Comparative Effectiveness Review Number 167

Management of Renal Masses and Localized Renal Cancer

Number 167

Management of Renal Masses and Localized Renal Cancer

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. 290-2012-00007-I

Prepared by:

Johns Hopkins University Evidence-based Practice Center Baltimore, MD

Investigators:

Phillip M. Pierorazio, M.D.
Michael H. Johnson, M.D.
Hiten D. Patel, M.D., M.P.H.
Stephen M. Sozio, M.D., M.H.S.
Ritu Sharma, B.Sc.
Emmanuel Iyoha, M.B.ChB., M.P.H.
Eric B. Bass, M.D., M.P.H.
Mohamad E. Allaf, M.D.

AHRQ Publication No. 16-EHC001-EF February 2016

This report is based on research conducted by the Johns Hopkins University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2012-00007-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. This report may be used and reprinted without permission except those copyrighted materials that are clearly noted in the report. Further reproduction of those copyrighted materials is prohibited without the express permission of copyright holders.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies may not be stated or implied.

This report may periodically be assessed for the currency of conclusions. If an assessment is done, the resulting surveillance report describing the methodology and findings will be found on the Effective Health Care Program Web site at www.effectivehealthcare.ahrq.gov. Search on the title of the report.

Persons using assistive technology may not be able to fully access information in this report. For assistance contact EffectiveHealthCare@ahrq.hhs.gov.

Suggested citation: Pierorazio PM, Johnson MH, Patel HD, Sozio SM, Sharma R, Iyoha E, Bass EB, Allaf ME. Management of Renal Masses and Localized Renal Cancer. Comparative Effectiveness Review No. 167. (Prepared by the JHU Evidence-based Practice Center under Contract No. 290-2012-00007-I.) AHRQ Publication No. 16-EHC001-EF. Rockville, MD: Agency for Healthcare Research and Quality. February 2016. www.effectivehealthcare.ahrq.gov/reports/final.cfm.

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of systematic reviews to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. These reviews provide comprehensive, science-based information on common, costly medical conditions as well as new health care technologies and strategies.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews can help clarify whether or not assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about AHRQ EPC systematic reviews, see www.effectivehealthcare.ahrq.gov/reference/purpose.cfm.

AHRQ expects that these systematic reviews will be helpful to health plans, providers, purchasers, government programs, and the health care system as a whole. Transparency and stakeholder input are essential to the Effective Health Care Program. Please visit the Web site (www.effectivehealthcare.ahrq.gov) for draft research questions and reports or to join an e-mail list to learn about new programs, products and opportunities for input.

If you have comments on this systematic review, they may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to epc@ahrq.hhs.gov.

Richard G. Kronick, Ph.D.

Director

Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H. Director, EPC Program Center for Evidence and Practice Improvement

Agency for Healthcare Research and Quality

Arlene Bierman M.D., M.S.

Director

Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality

Aysegul Gozu, M.D., M.P.H.

Task Order Officer

Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality

Acknowledgments

The authors gratefully acknowledge the support of our AHRQ Task Order Officer, Aysegul Gozu, M.D., M.P.H. We thank our Associate Editor, Tim Carey, M.D., M.P.H. for revisions and commentary. We extend our appreciation to our Key Informants and members of our Technical Expert Panel (listed below), as well as our internal advisors (Hans-Joerg Hammers, M.D., Ph.D., and Kelvin Hong, M.D.), and lead statistician (Eliseo Guallar, M.D., Dr.P.H.) all of whom provided thoughtful advice and input during our research process. The Evidence-based Practice Center also thanks Allen Zhang and Emily Little for their assistance in data abstraction, Faye Rivkin for copy editing, and Ellen Tambor for assistance with the process of obtaining input from stakeholders.

Key Informants

In designing the study questions, the EPC consulted several Key Informants who represent the end-users of research. The EPC sought the Key Informant input on the priority areas for research and synthesis. Key Informants are not involved in the analysis of the evidence or the writing of the report. Therefore, in the end, study questions, design, methodological approaches, and/or conclusions do not necessarily represent the views of individual Key Informants.

Key Informants must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their role as end-users, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any conflicts of interest.

The list of Key Informants who participated in developing this report follows:

Bill Bro Kidney Cancer Association Ft. Myers, FL

Steven Campbell, M.D., Ph.D. Cleveland Clinic, Cleveland, OH

Ying-Bei Chen, M.D., Ph.D. Memorial Sloan-Kettering Cancer Center New York, NY Tina Groat, M.D., M.B.A, FACOG United Healthcare Detroit, MI

Csaba Kovesdy, M.D.
University of Tennessee Health Science
Center
Memphis, TN

Stephen Solomon, M.D. Cornell University New York, NY

Technical Expert Panel

In designing the study questions and methodology at the outset of this report, the EPC consulted several technical and content experts. Broad expertise and perspectives were sought. Divergent and conflicting opinions are common and perceived as healthy scientific discourse that results in a thoughtful, relevant systematic review. Therefore, in the end, study questions, design, methodological approaches, and/or conclusions do not necessarily represent the views of individual technical and content experts.

Technical Experts must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential conflicts of interest identified.

The list of Technical Experts who participated in developing this report follows:

KoKo Aung, M.D., M.P.H, C.P.H., FACP* University of Texas Health Science Center San Antonio, TX

Sam Bhayani, M.D., M.S. Washington University Institute for Minimally Invasive Surgery St. Louis, MO

Steven Campbell, M.D., Ph.D.* Cleveland Clinic Cleveland, OH

Ying-Bei Chen, M.D., Ph.D. Memorial Sloan-Kettering Cancer Center New York, NY Csaba Kovesdy, M.D. University of Tennessee Health Science Center Memphis, TN

Pari Pandharipande, M.D., M.P.H Massachusetts General Hospital Concord, MA

Steven Solomon, M.D.* Cornell University New York, NY

^{*}Also provided comments on the draft report

Peer Reviewers

Prior to publication of the final evidence report, EPCs sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report does not necessarily represent the views of individual reviewers.

Peer Reviewers must disclose any financial conflicts of interest greater than \$10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential non-financial conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential non-financial conflicts of interest identified.

The list of Peer Reviewers follows:

Philipp Dahm, M.D., M.H.Sc. Minneapolis Veterans Affairs Health System and University of Minnesota Minneapolis, MN

Bradley Leibovich M.D Mayo Clinic Rochester, MN Adam Metwalli, M.D. National Cancer Institute, National Institutes of Health Bethesda, MD

Management of Renal Masses and Localized Renal Cancer

Structured Abstract

Objectives. To summarize the evidence on the effectiveness and comparative effectiveness of strategies for evaluating and treating patients with a renal mass suspicious for renal cell carcinoma, including use of composite models for predicting malignancy at initial diagnosis, use of percutaneous renal sampling (by fine needle aspiration or core biopsy) to establish a diagnosis, and comparative efficacy of radical nephrectomy, partial nephrectomy, thermal ablation, and active surveillance.

Data sources. We searched MEDLINE[®], Embase[®], and the Cochrane Central Register of Controlled Trials (CENTRAL) from January 1, 1997, through May 1, 2015, and we looked for studies on Clinicaltrials.gov.

Review methods. Paired investigators independently screened search results to assess eligibility. Investigators abstracted data sequentially and assessed risk of bias independently. Investigators graded the strength of evidence as a group.

Results. The search identified 147 studies, published in 150 articles. In preoperative composite models of patient and tumor characteristics, male sex and increased tumor size were consistently predictive of malignant pathology. The diagnostic accuracy of core biopsy was evaluated in 18 studies, and had a sensitivity of 97.5 percent, specificity of 96.2 percent, positive predictive value of 99.8 percent, negative predictive value of 68.5 percent, non-diagnostic rate of 14 percent, and complication rate of 5 percent or less. Only one study examined the diagnostic accuracy of fine needle aspiration (sensitivity 63 percent). Cancer-specific survival was excellent among all management strategies with a median 5-year cancer-specific survival of 95 percent. Overall survival rates were 75-99 percent for partial nephrectomy, 71-81 percent for radical nephrectomy, and 83-95 percent for thermal ablation (at 5 years), and 69-94 percent for active surveillance (at 12-35 months). The strength of evidence was low to moderate that local recurrence-free survival was worse for thermal ablation than for radical or partial nephrectomy, but equivalent with partial nephrectomy when multiple ablative treatments were considered. The strength of evidence was moderate that radical nephrectomy had the largest decline in estimated glomerular filtration rate and highest incidence of chronic kidney disease, but the rate of endstage renal disease was low among all management strategies (0.4-2.8 percent). The strength of evidence was moderate that thermal ablation offered more favorable perioperative outcomes (estimated blood loss, length of hospital stay, and conversion to open surgery), but all interventional strategies were approximately equivalent when evaluating postoperative harms. However, the strength of evidence was low that partial nephrectomy was associated with greater urologic complications, bleeding, and blood transfusion rate, and radical nephrectomy had more respiratory harms and acute kidney injury when compared to partial nephrectomy and thermal ablation.

Conclusions. No composite model reliably predicts malignancy, although tumor size and male sex are highly associated with malignancy. Percutaneous renal mass sampling with core biopsy is

a low risk and sensitive procedure, but is associated with a notable non-diagnostic rate (14 percent). Most patients with non-diagnostic biopsies who proceed to surgery are found to have malignancy. Cancer-specific survival was comparable across all management strategies, with differences in overall survival that are explained by competing risks of death. Thermal ablation has the highest local recurrence rate and may require multiple treatments to achieve similar oncologic efficacy as radical or partial nephrectomy. However, thermal ablation has the most favorable perioperative outcomes and harms. Thermal ablation and partial nephrectomy offer improved renal functional outcomes over radical nephrectomy in the long run. Comparative data are lacking on active surveillance. Therefore, selection of a management strategy warrants a conversation between patient and physician to discuss the outcome profile for each strategy based on similar cancer-specific survival but different overall survival (competing health risks), renal functional outcomes, perioperative outcomes, and postoperative harms.

Contents

Executive Summary	ES-1
Introduction	1
Background	1
Epidemiology and Population of Interest	1
Diagnostic Evaluation and Detection of Disease	1
Therapeutic Interventions and Outcomes	
Current Guidelines and Shortcomings	3
Scope and Key Questions	4
Methods	8
Protocol Development	8
Search Strategy	8
Study Selection	8
Data Abstraction and Data Management	8
Risk of Bias Assessment	
Data Synthesis	12
Strength of the Body of Evidence	14
Applicability	
Peer Review and Public Comment	15
Results	16
Results of the Search	16
Overview of Included Studies by Key Questions	18
Organization of Results Chapter	
Key Question 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass	
Suspicious for Localized Renal Cell Carcinoma	18
Key Points	18
Study Characteristics	19
Population Characteristics	19
Tumor Characteristics	20
Intervention Characteristics	22
Risk of Bias	22
Outcomes	23
Variables Predictive of Malignant or Benign Disease	24
Imaging Characteristics	24
Demographic Characteristics	26
Clinical Charateristics	28
Other Characteristics	30
Key Questions 2a and 2b: Accuracy and Efficacy of Renal Mass Biopsy in the	
Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma	33
Key Points	
Study Characteristics	
Population Characteristics	34
Intervention Characteristics	34
Tumor Characteristics	34

