TGF)-β, is produced as 
a latent complex, in which TGF-β is trapped by its propeptide. On the surface of 
activated hepatic stellate cells, plasma kallikrein activates TGF-β by cleaving 
latency-associated protein (LAP) between the R 58  and L 59  residues, releasing active 
TGF-β from the complex. We made specifi c antibodies that recognize neo-C-terminal 
(R 58 ) and N-terminal (L 59 ) ends of LAP degradation products (LAP- DPs) and found 
that LAP-DPs may serve as a novel surrogate marker of TGF-β activation—namely, 
generation of active TGF-β—and is thus a therapeutic marker for TGF-β-mediated 
liver fi brogenesis in patients and can also be used to monitor effects of anti-fi brogenic 
factors or compounds for discovery of a novel anti-fi brosis drug.  
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  Anti- fi brosis drug  
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  LAP    Latency associated protein   
  SLC    Small latent complex   
  LTBP    Latent TGF-β binding protein   
  LLC    Large latent complex   
  PLN    Plasmin   
  PLK    Plasma kallikrein   
  LAP-DP    LAP degradation products   
  LAP β1    TGF-β1 LAP   
  BDL    Bile duct ligation   
  HBV    Hepatitis B virus   
  HCV    Hepatitis C virus   
  NASH    Non-alcoholic steatohepatitis   

          Introduction of Liver Fibrogenesis 

 Hepatic fi brosis is the excessive accumulation of extracellular matrices (ECM; 
mainly collagen) in the perisinusoidal space (or space of Disse) in the liver, and an 
important pathological step developing from chronic hepatitis to liver cirrhosis irre-
spective of etiologies [ 1 ], whereas hepatic fi brogenesis means fi brosis progression 
or an ongoing reaction producing excessive ECM, sometimes nonsymptomatic, in 
the liver [ 2 ]. While there are many blood and/or tissue biomarkers as well as 
algorithms clinically used to assess hepatic fi brosis [ 3 – 7 ], the gold standard is still 
scoring of stained collagen fi bers in the biopsy sample [ 3 ]. However, biopsy is 
invasive and risky. Imaging techniques including ultrasound elastography have been 
developed [ 3 ]. In contrast, a good biomarker and therapeutic target of hepatic fi bro-
genesis, which refl ects prefi brotic changes, has not been established [ 2 , 3 ]. Therefore, 
development of a noninvasive biomarker for hepatic fi brogenesis, which will lead 
not only to establishment of a novel diagnosis useful to prevent liver fi brosis/
cirrhosis, but also to acceleration of drug discovery and development against liver 
fi brosis, is in high demand [ 3 ].  

    Activation of Hepatic Stellate Cells 

 Hepatic stellate cells (HSCs) play a central role in the pathogenesis of hepatic fi bro-
sis by virtue of their ability to undergo a process termed “activation” [ 1 , 2 ]. During 
this process, HSCs transform into myofi broblast-like cells accompanying several 
key phenotypic changes, which collectively increase extracellular matrix accumula-
tion [ 1 – 3 ]. These include (1) cellular proliferation caused by upregulation of mito-
genic cytokines and their receptors; (2) morphologic changes with loss of stored 
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vitamin A droplets; (3) contractility caused by increased α smooth muscle actin 
(αSMA), which may constrict sinusoidal blood fl ow; and (4) fi brogenesis mainly 
caused by increased synthesis and release of collagen.  

    TGF-β and Its Activation Reaction 

 Among many cytokines and growth factors related to fi brogenesis, the most potent—
and therefore the most “fi brogenic”—cytokine is the 25 kD homodimeric cytokine, 
transforming growth factor (TGF)-β [ 8 ]. The TGF-β family is composed of three 
subtypes (TGF-β1, TGF-β2, and TGF-β3), with biological properties that are nearly 
identical [ 8 ]. TGF-β is produced as an inactive latent complex, in which active 
TGF-β is trapped by its propeptide, latency-associated protein (LAP), and to exert 
its biological activities, it must be released from the complex [ 9 ]. This reaction is 
called activation of TGF-β (Fig.  1 ). TGF-β1 is produced as a 390-amino-acid 
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  Fig. 1    TGF-β activation and signaling pathway. TGF-β is produced as a latent complex (LLC) 
composed of active TGF-β trapped by its propeptide LAP (SLC) and a matrix protein LTBP. Upon 
cleavage of LAP by proteases such as PLK, active TGF-β is released from the complex (this reac-
tion is called TGF-β activation) and exerts fi brogenic activity (stimulation of collagen synthesis) 
via binding to its receptors and Smad signaling       
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precursor protein consisting of a signal peptide of 29 amino acids, an N-terminal 
LAP, and a C-terminal region that becomes the active TGF-β1 molecule, and each 
region is dimerized through S–S bonds. After processing by cleavage at R 278 –A 279  
by a furin-like protease, the LAP still non-covalently captures the active TGF-β1, 
forming small latent complex (SLC) and preventing active TGF-β1 from binding its 
cognate receptors [ 9 ]. The active TGF-β1 and the LAP homodimers are 25 kD and 
75 kD, respectively. SLC is S–S bonded to another gene product, the latent TGF-β 
binding protein (LTBP), via C 33  residues, forming the large latent complex (LLC). 
This complex can be sequestered in the ECM (Fig.  1 ) [ 10 ] because LTBP is a mem-
ber of an ECM protein family, fi brillin [ 11 ].

