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Abbreviations and Acronyms

2D	 Two-dimensional
CAD	 Coronary artery disease
CCT	 Cardiac computed tomography
CMR	 Cardiac magnetic resonance
CRT	 Cardiac resynchronization therapy
CT	 Computed tomography
CTCA	 Computed tomography coronary angiography
DCM	 Dilated cardiomyopathy
ECV	 Extracellular volume
FFR	 Fractional flow reserve
GRE	 Global relative enhancement
HF	 Heart failure
ICD	 Implantable cardioverter-defibrillator
LAV	 Left atrial volume
LGE	 Late gadolinium enhancement
LIE	 Late iodine enhancement
LLC	 Lake Louise criteria
LV	 Left ventricular
LVEF	 Left ventricular ejection fraction
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LVRR	 Left ventricular reverse remodeling
MOLLI	 Modified look-locker inversion recovery
RV	 Right ventricular
RVEF	 Right ventricular ejection fraction
SAPPHIRE	 Saturation pulse prepared heart rate-independent inversion recovery
SASHA	 Saturation recovery single-shot acquisition
SCD	 Sudden cardiac death
Sh-MOLLI	 Shortened modified look-locker inversion recovery
SSFP	 Steady-state free precession
STIR	 Short tau inversion recovery

8.1	 �Cardiac Magnetic Resonance

Cardiac magnetic resonance (CMR) has become an extensively validated nonin-
vasive diagnostic imaging tool. Through its ability to assess cardiac morphology 
and function, and to characterize myocardial tissue in a reliable and reproducible 
fashion, it plays a pivotal role in the management of patients with dilated cardio-
myopathy (DCM). In particular, it increases diagnostic accuracy and it aids in 
determining the etiology of left ventricular (LV) dysfunction and in prognostic 
stratification.

8.2	 �Diagnostic Accuracy

Steady-state free precession (SSFP) sequences are cornerstone sequences in 
CMR. Owing to their elevated spatial, temporal, and contrast resolution and lesser 
approximation in delineating endocardial borders than two-dimensional (2D) 
echocardiography, they minimize operator dependence and variability of intra- 
and interobserver reproducibility. SSFP cine imaging is currently regarded as the 
gold standard imaging technique for the evaluation of LV volume and systolic 
function [1, 2], as it is not affected by the geometric assumptions used in 2D echo-
cardiography for the LV (such as the area-length method) [3] (Fig. 8.1). In addi-
tion, the precise identification of endocardial borders allows more accurate and 
reliable evaluation of the extent of non-compacted myocardium than does 2D 
echocardiography, thus allowing a more precise diagnosis of myocardial non-
compaction [4] (Fig. 8.2). CMR also allows for accurate and reproducible, nonin-
vasive measurement of the left atrial [5, 6] and right ventricular volume and 
function [7, 8].

LV thrombus is a potential complication of severe LV dysfunction. Late gado-
linium enhancement (LGE) CMR imaging is the most accurate imaging modality to 
detect left ventricular thrombus [9], in particular when acquiring LGE sequences 
with a long inversion time (compared to that needed to null normal myocardium) in 
order to selectively null the avascular thrombus [10] (Fig. 8.3).
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a b c

Fig. 8.1  Calculation of LV- and RVEF in MR with SSFP cine sequences. Diastolic (a) and sys-
tolic (b) endocardial contours are outlined in multislice short-axis cine runs covering the entirety 
of the ventricles (c); slices are 8–10mm apart. Diastolic and systolic volumes are thus obtained

a b

Fig. 8.2  SSFP imaging of left ventricular non-compaction in three-chamber (a) and short-axis (b) 
views

a b

Fig. 8.3  Inversion recovery images with long inversion time in four chamber of the left ventricu-
lar thrombus in patients with left ventricular dysfunction secondary to myocardial infarction (a), 
and myocarditis presenting as heart failure (b)
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8.3	 �Differential Diagnosis