Risk of Bias	37
Percutaneous Renal Mass Sampling	37
Outcomes	
Key Question 3a: Efficacy and Comparative Efficacy of Different Interventions for th	e
Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma	48
Key Points	
Controlled Studies	51
Outcomes	54
Uncontrolled Studies	138
Key Question 3b: Comparative Benefits and Harms of Management Strategies	
Based on Patient Demographics, Clinical Characteristics, or Disease Severity	145
Key Points	
Oncological Efficacy	146
Discussion	166
Key Findings and the Strength of Evidence	166
Key Question 1: Efficacy of Composite Models in the Diagnosis of a Renal	
Mass Suspicious for Localized Renal Cell Carcinoma	166
Key Question 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis	
of a Renal Mass Ssuspicious for Localized Renal Cell Carcinoma	166
Key Question 3a: Efficacy and Comparative Efficacy of Different Interventions	
for the Management of a Renal Mass Suspicious for Localized Renal	
Cell Carcinoma	167
Key Question 3b: Comparative Benefits and Harms of Management Strategies	
Based on Patient Demographics, Clinical Characteristics, or Disease Severity.	170
Findings in Relationship to What Is Already Known	170
Key Question 1: Efficacy of Composite Models in the Diagnosis of a Renal	
Mass Suspicious for Localized Renal Cell Carcinoma	170
Key Question 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis	
of a Renal Mass Ssuspicious for Localized Renal Cell Carcinoma	171
Key Question 3a: Efficacy and Comparative Efficacy of Different Interventions	
for the Management of a Renal Mass Suspicious for Localized Renal	
Cell Carcinoma	172
Key Question 3b: Comparative Benefits and Harms of Management Strategies	
Based on Patient Demographics, Clinical Characteristics, or Disease Severity.	
Applicability	174
Key Questions 1 and 2: Diagnosis of Renal Mass Suspicious for Localized	
Renal Cell Carcinoma	174
Key Questions 3a and 3b: Management of Renal Mass Suspicious for Localized	
Renal Cell Carcinoma	
Implications for Clinical and Policy Decision Making	
Key Questions 1 and 2: Diagnostic Implications	
Key Questions 3a and 3b: Management Implications	
Limitations of the Comparative Effectiveness Review Process	
Limitations of the Evidence Base	179
Key Question 1: Efficacy of Composite Models in the Diagnosis of a Renal	
Mass Suspicious for Localized Renal Cell CarcinomaResearch Gaps	179

Key Question 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis	
of a Renal Mass Ssuspicious for Localized Renal Cell Carcinoma	179
Key Question 3a: Efficacy and Comparative Efficacy of Different Interventions	
for the Management of a Renal Mass Suspicious for Localized Renal	
Cell Carcinoma	180
Key Question 3b: Comparative Benefits and Harms of Management Strategies	
Based on Patient Demographics, Clinical Characteristics, or Disease Severity	182
Research Gaps	
Key Question 1: Efficacy of Composite Models in the Diagnosis of a Renal	
Mass Suspicious for Localized Renal Cell CarcinomaResearch Gaps	182
Key Question 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis	102
of a Renal Mass Ssuspicious for Localized Renal Cell Carcinoma	182
Key Question 3a: Efficacy and Comparative Efficacy of Different Interventions	102
for the Management of a Renal Mass Suspicious for Localized Renal	
	102
Cell Carcinoma	103
Key Question 3b: Comparative Benefits and Harms of Management Strategies	104
Based on Patient Demographics, Clinical Characteristics, or Disease Severity	
Conclusions	
Diagnosis of Renal Mass Suspicious for Localized Renal Cell Carcinoma	
Management of Renal Mass Suspicious for Localized Renal Cell Carcinoma	
References	186
T. 11	
Tables Table A. DICOTS (nonviction interpretions comparators outcomes timing	
Table A. PICOTS (population, interventions, comparators, outcomes, timing,	EG 7
and setting) for the Key Questions	ES-7
Table B. Summary of the strength of evidence for individual predictors of malignant	FG 44
or benign pathology	
Table C. Summary of the strength of evidence for renal mass biopsy outcomes	ES-12
Table D. Summary of the strength of evidence for health outcomes of the effectiveness	
	ES-16
Table E. Summary of the strength of evidence for clinical predictors of the comparative	
benefits and harms of the available management strategies	ES-26
Table 1. PICOTS (population, interventions, comparators, outcomes, timing,	
and setting) for the Key Questions	9
Table 2. List of exclusion criteria at the abstract screening, article screening, and KQ	
applicability levels	12
Table 3. Strength of evidence grades and definitions	15
Table 4. List of included studies by KQ	
Table 5. Participant characteristics of studies addressing predictors of pathologic	
outcomes	20
Table 6. Tumor characteristics of studies addressing predictors of pathologic outcomes	
Table 7. Studies addressing predictors of pathologic outcomes, by factors included	
in composite model	22
Table 8. Variables predictive of malignant or benign disease	
Table 9. Strength of evidence for predictors of malignant or benign pathology	
Table 10. Characteristics of studies evaluating percutaneous renal mass sampling	
Table 19. Characteristics of studies evaluating defeutaneous fehal mass sambing	

Table 11. Characteristics of tumors in the studies evaluating percutaneous renal	
mass sampling	36
Table 12a. Details of biopsy pathology results across included studies	38
Table 12b. Details of biopsy pathology results across included studies	39
Table 13. Details about patients with biopsies showing no neoplasm or other malignant	
or benign results	40
Table 14. Fuhrman grading results for studies reporting grade at biopsy	41
Table 15. Calculated performance characteristics from each individual study based	
on patients with available surgical pathology	43
Table 16. Pooled diagnostic accuracy estimates	
Table 17. Studies reporting harms and adverse events associated with percutaneous	
renal mass sampling	46
Table 18. Strength of evidence for renal mass biopsy outcomes	47
Table 19. Participant characteristics of included studies by interventions	53
Table 20. Tumor characteristics of included studies by interventions	54
Table 21. Number of studies comparing oncologic efficacy outcomes between	
management strategies	55
Table 22. Number of studies and patients for cancer-specific survival comparisons	
between management strategies (41 studies in total)	56
Table 23a. Cancer-specific survival for studies comparing radical nephrectomy versus	
partial nephrectomy	61
Table 23b. Cancer-specific survival for studies comparing partial nephrectomy versus	
thermal ablation	61
Table 24. Number of studies and patients for metastasis-free survival comparisons	
between management strategies (20 studies in total)	62
Table 25. Number of studies and patients for local recurrence-free survival comparisons	
between management strategies (31 studies in total)	63
Table 26a. Metastasis-free survival and local recurrence-free survival for studies	
comparing radical nephrectomy versus partial	68
Table 26b. Metastasis-free survival and local recurrence-free survival for studies	
comparing partial nephrectomy versus thermal ablation	
Table 27. Strength of evidence domains for oncologic outcomes	69
Table 28. Number of studies and patients for overall survival comparisons between	
management strategies (40 studies in total)	72
Table 29. Overall survival for studies comparing radical nephrectomy versus partial	
nephrectomy and partial nephrectomy versus thermal ablation	
Table 30. Strength of evidence domains for overall survival	78
Table 31. Number of studies reporting renal functional outcomes by management	
comparison	79
Table 32. Renal function characteristics of patients in comparative studies of management	
of small renal masses	80
Table 33. Renal functional outcomes reported in 47 studies of comparative management	
for small renal masses	83
Table 34a. Continuous renal functional outcomes for radical nephrectomy versus	0.0
partial nephrectomy	88

Table 34b. Continuous renal functional outcomes for radical nephrectomy versus	0.4
thermal ablation	91
Table 34c. Continuous renal functional outcomes for partial nephrectomy versus	
thermal ablation	93
Table 34d. Continuous renal functional outcomes for radical nephrectomy versus	
active surveillance	95
Table 34e. Continuous renal functional outcomes for partial nephrectomy versus	
active surveillance	96
Table 34f. Continuous renal functional outcomes for thermal ablation versus	
active surveillance	96
Table 35a. Categorical renal functional outcomes for radical nephrectomy versus	
partial nephrectomy	98
Table 35b. Categorical renal functional outcomes for radical nephrectomy versus	
thermal ablation	101
Table 35c. Categorical renal functional outcomes for partial nephrectomy versus	
thermal ablation	103
Table 35d. Categorical renal functional outcomes for radical nephrectomy versus	
active surveillance	105
Table 35e. Categorical renal functional outcomes for partial nephrectomy versus	
active surveillance	105
Table 35f. Categorical renal functional outcomes for thermal ablation versus	
active surveillance	
Table 36. Strength of evidence for renal outcome	
Table 37. Health-related quality of life outcomes reported in the study by Ficara et al	
Table 38. Strength of evidence for quality of life	
Table 39. Number of studies reporting perioperative outcomes by management option	114
Table 40. Comparative perioperative outcomes for radical nephrectomy, partial	
nephrectomy, and thermal ablation	
Table 41. Strength of evidence domains for peri-operative outcomes	
Table 42. Number of studies reporting harms outcomes by management comparison	
Table 43. Harms in comparative studies of radical nephrectomy and partial nephrectomy	
Table 44. Harms in comparative studies of radical nephrectomy and thermal ablation	
Table 45. Harms in comparative studies of partial nephrectomy and thermal ablation	
Table 46. Strength of evidence domains for comparative studies of harms	136
Table 47. Study characteristics of uncontrolled studies of active surveillance	
for clinically localized renal masses suspicious of malignancy	139
Table 48. Population characteristics of uncontrolled studies of active surveillance	
for clinically localized renal masses suspicious of malignancy	140
Table 49. Oncologic and survival outcomes of uncontrolled studies of active surveillance	
for clinically localized renal masses suspicious of malignancy	142
Table 50. Strength of evidence domains for uncontrolled studies of active surveillance	144
Table 51. Summary of predictors of cancer-specific survival and analyses of comparative	
efficacy among studies of comparative oncologic efficacy	151
Table 52. Summary of predictors and analyses of comparative efficacy of overall	
survival among studies of comparative oncologic efficacy	
Table 53. Studies evaluating predictors of comparative postoperative renal function	161

Table 54. Strength of evidence domains for clinical predictors of the comparative	
benefits and harms of the available management strategies	164
Table 55. Applicability for Key Question 1 and Key Question 2	174
Table 56. Applicability for Key Questions 3a and 3b	176
Figures	
Figure A. Analytic framework for systematic review of the management of renal	F. 6. 4
masses and localized kidney cancer	ES-4
Figure B. Analytic framework for systematic review of the management of renal	FG 5
masses and localized kidney cancer	
Figure C. Summary of literature search	.ES-10
Figure D. Pooled comparisons of cancer-specific survival and overall survival	
for radical nephrectomy (RN) versus partial nephrectomy (PN) in patients	
with clinical stage 1 and 2 renal cancer from studies that presented effect	EG 22
estimates as hazard ratios	ES-22
Figure E. Pooled comparisons of perioperative outcomes and harms for radical	
nephrectomy (RN) versus partial nephrectomy (PN) from studies that presented	EG 00
effect estimates as risk ratios	ES-23
Figure F. Pooled comparisons of perioperative outcomes and harms for radical	EC 24
nephrectomy (RN) versus thermal ablation (TA) from studies reporting risk ratios	ES-24
Figure G. Pooled comparisons of perioperative outcomes and harms for partial	EC 25
nephrectomy (PN) versus thermal ablation (TA) from studies reporting risk ratios	ES-23
Figure 1. Analytic framework for systematic review of the management of renal	6
masses and localized kidney cancer	
masses and localized kidney cancer	7
Figure 3. Summary of the literature search.	
Figure 4. Risk of bias across studies investigating preoperative composite models	1 /
in the prediction of malignancy in clinically localized renal masses	23
Figure 5. Meta-analysis showing effect of tumor size as a predictor of malignancy	
Figure 6. Meta-analysis showing effect of age as a predictor of malignancy	
Figure 7. Meta-analysis showing effect of sex as a predictor of malignancy	
Figure 8. Meta-analysis showing pooled Odds Ratio of Incidental Presentation	
Figure 9. Risk of bias assessment for studies evaluating percutaneous renal	
mass sampling	37
Figure 10. Risk of bias assessment for nonrandomized studies evaluating	
oncologic efficacy	56
Figure 11. Meta-analysis of cancer-specific survival for radical nephrectomy versus	
partial nephrectomy among SEER studies providing effect measures	58
Figure 12. Meta-analysis of cancer-specific survival for radical nephrectomy versus	
partial nephrectomy among non-SEER studies providing effect measures	59
Figure 13. Meta-analysis of local recurrence rates for partial nephrectomy versus	
thermal ablation among studies with followup of 48 months \pm 12 months	66
Figure 14. Meta-analysis of local recurrence-free survival for partial nephrectomy	
versus secondary efficacy of thermal ablation among studies with followup	
of 48 months ± 12 months	67
Figure 15 Rick of higs assessment for nonrandomized studies evaluating overall survival	73

