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    Abstract     Heart disease remains the leading cause of death worldwide. Terminally 
differentiated cardiomyocytes do not possess regenerative capacity, and heart 
 disease is irreversible. Stem cell–derived cardiomyocytes are an attractive cell 
source for heart regeneration, but the risk of tumor formation due to contamination 
of stem cells, the complicated process of cell transplantation, and poor survival of 
the transplanted cells may be challenges for this approach. The discovery of repro-
gramming of fi broblasts into induced pluripotent stem cells (iPSCs) by the Yamanaka 
factors, Oct4, Sox2, Klf4, and c-Myc, inspired a new strategy to generate desired 
cell types from fi broblasts. It has been demonstrated that a diverse range of cell 
types, such as pancreatic β cells, blood cells, neurons, chondrocytes, and hepato-
cytes, can be directly generated from fi broblasts, using lineage-specifi c transcrip-
tion factors. We fi rst reported that functional cardiomyocytes can be generated from 
mouse fi broblasts using cardiac-specifi c transcription factors, Gata4, Mef2c, and 
Tbx5 (GMT) in vitro. Our subsequent work revealed that GMT can also convert 
resident cardiac fi broblasts into cardiomyocyte-like cells in infarcted mouse hearts. 
We also demonstrated that Gata4, Mef2c, Tbx5, Myocd, and Mesp1 (GMTMM) can 
convert human fi broblasts into cardiomyocyte-like cells, and that addition of miR-
133 to GMT or GMTMM promoted cardiac reprogramming in mouse and human 
fi broblasts. Intriguingly, miR-133 directly suppressed Snai1, a master gene of 
epithelial-to- mesenchymal transition, which in turn repressed fi broblast signatures 
and promoted cardiac reprogramming. Here, I review the recent studies in cardiac 
reprogramming and discuss the perspectives and challenges of this innovative 
 technology toward regenerative therapy.  
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        Introduction 

 Cardiovascular disease remains a leading cause of death worldwide for which 
 current therapeutic regimens remain limited. As terminally differentiated cardio-
myocytes have little regenerative capacity following injury, the demand for cardiac 
regenerative therapy is high. Following myocardial injury, endogenous cardiac 
fi broblasts, which account for more than half of the cells in the heart, proliferate and 
synthesize extracellular matrix, leading to fi brosis and heart failure. The large 
 population of cardiac fi broblasts might be a potential source of cardiomyocytes for 
regenerative applications, if they could be reprogrammed into functional cardio-
myocytes in situ. 

 The discovery of induced pluripotent stem cells (iPSCs) by Drs. Takahashi and 
Yamanaka provided a new strategy, which is direct generation of specifi c cell types 
from fi broblasts, using a combination of lineage-specifi c factors without mediating 
through a stem cell state. Recent studies demonstrated that direct reprogramming 
yields a diverse range of medically relevant cell types, including pancreatic β cells, 
neurons, chondrocytes, and hepatocytes from fi broblasts [ 1 – 7 ]. Recently, we and 
others reported that cardiac and skin fi broblasts could be directly reprogrammed 
into cardiomyocyte-like cells by several combinations of cardiac-specifi c factors 
[ 8 – 12 ]. We discovered that a combination of three cardiac-specifi c transcription 
factors,  Gata4 ,  Mef2c , and  Tbx5 , directly induced cardiomyocyte-like cells from 
mouse fi broblasts in vitro [ 8 ]. Subsequent studies revealed that direct gene transfer 
of the cardiac reprogramming factors in vivo could convert resident cardiac 
 fi broblasts into cardiomyocytes in infarcted hearts, and improved cardiac function 
after myocardial infarction (MI) [ 12 – 14 ]. We and others also reported that human 
fi broblasts could be reprogrammed into cardiomyocyte-like cells by addition of 
 cardiac transcription factors and miRNAs to GMT [ 15 – 17 ]. More recently, we 
found that cardiac-enriched miRNA, miR-133a (miR-133), promoted cardiac repro-
gramming in mouse embryonic fi broblasts (MEFs), adult mouse cardiac fi broblasts, 
and human cardiac fi broblasts (HCFs) in combination with GMT or GMTMM 
transduction. Mechanistically, miR-133 suppressed the fi broblast program by 
directly repressing Snai1, a master regulator of epithelial-to-mesenchymal  transition 
(EMT), and thereby promoted cardiac reprogramming. This chapter will discuss 
recent studies of direct cardiac reprogramming using defi ned factors and provide a 
future perspective of this new technology.  
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    Cell Fate Conversion by Transcription Factors 

