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      TRP Channels: Their Function 
and Potentiality as Drug Targets                     

       Motohiro     Nishida    ,     Koichiro     Kuwahara    ,     Daisuke     Kozai    , 
    Reiko     Sakaguchi    , and     Yasuo     Mori     

    Abstract     The transient receptor potential (TRP) proteins are a family of ion 
channels that act as cellular sensors as well as signal integrators. Several members 
of the TRP family are sensitive to changes in cellular redox status. Among them, 
TRPA1 is remarkably susceptible to various oxidants and is known to mediate 
neuropathic pain and respiratory, vascular, and gastrointestinal functions, making 
TRPA1 an attractive therapeutic target. However, a method to achieve selective 
modulation of TRPA1 by small molecules has not yet been established. Most 
recently, we found that a novel  N -nitrosamine compound activates TRPA1 by 
 S -nitrosylation (the addition of a nitric oxide (NO) group to cysteine thiol) and does 
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so with signifi cant selectivity over other NO-sensitive TRP channels. It is proposed 
that this subtype selectivity is conferred through synergistic effects of electrophilic 
cysteine transnitrosylation and molecular recognition of the non-electrophilic moi-
ety on the  N -nitrosamine. On the other hand, TRPCs are typical receptor-activated 
Ca 2+ -permeable cation channels, which sense messenger molecules generated 
downstream of phospholipase activation. Previously, activation of TRPC3 and 
TRPC6 by diacylglycerol has been reported to play important roles in the pathogen-
esis of cardiac hypertrophy. Also, a pyrazole compound, Pyr3, which selectively 
inhibits TRPC3, suppresses cardiac hypertrophy in animal models in vitro and 
in vivo. We have most recently found that Pyr3 and related compounds are effective 
in suppressing cardiac fi brosis and ischemia responsible for cardiac remodeling as 
well. Thus, in this chapter, we describe the molecular pharmacology of TRP modu-
lators and discuss their modulatory mechanisms and pharmacological actions.  

  Keywords     Electrophile   •   Nitric oxide   •   Non-electrophilic compound   •   Oxidative 
stress   •   Transnitrosylation   •   TRP channel   •   TRPA1  

        Introduction 

 In 1989, the transient receptor potential (TRP) protein was fi rst identifi ed as being 
encoded by the  trp  gene of  Drosophila  [ 1 ]. The TRP protein superfamily consists of 
a diverse group of calcium ion (Ca 2+ )-permeable non-selective cation channels, and 
is found in most living organisms [ 2 – 4 ]. Mammalian TRP channels are currently 
divided into TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP 
(polycystic kidney disease), TRPML (mucolipin) and TRPA (ankyrin) subfamilies. 
TRP channels have a tetrameric subunit stoichiometry, and each subunit contains 
cytoplasmic N- and C-terminal regions, six transmembrane (TM) domains and a 
pore- forming region between TM5 and TM6. TRP channels are sensitive to a variety 
of stimuli, including receptor stimulation, temperature, plant-derived compounds, 
environmental irritants, osmotic pressure, mechanical stress, pH, and voltage from 
the extracellular and intracellular milieu, and are involved in diverse physiological 
and pathological processes [ 2 ,  5 – 16 ]. 

 Certain TRP channels respond well to mediators of oxidative stress, such as reac-
tive oxygen species (ROS), reactive nitrogen species (RNS), and other electrophiles 
[ 17 – 20 ]. Canonically known as damaging molecules causing cellular dysfunction, 
ROS and RNS are increasingly recognized as cell-signaling molecules [ 21 ,  22 ]. 
The fi rst identifi ed ROS-sensitive TRP channel, TRPM2, is activated by hydrogen 
 peroxide (H 2 O 2 ) and mediates several cellular responses, including cell death and 
chemokine production [ 23 – 26 ]. TRPM7, which can be modulated by both ROS and 
RNS, is an essential mediator of anoxic cell death [ 27 ,  28 ]. Some members of the 
TRPC and TRPV subfamily, including TRPC5 and TRPV1, are activated by H 2 O 2 , 
nitric oxide (NO), and reactive disulfi des [ 29 ]. In addition, TRPA1 is remarkably 
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activated by various oxidants, including ROS, RNS, reactive disulfi des, and other 
electrophiles [ 30 – 33 ]. 

 Among TRP subfamilies, TRPCs are typical receptor-activated Ca 2+ -permeable 
cation channels, which sense messenger molecules generated downstream of phos-
pholipase activation. Previously, Kuwahara [ 34 ] and Nishida [ 35 ] separately showed 
that TRPC3 and TRPC6 activated by DAG play important roles in the pathogenesis 
of cardiac hypertrophy. Also, Mori developed a pyrazole compound, Pyr3, which 
selectively inhibits TRPC3 and suppresses cardiac hypertrophy in animal models 
in vitro and in vivo [ 36 ]. In our recent progress in studying the pharmacological 
action of Pyr3 and related compounds, their modulators have turned out to be highly 
effective in suppressing cardiac fi brosis and ischemia responsible for cardiac remod-
eling. Thus, TRPC3 and TRPC6 are emerging as critical targets in development of 
drugs relevant to therapies for heart failure.  