Figure 16. Meta-analysis of overall survival for radical nephrectomy versus partial	
nephrectomy among SEER studies providing effect measures	74
Figure 17. Meta-analysis of overall survival for radical nephrectomy versus partial	
nephrectomy among non-SEER studies providing effect measures	75
Figure 18. Risk of bias across studies of renal functional outcomes	87
Figure 19. Mean change in estimated glomerular filtration rate for radical	
nephrectomy versus partial nephrectomy	89
Figure 20. Mean change in estimated glomerular filtration for thermal ablation	
versus radical nephrectomy	92
Figure 21. Mean change in estimated glomerular filtration rate for thermal ablation	
versus partial nephrectomy	94
Figure 22. Meta-analysis of the incidence of stage 3 chronic kidney disease with radical	
nephrectomy versus partial nephrectomy	100
Figure 23. Meta-analysis of the incidence of stage 3 chronic kidney disease with radical	
nephrectomy versus thermal ablation	102
Figure 24. Meta-analysis of the incidence of stage 3 chronic kidney disease with partial	
nephrectomy versus thermal ablation	104
Figure 25. Risk of bias for comparative studies on health-related quality of life	110
Figure 26. Risk of bias across noncontrolled studies investigating perioperative	
outcomes	114
Figure 27. Meta-analysis of the blood transfusion rate for radical nephrectomy	
versus partial nephrectomy	116
Figure 28. Meta-analysis of the blood transfusion rate for radical nephrectomy	
versus thermal ablation	117
Figure 29. Meta-analysis showing blood transfusion rate for partial nephrectomy	
versus thermal ablation	118
Figure 30. Meta-analysis showing blood transfusion rate for partial nephrectomy	
versus thermal ablation in patients with clinical stage T1a tumors	119
Figure 31. Risk of bias across studies investigating harms	124
Figure 32. Meta-analysis of the incidence of acute kidney injury after radical	
nephrectomy versus partial nephrectomy	125
Figure 33. Meta-analysis of the incidence of acute kidney injury after radical	
nephrectomy versus partial nephrectomy in patients with clinical stage T1a tumors	126
Figure 34. Meta-analysis of the incidence of minor Clavien complications associated	
with radical nephrectomy versus partial nephrectomy	127
Figure 35. Meta-analysis of the incidence of major Clavien complications associated	
with radical nephrectomy versus partial nephrectomy	128
Figure 36. Meta-analysis of the incidence of acute kidney injury associated with radical	
nephrectomy versus thermal ablation	129
Figure 37. Meta-analysis of the incidence of acute kidney injury associated with partial	
nephrectomy versus thermal ablation	130
Figure 38. Meta-analysis of the incidence of minor Clavien complications associated	
with partial nephrectomy versus thermal ablation	131
Figure 39. Meta-analysis of the incidence of major Clavien complications associated	
with partial nephrectomy versus thermal ablation	
Figure 40. Risk of bias across noncontrolled studies investigating active surveillance	141

Appendixes

Appendix A. Detailed Electronic Database Search Strategies

Appendix B. Screening and Data Abstraction Forms

Appendix C. List of Excluded Studies

Appendix D. Evidence Tables

Appendix E. Uncontrolled Studies

Appendix F. Meta-Analysis Figures

Appendix G. Clinical Trials Report

Executive Summary

Background

Renal masses are a biologically heterogeneous group of tumors ranging from benign masses to cancers that can be indolent or aggressive.^{1,2} The true incidence of renal masses (including benign lesions) is unknown, but benign lesions comprise approximately 20 percent of surgically resected tumors.^{1,3}

Kidney cancer affects approximately 65,000 new patients each year, with more than 13,000 deaths annually. The incidence of kidney cancer has increased significantly by 2-3 percent per year over the past few decades – presumably due to the increased use of cross-sectional imaging such as computed tomography. Tumors are often discovered incidentally and are asymptomatic at presentation. The greatest increase in incidence has been noted in small (less than 4 cm), clinically localized tumors (within the kidney with no evidence of local spread, lymph node involvement, or distant metastases), which now account for upwards of 40 percent of all kidney cancers. ^{6,7}

Renal cell carcinoma is the most common type of cancer affecting the kidneys in the United States accounting for more than 94 percent of kidney malignancies.⁴ While renal cell carcinoma only represents two percent of adult cancers, it is amongst the most lethal; approximately 35 percent of patients die within 5 years of diagnosis.⁴ However, the cancer-specific survival is highly stage dependent, with a greater than 95 percent 5-year disease specific survival for stage T1 tumors, and greater than 85 percent 5-year disease specific survival for stage T2 tumors. The deaths due to renal cell carcinoma are driven by the failure of systemic treatments in metastatic (later stage) patients and up to 40 percent of clinically localized tumors are determined to be locally advanced cancers (stage T3, with invasion of perinephric fat or venous structures) at pathological examination.

Diagnostic Evaluation and Detection of Disease

All solid renal masses and cystic lesions with solid components are suspicious for renal cell carcinoma. Most tumors are detected incidentally during an evaluation for unrelated or non-specific complaints. Preoperative patient and tumor (imaging) characteristics are used to stratify the risk of benign versus malignant renal masses and indolent versus aggressive renal cancers. Demographic, clinical, and imaging characteristics are used to risk-stratify patients, and nomograms exist that combine these characteristics into composite models to predict the malignant potential of tumors preoperatively.⁸⁻¹¹

Percutaneous renal mass sampling may be offered as a diagnostic adjunct to imaging studies such as computed tomography, magnetic resonance imaging, or ultrasonography. Percutaneous renal mass sampling can be performed by fine needle aspiration with a reading of the sample by a cytopathologist or via core biopsy with a reading by a surgical pathologist.

Therapeutic Interventions and Outcomes

Several options exist for the management of clinically localized renal masses suspicious for renal cell carcinoma including active surveillance, thermal ablation, and surgery (partial or radical nephrectomy). Given the increased incidence in early, low-stage tumors without improvement in cancer-related deaths, active surveillance has emerged as an option for patients with small renal masses, a low likelihood of aggressive malignancy, procedure limiting

comorbidity, and/or a limited life expectancy. It is important to note a difference between active surveillance with curative intent versus watchful waiting. The latter constitutes a strategy where treatment is never entertained and surveillance imaging is infrequent or does not occur at all. Studies of watchful waiting are not examined in this report. Surgery includes partial nephrectomy or radical nephrectomy, which can be performed through a minimally invasive or open approach. Minimally invasive options include both standard laparoscopy and robot-assisted laparoscopy. Surgical removal (either radical or partial nephrectomy) is the gold standard for the treatment of renal cell carcinoma. The American Urological Association (AUA) Guideline, which only considers clinical stage 1 renal masses, considers partial nephrectomy and radical nephrectomy as "standard" treatment modalities for clinical stage T1a tumors (≤ 4 cm in diameter) and T1b (4-7cm) tumors. Thermal ablation and active surveillance are considered "options" or "recommendations" for T1a tumors, but are only considered "options" (no longer a "recommendation") for T1b tumors. 12 Thermal ablation, which may include cryoablation or radiofrequency ablation, can either be performed laparoscopically or percutaneously. While most urologists would consider radical nephrectomy as the standard treatment for clinical stage 2 renal masses, there are no professional organization or guideline standards for the management of clinically localized, stage 2 tumors.

Scope and Key Questions

We conducted a systematic review of the effectiveness and comparative effectiveness of different strategies for treating patients with a renal mass suspicious for renal cell carcinoma. We developed analytic frameworks to illustrate the questions and outcomes we considered (Figures A and B), and we sought to address the following Key Questions (KQ):

KQ 1: In patients who undergo surgery for a renal mass that is suspicious for stage I or II renal cell carcinoma, how does the pathologic diagnosis compare to the likelihood of malignancy predicted by using a preoperative composite profile of patient characteristics, including demographics, clinical characteristics, blood/urine markers, and/or imaging?

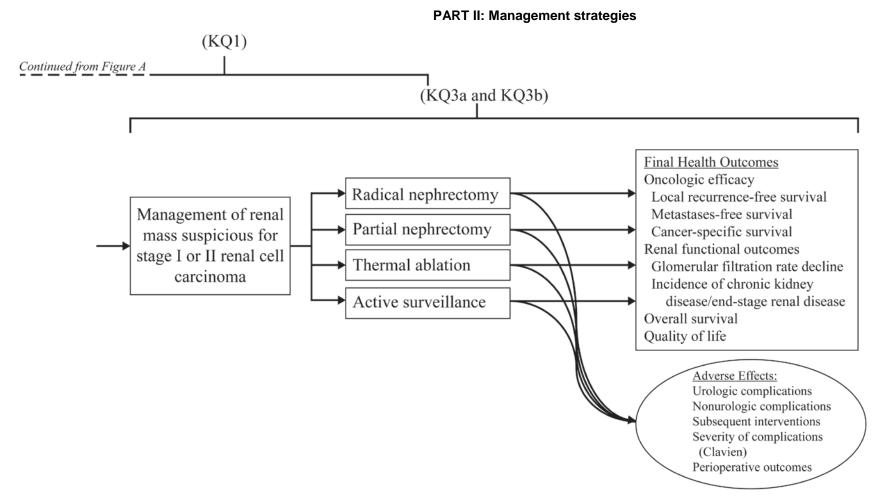
For the purpose of this question and further Key Questions, a renal mass suspicious for stage I or II RCC includes all solid renal masses and cystic renal masses with a solid component.

KQ 2a: In patients who undergo surgery for a renal mass suspicious for stage I or II renal cell carcinoma, what is the accuracy (i.e., sensitivity, specificity, positive and negative predictive value) of percutaneous renal mass sampling (using fine needle aspiration with cytopathology or core biopsy with surgical pathology) in establishing a diagnosis (e.g., malignancy, histology, and grade)?

KQ 2b: In patients with a renal mass suspicious for stage I or II renal cell carcinoma, what are the adverse effects associated with using renal mass sampling (see KQ2a) to estimate the risk of malignancy, including direct complications (e.g., pain, infection, hemorrhage, and radiation exposure) and harms related to false positives, false negatives, or nondiagnostic results?

KQ 3a: In patients with a renal mass suspicious for stage I or II renal cell carcinoma, what is the effectiveness and comparative effectiveness of the available management strategies on health outcomes?

KQ 3b: Do the comparative benefits and harms of the available management strategies differ according to a patient's demographic or clinical characteristics, or disease severity defined in terms of clinical presentation, tumor characteristics (imaging), renal mass sampling results, or laboratory evaluations?


Figure A. Analytic framework for systematic review of the management of renal masses and localized kidney cancer

(KQ1) Continued on Figure B Renal mass Risk stratification suspicious for management of for stage I or Pathological diagnosis renal mass II renal cell (KQ2a) Composite profile Health outcomes suspicious for stage carcinoma Malignant I or II renal cell Percutaneous (includes all (KQ2b) carcinoma Nondiagnostic renal mass solid renal sampling masses and Benign cystic renal False positives masses with False negatives a solid (KQ2b) component) Adverse Effects: Pain Hemorrhage Tumor seeding Radiation exposure

PART I: Diagnostic framework

KQ=Key Question

Figure B. Analytic framework for systematic review of the management of renal masses and localized kidney cancer

KQ=Key Question

Methods

With input from key informants, we refined the questions, including eligibility criteria, and developed a protocol (PROSPERO registration CRD42015015878).

We searched MEDLINE[®], Embase[®], and the Cochrane Central Register of Controlled Trials (CENTRAL) from January 1, 1997, (the year the TNM Classification of Malignant Tumor staging system for renal cell carcinoma was modified and the distinctions of T1a/T1b and T2a/T2b were created) through May 1, 2015. We also requested information from device manufacturers and searched Clinicaltrials.gov.

Citations were screened independently by two reviewers using predefined eligibility criteria (see Table A). One reviewer completed data abstraction and a second reviewer checked abstraction for accuracy. Two reviewers independently assessed risk of bias for individual studies. We used the Cochrane Collaboration's tool for assessing the risk of bias of randomized controlled trials (RCTs). For nonrandomized studies of treatment interventions, we used the Cochrane Risk of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI). For diagnostic studies, we used the quality assessment tool for diagnostic accuracy studies (QUADAS -2). Differences between reviewers were resolved through consensus.