   Activation of latent TGF-β is performed through different mechanisms depend-
ing on the tissue and cell types and experimental conditions, and several molecules 
are known to activate TGF-β1 in animal models [ 12 – 21 ]. These include integrins 
[ 12 – 15 ], thrombospondin [ 16 ], and proteases, such as matrix metalloproteinases 
and serine proteases [ 17 – 21 ]. The integrin αvβ6 binds to and activates latent TGF-β 
and plays a role in regulating pulmonary infl ammation and fi brosis as well as biliary 
fi brosis [ 12 – 15 ]. Thrombospondin 1 is another major activator of latent TGF-β, 
especially in the lung and pancreas, by binding to a defi ned site within LAP and 
inducing a conformational change in the latent complex [ 16 ]. In the normal liver, 
TGF-β is produced and secreted from sinusoidal endothelial cells and Kupffer cells 
(KCs, resident macrophages in the liver) at low levels. Elevated production of 
TGF-β was seen fi rst in all cell types and then mainly in hepatocytes and HSCs after 
partial hepatectomy, whereas elevated production of TGF-β was seen solely in 
HSCs after infl ammation and fi brosis [ 22 ]. TGF-β secreted from HPCs is entirely in 
the latent form, whereas TGF-β secreted from HSCs is 50–90 % in the active form 
[ 22 ]. Thus, HSCs are recognized as the major source of active TGF-β, namely the 
site of TGF-β activation, particularly in the damaged liver [ 22 , 23 ]. 

 We have addressed a potential proteolytic mechanism for latent TGF-β activation 
in HSCs by surface plasmin (PLN) and plasma kallikrein (PLK) during the forma-
tion of hepatic fi brosis [ 20 , 21 ]. PLN releases latent TGF-β from the extracellular 
matrix and activates it by cleaving LAP from latent TGF-β molecules on the HSC 
surface [ 9 , 20 ]. Lyons et al. fi rst reported that PLN digests LAP and activates TGF- 
β1 in vitro [ 24 ]. Using a protease inhibitor, camostat mesilate, we demonstrated that 
PLN and PLK are involved in the TGF-β1 activation associated with liver fi brosis 
and impaired liver regeneration in animal models [ 20 , 21 ]. However, it remained to 
be elucidated whether PLN- and/or PLK-dependent TGF-β1 activation also occurs 
during the pathogenesis of liver fi brosis in patients, as there was no good biomarker 
refl ecting protease-dependent TGF-β1 activation reaction. To answer this question, 
we determined cleavage site within LAP and made specifi c antibodies that recog-
nize LAP degradation products (LAP-DPs) bearing a neo-amino or carboxyl termi-
nus [ 25 ].  
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    TGF-β LAP-DP Serves as a Surrogate Marker for Its 
Activation Reaction 

 To identify the cleavage sites in LAP during latent TGF-β1 activation by PLN and 
PLK, recombinant human LAP β1 was digested with these proteases, the resultant 
fragments were separated by SDS-polyacrylamide gel electrophoresis (PAGE), and 
the N-terminal sequence of each LAP-DP was determined using a pulsed liquid 
protein sequencer Precise 494cLC, which revealed that PLN and PLK primarily 
cleave LAP β1 between the K 56  and L 57  residues, and the R 58  and L 59  residues, 
respectively, during proteolytic activation of latent TGF-β1 (Fig.  2 ) [ 25 ].
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  Fig. 2    Cleavage of K 56 LRL 59  within LAP activates TGF-β. PLN and PLK cleave LAP between 
K 56 –L 59  and R 58 –L 59  residues, respectively, causing release of active TGF-β1 from the latent com-
plex. The amino acid sequences around the PLN and PLK cleavage sites are illustrated. Antibodies 
that specifi cally recognize the cutting edges of LAP-DPs were produced. The  dark blue “Y”  
labeled R58 represents antibodies recognizing the C-terminal or N-terminal side LAP-DPs, 
whereas the  red “Y”  labeled L59 represents antibodies recognizing the N-terminal or C-terminal 
side LAP-DPs. A comparison of amino acid sequences from the N-terminus until the PLK cleav-
age site among three isoforms of TGF-β is presented at the bottom       
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   To detect PLK-produced LAP-DPs, we made two monoclonal antibodies. One is 
the R58 antibody detecting N-terminal side LAP-DPs terminating on the R 58  residue 
(R 58  LAP-DPs), and another is the L59 antibody detecting C-terminal side LAP- 
DPs starting from the L 59  residue (L 59  LAP-DPs). We established techniques to 
detect each LAP-DP using these antibodies [ 25 ]. The R 58  LAP-DPs remaining in 
tissues or cell surfaces through S–S bonded LTBP can be detected mostly in αSMA- 
positive activated stellate cells in liver tissues from both fi brotic animals and patients 
by immunostaining with the R58 antibody, whereas the L 59  LAP-DPs were not 
detectable by immunostaining with the L59 antibody [ 25 ]. Figure  3  shows the 
results obtained from bile duct ligation (BDL) mice. These mice often exhibited 
granulomatous lesions ( panel a ), in which fi broblastic cells infi ltrated and started 
ECM production ( panel b ). Importantly, the R 58  LAP-DPs were detected in granu-
lomatous lesions prior to Sirius red positivity, namely before collagen accumulation 
(arrowheads in  panel c ). In contrast, L59 antibody failed to stain the L 59  LAP-DPs, 
although various antigen unmasking procedures were treated ( panel d ). We found 
that the L 59  LAP-DPs were released into the blood and could be measured by an 
ELISA using the L59 antibody (Hara et al., unpublished data). In panels  e–h , non-
parenchymal regions were recognized by antibody R58 (arrowheads in  panel e ), 
and mostly overlapped with αSMA-positive HSCs (arrowheads in  panel f ), but not 
with CD31-positive liver sinusoidal endothelial cells ( panel g ) nor with CD68- 
positive KCs (hepatic macrophages) ( panel h ). We further found that the R58 
antibody detected TGF-β1/3 LAP-DPs but not TGF-β2 LAP-DPs because of the 
similarity and difference of the R58 side sequence, respectively (Fig.  2 ). Finally, we 
succeeded in detecting R 58  LAP-DPs in patients with chronic hepatitis B and C virus 