DCM is a condition characterized by LV dilatation and dysfunction and may rep-
resent the end stage of multiple cardiac disease processes of different etiology. 
The origin may be ischemic, inflammatory, infectious, hypertensive, or idiopathic. 
Accurate diagnostic characterization of DCM is of foremost importance in order 
to guide tailored treatment for patients affected by this condition. CMR is an 
important noninvasive imaging tool that helps to characterize the etiology of 
DCM.  This is achieved by evaluating the presence and distribution of macro-
scopic myocardial fibrosis with LGE sequences (Fig. 8.3 differential diagnosis). 
In particular, LGE is usually found in patients with LV dysfunction secondary to 
coronary artery disease. The pattern of distribution follows coronary perfusion 
territories, and the scar may be subendocardial or transmural. In patients present-
ing with de novo acute heart failure (HF) and no clinical or electrocardiographic 
suggestion of ischemic etiology, LGE-CMR is sensitive and specific for the pres-
ence of underlying significant coronary artery disease (CAD) [11, 12]. Conversely, 
LGE is absent in most patients with left ventricular dysfunction of nonischemic 
origin. If present in DCM, LGE is typically found in a mid-wall distribution with-
out an apparent correlation to coronary perfusion territories [13, 14] (Fig. 8.4). 
Mid-wall LGE was found in 10–28% of patients with DCM [13, 15]. Coexistent 
subendocardial LGE may indicate ischemic contribution to HF etiology despite 
the absence of angina and significant stenoses on coronary angiography, as infarc-
tion may follow coronary spasm or embolism, followed by spontaneous coronary 
recanalization [13, 16, 17].

8.4	 �Myocarditis Presenting as Left Ventricular Dysfunction

Patients presenting with HF and LV dysfunction with or without dilatation may be 
affected by active myocarditis. Inflammatory processes are characterized by 
increased water content due to edema. CMR may show edema at T2-weighted 
sequences such as short tau inversion recovery (STIR), diffuse hyperemia at global 
relative enhancement (GRE) sequences or T1-weighted sequences early after gado-
linium administration, or LGE with a myocarditic pattern (patchy subepicardial 
and/or mid-wall) (Fig. 8.5). Finding at least two of the aforementioned three crite-
ria, the Lake Louise criteria (LLC) was found to have good diagnostic accuracy in 
identifying myocarditis presenting with chest pain and troponin release [18]. 
However, the sensitivity of the LLC criteria is greatest for patients with infarct-like 
rather than HF or arrhythmic presentations [19, 20].

Recently, T2-mapping sequences were designed to obtain a T2 signal intensity 
decay curve of the myocardium, in order to estimate myocardial T2 value and gen-
erate a color T2 map off-line (Fig. 8.6). Normal native T2 time ranges between 39 
and 59 ms. T2 relaxation time is increased in conditions characterized by myocar-
dial edema [21]. In a recent study, patients with recent-onset HF and clinically sus-
pected myocarditis revealed higher median global myocardial T2 values in those 
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with biopsy-proven active myocarditis at T2 mapping, while there were no signifi-
cant differences in native or post-contrast global myocardial T1 [22]. Caution must 
be applied when interpreting these results as T2 values may differ according to 
sequences and field strength [23, 24]. Furthermore, increased T2 values may be 
found in DCM patients without inflammation. Finally, differences between normal 
and pathological subjects can be very subtle and reported in the range of 10–20 ms, 
sometimes even overlapping normal T2 values, making it therefore difficult to 
define precise cutoff values [23, 25]. Nevertheless, despite these limitations T2 
mapping can overcome the T2 or STIR sequence artifacts and is the only mapping 
sequence that allows for discrimination between inflammatory and noninflamma-
tory cardiomyopathies [26].

a b

c d

Fig. 8.4  Late gadolinium enhancement imaging in a case of DCM in four-chamber (a) and short-
axis (b) views showing patchy distribution of LGE (septal intramural and subepicardial free wall). 
LGE imaging in a case of LV dysfunction secondary to prior anterior myocardial infarction in 
two-chamber (c) and short-axis (d) views, showing transmural LGE in the left anterior descending 
territory
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As native T1 values increase with increasing myocardial water content, native T1 
mapping may serve as a complementary technique to T2-weighted imaging for 
assessing myocardial edema in myocarditis presenting as infarct-like syndrome [22, 
27] or where gadolinium is contraindicated. However, since native T1 values 
increase both with water content and with diffuse fibrosis, it is not able to discrimi-
nate between inflammatory and noninflammatory cardiomyopathies in patients pre-
senting with heart failure [28].

a b

Fig. 8.5  CMR imaging in a patient with acute myocarditis: short-axis T2-weighted images (a) 
show edema, and short-axis LGE images (b) show patchy subepicardial LGE in the septum, infe-
rior and anterolateral walls

a

b

c

Fig. 8.6  T2 mapping with multi-echo spin-echo sequence: endocardial and epicardial contours 
are traced in all slices for each echo time (a). A T2 decay curve fit is obtained, and the T2 value is 
calculated for the region of interest (b). Results can also be depicted in color-coded maps (c)
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8.5	 �Other Secondary Forms of DCM

CMR may help in diagnosing Chagas cardiomyopathy, caused by Trypanosoma 
cruzi infection, which results in LV dysfunction, HF, and ventricular arrhythmias. 
Its typical pattern is characterized by DCM with aneurysm formation with preferen-
tial sites at the apex and infero-lateral walls, which can be easily detected with SSFP 
cine imaging. The pattern of LGE is variable and may involve any or all layers of 
the myocardial wall [29, 30]. CMR was also found to identify the early stages of the 
disease [29].

