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      Translational Research of the Activation 
of the C-Type Natriuretic Peptide (CNP)-
Guanylyl Cyclase-B Pathway for Skeletal 
Dysplasia                     

       Akihiro     Yasoda       and     Kazuwa     Nakao    

    Abstract     The natriuretic peptide family consists of three endogenous ligands: 
atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type 
 natriuretic peptide (CNP). They exert their biological actions through two subtypes 
of particulate guanylyl cyclase (GC): GC-A for ANP and BNP, and GC-B for 
CNP. Among the natriuretic peptide family members, ANP and BNP are cardiac 
hormones that are produced and released from the atrium and ventricle of the heart, 
respectively, and play important roles in the regulation of the cardiovascular system. 
On the other hand, although CNP and its receptor, GC-B, exist ubiquitously in the 
body, we elucidated that the CNP/GC-B system is a crucial stimulator of endochon-
dral bone growth, using CNP or GC-B knockout or transgenic mice. We planned to 
utilize the activation of the CNP/GC-B pathway as a novel therapeutic strategy for 
skeletal dysplasia, which consists of multiple skeletal diseases including those with 
impaired bone growth. We tried to investigate this effect on impaired skeletal growth 
in a mouse model of achondroplasia, the most common form of skeletal dysplasias, 
and successfully recovered the skeletal phenotype by using transgenic technology 
or by administration of synthetic CNP. In the future, the activation of the CNP/
GC-B system may constitute a novel therapeutic strategy for the treatment of 
 skeletal dysplasias.  
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        Introduction 

 The natriuretic peptide family consists of three endogenous ligands: atrial  natriuretic 
peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide 
(CNP) [ 1 ]. They exert their biological actions through two subtypes of particulate 
guanylyl cyclase (GC): GC-A for ANP and BNP, and GC-B for CNP [ 2 ]. Among 
the natriuretic peptide family members, ANP and BNP are cardiac hormones that 
are produced and released from the atrium and ventricle of the heart, respectively, 
and play important roles in the regulation of the cardiovascular system [ 3 – 7 ]. CNP, 
a third member of the natriuretic peptide family, was fi rst purifi ed from porcine 
brain [ 8 ]. Therefore, CNP was thought to be the primary natriuretic peptide in the 
brain, but has been proved to exist ubiquitously in the body, e.g., in the blood 
 vessels, gonads, adrenal gland, etc. [ 9 – 15 ] (Fig.  1 ). Furthermore, analysis of the 
CNP/GC-B system in genetically engineered mice revealed that CNP and GC-B 
play a pivotal role in the regulation of endochondral bone growth.
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  Fig. 1    Schematic representation of the distribution of the CNP/GC-B system. CNP and its 
 receptor, GC-B, exist ubiquitously in the body       
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       Skeletal Phenotypes of the CNP/GC-B System in Genetically 
Engineered Mice 

 Targeted disruption of the CNP gene ( Nppc ) causes prominent short stature due to 
impaired bone growth in mice [ 16 ] (Fig.  2 ). Mammalian bones are formed through 
two different mechanisms, endochondral ossifi cation and membranous ossifi cation. 
Most mammalian bones are formed through endochondral ossifi cation, in which the 
growth of bone is dependent on the growth of cartilaginous anlage as the scaffold of 
bone; later, it is replaced by calcifi ed bone [ 17 ]. In the process of endochondral 
ossifi cation, chondrocytes in the growth plate undergo proliferation, hypertrophy, 
and cell death, and fi nally are replaced by osteoblasts. The short-stature phenotype 
of CNP knockout (CNP-KO) mice results from impaired bone growth through 
endochondral ossifi cation. Histological analysis of the growth plate of CNP-KO 
mice revealed that every chondrocyte layer of the growth plate is narrower in 
CNP-KO mice than in wild-type mice. Furthermore, mice depleted with the GC-B 
gene ( Npr2 ) exhibit the same short-stature phenotype observed in CNP-KO mice, 
demonstrating that the CNP/GC-B system is a physiologically important stimulator 
of endochondral bone growth [ 18 ].
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  Fig. 2    Gross phenotype 
( upper panel ) and growth 
curve ( lower panel ) of the 
CNP-KO mouse       
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   In contrast, cartilage-specifi c CNP transgenic mice under the control of type II 
collagen promoter (col2-CNP-Tg mice) exhibit prominent overgrowth of bones 
formed through endochondral ossifi cation [ 19 ] (Fig.  3a ). In contrast to CNP- or 
GC-B-KO mice, every chondrocyte layer, especially hypertrophic chondrocyte 
layer, of the growth plate of col2-CNP-Tg mice is wider than that of wild-type mice 
(Fig.  3b ). Collectively, the CNP/GC-B system is a physiological stimulator of endo-
chondral bone growth and can potently stimulate bone growth as a local regulator.

