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Chapter 8
The Personal Data Is Political

Bastian Greshake Tzovaras and Athina Tzovara

Abstract  The success of personalized medicine does not only rely on method-
ological advances but also on the availability of data to learn from. While the gen-
eration and sharing of large data sets is becoming increasingly easier, there is a 
remarkable lack of diversity within shared datasets, rendering any novel scientific 
findings directly applicable only to a small portion of the human population. Here, 
we are investigating two fields that have been majorly impacted by data sharing 
initiatives, neuroscience and genetics. Exploring the limitations that are a result of a 
lack of participant diversity, we propose that data sharing in itself is not enough to 
enable a global personalized medicine.

Keywords  Genetics · Personalized medicine · Neuroscience · Data sharing · 
Diversity · Open data · Machine learning

8.1  �Introduction

Personalized or stratified medicine has been one of the hot topics in health care, 
reaching well beyond the launch of the Precision Medicine Initiative in the United 
States (Collins and Varmus 2010). The promise of personalized medicine is to iden-
tify individuals at risk and find optimally tailored health care solutions based on 
their genetic and environmental makeup (Lu et al. 2014). Although personal medi-
cine spans over a variety of medical and biological disciplines, two subfields are 
particularly promising due to their growing adoption: genetics and neuroscience. 
Indeed, many current examples of precision medicine come from pharmacogenom-
ics in general, specifically from oncology, where cancer treatments are picked to 
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match the mutations found in tumours (Kummar et al. 2015; Smith 2012; Tan and 
Du 2012).

While this use of genetic data in health care is projected to become more central 
in the next years, its success will depend on multiple factors. As for most things in 
healthcare, cost plays a huge role. But while the costs for performing a high preci-
sion medical examination, like a brain scan, or sequencing a human genome con-
tinue to drop (Wetterstrand 2018), their usefulness is bound by both our ability to 
quickly process these large amounts of data as well as the lack of medically-relevant 
scientific knowledge we have about individual genetic variants (Dewey et al. 2014), 
or complex neurobiological processes. As such it is key that science be able to gen-
erate genetic knowledge more quickly (Kohane 2015).

Two recent trends in science, big data and artificial intelligence, appear to be 
promising for not only accelerating our genomic and neurobiological understanding 
but also for diagnosing in a precision medicine framework (Moon et  al. 2007; 
Dilsizian and Siegel 2014). The idea is that artificial intelligence can be used to 
mine large data sets to find the smallest associations between genetic variants / neu-
romarkers and disease phenotypes, and to track disease progression or predict opti-
mal treatments. To effectively create such large data collections it thus becomes 
central to link and share individual data sets (Kohane 2015). But while the total 
number of basepairs sequenced per time as well as the total number of participants 
included in neuroscientific studies have exponentially increased over the last years, 
sharing practices for such data has not kept up a similar speed (Kovalevskaya et al. 
2016), despite individual efforts to enable open sharing of genetic (Mao et al. 2016; 
Greshake et al. 2014) or neuroscientific (Poline et al. 2012) data.

8.2  �Sharing Genomic Data

To alleviate these shortcomings individual academic consortia have been founded to 
pool data sets across institutions and individual researchers. National efforts include 
the UK10K (“UK10K” 2018), which aimed to sequence 10,000 participants in the 
United Kingdom and the similarly structured 100,000 Genomes Project by Genomics 
England (“Genomics England” 2018). In the United States, the Exome Aggregation 
Consortium (ExAC) (“ExAC” 2018) – which has collected over 60,000 exomes - 
and more recently the All of Us initiative (“All of Us” 2018) are collecting and 
aggregating more patient data for research purposes. And it  is not only academic 
research that is starting to collect large data sets for personalized medicine, com-
mercial companies are starting to explore the field too.

Since deCODE Genetics and 23andMe released the first Direct-To-Consumer 
genetic tests back in 2007 (Vorhaus 2010), the market for commercial genetic test-
ing has grown significantly: Not only in terms of companies like MyHeritage, 
FamilyTreeDNA, AncestryDNA or Veritas that have entered the market, but also in 
terms of the number of people who have gotten genetic tests through these services. 
Today, AncestryDNA has over five million customers and industry veteran 23andMe 
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has genetic data for over two million people (McAllister 2017). These sizable com-
mercial databases are of interest to academic and commercial researchers. 23andMe 
has collaborated with academic researchers on numerous research papers (“23andMe 
Research” 2018) and has done commercial for-profit collaborations with pharma-
ceutical companies like Pfizer and Genentech.

Who profits from such large-scale research remains open. As an example, in 
psychology the need to look into how representative study participants are has been 
acknowledged. After all, around 80% of all participants in psychology studies are 
from WEIRD (Western, Educated, Industrialized, Rich, Democratic) countries and 
do thus not represent human diversity (Henrich et al. 2010). As such, only WEIRD 
participants can fully profit from much of psychological research. To avoid the over-
representation of WEIRD individuals found in psychology, it is key that our genetic 
research data resources reflect human diversity across populations. Indeed, this 
issue of representativeness becomes even more central in the genetic framework of 
Genome Wide Association Studies (GWAS). These studies are commonly used to 
inform personalized medicine by identifying genetic risk factors, e.g. for cancer 
(Agyeman and Ofori-Asenso 2015). Unfortunately, most of these identified risk fac-
tors are mere correlations, not genes directly causing a disease. As these correla-
tions depend on the ancestry context in which they were found, findings of a GWAS 
are not necessarily applicable outside the human population in which an association 
was initially found (Bush et  al. 2012) and cannot be replicated in many cases 
(Marigorta et al. 2013).