We conducted meta-analyses for an outcome when there were sufficient data and studies were sufficiently homogenous with respect to key variables (population characteristics, intervention, and outcome measurement) using a random effects model with the DerSimonian and Laird method. We identified substantial statistical heterogeneity as an I-squared statistic with a value greater than 50 percent. All meta-analyses were conducted using STATA 12.1 (College Station, TX).

We graded the strength of evidence using the scheme recommended by the "Methods Guide for Effectiveness and Comparative Effectiveness Reviews." ¹⁶

Table A. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)	
Population(s)	Newly diagnosed adults (18 years or older) with solid renal masses (or cystic renal masses with a solid component) suspicious for stage I and II renal cell carcinoma, which corresponds to clinical stage T1 (less than 7 cm and organ confined) or T2 (greater than 7 cm and organ confined) renal masses		
Interventions	 Percutaneous renal mass sampling (fine needle aspiration or biopsy) Composite models (e.g., combination of demographics, clinical characteristics, blood/urine tests, and tumor imaging characteristics) for predicting malignancy Demographic characteristics: age, sex, smoking, race, marital status, education Clinical characteristics: obesity and comorbidities, specifically cardiovascular disease and chronic kidney disease Blood/urine tests: measures of kidney function, markers of paraneoplastic syndromes and predictors of advanced/metastatic disease (e.g., complete metabolic panel, complete blood count, coagulation parameters, erythrocyte sedimentation rate) Imaging characteristics: computed tomography, ultrasonography, magnetic resonance imaging 	 Radical nephrectomy (open and minimally invasive) Partial nephrectomy (open and minimally invasive) Thermal ablation (e.g., radiofrequency ablation, cryoablation; surgical versus image-guided) Active surveillance Minimally invasive surgery may refer to standard laparoscopy or robot-assisted laparoscopy No microwave ablation 	
Comparators	Comparisons are between biopsy results, composite models, and pathologic diagnosis after surgical intervention	Comparisons include all of the management options listed above	
Outcomes	Diagnostic test-related Outcomes False positives False negatives Radiation exposure Adverse effects of percutaneous renal mass sampling Pain Hemorrhage Tumor seeding	Final health outcomes Oncologic efficacy Local recurrence-free survival Metastasis-free survival Cancer-specific survival Renal functional outcomes Glomerular filtration rate decline Incidence of chronic kidney disease Incidence of end-stage renal disease Overall survival Quality of life	

Table A. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs (continued)

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)
Outcomes		Adverse effects of management strategies
(continued)		Urologic complications
		 Acute kidney Injury
		 Hemorrhage
		o Urine leak
		o Hematuria
		 Loss of kidney
		 Ureteral injury (any injury of collecting
		system and ureter)
		 Urinary tract infection
		 Nonurologic complications (by organ system)
		 Hematologic (thromboembolic)
		 Gastrointestinal
		 Cardiovascular
		 Respiratory
		 Neurologic
		 Wound complications (e.g. hernia and dehiscence)
		o Infectious disease
		 Listed by severity of complications (using
		the Clavien Grading System if available):
		Minor versus major
		 Minor (Clavien 1-2)^a: conservative
		management or medications only
		 Major (Clavien 3-4)^b: requiring
		intervention, resulting in permanent
		disability or death
		 Need for subsequent interventions:
		embolization, drain placement, stent
		placement, etc.
		 Perioperative outcomes
		o Blood loss (cc or mL)
		 Blood transfusion (yes or no)
		 Conversion to open surgery (%)
		 Conversion to radical nephrectomy (%)
		 Length of stay (days)

Table A. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs (continued)

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)
Type of study	Any study design except case report	Controlled studies (randomized controlled trials, nonrandomized controlled trials, and comparative cohort studies): All comparisons between interventions Uncontrolled studies (single cohort studies): Data from uncontrolled studies that addressed active surveillance are described in the report. Every other uncontrolled study that addressed KQ 3 is listed in the appendix with the following data: Author, publication year Study design Intervention name
		Number of patientsFollowup
		List of outcomes
Timing and Setting	Any time point and setting	

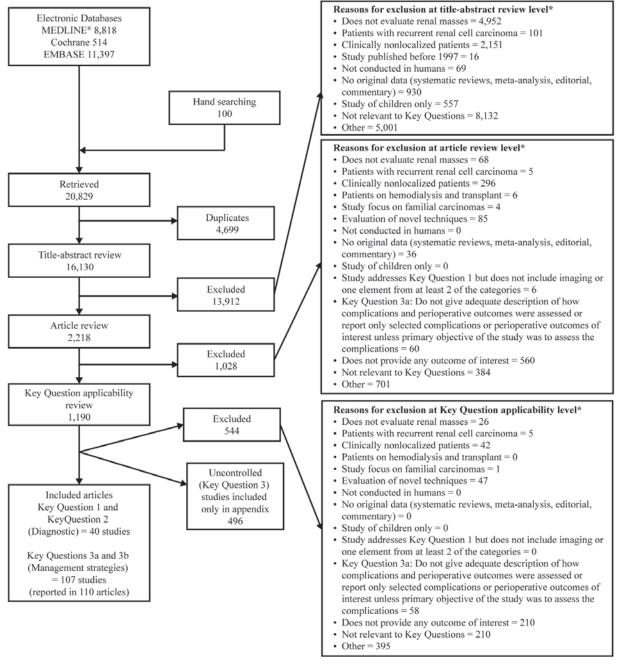
KQ= Key Question

Clavien-Dindo system currently used for reporting of complications related to urologic surgical interventions:

^aGrade I: Any deviation from the normal postoperative course without the need for pharmacological treatment or surgical, endoscopic and radiological interventions. Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, analgetics, diuretics and electrolytes and physiotherapy. This grade also includes wound infections opened at the bedside.

^aGrade II: Requiring pharmacological treatment with drugs other than such allowed for grade I complications. Blood transfusions and total parenteral nutrition are also included. ^bGrade III: Requiring surgical, endoscopic or radiological intervention.

- 1.(a) not under general anesthesia
- 2.(b) under general anesthesia


^bGrade IV: Life-threatening complication (including CNS complications) requiring IC/ICU-management.

- 1.(a) single organ dysfunction (including dialysis)
- 2.(b) multi-organ dysfunction

Results

Figure C summarizes the results of our searching for relevant studies. This review focuses on 147 studies, reported in 150 articles that met the inclusion criteria.

Figure C. Summary of literature search

^{*} Reviewers were allowed to mark more than one reason for exclusion.

KQ 1: Pathologic Diagnosis Compared With Likelihood of Malignancy Based on Preoperative Composite Profile of Patient and Tumor Characteristics

Twenty studies (12,149 patients) evaluated composite models to predict pathologic diagnosis, adjusting for imaging characteristics, demographic characteristics, clinical characteristics, and other diagnostic tests (i.e., blood and urine). This body of evidence included 2 prospective studies and 18 retrospective observational studies that ranged in sample size from 84 to 1,726 patients. Nineteen of 20 studies used imaging characteristics while only one evaluated laboratory testing. The overall risk of bias for these studies was low (Table B).

The most common variables included in composite profiles were tumor size, age, sex, body mass index (BMI), and incidental presentation. Increased tumor size was consistently predictive of malignant pathology in studies that evaluated tumor size as a categorical variable and in studies evaluating size as a continuous variable (effect size in meta-analysis: 1.3 times increased risk of malignancy per cm increase in tumor size; 95% confidence interval (CI): 1.22 to 1.43) with moderate strength of evidence. Additionally, 14 of 16 studies and subsequent meta-analysis demonstrated that male sex predicted malignant pathology (effect size: 2.70 times increased risk of malignancy with male sex; 95% CI: 2.39 to 3.02) with moderate strength of evidence. The strength of evidence was moderate that incidental presentation was not predictive of pathology, and the strength of evidence was low that age was not predictive of pathology. The evidence was insufficient on BMI.

Table B. Summary of the strength of evidence for individual predictors of malignant or benign

pathology

Outcomes	No. Studies	Strength of Evidence Finding	
Tumor Size	12	Moderate Increasing tumor size consistently is associated with an increased risk of	
Tumor Characteristics	9	Increasing RENAL nephrometry score is consistently associated with malignancy. The data regarding individual components of the RENAL nephrometry score and other tumor characteristics is insufficient to draw conclusions.	
Age	15	Low While the relationship between age and malignant pathology varies among studies, the effect size due to age is small in all studies.	
Sex	16	Moderate Women are more likely to have benign tumors in all studies. The effect size varied by inclusion criteria and other variables (i.e. age, tumor size).	
Body Mass Index	5	Insufficient Conflicting and non-significant results in studies make it difficult to form meaningful conclusions. In addition, geographic and population-based differences in body mass index make interpretation of the association of body mass index with malignant disease difficult.	
Incidental Presentation	5	Moderate All studies demonstrate no relationship between an incidental finding and malignant pathology.	
Harms	12	Low A small, but notable, proportion of patients experience harms due to renal mass biopsy, with hematoma (5%) being the most common direct complication. Studies were inconsistent in which harms, if any, were reported.	

KQs 2a and 2b: Accuracy and Harms of Percutaneous Renal Mass Sampling

Twenty studies (2,979 patients) evaluated the performance characteristics of percutaneous renal mass sampling, of which 16 evaluated harms. Only one study evaluated fine needle aspiration with cytopathology; all other studies evaluated core biopsy with surgical pathology. Four studies were of prospective cohorts while the remainder were retrospective studies; all studies were single center experiences. Risk of bias was low in 5 studies and high in the remaining 15 studies based on the potential risk of bias due to missing reference standard evaluations (surgical pathology) among patients with benign biopsy results (Table C).

Only one study of fine needle aspiration met the inclusion criteria in this review and revealed the following performance characteristics (sensitivity 62.5 percent, specificity not able to be calculated, positive predictive value 100 percent). In comparison, core biopsy revealed better diagnostic abilities: sensitivity of 97.5 percent, specificity of 96.2 percent, positive predictive value of 99.8 percent (0.21 percent of malignant biopsies were false positives), false positive rate 4.0 percent, and negative predictive value of 68.5 percent, but 14 percent of biopsies were non-diagnostic. The majority of nondiagnostic biopsies were found to correspond with malignant surgical pathology (90.4 percent). Verification bias exists in these studies as benign or nondiagnostic biopsies do not necessarily proceed to surgical extirpation, limiting the analysis and making the exact false negative rate difficult to ascertain. In addition, there is bias in who proceeds to surgery as patient or tumor characteristics (i.e., male sex, larger tumors) influence the decision to proceed to surgery. Therefore, the strength of evidence for diagnostic accuracy of renal mass sampling (core biopsy) was graded as moderate. It is more difficult to make conclusions on final needle aspiration given only one older study met inclusion criteria.

Percutaneous renal mass sampling was associated with infrequent direct complications, including hematoma (4.9 percent), clinically significant pain (1.2 percent), gross hematuria (1.0 percent), pneumothorax (0.6 percent), and hemorrhage (0.4 percent). The strength of evidence was low on the harms associated with percutaneous renal mass sampling.

Table C. Summary of the strength of evidence for renal mass biopsy outcomes

Outcomes	No. Studies	Strength of Evidence Finding	
Diagnostic Accuracy	18	Moderate Renal mass biopsy has a high positive predictive value (99.8%) for the diagnosis of renal malignancy but also a notable non-diagnostic (~14%) rate and low negative predictive value (<70%). The primary limitation is the absence of surgical pathology for benign biopsies, but sensitivity and specificity of a diagnostic biopsy result appear to be over 90%.	
Fuhrman Grade	12	Low Fuhrman upgrading on final pathology occurred in 20.5% of biopsies, but many studies did not provide data on grade concordance.	
Harms	16	Low A small, but notable, proportion of patients experience harms due to renal mass biopsy, with hematoma (5%) being the most common direct complication. Studies were inconsistent in which harms, if any, were reported.	