       Importance of CNP/GC-B Signaling in Endochondral Bone 
Growth in Humans: Lessons from Rare Congenital Skeletal 
Disorders 

 Skeletal dysplasias are human genetic disorders of the skeleton, whose feature is 
impairment of bones. In 2004, Bartels et al., reported that acromesomelic dysplasia, 
type Maroteaux, one form of skeletal dysplasia with a severely impaired bone 

  Fig. 3    Cartilage-specifi c 
CNP transgenic mouse. 
( a ) Gross appearance of 
female cartilage-specifi c CNP 
transgenic (col2-CNP-Tg) 
mouse and its wild-type litter 
mate at the age of 10 weeks. 
( b ) Immunohistochemical 
staining for type X collagen 
of a histological section of 
the tibial growth plates       
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growth phenotype, is caused by a loss-of-function mutation in the human GC-B 
gene [ 20 ]. In fact, the skeletal phenotype observed in this disorder was just the same 
as that of GC-B-KO mice, and here for the fi rst time, the CNP/GC-B signaling was 
proved to be a physiological and potent stimulator of endochondral bone growth not 
only in mice but also in humans. Later, in 2012, Miura et al., reported a Japanese 
case of skeletal overgrowth phenotype and showed that it was caused by a constitu-
tively activated mutation in the GC-B gene [ 21 ]. They also reported a Korean case 
of skeletal overgrowth caused by a constitutive active mutation in the GC-B gene 
[ 22 ]. Thus, the notion that the CNP/GC-B system is a potent stimulator of 
 endochondral bone in human is fi rmly established so far.  

    Translational Research into Activation of CNP/GC-B 
Signaling for Skeletal Dysplasias 

 Following these results, we planned to start translational research into activation of 
the CNP/GC-B system for disorders with impaired bone growth in skeletal dyspla-
sias. Achondroplasia is the most common form of skeletal dysplasias, with a birth 
prevalence of ~1:10,000. Patients suffering from achondroplasia exhibit short 
 stature (fi nal height: ~130 cm in males and ~120 cm in females) and a short-limbed 
dwarf phenotype owing to impaired endochondral bone growth, and it had been 
shown to be caused by a constitutive active mutation in the FGF receptor 3 (FGFR3) 
gene, followed by a decrease in the proliferation of chondrocytes in the growth plate 
[ 23 ,  24 ]. Current therapies for achondroplasia consist of distraction osteogenesis, an 
orthopedic procedure, and administration of growth hormone [ 25 ]. Although dis-
traction osteogenesis gives better results, it lays a burden on patients and limits their 
quality of life. Growth hormone has a minimal effect. Therefore, we started transla-
tional research into activation of the CNP/GC-B system for this disease. We obtained 
transgenic mice with targeted overexpression of activated FGFR3 (G380R mutation 
in humans) in cartilage, using type II collagen promoter as a mouse model of achon-
droplasia (Ach mice) [ 26 ]. As shown in Fig.  4 , Ach mice show short stature and an 
impaired bone growth phenotype, and mimic the skeletal phenotype of achondro-
plastic patients. We achieved targeted overexpression of CNP in the growth plate of 
Ach mice by crossing them with col2-CNP-Tg mice. The short stature observed in 
Ach mice, owing to their impaired bone growth, was recovered in the double 
 transgenic Ach/col2-CNP-Tg mice and grew almost comparable to that of wild-type 
mice (Fig.  4 ). As was previously reported, the length of the Ach mice was signifi -
cantly shorter at least at the third week after birth, and more than 10 % shorter after 
6 weeks of age, than that of their wild-type litter mates. In Ach/col2-CNP-Tg mice, 
the decrease in the length of Ach mice was recovered, and the length became 
 comparable to that of their wild-type litter mates. A soft x-ray picture revealed that 
the shortening of Ach bones was almost completely recovered in double transgenic 
bones. But the width of the cranium, which is made through membranous 
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ossifi cation, was not changed. Histological examination of the tibial growth plate 
showed that the width of the growth plate of Ach mice was shorter than that of wild-
type mice, but was restored in the growth plate of the double transgenic mice [ 19 ].