Cardiac involvement of sarcoidosis may manifest itself as LV dilatation and dys-
function. Patients with sarcoidosis develop large areas of LGE with variable distri-
bution, which can precede the occurrence of LV dilatation, frequently involving the 
mid-wall of the basal septum, basal and lateral segments of the LV, and papillary 
muscles, unrelated to vascular territories [31].

8.6	 �Prognostic Stratification

Risk stratification is of foremost importance in DCM, particularly regarding the risk 
of sudden arrhythmic cardiac death (SCD). LV ejection fraction (LVEF) is the stron-
gest predictor of progression to HF [32], while LV volume and mass are indepen-
dently correlated with mortality and morbidity. Therefore, accurate quantification of 
all these parameters is essential to adequately evaluate patients and to monitor pro-
gression of disease and response to different therapeutic agents [33]. LVEF is the 
main criterion to select patients for primary prevention of SCD with implantable 
cardioverter-defibrillator (ICD) [34–36]. However, LVEF has low sensitivity and 
low specificity for the prediction of SCD [34, 37]. The use of low LVEF alone as an 
indicator for ICD placement is associated with both a low event rate of SCD in the 
control and treatment groups and a significant number of inappropriate ICD shocks 
[38]. Risk stratification for SCD among patients with nonischemic cardiomyopathy 
remains inadequate, causing ongoing clinical challenges in the appropriate identifi-
cation of candidates for primary prevention ICDs [39].

In DCM, the remodeling process is characterized by changes in the extracellular 
matrix and interstitial fibrosis. The fibrous tissue constitutes a substrate for ventricu-
lar arrhythmias by inducing slow and heterogeneous conduction, favoring reentrant 
circuits, and producing vulnerability to life-threatening ventricular tachyarrhyth-
mias [40]. Areas of LGE detected by CMR correlate well with histologically 
detected regional myocardial fibrosis in animal models and human explanted hearts 
[41, 42].

Several studies demonstrated that LGE is associated with an increased risk of 
adverse remodeling, hospitalization for HF, ventricular arrhythmia induction, 
and SCD in patients with DCM [43–52]. A recent meta-analysis showed that 
LGE was present in a considerable proportion of patients with DCM (44%), and 
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it had a strong and significant association with the risk for ventricular arrhyth-
mias and SCD. This association was consistently observed in patients at different 
stages of their cardiomyopathy and was independent of LVEF [53]. In DCM 
patients undergoing ICD placement for primary prevention of SCD, the presence 
of myocardial fibrosis is also predictive of appropriate device therapy [46, 54] 
regardless of LVEF. Mid-wall LGE may also identify a subgroup at high risk of 
SCD despite mild or moderate LV systolic impairment, not meeting conventional 
criteria for ICD implantation [55, 56]. Moreover, LGE extent is also associated 
with adverse outcomes [44]. However, LGE extent is variably described in stud-
ies, and there is no current consensus on the best method of LGE quantification 
[50]. A relationship between patterns of myocardial scar and arrhythmogenesis 
was also suggested: a scar with a transmurality of 26–75% is predictive of induc-
ible ventricular tachycardia [43]. The detailed characterization of the heteroge-
neous boundary zone surrounding the LGE-CMR base scar has been linked to 
all-cause mortality and the most frequent ventricular arrhythmias although its 
role in DCM patients is still controversial [57]. Despite the abovementioned 
strong evidences, however, current guidelines from European Society of 
Cardiology [35] and more recently from American College of Cardiology/
American Heart Association/Heart Rhythm Society [36] do not mention arrhyth-
mic risk stratification with LGE-CMR.