  Fig. 3    Emergence of TGF-β LAP-DPs in activated HSCs within pre-fi brotic areas in BDL mod-
els. Liver sections from BDL-operated mice were stained by HE ( a ) and Sirius red ( b ), and immu-
nostained with R58 ( c ) and L59 ( d ) antibodies (scale bar = 50 μm), and were immunostained with 
R58 ( e ), anti-αSMA ( f ), anti-CD31 ( g ), and anti-CD68 ( h ) antibodies (scale bar = 25 μm). More 
detailed results are provided elsewhere [ 25 ]       
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(HBV and HCV, respectively) infection categorized as A1F2 and A2F2, as well as 
in patients with non-viral hepatitis, such as autoimmune hepatitis and non-alcoholic 
steatohepatitis (NASH) [ 25 ]. A specifi c cell shape called a “crown-like structure” 
(CLS) has been referred to as a biomarker for NASH in both an animal model and 
patients [ 26 ]. Recently, we found that R 58  LAP-DPs positivity well matched the 
emergence of CLS [ 27 ].

   These data suggest the occurrence of a PLK-dependent TGF-β activation reac-
tion in patients and indicate that the LAP-DP may be useful as a surrogate marker 
refl ecting PLK-dependent TGF-β1/3 activation and subsequent fi brogenesis in the 
fi brotic liver both in animal models and in patients.  

    Conclusion and Future Subjects 

 The most fi brogenic cytokine, TGF-β, is produced as a latent complex, in which 
TGF-β is trapped by its propeptide, LAP. On the surface of activated HSCs, PLK 
activates TGF-β by cleaving LAP between the R 58  and L 59  residues, releasing active 
TGF-β from the complex. We made specifi c antibodies that recognize the neo-C- 
terminal (R 58 ) and N-terminal (L 59 ) ends of the LAP-DP, and found that the LAP-DP 
may serve as a novel surrogate marker of TGF-β activation—namely, generation of 
active TGF-β—and is thereby a therapeutic marker for TGF-β-mediated liver fi bro-
genesis in patients [ 25 ]. 

 Utilizing LAP-DP antibodies, we are developing techniques to visualize the 
fi brogenic area by positron emission tomography (PET), planning to eliminate 
 activated HSCs with pertussis toxin, and undertaking the challenge to solve the 
 co- crystal structure of LAP and a LAP-DP targeting inhibitor, which binds to the 
LAP cleavage site, thereby inhibiting TGF-β activation and liver fi brosis in HBV-
infected chimeric mice (Hara et al., unpublished data). The effectiveness of an 
inhibitor against the TGF-β activation reaction has been reported in the integrin-
mediated activation of TGF-β [ 3 ,  15 ,  28 ]. LAP-DP is also used to monitor the effects 
of anti- fi brogenic factors or compounds for discovery of a novel anti-fi brosis drug. 
For example, we recently found that HCV NS3 protease mimics TGF-β2 and 
enhances liver fi brosis via binding to and activation of the TGF-β type I receptor, 
and that an anti-NS3 antibody raised against the predicted binding sites attenuates 
liver fi brosis in HCV-infected chimeric mice [ 29 ]. In this study, R58 LAP-DP stain-
ing nicely showed the anti-fi brogenic potentials of the anti-NS3 antibody. 

 The technique developed accelerates drug discovery targeting TGF-β-dependent 
fi brogenesis in patients suffering from chronic hepatitis.     
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