KQs 3a and 3b: Comparative Effectiveness and Harms of the Management Strategies for Clinically Localized Renal Masses

One hundred seven studies (reported in 110 articles) addressed KQs 3a and 3b. Ninety-nine comparative studies (reported in 102 articles, with 179,740 patients) addressed the effectiveness of management strategies for localized renal masses concerning for renal cell carcinoma. Only one study was an RCT (reported in 3 articles). Eight studies, evaluating active surveillance, were uncontrolled studies. The remainder were comparative cohort studies (Table D).

Overall Survival and Oncological Outcomes

Sixty studies (reported in 61 articles) evaluated oncological outcomes such as cancer-specific survival, metastasis-free survival, and local recurrence-free survival. This included one RCT, 48 institutional cohort studies, and 11 studies (reported in 12 articles) of the Surveillance, Epidemiology, and End Results (SEER) dataset. The risk of bias associated with the cohort studies was moderate in 34 (58 percent) studies and serious in 25 (42 percent) studies. Forty-eight studies (reported in 49 articles) evaluated overall survival, including one RCT, 38 institutional cohorts, and 9 studies (reported in 10 articles) of the SEER dataset. The risk of bias associated with cohort studies was moderate in 30 (63.8 percent) studies and serious in 17 (36.2 percent) studies. The single randomized study was determined to have an unclear risk of bias for both overall survival and oncological outcomes. Of note, few comparative studies evaluated active surveillance, necessitating evaluation of seven uncontrolled studies of active surveillance.

The available literature suggested that overall survival and oncological outcomes were similar among all management strategies. In fact, cancer-specific survival was excellent among all modalities, and median 5-year survival approached 95 percent for all included studies. Importantly, cancer-specific survival was associated with tumor size/stage, but not partial or radical nephrectomy (these were the only management strategies to offer stage-specific outcomes): for patients with clinical stage T1a (\leq 4 cm), T1b (> 4-7 cm) and T2 (> 7 cm) tumors, resulting cancer-specific survival was 97-99 percent, 90-91 percent, and 83-87 percent, respectively. The strength of evidence was *moderate* for the finding of equivalent cancer-specific survival for radical versus partial nephrectomy based on data from one RCT, 23 institutional cohort studies, and 10 SEER analyses. The strength of evidence was *moderate* for the finding of equivalent cancer-specific survival for thermal ablation versus radical nephrectomy, and *low* for thermal ablation versus partial nephrectomy.

Overall 5-year survival was similar for patients undergoing partial nephrectomy when compared to radical nephrectomy (*low* strength of evidence). Thermal ablation was generally associated with similar or poorer overall 5-year survival compared with partial nephrectomy (*low* strength of evidence) due to the selection of older patients with greater comorbidity to undergo the procedure. Uncontrolled active surveillance studies reported a range of overall survival from 69 to 94 percent, but had shorter followup (median 12-35 months) than studies of the other treatment modalities.

Metastasis-free survival did not differ between any treatment modalities with *low* strength of evidence on pairwise comparisons except for partial nephrectomy versus thermal ablation, where there was *moderate* strength of evidence for equivalent metastasis-free survival.

Thermal ablation was associated with worse local recurrence-free survival compared with radical nephrectomy (*low* strength of evidence) and partial nephrectomy (*moderate* strength of evidence). After a repeat treatment, secondary efficacy of thermal ablation appeared to more

closely approximate the local cancer control rates of radical nephrectomy and partial nephrectomy (Figure D).

Renal Functional Outcomes Early and Late

Fifty-three studies (reported in 54 articles, 17,784 patients) evaluated renal functional outcomes, including changes in creatinine and/or estimated glomerular filtration rate, incidence of chronic kidney disease stage 3, 3b, and/or 4 [or greater], and incidence of end-stage renal disease. Earlier stages of chronic kidney disease were not evaluated or synthesized, since these typically depend on the presence of albuminuria, a factor not evaluated in these studies. One study was an RCT (reported in two articles) and the remainder were retrospective observational studies. Thirty-eight (38) studies compared radical nephrectomy and partial nephrectomy, eight (8) studies compared radical nephrectomy and thermal ablation, 21 studies compared partial nephrectomy and thermal ablation, and 2 studies compared active surveillance with the other management strategies. Studies varied in the reporting of both continuous (estimated glomerular filtration rate, and serum creatinine) and categorical renal functional outcomes (incidence of chronic kidney disease and end-stage renal disease). In addition, the time point of reported outcomes varied from 1 month to 10 years. The overall risk of bias across outcomes associated with the observational studies was moderate to serious.

All interventions experienced decreased renal function in the early postoperative period (within the first month) with a subsequent improvement and plateau in renal function within 1 to 6 months. The strength of evidence was moderate that radical nephrectomy is associated with worsened renal functional outcomes, including increasing incidence of chronic kidney disease stage 3, chronic kidney disease stage 3b, end-stage renal disease, as well as change in creatinine and estimated glomerular filtration rate, when compared with partial nephrectomy and thermal ablation, but a low rate of end-stage renal disease among all management strategies (0.4-3 percent by 1 year). Importantly, the only RCT of partial nephrectomy and radical nephrectomy demonstrated a greater decrease in estimated glomerular filtration rate within the first year for those patients undergoing radical nephrectomy and higher initial incidence of chronic kidney disease stage 3 and stage 3b, but similar estimated glomerular filtration rate from 13 to 15 years of followup (moderate strength of evidence). Renal functional outcomes were similar among partial nephrectomy and thermal ablation. The strength of evidence was *insufficient to low* in the remainder of comparisons based on a low number of studies and inconsistencies in reporting of renal functional outcomes.

Health-Related Quality of Life

Four studies (440 patients) compared health-related quality of life outcomes in patients undergoing radical and partial nephrectomy. Three studies were cross-sectional studies and one evaluated the outcome at predetermined time points in a prospective manner. The risk of bias associated with the observational studies was moderate to serious based on selection bias and bias due to confounding.

The strength of evidence was insufficient to support a conclusion about the studies that reported a trend that radical nephrectomy may provide better quality of life regarding perception of cancer control, and partial nephrectomy may be associated with decreased anxiety and depression.

Perioperative Outcomes and Harms

Thirty-eight studies (37 comparative studies and 1 RCT, with a total of 11,802 patients) evaluated perioperative outcomes including estimated blood loss, blood transfusion rate, conversion to open surgery, and length of stay. Twenty-four studies compared radical nephrectomy and partial nephrectomy, 3 studies compared radical nephrectomy versus thermal ablation, and 16 studies compared partial nephrectomy and thermal ablation. Three studies reported multiple comparisons.

Harms were evaluated as urologic and nonurologic complications. Forty-seven studies (46 comparative studies and one RCT (reported in 2 articles), with a total of 180,009 patients) evaluated harms, including 32 studies of radical nephrectomy and partial nephrectomy, 7 studies of radical nephrectomy and thermal ablation, and 21 studies of partial nephrectomy and thermal ablation. Six studies reported multiple comparisons (i.e., three-armed study). There was one RCT, and the remainder were observational studies. The single RCT had unclear risk of bias and the overall risk of bias associated with the observational studies was moderate to serious. No study evaluated perioperative outcomes or harms associated with active surveillance.

Thermal ablation offered the most favorable perioperative outcomes with fewer conversions to open surgery and shorter length of stay when compared to radical nephrectomy (low strength of evidence); and less estimated blood loss, less blood transfusions, no conversions to open surgery or radical nephrectomy, and shorter length of stay when compared to partial nephrectomy (moderate strength of evidence). The strength of evidence was moderate that partial nephrectomy had the highest blood transfusion rate (4.6 to 16.3 percent), which was significantly greater than both radical nephrectomy and thermal ablation.

In general, rates of harms were low among all treatment modalities, with minor (Clavien I-II) and major (Clavien III-IV) complications occurring in 2.6-24.1 percent and 2.8-8.0 percent of patients respectively.¹⁷ When considering specific harms, partial nephrectomy had higher rates of urologic complications (including renal abscess, ureteral injury, urine leak and subsequent interventions) when compared to radical nephrectomy (low strength of evidence) and thermal ablation (low strength of evidence). However, rates of minor and major complications were similar among all three treatment modalities. Thermal ablation had the lowest reported rates of acute kidney injury and non-urologic complications when compared to both radical and partial nephrectomy. The strength of evidence was insufficient to *low* for all other comparisons based on inconsistencies in the reporting of harms (urologic and non-urologic complications) among studies (Figure E to Figure G).

Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management strategies

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
Cancer-specific survival	Insufficient	Low 9 studies	Low 1 study	Moderate 37 studies	Moderate 2 studies	Insufficient
		Cancer-specific survival was comparable between partial nephrectomy and thermal ablation. One study, at high risk of bias, suggested partial nephrectomy may be associated with better long-term cancer-specific survival.	A single study demonstrated a similar cancer-specific survival despite greater oncologic potential of tumors undergoing radical nephrectomy.	Cancer-specific survival was comparable for radical nephrectomy and partial nephrectomy across the SEER and institutional studies. The one RCT reported few cancer deaths.	Both studies reported comparable cancer- specific survival for radical nephrectomy compared to thermal ablation.	
Metastasis-free survival	Insufficient	Moderate 8 studies Metastasis-free survival was comparable between partial nephrectomy and thermal ablation.	Low 1 study A single study showed similar metastasis-free survival for radical nephrectomy vs. active surveillance.	Low 13 studies Metastasis-free survival for radical nephrectomy compared to partial nephrectomy was similar across all 13 studies.	Low 2 studies Both studies reported comparable metastasis-free survival for radical nephrectomy compared to thermal ablation but included few patients and events.	Insufficient

Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management strategies (continued)

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
Local recurrence-free survival	Insufficient	Moderate 14 studies	Insufficient 1 study	Moderate 21 studies	Low 2 studies	Insufficient
		Partial nephrectomy was associated with better local recurrence-free survival compared to thermal ablation across studies. Allowing for multiple retreatments led to a more comparable secondary efficacy rate for thermal ablation.	No local recurrences were reported in this single study.	Local-recurrence free survival for radical nephrectomy compared to partial nephrectomy was similar across studies. No study reported a statistically significant difference.	Both studies reported better local recurrence-free survival for radical nephrectomy compared to thermal ablation but included small sample sizes.	
Overall survival	Insufficient	Low 13 studies All 13 studies demonstrated worse overall survival for thermal ablation compared to partial nephrectomy, likely due to age and comorbidity.	Low 1 study Single study demonstrated comparable overall survival with radical nephrectomy and active surveillance with a wide confidence interval [hazard ratio 0.75 (95% CI, 0.45 to 1.26)].	Low 36 studies Overall survival was similar for radical nephrectomy and partial nephrectomy, but studies were inconsistent. SEER analyses showed a survival advantage for partial nephrectomy while institutional cohorts and the 1 RCT did not demonstrate this.	Insufficient 3 studies The results of the three studies were too inconsistent to support a conclusion, especially given the limitations of the studies.	Insufficient

Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management strategies (continued)

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
Continuous	Insufficient	Low	Low	Moderate	Moderate	Insufficient
renal functional outcomes ^a	2 studies	19 studies	2 studies	34 studies	7 studies	2 studies
	One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in eGFR change between groups. The evidence was insufficient to determine effectiveness of partial nephrectomy alone.	eGFR fell more with partial nephrectomy than with thermal ablation, by an average of 1.0 ml/min/1.73 m² (95% CI - 0.2-2.1 ml/min/1.73 m²), but the result was not statistically significant and there was significant heterogeneity.	While results are limited by having only two studies, decline in eGFR was 14 ml/min/1.73 m² less in those assigned active surveillance.	eGFR fell more with radical than partial nephrectomy, by an average of 3.6 ml/min/1.73 m² (95% Cl 3.2-4.1 ml/min/1.73 m²), with significant heterogeneity in the magnitude of the difference.	eGFR fell more with radical nephrectomy than with thermal ablation, by an average of 9.9 ml/min/1.73 m² (95% CI 7.6-12.3 ml/min/1.72 m²).	One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in eGFR change between groups. The evidence was insufficient to determine effectiveness of thermal ablation alone.