The presence and extent of LGE in patients with DCM also predicts a lack of 
improvement in LV function despite optimal medical treatment compared to a sig-
nificant improvement in patients without LGE [48, 58–61]. Furthermore, LGE 
detected at CMR correlates with LV diastolic function evaluated by Doppler echo-
cardiography. Patients with DCM and positive LGE have indices of higher diastolic 
filling pressure [62–64]. The presence and extent of LGE also correlates with echo-
cardiographic measures of LV systolic dyssynchrony, an indicator of poor clinical 
outcome [65].

Scar burden was also found to be predictive of poor response to cardiac resyn-
chronization therapy (CRT) [66]. Specifically, pacing over scar was associated with 
a higher risk of cardiac mortality or HF hospitalizations compared with pacing via-
ble myocardium [67, 68]. Moreover, pacing a transmural scar was associated with a 
worse outcome than pacing a subendocardial scar [69]. Scar in the vicinity of right 
ventricular (RV) lead during CRT may also be associated with suboptimal left ven-
tricular reverse remodeling (LVRR) [70]. However, the strategy avoiding myocar-
dial scar in lead implantation has not been evaluated by multicenter, randomized, 
controlled trials.

8.7	 �Macroscopic vs. Diffuse Fibrosis

Myocardial scar is the main substrate for ventricular arrhythmias, but not all 
patients with DCM have identifiable scars, especially in cases of diffuse fibrosis. In 
most patients with DCM, myocardial fibrosis does not progress focally but instead 
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gradually and randomly, leading to irreversible replacement fibrosis [42, 71]. LGE 
sequences are designed to improve signal contrast differences between zones of 
normal myocardium and zones with focal fibrosis or necrosis [72, 73]. The tech-
nique is however very limited in the quantification of widespread tissue fibrosis 
[72, 74, 75]. This impairment has been nowadays overcome with the introduction 
of another family of sequences (MOLLI, Sh-MOLLI, SASHA, and SAPPHIRE) 
that are able to quantitatively identify real myocardial T1 recovery time, native and 
post-contrast, and to quantify extracellular volume (ECV). It is also possible to 
assess all the collected data in color maps (Fig. 8.7) [76–78]. T1-mapping tech-
niques correlate with myocardial histology [79–82] and may allow the early dif-
ferentiation of diseased myocardium from healthy myocardium, in the absence of 
LGE [80, 83]. Native T1 and ECV are increased, and post-contrast T1 is decreased 
in nonischemic DCM patients [81, 83, 84]. All T1-mapping measures have been 
linked to prognosis in nonischemic DCM patients [85–88]. However, native T1 
was found to be the sole independent predictor of all-cause and HF composite 
endpoints in a recent large prospective multicenter observational study [86]. Native 
T1 has also shown a strong relationship with markers of structural and functional 
LV remodeling, diastolic impairment, and the severity of functional mitral regurgi-
tation [89–91].

aa c

d

b

Fig. 8.7  T1 mapping with modified look-locker sequence: inversion recovery images with differ-
ent inversion times are obtained (a) in short-axis views, before (native) and after (contrast-
enhanced) gadolinium administration. The signal intensity is measured in each image, and a T1 
relaxation curve (b) is obtained for the myocardium (green) and blood (orange). Results can be 
depicted as color-coded maps of native myocardial T1 (c) and ECV (d)
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8.8	 �Strain Analysis

In DCM, the occurrence of nonhomogeneous fibrous substitution of cardiomyo-
cytes may alter mechanical activity in these areas [92], thus leading to a heteroge-
neous compromise of regional contractile function [93]. Myocardial deformation 
analysis can supply useful information for the evaluation of global and regional 
myocardial function [94, 95]. CMR tagging is considered a reference standard for 
the assessment of myocardial regional function [96]. By adding grids or lines to the 
imaging plane through selective saturation pulses, and following them throughout 
the cardiac cycle, myocardial deformation can be quantitatively analyzed. However, 
the need for additional acquisition sequences and time-consuming protocols have 
limited its clinical application. Recently, new CMR feature tracking technology, 
which agrees well with CMR tagging, has allowed for the assessment of global and 
regional myocardial strain by tracking patterns of features or irregularities com-
prised between the endocardial and epicardial borders during cardiac cycle using 
SSFP long-axis and short-axis cine images (Fig. 8.8). This technology, similar to 
speckle tracking, can be applied to routine cine-CMR acquisitions, thus avoiding 
the need for dedicated pulse sequences [97]. Global longitudinal, circumferential, 
and radial strain are significantly impaired in patients with DCM [98]. More impor-
tantly, there is growing evidence that CMR-derived strain analysis is a predictor of 
adverse events in patients with nonischemic DCM [99–101]. In particular, global 
longitudinal strain analysis has independent and incremental prognostic value to 

a b c

d e f

Fig. 8.8  Strain analysis in a normal subject (a–c) and in a patient with DCM (d–f) at 1.5T. Color-
coded maps of peak longitudinal strain in two-chamber (a, d) and four-chamber (b, e) views. 
Bull’s-eye graphic depicting peak longitudinal strain values in all AHA segments (c, f)
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other risk factors including LVEF, LGE, and ECV [99–103]. Peak circumferential 
strain in association with the absence of LGE and LV mass were found to be predic-
tive of LVRR [104].