    Modulation of Trpa1 Channel Activity 

    Oxidation Sensitivity of the Trpa1 Channel 

 TRPA1 responds to various oxidative stress mediators and environmental electro-
philes (Table  1 ). Cysteine residues within a protein are direct targets for the oxidant 
signal reaction [ 74 ,  75 ]. TRPA1 is not an exception in this characteristics. Its activa-
tion by oxidants is proposed to be mediated via oxidative modifi cation of the free 
sulfhydryl group of cysteine residues, as described for the activation of TRPC5 and 
TRPV1 [ 29 ,  76 ].

   For TRPA1, the oxidation sites have been identifi ed (Fig.  1 ). Simultaneous muta-
tion of three cysteine residues within the cytoplasmic N-terminus of human TRPA1 
(Cys621, Cys641, and Cys665) decreases TRPA1 channel activation by several 
exogenous cysteine-modifying electrophiles, such as isothiocyanates (e.g. AITC), 
α,β-unsaturated aldehyde compounds (e.g. acrolein,  N -methylmaleimide, and cin-
namaldehyde), allicin from garlic, and diallyl disulfi de [ 30 ,  37 ,  38 ]. Lys710 is also 
suggested to be involved in the activation of TRPA1 by AITC. Three cysteine resi-
dues in mouse TRPA1 (Cys415, Cys422, and Cys622, conserved in the human 
homolog as Cys414, Cys421, and Cys621) were independently identifi ed as the 
target sites for AITC and cinnamaldehyde [ 31 ]. Intracellular Zn 2+  also activates 
human TRPA1 by interacting with Cys641 and C-terminal Cys1021/His983 [ 78 ]. 
Systematic evaluation of TRP channels was performed using a series of reactive 
disulfi des, such as bis(5-nitro-2-pyridyl) disulfi de and diallyl disulfi de [ 33 ]. These 
compounds possess a different electron acceptor (oxidation) capacity (manifested 
as redox potential), and these studies revealed that only TRPA1 responds to the inert 
electrophile diallyl disulfi de among TRP channels. Thus, TRPA1 can sense inert 
oxidant O 2 , and O 2  activation of TRPA1 is by oxidation of Cys633 and/or Cys856, 
located intracellularly within, respectively, the N-terminal region and the putative 
linker region between TM4 and TM5 [ 33 ]. In addition, TRPA1 cysteine residues 
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    Table 1    TRPA1 modulators   

 Class of compound  Compound  Reference 

 Activators (electrophilic)  Allyl isothiocyanate (AITC)  [ 30 ] 
 Acrolein  [ 30 ] 
  N -methylmaleimide  [ 30 ] 
 Cinnamaldehyde  [ 30 ] 
 Bis(5-nitro-2-pyridyl) disulfi de  [ 33 ] 
 Allicin  [ 37 ,  38 ] 
 Diallyl disulfi de  [ 30 ] 
 2-Chloroacetophenone  [ 17 ,  39 ] 
 Methylvinylketone  [ 40 ] 
 Umbellulone  [ 41 ] 
 Ligustilide  [ 42 ] 
 Hydroxy-α-sanshool (α-SOH)  [ 43 ] 
 6-Shogaol  [ 43 ] 
 Etodolac  [ 44 ] 
 Glibenclamide  [ 45 ] 
 Auranofi n  [ 46 ] 
 4-Hydroxy-2-nonenal  [ 47 ] 
 4-Hydroxyhexenal  [ 48 ] 
 4-Oxo-2-nonenal  [ 48 ] 
 Nitrooleic acid  [ 49 ] 
 15d-PGJ 2   [ 48 ] 
 Methylglyoxal  [ 50 ,  51 ] 
 Oleocanthal  [ 52 ] 

 Activators (non-electrophilic)  Icilin  [ 30 ] 
 2-Aminoethyl diphenylborinate  [ 31 ] 
 Carvacrol  [ 53 ] 
 Flufenamic acid  [ 54 ] 
 Isofl urane  [ 55 ] 
 Farnesyl thiosalicylic acid  [ 56 ] 
 NPPB  [ 57 ] 
 Thymol  [ 53 ] 
 2,6-Diisopropylphenol (propofol)  [ 53 ] 
 Docosahexaenoic acid (DHA)  [ 58 ] 
 Arachidonic acid  [ 59 ] 
 6-Paradol  [ 43 ,  60 ] 
 6-Gingerol  [ 43 ,  60 ] 
 Capsiate  [ 61 ] 
 1,4-Cineol  [ 62 ] 

 Inhibitors  Isovelleral  [ 40 ] 
 HC-030031  [ 63 ] 
 Chembridge-5861528  [ 64 ] 
 AP-18  [ 49 ] 
 A-967079  [ 65 ] 

(continued)
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Table 1 (continued)

 Class of compound  Compound  Reference 

 AZ868  [ 66 ] 
 ADM_09  [ 67 ] 
 Camphor  [ 68 ] 
 1,8-Cineol  [ 62 ] 

 Bimodal modulators  Borneol  [ 69 ] 
 AMG5445 (inhibits human/activates rat)  [ 70 ] 
 Menthol (activates human/concentration 
dependently activates or inhibits 
mouse/no effect on  Drosophila ) 

 [ 71 ] 

 Caffeine (inhibits human/activates mouse)  [ 72 ] 
 CMP1 (inhibits human/activates rat)  [ 73 ] 