 John Gurdon and colleagues demonstrated that the nucleus of a differentiated frog 
cell, when transferred into an enucleated egg, could be converted to the totipotent 
zygote and give rise to a whole new frog [ 18 ]. Davis et al. found that  MyoD , a 
 master gene of skeletal muscle, converted fi broblasts into myoblasts [ 19 – 21 ]. 
Despite the race to identify single transcription factors that could guide cell fate 
similarly to MyoD for other lineages, including cardiomyocytes, the MyoD para-
digm appeared to be an exception rather than the rule. Takahashi and Yamanaka 
achieved a breakthrough in this fi eld by overexpressing four embryonic stem cell 
(ESC)-specifi c transcription factors in fi broblasts and generating pluripotent stem 
cells, iPS cells. Using retroviral vectors, they expressed 24 candidate genes and 
selected for reprogramming by expression of Fbx15, a gene specifi cally expressed 
in pluripotent stem cells. The combination of 24 factors induced formation of 
 colonies with characteristic ESC morphology, and successive selection led to the 
minimally required core set of four genes, comprising Oct4, Sox2, Klf4, and c-Myc 
[ 22 ]. Many laboratories have since improved iPSC generation techniques to show 
that iPSCs share all features of ESCs, including expression of pluripotency markers, 
epigenetic marks, and the ability to generate chimeric mice. 

 The generation of iPSCs sparked a new idea, which is converting one cell type 
directly into another, using a combination of lineage-specifi c factors instead of 
 single master genes. For example, Vierbuchen et al. converted mouse fi broblasts 
into functional neurons in vitro, using the neuronal lineage-specifi c transcription 
factors  Ascl1 ,  Brn2 , and  Myt1l  [ 4 ]. Zhou et al. provided the fi rst evidence of cellular 
reprogramming in vivo using defi ned factors [ 5 ]. They showed that gene transfer of 
three transcription factors,  Ngn 3,  Pdx1 , and  Mafa  [ 23 ], effi ciently reprogrammed 
pancreatic exocrine cells into functional β cells in the mouse. The newly generated 
β cells in vivo were indistinguishable from endogenous islet β cells in terms of their 
structure and gene expression.  