Cardiac dyssynchrony assessed by CMR strain analysis, associated with LGE 
imaging, was also suggested to better predict improvement in functional class after 
CRT implantation [105], compared to currently recommended parameters for 
patient selection [106].

8.9	 �Other Prognostic Indicators

Biventricular involvement in DCM identifies a subset of patients with poor outcome 
[107, 108]. CMR is considered the gold standard for noninvasive assessment of RV 
function [7, 8]. RV ejection fraction (RVEF) ≤45% was shown to be independently 
associated with adverse outcome in nonischemic DCM patients [109]. Furthermore, 
RV longitudinal strain is also an independent predictor of outcome and offers addi-
tional prognostic information over RVEF [110].

Left atrial enlargement is associated with adverse outcome in patients with DCM 
[111, 112]. Left atrial volume (LAV) provides the most accurate estimate of left atrial 
size compared to linear dimension in M-mode and area in 2D echocardiography 
[113]. Echocardiographic measures systematically underestimate LAV compared to 
CMR [6], even though both methods are reproducible and have limited intra- or 
interobserver variability. A LAV index >72 mL/m2, measured with the biplane area-
length method, was found to be an independent predictor of adverse events in DCM 
[114]. Conversely, LAV index<38 mL/m2 is predictive of LVRR [115].

Finally, RV dysfunction [109], but not greater degrees of trabeculation [116], is 
an independent predictor of survival and HF outcomes in patients with DCM.

8.10	 �Computed Tomography

Cardiac computed tomography (CCT) is a noninvasive cardiac imaging technique 
that is increasingly gaining importance in DCM patients. It is mainly used to test for 
the presence of CAD but may also play a role in the evaluation of cardiac volumes 
and function, characterization of the type of cardiomyopathy, and treatment 
planning.

Calcium score may be useful in excluding CAD as the etiology for HF. In patients 
with HF, an Agatston score of 0 has been shown to have 100% specificity in exclud-
ing left main or ≥2-vessel coronary artery disease [117, 118]. Computed tomogra-
phy coronary angiography (CTCA) (Fig.  8.9) is a highly accurate diagnostic 
modality for excluding CAD in patients with DCM of undetermined cause [119–
122], especially in the low- to intermediate-risk population due to its high specific-
ity (95–98%) and negative predictive value (95–100%) [123–125].

Prospective ECG triggering is the preferred CTCA mode to minimize radiation 
dose, although this is possible only if the heart rate is slow and regular. Retrospective 
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ECG gating must be used if the heart rate is high or irregular. This mode is also used 
for the evaluation of cardiac function and volumes, wall motion, and valvular abnor-
malities, with good correlation with CMR and contrast-enhanced echocardiography 
[2, 126–129]. Latest technologies such as CT perfusion and CT-FFR may give addi-
tional important information on the hemodynamic significance of coronary artery 
disease [130–135].

There is increasing evidence supporting the usefulness of CCT for the detection 
of myocardial fibrosis in patients with hypertrophic cardiomyopathy [136] and after 
myocardial infarction [137, 138] through late iodine enhancement (LIE), although 
CMR remains more sensitive. However, data in DCM patients are still limited. 
Initial data suggest that LIE-CCT correlates well with LGE-CMR and electro-
anatomic mapping [139, 140]. LIE may also be used for ECV assessment [141]. It 
has good correlation with T1-mapping methods and is associated with increased LV 
volume and reduced EF and circumferential strain [142]. Dual-energy CT reduces 
imaging artifacts and increases contrast to noise ratio and thus may improve LIE 
images compared to conventional CT [143, 144].

A number of challenges still remain, relating to the required contrast dose, image 
quality, and radiation exposure. CTCA has been given a high appropriateness rating 
for the evaluation of ischemic etiology in patients presenting with HF [145, 146]. 
However, for all other indications, CCT should still be reserved for patients with 
contraindications or suboptimal results of other imaging tests.
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