  Fig. 1    Predicted structural 
features of TRPA1 with 
putative position of critical 
residues involved in human 
TRPA1 modulation by 
compounds. The TRPA1 
subunit, which has six 
transmembrane domains 
(TM), a pore-forming region 
between TM5 and TM6, and 
many ankyrin repeats 
(indicated by  ovals ) in the 
cytoplasmic N-terminal 
region [ 77 ], assembles into 
tetramers to form a cation 
channel. Collectively, 
indicated residues (indicated 
by  fi lled circles ) are reported 
to be important for TRPA1 
activation or inhibition by 
several compounds [ 30 – 33 , 
 69 ,  71 ,  73 ,  78 – 80 ]       
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seem also to be critical for TRPA1 activation by other exogenous compounds, 
including irritants (tear gases, such as 2-chloroacetophenone [ 39 ,  81 ], and α,β- 
unsaturated carbonyl-containing compounds, such as methylvinylketone [ 40 ,  82 ]), 
some plant constituents (umbellulone [ 41 ], ligustilide [ 42 ], hydroxy-α-sanshool 
(α-SOH) and 6-shogaol [ 43 ]), and others (the cyclooxygenase-2 inhibitor etodolac [ 44 ], 
the anti-diabetic drug glibenclamide [ 45 ], the gold-containing disease- modifying 
anti-rheumatic drug auranofi n [ 46 ], and CMP1 (4-methyl- N -[2,2,2-trichloro- 1-
(4-nitro-phenylsulfanyl)-ethyl]-benzamide) [ 73 ]). Therefore, TRPA1 is unarguably 
a receptor for exogenous oxidative/electrophilic compounds.

   TRPA1 is also modifi ed via oxidative cysteine modifi cation by endogenous oxi-
dants and electrophiles. TRPA1 is activated by H 2 O 2  [ 17 ,  32 ,  48 ,  83 ], hypochlorite 
[ 17 ], ozone [ 84 ], and the ROS generated by ultraviolet light [ 85 ]. In addition to 
ROS, TRPA1 is also activated by RNS such as NO [ 32 ,  83 ,  86 ] and peroxynitrite 
[ 83 ]. Functional characterization of site-directed mutants of TRPA1 collectively 
demonstrates that specifi c cytoplasmic N-terminal cysteine residues and a lysine 
residue (Cys421, Cys621, Cys641, Cys665, and Lys710 in human TRPA1) are the 
primary targets of ROS and RNS [ 17 ,  32 ,  86 ]. 

 In addition to ROS and RNS, lipid peroxidation products such as 4-hydroxy- 2-
nonenal, 4-hydroxyhexenal, 4-oxo-2-nonenal, nitrooleic acid, and 15-deoxy-Δ 12,14 -
prostaglandin J 2  (15d-PGJ 2 ) activate TRPA1 channels through oxidative modifi cation 
of the cysteine residues [ 32 ,  47 – 49 ,  56 ,  63 ,  87 ]. Labeling experiments using bioti-
nylated 15d-PGJ 2  demonstrated that Cys621 mediates the binding of 15d-PGJ 2  to 
human TRPA1 [ 32 ]. Another electrophilic dicarbonyl compound, methylglyoxal (MG), 
which is believed to be associated with the development of diabetic neuropathy, also 
activates TRPA1 by hemithioacetal formation [ 50 ,  51 ]. Taken together, we can 
surmise that endogenous electrophilic products activate TRPA1 channels by 
cysteine oxidation.  

    Modulation of Trpa1 by Other Activators and Inhibitors 

 Various non-electrophilic activators and inhibitors have also been demonstrated to 
modulate TRPA1 (Table  1 ). For example, icilin, 2-aminoethyl diphenylborinate, 
and carvacrol are compounds with no obvious reactivity toward cysteine residues 
and activate TRPA1 in a way that is not disrupted by cysteine mutations [ 30 ,  31 ,  81 ]. 
TRPA1 is also activated by non-reactive compounds including non-steroidal anti- 
infl ammatory drugs, such as fl ufenamic acid [ 54 ]; general anesthetics, such as iso-
fl urane [ 55 ]; and farnesyl thiosalicylic acid (FTS) [ 56 ]. The chloride channel blocker 
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) activates TRPA1, and a 
structure–activity relationship study using a group of NPPB analogs indicates that 
its phenylalkane, carboxylic, and nitro groups are critical for its activation of TRPA1 
[ 57 ]. NPPB and FTS are suggested to have similar molecular mechanisms of action 
at TRPA1. Thymol, 2,6-diisopropylphenol (propofol), and related simple alkyl 
phenols also activate TRPA1 [ 53 ]. TRPA1 is also activated by polyunsaturated fatty 
acids, which should contain at least three double bonds and 18 carbon atoms, such 
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as docosahexaenoic acid (DHA) [ 58 ], and by arachidonic acid and its derivatives [ 59 ]. 
6-Paradol and 6-gingerol activate TRPA1, whereas the non-TRPA1 agonist capsaicin 
does not, suggesting that a phenol core of these compounds is not suffi cient to confer 
TRPA1 activation [ 43 ,  60 ]. Moreover, capsiate, a non-pungent capsaicin analog, 
also activates TRPA1 through a mechanism distinct from cysteine and histidine 
modifi cation [ 61 ]. Therefore, TRPA1 activation by non-reactive compounds is 
dependent on their chemical structures rather than cysteine oxidation. 