    Direct Reprogramming of Mouse Fibroblasts into 
Cardiomyocytes in Vitro 

 In our study, we used cardiac fi broblasts (CFs) as a cell source for cardiac 
 reprogramming. CFs are found throughout cardiac tissues along with cardiomyo-
cytes, accounting for more than half of the cells in the heart, and may be a potential 
cell source for cardiac repair. To determine the candidate factors of cardiac 
 reprogramming, we identifi ed the genes that are specifi cally expressed in embry-
onic cardiomyocytes. We developed a novel cell purifi cation system in which 
embryonic cardiomyocytes and CFs can be purifi ed using FACS [ 24 ]. Using this 
system, we selected 14 factors as candidates for cardiac reprogramming, which are 
specifi cally expressed in cardiomyocytes and are critical for heart development. 
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 We next developed a screening system in which the induction of mature 
 cardiomyocytes from fi broblasts could be analyzed quantitatively by FACS. We 
generated α myosin heavy chain (αMHC) promoter-driven EGFP-IRES-Puromycin 
transgenic mice (αMHC-GFP), in which only mature cardiomyocytes expressed 
green fl uorescent protein (GFP) [ 8 ,  25 ,  26 ]. Transduction of all 14 factors into 
 fi broblasts induced 1.7 % of GFP +  cells, and serial removal of individual factors 
demonstrated that a combination of three factors (Gata4, Mef2c, and Tbx5) were 
suffi cient for effi cient GFP +  cell induction (around 15 %) from CFs. The three 
 cardiac reprogramming factors, Gata4, Mef2c, and Tbx5, are core cardiac transcrip-
tion factors during early heart development [ 27 – 29 ] and are known to interact with 
each other, coactivate cardiac gene expression, and promote cardiomyocyte differ-
entiation [ 30 – 32 ]. We designated these GFP +  cardiomyocyte-like cells as induced 
cardiomyocytes (iCMs). The iCMs expressed several cardiac marker proteins, such 
as sarcomeric α-actinin, cardiac troponin T, and atrial natriuretic factor (Fig.  1 ). 
They also had well-defi ned sarcomeric structures similar to neonatal cardiomyo-
cytes. The global gene expression profi le of GFP +  iCMs is not identical but similar 
to neonatal cardiomyocytes, and different from original CFs. We also found that 
functionally important cardiac genes, such as ion channel and sarcomere genes, 
were upregulated more in 4-week iCMs than in 2-week iCMs, suggesting that car-
diac differentiation occurred over several weeks. The chromatin state of iCMs was 
also similar to cardiomyocytes but different from fi broblasts in histone modifi ca-
tions and DNA methylation patterns [ 8 ]. These results suggest that iCMs are cardio-
myocyte-like cells in gene expression and epigenetic states. We also demonstrated 
that iCMs possessed functional properties characteristic of cardiomyocytes. The 
iCMs exhibited intracellular Ca 2+  transient and action potentials after 2–4 weeks of 
culture. In addition, CF-derived iCMs contracted spontaneously. To determine if the 
iCMs could arise from cells in other organs, we transduced the three factors into 
mouse tail-tip fi broblasts (TTFs). TTF- derived iCMs expressed cardiac markers and 

  Fig. 1    Cardiac reprogramming in mouse fi broblasts. ( a ) Screening system for cardiac reprogram-
ming factors. The α-MHC-GFP turns on, if reprogramming succeeds. ( b ) Immunohistochemistry 
for iCMs. Mouse fi broblasts were converted into cardiomyocyte-like cells (iCMs) by transduction 
of Gata4, Mef2c, and Tbx5. The iCMs expressed cardiac proteins and had striated muscle struc-
tures. ( c ) Microarray analyses for fi broblasts, iCMs, and cardiomyocytes. ( d ) Action potential 
recordings from iCMs and cardiomyocytes (Cited from Ieda et al. [ 8 ])       
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spontaneous intracellular Ca 2+  transients, while the percentage of cardiac troponin 
T +  cells was 50 % less than that of CF-derived iCMs. The TTF-derived iCMs had 
some functional characteristics of cardiomyocytes, such as spontaneous intracellu-
lar Ca 2+  transients, but we did not observe cellular contraction, suggesting that TTFs 
are more resistant to cardiac reprogramming by GMT. These fi ndings exclude the 
possibility that iCMs arise from contamination of cardiomyocytes or cardiac 
 progenitors in the fi broblast population [ 33 ,  34 ].

   While direct conversion of somatic cells to β cells and neurons was reported, the 
“route” of cell fate change was not clear. There are two possibilities for the repro-
gramming of fi broblasts into differentiated cardiomyocytes. One is direct conversion 
of fi broblasts into differentiated cardiomyocytes, and the other is that fi broblasts fi rst 
revert to a cardiac progenitor/stem cell state before further cardiac differentiation. We 
were able to genetically test these two possibilities by using mice expressing Isl1-
Cre-yellow fl uorescent protein (YFP) and Mesp1-Cre-YFP obtained by crossing 
Isl1-Cre or Mesp1-Cre mice with R26R-EYFP mice [ 35 ]. Isl1 and Mesp1 are transiently 
expressed in the early cardiac progenitor cells before further cardiac differentiation 
[ 36 ,  37 ]. We found that iCMs induced from Isl1-Cre-YFP and Mesp1-Cre-YFP 
fi broblasts did not express YFP, suggesting that the fi broblasts directly reprogrammed 
into differentiated cardiomyocytes without passing through a cardiac progenitor cell 
state. We next investigated whether GMT-transduced CFs can be transplanted in vivo 
and be reprogrammed into cardiomyocytes within the heart. CFs infected with GMT 
expressed α-MHC GFP and sarcomeric markers, and converted into cardiomyocyte-
like cells in the mouse hearts after 2 weeks of cell transplantation. 