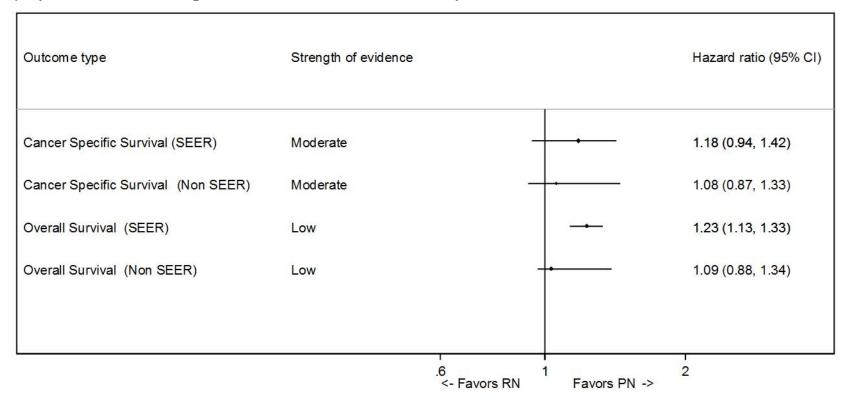
Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management strategies (continued)

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
Categorical	Insufficient	Low	Low	Moderate	Moderate	Insufficient
renal functional outcomes ^a	2 studies	11 studies	2 studies	24 studies	4 studies	2 studies
	One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in rates of CKD between groups. The evidence was insufficient to determine effectiveness of partial nephrectomy alone.	No statistically significant differences were seen in rates of CKD stage ≥3, ≥3b, ≥4, or ESRD.	While results are limited by having only two studies, rates of new onset CKD Stage ≥ 3 were 3-6% with active surveillance and 40-76% with radical nephrectomy.	Incidence of all stages of CKD were lower in those undergoing partial nephrectomy compared to radical nephrectomy, with risk 0.39 times lower for CKD stage 3, 0.37 times lower for CKD stage 3b, 0.76 times lower for CKD stage 4, and 0.47 times lower for ESRD. Heterogeneity did exist in the magnitude of the findings.	Rate of CKD Stage >3 was 3.5 fold higher (95% CI 1.1-12.7) for those receiving radical nephrectomy. Rates of CKD stage 3b and ESRD were limited to two studies.	One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in rates of CKD between groups. The evidence was insufficient to determine effectiveness of thermal ablation alone.

Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management strategies (continued)

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
QOL	Insufficient	Insufficient	Insufficient	Insufficient 4 studies Conclusions cannot be drawn based on limited number of studies, heterogeneity of outcome measures, and inconsistency of results.	Insufficient	Insufficient
Perioperative Outcomes	Insufficient	Moderate 15 studies Estimated blood loss, transfusion rate, rate of conversions, and length of hospital stay favored thermal ablation consistently.	Insufficient	Moderate 23 studies Partial nephrectomy demonstrated consistently higher estimated blood loss and transfusion rate with similar conversion to open rate and length of hospital stay.	Low 3 studies No study evaluated estimated blood loss. Blood transfusion rate was similar, and length of hospital stay favored thermal ablation. However, no more than two studies reported each outcome.	Insufficient

Table D. Summary of the strength of evidence for health outcomes of the effectiveness and comparative effectiveness of the management


strategies (continued)

Outcome	Partial Nephrectomy Versus Active Surveillance	Partial Nephrectomy Versus Thermal Ablation	Radical Nephrectomy Versus Active Surveillance	Radical Nephrectomy Versus Partial Nephrectomy	Radical Nephrectomy Versus Thermal Ablation	Thermal Ablation Versus Active Surveillance
Harms	Insufficient	Low 21 studies Rates of harms (specifically urologic, non-urologic, minor and major) varied significantly among studies. Some urologic and non-urologic complications occurred less often after partial nephrectomy and other urologic complications occurred less often after thermal ablation, but the rate of acute kidney injury and the rate of minor or major Clavien complications did not differ between partial nephrectomy and thermal ablation.	Insufficient	Low 32 studies The only RCT in this literature demonstrates higher rates of urologic complications in patients undergoing partial nephrectomy. This is corroborated by the retrospective data. However, rates of harms were modest among studies. he rate of acute kidney injury did not differ between radical and partial nephrectomy, but the rate of major Clavien complications was higher with partial nephrectomy than with radical nephrectomy. Non-urologic complications did not differ between radical and partial nephrectomy.	Low 7 studies Harms were inconsistently reported among the four studies, making it difficult to draw conclusions about the differences that were observed in specific urologic or non- urologic complications. The rate of acute kidney injury did not differ significantly between radical nephrectomy and thermal ablation, but the data were insufficient to rule out a clinically important increased risk with radical nephrectomy. Minor and major Clavien complications were only reported in one study.	Insufficient

CI = confidence interval, CKD = Chronic kidney disease; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease, RCT = randomized controlled trial; SEER = Surveillance, Epidemiology, and End Results

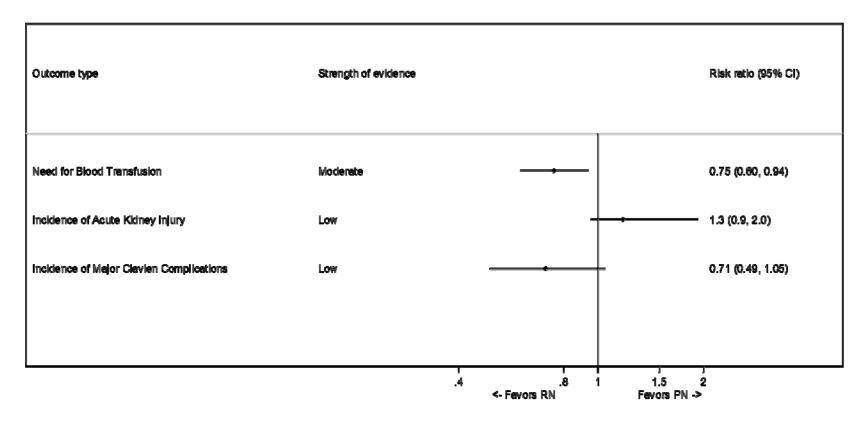

^aContinuous renal functional outcomes included change in serum creatinine and/or change in eGFR; categorical renal functional outcomes included incidence of CKD stage 3, 3b, or 4 or incidence of ESRD.

Figure D. Pooled comparisons of cancer-specific survival and overall survival for radical nephrectomy (RN) versus partial nephrectomy (PN) in patients with clinical stage 1 and 2 renal cancer from studies that presented effect estimates as hazard ratios

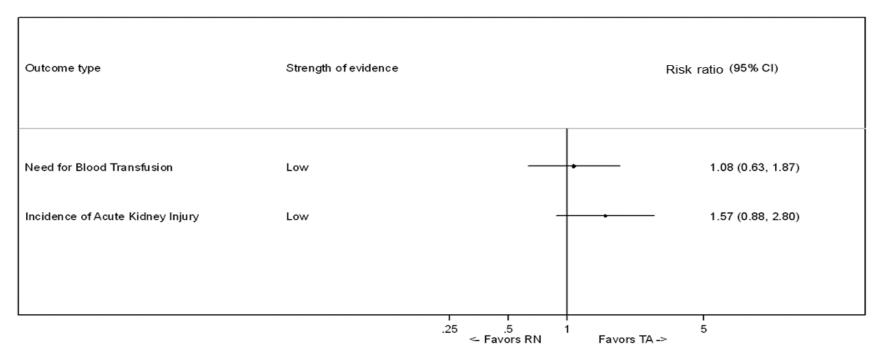

Cl = confidence interval; SEER = Surveillance, Epidemiology, and End Results

Figure E. Pooled comparisons of perioperative outcomes and harms for radical nephrectomy (RN) versus partial nephrectomy (PN) from studies that presented effect estimates as risk ratios

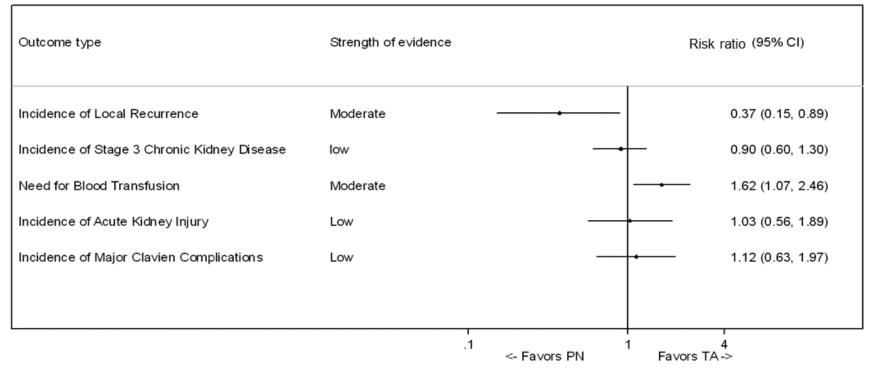

Cl = confidence interval

Figure F. Pooled comparisons of perioperative outcomes and harms for radical nephrectomy (RN) versus thermal ablation (TA) from studies reporting risk ratios

Cl: Confidence interval

Figure G. Pooled comparisons of perioperative outcomes and harms for partial nephrectomy (PN) versus thermal ablation (TA) from studies reporting risk ratios

Cl = confidence interval

Predictors of Oncologic Outcomes, Overall Survival, Renal Functional Outcomes, Quality of Life, and Harms

Twenty-one studies evaluated the oncologic outcomes. Seventeen studies (with a total of 101,377 patients) evaluated predictors of cancer-specific survival, one study (475 patients) examined predictors of metastasis-free survival, and 3 studies (360 patients) evaluated predictors of local recurrence-free survival. The evidence was limited regarding the comparative benefits and harms of management strategies based on patient or tumor characteristics. Radical nephrectomy and partial nephrectomy had limited evidence suggesting that age, tumor size, stage, and grade were inversely associated with cancer-specific survival. The strength of evidence was low for cancer-specific survival and insufficient for metastasis-free and local recurrence-free survival (Table E).

Twenty studies (85,939 patients) considered predictors of overall survival. Increasing age and comorbidity predicted overall survival. The strength of evidence was low.

Twenty-five studies (14,272 patients) evaluated predictors of renal functional outcomes. Baseline renal function was associated with long-term renal functional outcomes, regardless of type of surgery. The strength of evidence was low on the predictors of renal functional outcomes in comparative studies, due to inconsistent reporting of variables in prediction models.

Only two studies (247 patients) evaluated predictors of quality of life and three studies (2,168 patients) examined predictors of comparative harms between treatment groups. The strength of evidence from these studies was insufficient to support conclusions about factors predictive of differences between management strategies in quality of life and perioperative outcomes and harms.

Table E. Summary of the strength of evidence for clinical predictors of the comparative benefits

and harms of the available management strategies

Outcomes	No. Studies	Strength of Evidence Finding
Cancer-specific survival	19	Low Most data was derived from studies of radical nephrectomy in comparison to partial nephrectomy. Inclusion criteria varied among studies, and the relationship of age, tumor size, stage and grade to oncological outcomes were inconsistent among studies. However, differences in cancer-specific survival among modalities is likely unrelated to age or tumor stage.
Metastases-free survival	1	Insufficient
Local recurrence-free survival	3 (local and metastatic recurrence combined in these studies)	Insufficient Variations in data collection and presentation prevent meaningful conclusions from these studies.
Overall survival	22	Low Based mostly on studies of radical nephrectomy compared to partial nephrectomy, age and comorbidities consistently predicted overall survival.
Renal functional outcomes	27	Low Most data was derived from studies of radical and partial nephrectomy. The effects of baseline renal function and age were consistent among studies, but inconsistencies in other parameters limit the strength of evidence.

Table E. Summary of the strength of evidence for clinical predictors of the comparative benefits and

harms of the available management strategies (continued)

Outcomes	No. Studies	Strength of Evidence Finding
Quality of life	2	Insufficient Both studies demonstrated surgical approach (laparoscopic versus open) to predict outcome, but sparse data and inconsistencies among studies prevented determination of whether any factors were predictive of differences in the effects on health-related quality of life.
Perioperative outcomes and harms	3	Insufficient One study evaluated age and two evaluated tumor size. All studies were inconclusive, preventing meaningful conclusions.