 Inhibitors such as the synthetic compounds HC-030031, Chembridge-5861528 
(a derivative of HC-030031), AP-18, A-967079 (a derivative of AP-18), AMG5445, 
and AZ868 have been developed for TRPA1 [ 64 ,  66 ,  70 ,  88 – 93 ]. Another, ADM_09, 
is an antagonist of TRPA1 with a putative dual-binding mode of action, which 
involves the synergic combination of Ca 2+ -mediated binding of the carnosine group 
and disulfi de formation by its lipoic acid group [ 67 ]. Camphor and 1,8-cineol are 
naturally occurring inhibitors of human TRPA1, but 1,4-cineol is an activator [ 62 ]. 
Borneol is a more effective natural inhibitor than camphor and 1,8-cineol, and the 
hydroxyl group of borneol is suggested to contribute to its inhibitory action [ 69 ]. 

 Several compounds have species-specifi c modulatory effects on TRPA1. 
AMG5445 inhibits human TRPA1, but activates rat TRPA1 [ 70 ]. The pharmaco-
logical profi le of the human and rhesus monkey TRPA1 is relatively distinct from 
mouse and rat TRPA1 [ 94 ]. Importantly, fi ndings of species-specifi c effects have 
helped to identify the critical region that determines TRPA1 modulation (Fig.  1 ). 
Menthol is known to be a bimodal modulator of mouse TRPA1, whereas it does not 
inhibit human TRPA1, and  Drosophila  TRPA1 is insensitive to menthol [ 71 ]. 
Chimera and mutagenesis studies indicate that specifi c residues within TM5 (notably 
Ser876 and Thr877 of mouse TRPA1, corresponding to Ser873 and Thr874 of 
human TRPA1) are critical for menthol responsiveness. Furthermore, the region 
from TM5 to TM6 in mouse and human TRPA1 is the critical domain determining 
the inhibitory effects of menthol. The same two residues (Ser and Thr within TM5) 
are also critical for the sensitivity of TRPA1 to AMG5445, AP-18, and A-967079 
[ 65 ,  71 ]. DHA sensitivity is limited to human and mouse TRPA1;  Drosophila  
TRPA1 does not respond to DHA [ 58 ]. Neither the cytoplasmic N-terminal region 
nor TM5 of TRPA1 is directly involved in DHA sensing. 

 Caffeine, which is not a reactive chemical reagent, activates mouse TRPA1, but 
suppresses human TRPA1 [ 72 ]. A mutation of Met268 in the N-terminal cytoplas-
mic region of mouse TRPA1 to the human form (Pro) changes caffeine action from 
activation to suppression [ 79 ]. An electrophilic compound, CMP1, a structural ana-
log of AMG5445, inhibits human TRPA1 and activates rat TRPA1 via modifi cation 
of human Cys621 and rat Cys622, respectively [ 73 ,  95 ]. The specifi c mutations 
Ala946Ser and Met949Ile in the upper portion of the TM6 region of rat TRPA1 
change the effect of CMP1 from activatory to inhibitory. Therefore, these studies 
demonstrate that specifi c regions and residues within TRPA1 determine the TRPA1 
modulatory activity of non-electrophilic compounds, and that the key domains/
residues vary between compounds. Furthermore, while direct physical interaction 
of non-electrophilic compounds with TRPA1 is likely to be critical for modulation, 
it is unclear whether or not these critical sites are involved in binding. 
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 There have been other studies regarding chemical structures important in molecular 
recognition of activators by TRPA1. Isovelleral, a fungal natural product, which 
contains an α,β-unsaturated aldehyde moiety, activates TRPA1 independently of 
cysteine oxidation [ 40 ]. A major compound in extra-virgin olive oil, oleocanthal 
(OC), is an electrophile that does not require cysteine residues to activate TRPA1 
[ 52 ]. A structure–activity relationship study using synthetic OC analogs indicated 
that OC requires both aldehyde groups to activate TRPA1. The mouse Cys622Ser 
TRPA1 mutant is still sensitive to umbellulone, albeit less so than wild-type TRPA1 
[ 41 ]. Zhong et al. suggest that umbellulone is a mechanistically hybrid activator, 
apparently combining covalent interaction at a reactive cysteine with noncovalent 
interaction with a second site on TRPA1 [ 41 ]. Thus, chemical structure recognition 
by TRPA1, a clearly distinct mechanism from cysteine oxidation, is supposed to be 
important even for TRPA1 activation by some specifi c electrophiles.  

    Subtype-Selective  S -Nitrosylation by a Novel Nitrosamine 

 Protein  S -nitrosylation, the covalent attachment of an NO moiety to the sulfur atom 
of cysteine residues to form  S -nitrosothiol, regulates various protein functions to 
mediate NO bioactivity [ 96 ]. Receptor-activated (TRPC5, TRPC1, and TRPC4) and 
thermosensor (TRPV1, TRPV3, TRPV4, and TRPA1) TRP channels are activated 
by exogenous NO-releasing donors through  S -nitrosylation [ 29 ,  32 ], but with very 
limited TRP subtype selectivity. Recently, this problem was partly solved with our 
fi nding that the 7-azabenzobicyclo[2.2.1]heptane (ABBH)  N -nitrosamine selectively 
activates TRPA1 through transnitrosylation [ 80 ]. 