 Following our initial report, other groups also reported generation of 
cardiomyocyte- like cells from mouse fi broblasts based on the same factors and 
microRNAs. Song et al. reported that adding Hand2 to GMT converted adult CFs 
and TTFs into functional cardiomyocyte-like cells more effi ciently than GMT alone 
[ 12 ]. Protze et al. found that the combination of Mef2c, myocardin, and Tbx5 
upregulated a broad spectrum of cardiac genes and induced functional cardiomyo-
cytes from MEFs and CFs [ 11 ]. Jayawardena et al. reported that a combination of 
muscle-specifi c microRNAs, mir-1, 133, 208, and 499, can convert CFs into 
 functional cardiomyocyte-like cells [ 10 ]. Thus, several combinations of cardiogenic 
factors can induce cardiac reprogramming, which is similar to the experience in the 
iPSC fi eld. Although the induction of fully matured cardiac cells remains low in 
culture, and further refi nements are needed, these results suggest that fi broblasts 
transduced with cardiac reprogramming factors ex vivo can be delivered to dam-
aged myocardium for regenerative purposes.  

    Cardiac Reprogramming in Vivo by Gene Transfer 
of Defi ned Factors 

 On the basis of the fi ndings of direct cardiac reprogramming in vitro, we investi-
gated whether gene transfer of GMT into mouse injured hearts could similarly 
induce new cardiomyocyte generation [ 14 ]. Transduction of GMT retroviruses 
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converted adult CFs from infarcted hearts into iCMs in vitro. Injection of GMT 
retroviruses into αMHC-GFP transgenic mouse hearts induced the expression of 
αMHC-GFP, a reporter of cardiomyocytes, in 3 % of virus-infected fi broblasts. A 
mixture of GMT injection into the immunosuppressed mouse hearts induced  cardiac 
protein expression in retrovirus-infected cells within 2 weeks, with a conversion 
rate of approximately 1 %, although few cells showed striated muscle structures. 
Next, to transduce GMT more effi ciently in vivo, we developed a new polycistronic 
retrovirus vector expressing GMT separated by 2A “self-cleaving” peptides (3F2A). 
In vivo gene transfer of 3F2A into infarcted hearts resulted in generation of iCMs in 
fi brotic tissues, which expressed sarcomeric α-actinin, cardiac troponin T, and 
 several cardiac-specifi c genes, and had clear cross-striations. These results suggest 
that 3F2A-iCMs are more mature cardiomyocytes, and that the polycistronic vector 
can be used for cellular reprogramming in vivo. 

 In parallel with our study, two other groups also published reports on in vivo 
cardiac reprogramming in infarcted mouse hearts. Qian et al. found that fi broblasts 
in infarcted hearts were converted into cardiomyocyte-like cells by GMT retroviral 
gene transfer [ 13 ]. Song et al. reported that adding Hand2 to GMT converted endog-
enous CFs into functional cardiomyocyte-like cells more effi ciently than GMT 
alone in vivo [ 12 ]. Both studies demonstrated that the in vivo iCMs had well- 
organized sarcomeric structures and exhibited functional characteristics of adult 
ventricular cardiomyocytes, including cellular contraction, electrophysiological 
properties, and functional coupling to other cardiac cells. They also demonstrated 
that retroviral gene transfer of reprogramming factors into infarcted hearts 
 signifi cantly improved cardiac function and reduced fi brosis 2 and 3 months after 
myocardial infarction. Although all three studies, including ours, demonstrated 
in vivo cardiac reprogramming, the approaches used to address this issue differed. 
The other two groups used mainly fi broblast-lineage tracing mice to demonstrate 
cardiac conversion from CFs, while we co-transduced GMT with marker genes 
(GFP or DsRed) to demonstrate cardiac induction in the infected fi broblasts, using 
αMHC- GFP transgenic and nude mice. Although it is not clear how many newly 
generated iCMs remained in the injured hearts in the longer-term follow-up, and to 
what extent the iCMs contributed to the improvement in cardiac function, these 
fi ndings might inform new regenerative strategies for repairing injured hearts. 
Further work in larger animals and more effi cient gene delivery system in vivo are 
needed for future research.  