   Next, in order to test the effect of elevated plasma concentrations of CNP on 
endochondral bone growth, we generated transgenic mice with an elevated plasma 
concentration of CNP, using human serum amyloid P component promoter, which 
enables targeted overexpression of CNP in the liver (SAP-CNP-Tg mice) (Fig.  5 ). 
The resultant SAP-CNP-Tg mice, which have about two times the plasma CNP 
concentration of wild-type mice, exhibited skeletal overgrowth just like col2-CNP-
 Tg mice [ 27 ]. Then we mated Ach mice with the SAP-CNP-Tg mice and tried to 
rescue the impaired endochondral bone growth of Ach mice by increased  circulating 
CNP. We could successfully rescue the short-stature phenotype of Ach mice in the 
double transgenic Ach/SAP-CNP-Tg mice (Fig.  6a ). After 6 weeks of age, the short 
stature observed in Ach mice was completely rescued in Ach/SAP-CNP-Tg mice. 

  Fig. 4    Skeletal rescue of achondroplastic model mouse by targeted overexpression of CNP in 
cartilage. The gross appearance ( left ) and soft x-ray picture ( right ) of litter mates of the mice at the 
age of 3 months are depicted       

  Fig. 5    Generation of CNP transgenic mice with increased circulating CNP under the control of 
human serum amyloid P component (SAP) promoter. Gross appearance ( left ) and soft x-ray picture 
( right ) of litter mates of the mice at the age of 15 weeks are depicted       
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Skeletal analysis by a soft x-ray picture also exhibited that the impaired bone growth 
of Ach mice was rescued by increased circulating CNP (Fig.  6b ). The lengths of the 
humerus, radius, ulna, femur, and tibia of the double transgenic mice were rather 
longer than those of wild-type mice. Histological examination revealed that the 
shortened growth plate of Ach mice was rescued in Ach/SAP-CNP-Tg mice and 
became rather elongated in comparison with the wild-type mice [ 28 ].

    Finally, we tried to administrate CNP to Ach mice. Ach mice were about 10 % 
shorter than wild-type mice at the beginning of administration at the age of 3 weeks. 
Administration of CNP at the dose of 1 μg/kg/min stimulated the growth of Ach 
mice, and their length was almost comparable to that of wild-type mice at the end of 
the 4-week administration period (Fig.  7a ). A soft x-ray picture revealed that the 
impaired skeletal growth observed in Ach mice was recovered by administration of 
CNP. Administration of 0.1 μg/kg/min of CNP considerably rescued the shortness 
of Ach bones, and 1 μg/kg/min elongated them to an extent rather longer than those 
of vehicle-treated wild-type mice. Histological examination revealed that the narrowed 
growth plate of Ach mice was recovered and became comparable to that of wild-
type mice through administration of CNP at the dose of 1 μg/kg/min (Fig.  7b ) [ 28 ].

       Conclusions and Future Prospects 

 We have elucidated that CNP/GC-B signaling is a physiological stimulator of endo-
chondral bone growth and exhibited that the activation of this pathway strongly 
stimulates longitudinal bone growth in mice model. Furthermore, clinical reports 
showed that decreased signaling of this pathway causes impaired endochondral 
bone growth (acromesomelic dysplasia, type Maroteaux), and increased signaling 
causes skeletal overgrowth phenotype in humans. We started translational research 
into CNP/GC-B therapy for skeletal dysplasias using a mouse model of achondro-
plasia, and successfully rescued their impaired skeletal growth phenotype. 

  Fig. 6    Skeletal rescue of achondroplastic model mouse by increased circulating CNP. Gross 
appearance ( left ) and soft x-ray picture ( right ) of litter mates of the mice at the age of 3 months are 
depicted       
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 Nevertheless, there remain several problems to be solved to make CNP/GC-B 
therapy a reality for skeletal dysplasias. In the preclinical study described here, we 
had to administrate CNP intravenously, not subcutaneously, because CNP is easily 
degraded by subcutaneous endopeptidase. First, therefore, in the event that we use 
CNP, we must develop a way of administering CNP. Second, in relevance to this 
point, modifi cation of the clearance system of CNP may be another approach for 
activating the CNP/GC-B system [ 29 ].     

  Acknowledgments   We thank Dr. D. M. Ornitz for the Ach mice used in this work.  

  Fig. 7    Skeletal rescue of 
achondroplastic model mouse 
by continuous intravenous 
injection of CNP at the dose 
of 1 μg/kg/min. Gross 
appearance ( a ) and 
histological pictures of the 
vertebral growth plates ( b , 
safranin-O staining) of the 
mice at the end of the 4-week 
treatment       
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