 Although protein  S -nitrosylation is widely accepted, questions regarding target 
selectivity of  S -nitrosylation signaling are incompletely understood [ 97 ]. NO is 
produced in vivo by only three NO synthase (NOS) isoforms [ 98 ], and NO is 
reactive and diffusible within cells. Binding of NOS to targets or their adaptors has 
been demonstrated at select sites of nitrosylation reactions, but there are many 
 S -nitrosylated proteins (>1,000) [ 96 ,  99 ,  100 ]. Recent studies have identifi ed that 
protein–protein transnitrosylation, the transfer of the NO group from one protein to 
another in the absence of apparent NO release, is a potentially important targeting 
pathway [ 99 ,  101 ,  102 ]. Transnitrosylation is exemplifi ed by transnitrosylation of 
X-linked inhibitor of apoptosis by SNO-caspase-3 in apoptotic cell death [ 103 – 106 ]. 
Here, a binding interaction between the two proteins is also required for 
 transnitrosylation, because a binding-defi cient mutant of one protein abrogates this 
protein–protein transnitrosylation [ 105 ,  106 ]. 

 In our effort to develop transnitrosylation-based subtype-selective activators of TRP 
channels, it was necessary that we fi rst identify a synthetic NO donor that has only 
transnitrosylative reactivity. However, SNAP ( S -nitroso- N -acetyl-DL- penicillamine) 
and NOR3 ((±)- (E) -4-ethyl-2-[ (E) -hydroxyimino]-5-nitro-3- hexenamide) are 
NO-releasing donors.  S -Nitrosoglutathione is known to be a biological transnitro-
sylating agent, but also actively releases NO [ 107 ,  108 ]. In contrast, the ABBH 
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 N -nitrosamines constitute a new class of NO donors that, at physiological pH and 
temperature, transnitrosylate thiols to generate  S -nitrosothiols without releasing NO 
[ 109 – 111 ]. Surprisingly, our intracellular Ca 2+ –imaging measurements have dem-
onstrated that  N -nitroso-2-exo,3-exo-ditrifl uoromethyl-7-azabenzobicyclo[2.2.1]
heptane (NNO-ABBH1) induces robust Ca 2+  infl ux via recombinant human TRPA1 
channels, but not via other SNAP-activated TRP channels, suggesting that NNO-
ABBH1 selectively  S -nitrosylates TRPA1 [ 80 ] (Fig.  2 ). SNAP  S -nitrosylates both 
TRPA1 and TRPV1, but NNO-ABBH1  S -nitrosylates only TRPA1. Importantly, 
TRPA1 activation by NNO-ABBH1 is suppressed by specifi c cysteine mutations 
but not by NO scavenging, indicating that transnitrosylation underlies the activation 
of TRPA1 by NNO-ABBH1. This is supported by a positive correlation of N–NO 
bond reactivity and TRPA1-activating potency in a congeneric series of ABBH 
 N -nitrosamines. Cys540, Cys641, and Cys665 of human TRPA1 are involved in its 
modifi cation by NNO-ABBH1. Because Cys641 and Cys665 are also required for 
responsiveness to SNAP [ 32 ,  86 ], Cys540 may be a unique target for NNO-ABBH1.

   Several non-electrophilic analogs of NNO-ABBH1— N -H (NH-ABBH), 
 N -formyl (NCHO-ABBH), and  N -methyl (NMe-ABBH) (Fig.  2 )—also activated 
TRPA1 but less potently than NNO-ABBH1. They also did not cause  S -nitrosylation 
of TRPA1, and their activity was not affected by cysteine mutation of TRPA1. 
Interestingly, the NMe-ABBH sensitivity of TRPA1 was signifi cantly enhanced by 
SNAP at a subthreshold concentration (10 μM), supporting the idea that TRPA1 
activation by these non-electrophilic analogs may be subject to positive synergistic 

  Fig. 2    Selective S-nitrosylation of human TRPA1 by a novel N-nitrosamine. ( a ) Chemical mecha-
nism underlying the transnitrosylating action of NNO-ABBH1 on protein thiol group. ( b ) Chemical 
structures of non-electrophilic analogs of NNO-ABBH1       
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interactions between nitrosylation and molecular recognition. Thus, NNO-ABBH1 
may be a hybrid activator. It is reported that a non-electrophilic TRPA1 activator 
fl ufenamic acid synergistically potentiates the activation of TRPA1 by AITC [ 54 ]. 
Also, umbellulone has been proposed to activate TRPA1 by combining covalent 
interaction at a reactive cysteine with noncovalent interaction with a second site on 
TRPA1 [ 41 ]. In contrast to TRPA1, TRPC5 and TRPV1 failed to respond to NMe- 
ABBH. Molecular recognition of chemical groups other than NO may explain the 
subtype-selective activation of TRPA1 by these compounds. 

 Despite evidence of synergistic effects between cysteine trans-nitrosylation and 
molecular recognition of the non-electrophilic moiety, it remains unclear how the 
transnitrosylation site and the non-electrophilic molecular recognition site converge 
in TRPA1. Also, it is unknown whether NNO-ABBH1 and other non-electrophilic 
analogs have bimodal and/or species-specifi c effects on TRPA1. Further detailed 
studies into TRPA1 modulation by ABBH  N -nitrosamines will provide a basis for 
developing new drugs selectively targeting  S -nitrosylation of TRPA1. In addition, 
these studies will be expanded toward the development of selective transnitrosylating 
modulators of other proteins.   