    Gata4/Mef2c/Tbx5/Myocd/Mesp1 Reprogram Human 
Fibroblasts into Cardiomyocyte-Like Cells 

 We next analyzed whether human fi broblasts could be directly converted to iCMs 
by defi ned factors [ 17 ]. We found that GMT was not suffi cient for cardiac induction 
in HCFs. Thus, we screened additional factors that enhance reprogramming, and 
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found that addition of Mesp1 and Myocd to GMT upregulated a broader spectrum 
of cardiac genes more effi ciently than GMT alone. The HCFs and human dermal 
fi broblasts transduced with GMT, Mesp1, and Myocd (GMTMM) changed the cell 
morphology to a rod-like or polygonal shape, expressed a broad range of cardiac 
genes and concomitantly suppressed fi broblast genes, and exhibited spontaneous 
Ca 2+  oscillations. Moreover, the cells matured to exhibit action potentials and con-
tract synchronously in coculture with murine cardiomyocytes. The EdU assay 
revealed that the human iCMs did not pass through a mitotic stem cell state and 
were directly generated from fi broblasts. 

 Human cardiac reprogramming was also reported by other groups. Nam et al. 
reported that a combination of Gata4, Hand2, Tbx5, Myocd, miR-1, and miR-133 
induced 13 % of adult HCFs to express cardiac troponin T protein and that a small 
subset of the iCMs exhibited spontaneous contractility after 11 weeks in culture 
[ 15 ]. Islas et al. reported that transient overexpression of Ets2 and Mesp1 could 
reprogram human dermal fi broblasts into cardiac progenitor–like cells [ 16 ]. The 
induced cardiac progenitor–like cells differentiated into immature cardiomyocytes 
and exhibited calcium activities. These fi ndings may represent an important initial 
step toward potential therapeutic applications of the direct reprogramming approach 
in clinical situations. However, human cardiac reprogramming process is slower 
and less effi cient than mouse reprogramming, much like the induction of human 
iPSCs compared with mouse iPSCs. Future studies are needed to thoroughly 
 optimize conditions for human cardiomyocyte generation and maturation and to 
characterize the properties of human iCMs.  

    MiR-133 Promotes Cardiac Reprogramming by Repressing 
Snai1 and Silencing the Fibroblast Profi le 