Indeed, many data sharing efforts show such a lack of population diversity: More 
than 50% of the over 60,000 samples in the ExAC consortium come from a European 
population (“ExAC” 2018). Similarly, commercial databases like the ones of 
23andMe suffer from ancestry and race biases (“Problems with 23andMe Ancestry 
Composition” 2015; Euny Hong 2016). Open genomic databases – like the Personal 
Genome Projects and openSNP – are not fairing much better: 75% of participants in 
one of Harvard’s Personal Genome Project studies identified as white (Mao et al. 
2016) and amongst a survey of over 500 openSNP participants over 70% come from 
the US, UK and Canada. Additionally, over 75% of openSNP participants had at 
least a Bachelor’s degree, hinting at a highly skewed demographic (Haeusermann 
et al. 2017).

8.3  �Sharing Neurobiological Data

Similar to genetics, neuroscience has gone a long way when it comes to data shar-
ing: While initial attempts to share data mainly focused on post-processed data, like 
coordinate-based results or statistical maps of magnetic resonance imaging (MRI) 
(Fox and Lancaster 2002), more recent initiatives enable sharing of entire functional 
or structural MRI datasets (Gorgolewski et al. 2015; Poldrack et al. 2013) and mag-
neto- or electro- encephalography (M/EEG) data (Niso et al. 2016).
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As in the case of psychology and genomics, neuroscience research is largely 
based on data of individuals from WEIRD societies (Falk et al. 2013), despite a 
plethora of studies showing that brain development is affected by socioeconomic 
status, early life stress, or cultural differences (Hackman et al. 2010; Marshall et al. 
2018; Chan et al. 2018; Duval et al. 2017; Liddell and Jobson 2016). Indeed, within 
or across household socio-economic variables during childhood, such as family 
income, parental education (Ellwood-Lowe et al. 2018; Weissman et al. 2018) or 
neighbourhood poverty levels (Marshall et al. 2018), can be traced on trajectories of 
brain development, and result in differences in brain structure (Ellwood-Lowe et al. 
2018) and cognitive functions (Hackman and Farah 2018), or gene expression 
(Parker et  al. 2017). Differences in brain networks according to socio-economic 
status are also evident during adolescence (Weissman et al. 2018) and adulthood 
(Chan et al. 2018).

Furthermore, culture has been shown to influence neural functions (Liddell and 
Jobson 2016). Cultural and ethnic differences have an impact on emotion perception 
and expression, and brain responses to emotional or social cues (Derntl et al. 2012). 
Moreover, ethnic differences have been found in physiological responses to fear or 
novelty (Martínez et al. 2014; Kredlow et al. 2017), which are commonly used to 
assess anxiety or post-traumatic stress disorders (Bach et al. 2017). This situation is 
aggravated by the fact that ethnicity can influence skin conductance responses 
(Kredlow et al. 2017), which are commonly used as laboratory measurements of 
fear mechanisms (Tzovara et al. 2018), potentially leading to the exclusion of eth-
nicities despite being at higher risk e.g. for post-traumatic stress disorders (Roberts 
et al. 2011).

How much existing data sharing efforts for neuroscience are affected by these 
biases is hard to estimate at this point: Although these initiatives generally tend to 
support standardized data formats for data sharing (Niso et al. 2018; Gorgolewski 
et  al. 2016), they only rarely include concrete guidelines for reporting of socio-
demographic variables (Madan 2017).

8.4  �Data Sharing as a Social Movement

All of this paints a bleak picture: The populations we are using to develop personal-
ized medicine are highly WEIRD (Henrich et al. 2010). Even worse, we might often 
not even be aware of this, as we are not collecting the needed demographic data to 
identify our biases. Depending on the field, research studies can furthermore only 
contain small sample sizes, making it hard to evaluate how ethnicity or social fac-
tors influence neurobiological functions and gene expression. Only by sharing 
diverse datasets, and including rich demographic information will it be possible to 
make our understanding of disease progression, and neurobiological functions rel-
evant for all individuals, irrespective of their social or ethnic background.

B. Greshake Tzovaras and A. Tzovara



137

Back in 2005, Thomas Friedman firmly believed that next great breakthrough in 
bioscience could come from a 15-year-old who downloads the human genome in 
Egypt (Pink 2005). Today, we have to acknowledge that there is a good chance that 
this 15-year-old would not be able to profit from their own breakthrough. Because 
of this, we are still far away from a truly personalized medicine, making our per-
sonal data political. It is up to us, the generators of data and the people sharing data 
to work on changing this, ensuring that the promise of personalized medicine is 
equitable. Or to say it with Carol Hanisch’s words: There are no personal solutions 
at this time. There is only collective action for a collective solution (Hanisch 1969).
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