    TRPC Channels as Therapeutic Targets for Heart Failure 

    Structure and Function of TRPC Channels 

 Seven mammalian homologs (TRPC1-C7) have so far been identifi ed and expressed 
in the heart. While TRPC4 and TRPC5 share about 65 % amino acid homology in 
their group, TRPC3, TRPC6, and TRPC7 display the greatest homology covering 
~75 % of the amino acid sequence [ 112 ]. TRPC1, TRPC3, and TRPC6 have been 
identifi ed to play a role in cardiovascular diseases, especially pathological cardiac 
hypertrophy and heart failure. 

 The mammalian TRPC proteins include three to four ankyrin repeats and coiled- 
coil domain in the cytoplasmic N-terminal sequence that are essential for tetrameric 
channel assembly, and six putative transmembrane domains, and amino acid 
sequence identity (≥30 %) over the N-terminal ~750–900 amino acids in the inter-
nal C-terminus, which includes the TRP box motif with the conserved EWKFAR 
residues and another coiled-coil motif. The higher-order structure of TRPC3 
channels was recently solved using single particle cryo-electron microscopy [ 113 ]. 
The ice structure is lace-like and very open, with a very large overall volume. The 
TRPC channels appear to form assemblies of homotetramers or heterotetramers at 
least within given structural subfamilies; i.e., TRPC1/4/5 or TRPC3/6/7 [ 114 ]. 
TRPC1, TRPC4, and TRPC5 channels are activated by inositol-1,4,5-trisphosphate 
(IP 3 )–dependent mechanisms, while TRPC3, TRPC6, and TRPC7 are directly 
activated by diacylglycerol (DAG) independently of the store depletion–induced 
mechanism [ 115 ]. Meanwhile, it is reported that the direct interaction of TRPC3 
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with IP 3 R or ryanodine receptor (RyR) is required for TRPC3 activation [ 116 ,  117 ] 
and the DAG-induced activation of native TRPC7 in DT40 B lymphocytes [ 118 ]. 
The N-termini and C-termini serve as the sites for protein scaffolding, including 
IP 3 R, RyR, caveolin [ 119 ], phospholipase C (PLC) γ [ 120 ,  121 ], protein kinase Cβ 
[ 122 ], and Na + /H +  exchanger regulatory factor (NHERF) 1 [ 123 ]. These interactions 
are often found to regulate subcellular localization of the respective TRPC proteins. 
For example, interaction of the ankyrin domain in TRPC6 with the ring fi nger pro-
tein (RNF24) is essential for retention of TRPC6 in the Golgi apparatus [ 124 ], and 
association of TRPC3 at the N-terminus with vesicle-associated membrane protein 
(VAMP) 2 is required for vesicular traffi cking of TRPC3 [ 125 ]. 

 TRPC1 is considered unique because no other family member shares high- 
sequence homology. TRPC1 fi rst emerged as a candidate subunit of SOCs [ 126 – 129 ]. 
Recently, our study has implicated the critical involvement of TRPC1 in coordination 
with elementary Ca 2+  signaling events that promote functional coupling between the 
ER and plasma membrane in receptor-induced Ca 2+  signaling [ 130 ]. Thus, TRPC1 
may not only function as a Ca 2+ -permeable channel–forming subunit, but also as an 
accessory protein to form the Ca 2+  signaling complex. 

 The activation mechanism of TRPC channels is not only linked to PLC activation 
by receptor stimulation, but also linked to physical stimulations such as mechanical 
stretch, hypoxia, and oxidative stress [ 131 ]. TRPC1 and TRPC6 have been sug-
gested to be a component of the tarantula toxin–sensitive mechanosensitive cation 
channels [ 132 ,  133 ]. For example, the excessive mechanical stress–induced muscle 
contractility in myocytes with Duchenne muscular dystrophy was blunted by inhibi-
tion or deletion of TRPC6 [ 134 ]. On the other hand, intracellular lipid mediators, 
such as DAG and 12-hydroxy-eicosatetraenoic acid (12-HETE), reportedly mediate 
TRPC6 channel activation induced by oxidative stress [ 135 ] and mechanical stretch 
[ 136 ]. Thus, TRPC6 protein signaling complex, including TRPC1 and TRPC3, may 
function as both mechanosensitive and mechanoactivated cation channels in the 
cardiovascular system.  

    Role of TRPC Channels in Pathological Cardiac Remodeling 

 Cardiovascular disease is a leading cause of morbidity and mortality, accounting for 
more than a quarter of all deaths worldwide. Especially, heart failure is a fi nal stage 
of all cardiovascular diseases, and the 5-year survival rate after diagnosis is less 
than 50 % [ 137 ]. Several drugs that modulate neurohumoral activation, such as 
β-adrenergic receptor antagonists, angiotensin-converting enzyme (ACE) inhibi-
tors, angiotensin (Ang) type 1 receptor (AT1R) antagonists, and mineral corticoid 
receptor antagonists, have been introduced for the treatment of heart failure [ 138 ]. 
Treatment with these drugs has been shown to improve the prognosis in patients 
with heart failure with reduced systolic function, but the mortality for heart failure 
still remains unacceptably high. Thus, additional approaches are greatly required as the 
prevalence of cardiovascular diseases continues to rise and exact a huge societal cost. 
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Induction of pathologic remodeling (i.e., structural and morphological changes of 
organs) and organ dysfunction is a common prominent feature of these disorders 
that is mediated by excessive and sustained neurohumoral and mechanical stimula-
tion. In the cardiovascular system, the TRPC family has been particularly found to 
play a role in cardiovascular diseases. As heart failure is developed through hyper-
trophy [ 139 ], many studies have investigated the mechanisms of hypertrophy [ 140 ]. 
TRPC1, TRPC3, and TRPC6 are often upregulated in several rodent models of 
cardiac hypertrophy, and their inhibition ameliorates the associated cardiovascular 
dysfunction [ 141 ]. In human heart failure, upregulation of TRPC5 and TRPC6 
was observed [ 34 ,  142 ]. Although the subtype of upregulated TRPC channels at 
hypertrophy may differ between mice and humans, these fi ndings suggest that the 
expression of TRPC channels is increased on hypertrophy, and upregulated TRPC 
may activate local Ca 2+  signaling essential for the progression of pathological cardiac 
remodeling and failure. 