 As discussed, induction of functional cardiomyocytes in vitro was ineffi cient and 
molecular mechanisms of direct reprogramming remained undefi ned. In contrast, 
the in vivo iCMs were more fully reprogrammed than their counterparts in vitro, 
suggesting the presence of undefi ned factors that may enhance reprogramming. 
Identifi cation of such potent reprogramming factors could provide new insights into 
the mechanisms of cardiac reprogramming. We selected four cardiac miRNAs as 
candidate factors, which are specifi cally expressed in cardiomyocytes and skeletal 
muscles and are important for heart development and physiology. FACS analyses 
using αMHC-GFP mice revealed that these miRNAs alone did not reprogram MEFs 
into iCMs, but addition of miR-133 to GMT strongly enhanced cardiac induction 
compared with other miRNAs. The time courses of reprogramming between GMT 
and GMT/miR-133 revealed that the GMT/miR-133-iCMs showed sarcomeric 
structures after 7 days of infection, which normally takes 2 weeks with GMT alone. 
Moreover, cell contraction started from 10 days after GMT/miR-133 transduction, 
which generally took 4 weeks, and the number of beating cells increased over time, 
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with sevenfold more contractile cells achieved compared with GMT alone. The 
global gene expression profi les of iCMs induced with GMT or GMT/miR-133 
revealed that among 23,474 probes, 46 cardiac-enriched genes were upregulated 
and 129 fi broblast-related genes were downregulated by GMT/miR-133 induction. 
Molecularly, we found that Snai1, a basic helix-loop-helix transcription factor and 
a master regulator of EMT, was a direct target of miR-133 and had two conserved 
miR-133-binding sites within the 3’ UTR. Snai1 knockdown suppressed fi broblast 
genes, upregulated cardiac genes, and induced more contracting iCMs in combina-
tion with GMT transduction, recapitulating the effects of miR-133 overexpression. 
In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells activated 
the fi broblast signature and inhibited generation of beating iCMs. Moreover, miR-
133- mediated Snai1 repression was also critical for cardiac reprogramming in adult 
mice and HCFs in combination with GMT or GMTMM. These results are  consistent 
with the cell fate conversion, in which the target cell program is progressively 
 activated and the starting-cell profi le is concomitantly suppressed during repro-
gramming. Although further work in identifying more effi cient protocols and under-
standing molecular mechanisms of cardiac reprogramming are needed, these reports 
demonstrate that the cardiac reprogramming strategy might be a potential approach 
for heart regeneration in the future [ 38 ].  

    Perspectives and Challenges of Cardiac Reprogramming 
for Clinical Applications 

 As discussed above, the cardiac reprogramming fi eld has extensively progressed 
and may change regenerative medicine in the future. The directly induced cardiac 
cells appear to quickly exit the cell cycle following the lineage conversion, and the 
utility of iCMs in vitro might be limited. Alternatively, direct induction of cardiac 
progenitor cells, as shown in neural stem/progenitor cell reprogramming, may be a 
good approach to solve this issue [ 39 ]. In contrast, introduction of cardiac repro-
gramming factors directly into the damaged heart may convert the endogenous 
 cardiac fi broblast population, which represents >50 % of cardiac cells, into new 
functional cardiomyocytes in situ, and may improve cardiac function. This in vivo 
reprogramming approach may have several advantages compared with cell 
transplantation- based regeneration (Fig.  2 ). First, the process is simple and short; 
second, avoiding the reprogramming of pluripotent cells before cardiac differentia-
tion would greatly lower the risk of tumor formation; and third, direct injection of 
defi ned factors obviates the need for cell transplantation, for which long-term 
 cardiac cell survival remains a challenge.

   Although direct cardiac induction using defi ned factors has been demonstrated 
by several laboratories, the reprogramming effi ciency remains low and many pit-
falls remain that may lead to reprogramming failure [ 40 ,  41 ]. Future studies will be 
needed to thoroughly optimize the protocol for iCM generation, and to characterize 
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the properties of iCMs. Given that secreted proteins, electrical and mechanical 
 stimulation, and cell-to-cell contact might promote cardiac differentiation and 
reprogramming in our experience, the future of this new technology seems to be 
bright and promising. Highly standardized protocols that make the process more 
effi cient and more easily transferable between different laboratories should be 
developed in the future to push this fi eld forward.  

    Conclusions 

 Cellular reprogramming has long been recognized as a possibility, although the 
impact of cell type conversion by defi ned factors was most prominently exemplifi ed 
only recently by the discovery of iPSCs. This landmark fi nding fundamentally 
altered approaches to regenerative medicine, and provided a broad strategy to 
induce desired cell types by introducing lineage-specifi c factors. Detailed analyses 

  Fig. 2    Future heart regenerative therapies. The  upper panel  indicates the cell transplantation 
 strategy using iPSC-derived cardiomyocytes to repair the damaged heart. The  lower panel  indi-
cates the direct cardiac reprogramming strategy, which converts endogenous cardiac fi broblasts 
into iCMs in situ using defi ned factors       
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of the properties of generated cells and understanding of the molecular mechanisms 
of reprogramming might be necessary to advance this nascent technology for future 
clinical applications.     
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