Discussion

This systematic review addresses three key questions evaluating both the diagnostic and therapeutic management of clinically localized renal masses suspicious for malignancy.

Diagnosis of Renal Mass Suspicious for Localized Renal Cell Carcinoma

KQ1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

KQ 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The evidence showed that composite models have a predictive utility in differentiating benign and malignant pathology. Imaging characteristics, which included mass size and anatomic location, were the most heavily used variables in the models, but there was not a single variable that was predictive of benign or malignant pathology across all composite models.

In general, increased tumor size and male sex were best correlated with malignant pathology, supporting historical predictors of malignancy in prior guidelines and retrospective studies. The evidence was insufficient to identify any other strong predictors of malignant versus benign pathology in this sample population. Without further prospective studies examining these variables, it is not possible to conclude that any particular composite model variables can be successfully applied as a predictive tool. However, these data can inform clinicians about general variables that have been used to predict benign or malignant pathology, and be used to guide further well-designed clinical trials.

Our review provides support for the current (2009) AUA guidelines regarding the use of tumor size and sex to estimate the risk of malignancy. The findings of this systematic review provide further evidence of the strength of the correlation with tumor size and sex, and may help inform new guideline updates. It is also noteworthy that proposed risk factors from prior research and guidelines, specifically age and BMI, did not have levels of evidence supporting their routine use to predict benign or malignant pathology. Our analysis did not identify any components of a composite model that could be used to definitively distinguish benign from malignant pathology.

The evidence also showed that percutaneous renal mass sampling is associated with a low risk of complications (≤ 5 percent for each evaluated complication) and excellent positive predictive value (97-100 percent). However, the notable nondiagnostic rate (14 percent), low

negative predictive value (68 percent), and bias that surgical pathology is not routinely pursued for benign biopsy samples, prevents strong conclusions from being drawn regarding the exact role of renal mass sampling in the clinical practice. The evidence does support the preference of core biopsy over fine needle aspiration, based on the sensitivity (97.5 percent) and negative predictive value (68.5 percent) in an analysis of core biopsy alone, compared with a sensitivity of 62.5 percent and unknown specificity in one study on fine needle aspiration. It is clear renal mass sampling is a safe diagnostic technique as harms from renal biopsy are infrequent and usually do not require additional intervention. Historically, renal mass biopsy was avoided due to concern regarding tumor seeding. In no study included in this systematic review was a case of tumor seeding reported. Based on the available evidence, it is not possible to conclude that renal mass sampling is a universal prerequisite to surgical intervention or active surveillance. More clinical research is needed to better elucidate the utility of renal mass sampling.

Our analysis is consistent with the AUA and European Association of Urology (EAU) guidelines, which recommend using renal mass sampling judiciously, and preferably to use core biopsy over fine needle aspiration in the decision-making algorithm. Our systematic review also demonstrates real limitations to renal mass sampling that may be considered in any recommendation regarding the standard use of renal mass sampling. Given limitations in the data and the performance characteristics of renal mass biopsy, it is difficult to determine the exact clinical scenarios in which renal mass biopsy would influence management. However, there are a number of indications where renal mass biopsy may be considered. For example, in accordance with AUA and EAU guidelines, renal mass biopsy is considered prior to thermal ablation when its results could help determine appropriate followup and treatment efficacy. A young patient determined to have a partial nephrectomy for a small tumor would likely not benefit from biopsy. In contrast, a patient with a solitary kidney in whom surgery will likely lead to an anephric state may benefit from the added information yielded by a biopsy. This decision-making process has to occur thorough discussion of risks and benefits between physician and patient. The implications of the complication profile on special patient populations such as those on anticoagulant therapy was limited in the studies reviewed.

Management of Renal Mass Suspicious for Localized Renal Cell Carcinoma

KQ 3a: Efficacy and Comparative Efficacy Of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

KQ 3b: Comparative Benefits and Harms Of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

The evidence regarding management strategies of renal masses suspicious for localized renal cell carcinoma is based almost entirely on retrospective studies and is susceptible to the inherent limitations of this study design. We included comparative studies regarding radical nephrectomy, partial nephrectomy, and thermal ablation. We included uncontrolled studies on active surveillance because of the lack of comparative studies investigating this treatment modality.

According to the 2009 AUA Guidelines for the Management of the Clinical Stage 1 Renal Mass, physicians should "review with the patient the available treatment options and the attendant benefits and risks, including oncologic considerations, renal functional considerations and potential morbidities." Our review provides an updated summary of the benefits and risks of the treatment options. Of note, we found that "overall survival rates and cancer-specific survival rates were excellent (95-100 percent) regardless of the surgical management strategy. Interestingly, the AUA, EAU and National Comprehensive Cancer Network (NCCN) guidelines base recommendations for the management of renal masses on the clinical stage of the tumor – recommending nephron-sparing approaches (partial nephrectomy and thermal ablation) for smaller tumors (specifically those with cT1a masses). In our review, we found evidence of improved cancer-specific survival with decreasing tumor stage and size, but we were unable to demonstrate superior cancer-specific survival for any particular management strategy based on tumor size or stage. This may reflect a lack of granularity in these comparative studies or may represent the noninferiority of these management strategies in the treatment of localized renal masses. This could also be further evidence of the generally favorable biology of small tumors, which may supersede the chosen treatment modality.

The 2009 AUA guidelines also recommended thermal ablation as a treatment option for patients at high surgical risk, and active surveillance as an option for patients with decreased life-expectancy or extensive comorbidity. Our review of the evidence showed that thermal ablation and active surveillance were both associated with worse overall survival, reflecting the increased age, comorbidity and competing risks of death in the patients typically selected for less invasive management. Furthermore, thermal ablation was associated with worse local recurrence-free survival compared with radical nephrectomy and partial nephrectomy – as was previously noted in the 2009 AUA Guidelines. Patients should be counseled that an equivalent local control rate with thermal ablation may require more than one treatment. Unfortunately, the evidence remains insufficient to directly compare the outcomes of active surveillance to surgical management options for patients with decreased life-expectancy or extensive comorbidity.

The 2009 AUA guidelines recommend giving consideration to nephron-sparing surgery (partial nephrectomy or thermal ablation) for all patients with a clinical T1 renal mass. To help physicians counsel patients on the potential benefits of nephron-sparing surgery, it is important to have up-to-date information on the comparative effects of the surgical management options on renal functional outcomes. Any analysis of renal functional outcomes in observational studies is inherently biased by the selection of patients into radical versus nephron-sparing management strategies (partial nephrectomy or thermal ablation). Patients with worse baseline function are often selected for nephron-sparing approaches and, as expected, radical nephrectomy was associated with worse renal outcomes when compared with partial nephrectomy or thermal ablation (as measured by estimated glomerular filtration rate, serum creatinine, or incidence of chronic kidney disease). Partial nephrectomy and thermal ablation have similar risks of estimated glomerular filtration rate decline and incidence of chronic kidney disease. Our synthesis of studies suggests that patients with optimal baseline renal function (estimated glomerular filtration rate greater than 90 mL/min/1.73m²) or poor baseline renal function (estimated glomerular filtration rate less than 45 mL/min/m²; chronic kidney disease stage IIIb or worse) may not experience renal functional benefits from nephron-sparing procedures compared with radical nephrectomy. However, this is likely due to decreased numbers of studies reporting these subgroups and outcomes, and the few studies reporting followup beyond 1 year. Further research should strive to identify the patients most likely to benefit from nephron-sparing approaches

from a renal functional standpoint, and in particular long-term development of chronic kidney disease and/or end-stage renal disease. There is also a paucity of data regarding health-related quality of life for patients with clinically localized renal masses suspicious for malignancy. Quality of life in these patients appears to be influenced by a number of factors including cancer control, renal function, physical function, and mental well-being.

In addition to cancer-specific outcomes, overall survival, renal functional outcomes, and quality of life (which all have long-term implications), the choice of management strategy also depends on perioperative outcomes and harms, which may modulate a patient's selection of a given strategy. Based on comparative data, thermal ablation had the most favorable perioperative outcomes (less estimated blood loss, shorter length of stay, and less conversions to open or radical surgery) in comparisons with radical or partial nephrectomy. While the overall rate of postoperative urologic and nonurologic complications was similar among all management strategies, the differential rates of specific postoperative complications varied by strategy. For instance, despite similar overall complication rates, partial nephrectomy had the highest rate of postoperative bleeding while patients undergoing radical nephrectomy had more respiratory harms and acute kidney injury. Since an individual patient's risk factors may play an important role in choosing a management strategy, tailoring management to a specific patient's susceptibility to harms may prove prudent.

While a number of studies evaluated multivariate predictors of oncological efficacy, renal functional outcomes, overall survival, and quality of life, few studies evaluated comparative efficacy of the given management strategies in relation to these predictors. Limited data exists to explain the role of clinical factors in predicting oncologic outcomes, overall survival, renal functional outcomes, quality of life, perioperative outcomes, and harms among the management strategies. Evidence suggests that larger tumors are more likely to be malignant, and uncontrolled studies indicate that large masses may increase the likelihood of complications during partial nephrectomy (comparative data from this review did not demonstrate any increased risk of complications based on tumor size). Therefore, prior guidelines and expert statements may be reasonable in suggesting radical nephrectomy in patients with larger (clinical stage T1b or 2) tumors – despite a lack of evidence in this systematic review. However, studies suggest that baseline renal function is the best predictor of long-term renal functional outcomes regardless of type of surgery – therefore a patient with a large tumor and chronic kidney disease at baseline (stage 3 or 3b especially), may benefit from a nephron-sparing approach. The choice of management strategy is therefore complex and dependent on patient and tumor characteristics as well as patient and physician preferences regarding the risk of recurrence, survival, renal functional outcomes, and complications. The current data does not provide strong enough evidence to support one management strategy over another for a given patient or clinical scenario. Future research should strive to provide more information to guide the choice of management strategy for different types of patients.

One of the major limitations of the evidence not previously discussed is the imprecise reporting of clinical stage among studies. As nephron-sparing approaches are mostly indicated for clinically localized tumors, these studies were included regardless of the reporting of clinical stage. However, studies of radical nephrectomy were only included if clinical stage was explicitly stated. We urge all studies reporting outcomes on renal masses to consistently report clinical stage.

Applicability

The target population included patients with newly diagnosed, localized renal masses concerning for stage I or II renal cell carcinoma, who were older than age 18, with no family or personal history of renal cell carcinoma.

Regarding diagnostics, we evaluated the accuracy of published composite models (e.g., combination of demographics, clinical characteristics, blood/urine tests, and tumor imaging characteristics) for predicting malignancy. The applicability of our findings was limited by several factors. The patient populations in the reported composite models were relatively old with limited details regarding specific preoperative patient or tumor characteristics. As such, younger patients and those with other comorbidities may have differing risks of malignancy. The literature evaluating renal mass sampling did not routinely report details such as localization and characteristics of the mass that was biopsied. Anterior and hilar tumors may be more difficult to biopsy due to their difficult location, and partially cystic lesions may not yield sufficient biopsy material. Thus, the performance characteristics of renal mass biopsy may not be applicable to these tumors. Furthermore, these findings may not be applicable to patients who had nonmalignant renal mass biopsies as our analysis only included renal mass sampling studies when there was corresponding surgical pathology. Patients on anticoagulant therapy and other special populations may have different complication profiles than those in the studies analyzed.

The applicability of our findings with respect to management strategies also is limited by several factors. The paucity of prospective comparative data highlights the high risk of bias of the studies reviewed. Selection bias plays a prominent role in treatment selection, thereby limiting the applicability of the findings from retrospective observational studies to specific patient groups. For example, thermal ablation studies were enriched with older patients with multiple comorbid conditions, so their applicability to younger patients may be questioned. The lack of comparative data on active surveillance limits the applicability of our findings related to this management strategy. Specific active surveillance enrollment criteria, followup protocols, and triggers for intervention are not rigorously studied, further limiting our understanding of the applicability of these studies. The emergence of new technologies, and any associated learning curve, could also affect the applicability of studies related to thermal ablation and minimally invasive techniques.