 TRPC expression is regulated by the Ca 2+ -dependent protein phosphatase, 
calcineurin, and its downstream target, nuclear factor of activated T cells (NFAT) 
[ 143 ,  144 ]. Increases in the frequency or amplitude of Ca 2+  transients evoked by 
Ca 2+  infl ux–induced Ca 2+  release in excitable cardiomyocytes is thought to encode 
signals for induction of hypertrophic gene expression [ 145 ,  146 ]. Activation of 
TRPC channels induces local Ca 2+  signaling through an increase in the frequency 
of Ca 2+  transient via Na +  infl ux–dependent membrane depolarization and/or direct 
Ca 2+  infl ux, which leads to NFAT transcriptional activation through calcineurin- 
dependent dephosphorylation and nuclear translocation of NFAT. TRPC3-mediated 
Ca 2+  infl ux has been shown to regulate hypertrophic gene expression without affect-
ing cardiac beating and cell size [ 147 ]. As the promoter region of the TRPC6 gene 
contains NFAT binding sites, activation of plasma membrane TRPC channels may 
serve as a positive-feedback mechanism to amplify TRPC-mediated Ca 2+  signaling 
in the heart [ 34 ]. In addition, NFAT transcriptional activation requires association of 
co-factor(s) with NFAT, and TRPC6 upregulation is also mediated by stress- 
activated protein kinases (c-Jun NH 2 -terminal kinase and p38 mitogen-activated 
protein kinase) upon receptor stimulation in cardiac fi broblasts [ 148 ,  149 ]. Thus, 
multiple transcriptional pathways including the calcineurin–NFAT pathway have 
been linked to maladaptive cardiovascular remodeling via TRPC upregulation. 

 Mice with cardiomyocyte-specifi c overexpression of TRPC3 and TRPC6 show 
heightened sensitivity to mechanical stress and increased expression of a sensitive 
marker for pathological hypertrophy [ 34 ,  150 ]. In contrast, pressure overload–
induced cardiac hypertrophy is suppressed by double deletions of TRPC3/6 genes 
in C57BL6/J background mice, although single deletion of TRPC3 and TRPC6 
genes never suppresses cardiac hypertrophy [ 151 ]. As TRPC3 and TRPC6 form 
heteromultimer channels and regulate agonist- and mechanical stretch–induced 
hypertrophic growth of rat neonatal cardiomyocytes [ 35 ] and mice lacking TRPC6 
were reported to have mRNA upregulation for TRPC3 [ 152 ], TRPC3 and TRPC6 
proteins may compensatively work with each other. TRPC6 is abundantly expressed 
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in cardiac fi broblasts, and fi broblasts lacking the TRPC6 gene were refractory to 
transdifferentiation [ 149 ]. TRPC6 gene-deleted mice show impaired dermal and 
cardiac wound healing after injury, suggesting an obligate function for TRPC6 and 
calcineurin in promoting myofi broblast differentiation. 

 TRPC1 is also thought to play a pathologic role in the heart, with increased 
expression observed in rodent hearts with cardiomyocyte hypertrophy. Ohba et al. 
fi rst reported the potential involvement of TRPC1 channels in pressure overload–
induced hypertrophy [ 153 ]. Among TRPC1, TRPC3, TRPC5, and TRPC6, TRPC1 
expression was increased in abdominal aortic-banded rats. Endothelin-1 (ET-1) 
stimulation resulted in the increased expression of brain natriuretic protein (BNP), 
atrial natriuretic factor (ANF), and TRPC1 as well as an increased cell surface area 
in neonatal myocytes. ET-1 stimulation also increased Ca 2+  entry possibly through 
TRPC channels. Knockdown of TRPC1 with siRNA prevented Gq-coupled 
receptor- stimulated hypertrophic responses. Mice with global TRPC1 gene deletion 
show less cardiac hypertrophy and left ventricular dysfunction in response to pres-
sure overload or neurohormonal stimulation in comparison with wild-type 129Sv 
background mice [ 154 ]. Although it is still unclear whether TRPC1 gene deletion 
never suppresses physiological (adaptive) hypertrophy in vivo, TRPC1 might be 
also a therapeutic target for heart failure.  

    Negative Feedback Mechanism in TRPC Channels 

 Phosphorylation of TRPC3/6 proteins by protein kinase C (PKC), protein kinase A 
(PKA), and protein kinase G (PKG) has been widely accepted as a major post- 
translational modifi cation that negatively regulates TRPC channel activity. PKG can 
directly phosphorylate human TRPC3 at Thr-11 and Ser-263, and human TRPC6 at 
Thr-70 and Ser-322. PKG is activated by NO, atrial natriuretic peptide (ANP), or 
inhibition of phosphodiesterase (PDE)-5, each of which negatively regulates patho-
logical cardiac hypertrophy. The physiological importance of PKG-dependent neg-
ative regulation of TRPC6 channel activity by NO was originally identifi ed as a 
mechanism of endothelium-dependent vasodilation [ 155 ]. As PKA and PKG recog-
nize a similar substrate sequence, PKA-dependent phosphorylation of rodent 
TRPC6 at Thr-69 was also revealed to serve as an endothelium-independent vasodi-
lation [ 156 ]. Increased PKG activity attenuates Ca 2+ /calcineurin-dependent cardio-
myocyte hypertrophy induced by receptor stimulation and mechanical stretch, and 
mutation of the PKG phosphorylation site on TRPC6 canceled this inhibitory effect 
[ 157 ]. In contrast, decreased cGMP/PKG signaling by deletion of the guanylate 
cyclase (GC)-A gene was associated with development of spontaneous cardiac 
hypertrophy through TRPC3/6 channel activation [ 158 ]. Actually, this hypertrophy 
was attenuated by treatment with Pyr2, an inhibitor of all TRPC channels.  
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    Suppression of Pathological Cardiac Hypertrophy 
by TRPC3/6 Inhibition 

 Several reagents that inhibit TRPC3/6 channel activity have been shown to suppress 
cardiac hypertrophy in vivo and in vitro. For example, α1 adrenergic receptor–
stimulated hypertrophic responses were blocked by 2-aminoethoxydiphenylborane 
(2-APB) and N-{4-[3,5-bis(trifl uoromethyl)-1H-pyrazol- 1yl]phenyl}-4-methyl-
1,2,3-thiadiazole-5-carboxamide (BTP2; also called Pyr2), but not by verapamil, 
a voltage-dependent L-type Ca 2+  channel blocker [ 142 ]. Indirect inhibition of 
TRPC3/6 channel activities by PDE-5 inhibitors [ 159 ] and ANP [ 158 ] can also sup-
presses pathological hypertrophy through phosphorylation of TRPC6 at Thr69. 
Mori developed a pyrazole compound, Pyr3, which selectively inhibits TRPC3 
channel activity with an IC 50  value of 0.7 μM [ 36 ]. Interestingly, Pyr3 showed more 
potent inhibitory effects on mechanical stretch–induced NFAT activation and hyper-
trophic growth of rat neonatal cardiomyocytes, suggesting that Pyr3 is more selec-
tive for native TRPC3/6 heteromultimer channels in the heart. Indeed, left ventricular 
dilation and dysfunction induced by pressure overload [ 36 ] or genetic deletion of 
muscle LIM protein [ 160 ] were actually reduced by a low concentration (0.1 mg/kg/
day) of Pyr3 treatment. Moreover, Pyr3 treatment also suppressed oxidative stress 
and cardiac fi brosis in mouse hearts with dilated cardiomyopathy, and mechanical 
stretch–induced production of ROS in rat cardiomyocytes. Two recently identifi ed 
selective TRPC3/6 inhibitors, GSK2332255B and GSK2833503A (IC 50 , 3–21 nM 
against TRPC3 and TRPC6), also inhibited ET-1-induced hypertrophic responses in 
adult cardiac myocytes [ 151 ]. These fi ndings strongly suggest that TRPC3 and 
TRPC6 are emerging as critical targets in the development of drugs relevant to 
therapies for pathological cardiac remodeling and chronic heart failure.   

    Conclusion 

 Because TRPA1 mediates neuropathic pain, vascular dilation, and other functions, 
it has the potential to be an excellent drug target. Therefore, it is important to under-
stand the mechanisms of both activation and inhibition of TRPA1 by small mole-
cules. Recent studies have revealed that TRPA1 modulation by electrophiles is 
through cysteine oxidation, and that molecular recognition of chemical structures is 
a key determinant of TRPA1 modulation not only by non-electrophilic compounds, 
but also by some specifi c electrophiles. A novel ABBH  N -nitrosamine induces 
selective  S -nitrosylation of TRPA1 probably through synergistic processes of cyste-
ine oxidation and molecular recognition of the non-electrophilic moiety. However, 
molecular bases of TRPA1 modulation by non-electrophilic compounds are very 
poorly understood. Further studies are required to delineate the entire mechanism. 
Similarly, further research is needed to defi ne in detail the molecular mechanisms 
by which chemical ligands induce the activation of other TRP channels, such as 
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TRPV1 and TRPM8 [ 10 ,  161 ]. This might support our understanding of TRPA1 
mechanisms. TRPA1 channel activity is also modulated by Ca 2+ , receptor stimulation, 
pH, osmotic pressure, and temperature [ 60 ,  162 – 168 ], so a better understanding 
of the complexities of its modulation is critical to the development of novel 
TRPA1-specifi c drugs. It will also improve our appreciation of the physiological 
and pathological functions of TRPA1. 

 In terms of TRPCs, a growing body of evidence has suggested that direct or 
indirect inhibition of TRPC3/6 channel activity improves pathological cardiac 
remodeling and heart failure in mice, although the molecular mechanisms underly-
ing regulation of transition of the heart from adaptation to maladaptation by 
TRPC3/6 channels are still uncovered. A pyrazole-derivative compound is also 
reported to inhibit SOCs as well as TRPC3 [ 169 ], but our fi ndings strongly suggest 
that a pyrazole-derivative compound (especially Pyr3) will become a promising 
seed for the treatment of chronic heart failure.     
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