Research Gaps

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The primary gaps in research regarding composite models are the lack of validation of composite models and the limited use of laboratory biomarkers in composite models. The lack of published studies of composite models using biomarkers may be a result of failure to test potential biomarkers within a composite model or tested biomarkers that are nonpredictive. Serum biomarkers include, but are not limited to C-reactive protein, platelet count, and carbonic anhydrase 9. These, along with emerging urine biomarkers such as aquaporin-1 and perilipin-2, should be incorporated into composite models and validated prospectively in well-controlled studies. Likewise, future composite models should consider new imaging methods, such as 99m technetium-sestamibi single photon emission computed tomography (SPECT), to better differentiate between malignant and benign pathology. ²¹

KQ 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Our findings demonstrated a high positive predictive value of renal mass sampling but a significant nondiagnostic rate as well as a relatively poor negative predictive value. The findings have a high associated risk of bias, as there often was no surgical pathology associated with negative or nondiagnostic biopsies. Further gaps included the lack of a standardized biopsy protocol, lack of correlation with patient characteristics (obesity, anticoagulant therapy, solitary kidney, etc.) or tumor characteristics (size, cystic components, anatomic location within kidney, etc.), and inability to determine how biopsy affects definitive treatment.

To improve analysis of renal mass sampling, future studies should consider standardization and detailed publication of biopsy protocols, including the number of biopsy attempts, number of successful biopsies, and number of patients whose procedures were aborted secondary to technical difficulties. The presence of an on-site pathologist to assess the adequacy of the sample was also not universally reported. Ideally, details on the tumor and its anatomic location should be reported in relationship to the renal mass sampling outcomes. Prospective studies are needed in which all patients undergo biopsy prior to surgery for true assessment of renal mass sampling accuracy. Finally, thorough investigation of renal mass sampling as it affects management strategies and ultimately, oncological outcomes, will be critical to determine its true utility.

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Conclusions about the efficacy and comparative efficacy of management strategies are limited by weak study designs, poor reporting of clinical staging, and inconsistent reporting of treatment outcomes. Unreported levels of surgeon/operator expertise allows for confounding of the results.

To address these limitations, greater standardization of treatment data is required. Studies should routinely report both the clinical and pathologic stage of patients, as potentially valuable data was excluded when only pathologic staging was provided. Second, a standardized definition of surgical competence or expertise is needed. This may be achieved either by surgical/procedural case volume or a review of proficiency, success, and complications associated with index cases. Defining surgical or technical proficiency will be an ongoing challenge and standardizing how this is defined is paramount to comparative studies. Third, renal functional and survival outcomes need to be standardized in the routine reporting of outcomes. Immediate postoperative renal functional data is insufficient and inaccurate for reporting the renal effects of the interventions. We recommend reporting baseline renal function within 1 month of intervention, short-term (1-6 month) and long-term (1 year and longer) outcomes in an attempt to better compare management strategies. Glomerular filtration rate is preferable to serum creatinine, with precise reporting of the data instead of grouping into levels of chronic kidney disease, which are subject to change. In addition, further research should strive to identify the patients most likely to benefit from nephron-sparing approaches from a renal functional standpoint. Survival outcomes (local recurrence, metastasis, cancer-specific, and overall) should be reported at 1, 3, and 5 years, at a minimum. Future research should focus on comparative

effects of the management strategies on quality of life to complete the outcome profile associated with each management strategy.

Regarding designing studies that will advance our understanding of the comparative efficacy of each management strategy, it is critical that prospective studies be performed when possible. Retrospective studies may not accurately capture minimally invasive procedures that were converted to open procedures, and may not capture conversions of partial to radical nephrectomies. A trial comparing thermal ablation to partial nephrectomy would be informative. Given the high survival rates of treatment with all modalities studied, quality of life data are lacking and represent an area ripe for discovery. Furthermore, active surveillance should be studied prospectively and in comparison to treatment modalities to better define its place in the management paradigm.

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

Patient demographics, clinical characteristics, and disease severity are important in the evaluation of interventions, but were dramatically underreported. To improve understanding of the comparative benefits and harms of the management strategies, studies should be more consistent about reporting clinical stage, tumor characteristics including anatomic location within the kidney, and pre- and postintervention assessments of disease severity and comorbidity.

Conclusions

Diagnosis of Renal Mass Suspicious for Localized Renal Cell Carcinoma

A limited set of studies exists regarding the diagnosis of renal cell carcinoma in our target population. Current composite models do not reliably predict malignancy; however, tumor size and male sex are most highly associated with malignancy. Renal mass sampling is a safe and sensitive procedure, but has a high nondiagnostic rate. The evidence is biased by the failure of nonmalignant biopsies to proceed to intervention. Core biopsy appears to offer improved diagnostic abilities over fine needle aspiration.

Management of Renal Mass Suspicious for Localized Renal Cell Carcinoma

As a result of the paucity of prospective comparative studies on the management of renal masses suspicious for localized renal cell carcinoma, the current literature has a moderate risk of bias. Comparative studies demonstrate comparable cancer-specific survival among all management strategies. However, thermal ablation has a higher local recurrence rate, but favorable perioperative outcome and harms profile. Thermal ablation and partial nephrectomy offer improved renal functional outcomes over radical nephrectomy. Active surveillance may have reasonable survival outcomes in selected populations, but comparative data are lacking. The data are sparse on the quality of life effects of the management options. The evidence also is very limited on how the comparative benefits and harms of management strategies depend on patient characteristics.

References

- 1. Kutikov A, Fossett LK, Ramchandani P et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology 2006; 68(4):737-40. PMID: 17070344
- 2. Thompson RH, Hill JR, Babayev Y et al. Metastatic renal cell carcinoma risk according to tumor size. J Urol 2009; 182(1):41-5. PMID: 19450840
- 3. Lane BR, Babineau D, Kattan MW et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol 2007; 178(2):429-34. PMID: 17561141
- 4. American Cancer Society . Cancer Facts & Figures 2014. 2014.
- 5. Mathew A, Devesa SS, Fraumeni JF Jr, Chow WH. Global increases in kidney cancer incidence, 1973-1992. Eur J Cancer Prev 2002; 11(2):171-8. PMID: 11984136
- 6. Nguyen MM, Gill IS, Ellison LM. The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program. J Urol 2006; 176(6 Pt 1):2397-400; discussion 2400. PMID: 17085111
- 7. Kane CJ, Mallin K, Ritchey J, Cooperberg MR, Carroll PR. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 2008; 113(1):78-83. PMID: 18491376
- 8. Long JA, Arnoux V, Fiard G et al. External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 2013; 111(2):233-9. PMID: 22788546
- 9. Kanao K, Mizuno R, Kikuchi E et al.
 Preoperative prognostic nomogram
 (probability table) for renal cell carcinoma
 based on TNM classification. J Urol 2009;
 181(2):480-5; discussion 485. PMID:
 19100568
- 10. Haggstrom C, Rapp K, Stocks T et al. Metabolic factors associated with risk of renal cell carcinoma. PLoS One 2013; 8(2):e57475. PMID: 23468995

- 11. Yaycioglu O, Eskicorapci S, Karabulut E et al. A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer. Jpn J Clin Oncol 2013; 43(1):63-8. PMID: 23159766
- 12. Campbell SC, Novick AC, Belldegrun A et al. Guideline for management of the clinical T1 renal mass. J Urol 2009; 182(4):1271-9. PMID: 19683266
- 13. Higgins JPT, Green S (editors). Cochrane handbook for systemic reviews of interventions Version 5.1.0. The Cochrane Collaboration. 2011;Oxford, England. [cited 2013 11/4]; Available from: http://handbook.cochrane.org.
- 14. Sterne JAC, Higgins JPT, Reeves BC on behalf of the development group for ACROBATNRSI. A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBATNRSI), Version 1.0.0, 24 September 2014. http://www.riskofbias.info.
- 15. Whiting PF RAWMeal. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8):529-36. PMID: 22007046.
- 16. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality. January 2014. Chapters available at: www.effectivehealthcare.ahrq.gov.
- 17. Dindo D. DNCPA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 244:931-7. PMID: 15273542.
- 18. Roos FC, Brenner W, Thomas C et al. Functional analysis of elective nephronsparing surgery vs radical nephrectomy for renal tumors larger than 4 cm. Urology 2012; 79(3):607-13. PMID: 22386408

- 19. Tomaszewski JJ, Uzzo RG, Kutikov A et al. Assessing the burden of complications after surgery for clinically localized kidney cancer by age and comorbidity status. Urology 2014; 83(4):843-9. PMID: 24680455
- 20. Rowe SP, Gorin MA, Gordetsky J et al. Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Clin Nucl Med. 2015 Apr;40(44):309-13. PMID: 25608174.
- 21. Morrissey JJ, Mobley J, Figenshau RS et al. Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer.: Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Mayo Clinic Proc. 2015 Jan;90(1):35-42. PMID: 25572193.

Introduction

Background

Epidemiology and Population of Interest

Renal masses are a biologically heterogeneous group of tumors ranging from benign masses to cancers that can be indolent or aggressive.^{1,2} The true incidence of renal masses (including benign lesions) is unknown, but benign lesions comprise approximately 20 percent of surgically resected tumors.^{1,3}

Kidney cancer affects approximately 65,000 new patients each year, with more than 13,000 deaths annually. The incidence of kidney cancer has increased significantly by 2-3 percent over the past few decades presumably due to the increased use of cross-sectional imaging such as computed tomography. Frequently, tumors are discovered incidentally and are asymptomatic at presentation. The greatest increase in incidence has been noted in small (less than 4 cm), clinically localized tumors (i.e., tumors within the kidney with no evidence of local spread, lymph node involvement, or distant metastases), which now account for upwards of 40 percent of all kidney cancers reported. From the following properties of the following prope

Despite this increase in early-stage cancer detection, the death rate from kidney cancer did not change significantly during the same time period.⁴ This lack of change in death rate may be reflective of the stable rates of patients presenting with advanced and metastatic cancer or a changing biology of kidney cancer.

Renal cell carcinoma (RCC) is the most common type of cancer affecting the kidneys in the United States, accounting for more than 94 percent of kidney malignancies.⁴ While RCC only represents two percent of adult cancers, it is among the most lethal; approximately 35 percent of patients die within 5 years of diagnosis.⁴ However, the deaths due to RCC are driven by the failure of systemic treatments in metastatic (later stage) patients. Localized RCC (stage T1N0M0, less than or equal to 7 cm in diameter without lymph node involvement or metastasis, and stage T2N0M0, greater than 7 cm in diameter without lymph node involvement or metastasis) has excellent outcomes, with 5-year survival rates better than 85 percent.^{8,9} There is significant heterogeneity within the clinically localized renal mass population. Upwards of 30 percent of clinical stage T1a tumors (\leq 4cm) are benign tumors, and of the malignancies the majority are believe to be low-grade, indolent tumors. ^{1,2,10} Therefore, the cancer-specific survival for clinical stage T1a tumors is greater than 95 percent. ¹¹ Conversely, up to 40 percent of clinically localized tumors are determined to be locally advanced cancers (stage T3, with invasion of perinephric fat or venous structures) at pathological examination, and locally advanced cancers are responsible for nearly all the cancer deaths in this population. ¹²

Diagnostic Evaluation and Detection of Disease

All solid renal masses and cystic lesions with solid components are suspicious for RCC. No test screens effectively for RCC, and most tumors are detected incidentally during an evaluation for unrelated or nonspecific complaints. Preoperative patient and tumor (imaging) characteristics are used to stratify the risk of benign versus malignant renal masses and indolent versus aggressive renal cancers. Demographic, clinical, and imaging characteristics are used to risk-stratify patients, and nomograms exist that combine these characteristics into composite models to predict the malignant status of tumors preoperatively. ¹³⁻¹⁶

In small studies, such models have modest concordance indices for malignancy, in the range of 0.55 to 0.65. 3,17-19 The best predictors of malignancy are patient sex and tumor size, although computed tomography enhancement patterns have been able to predict histology in up to 85 percent of cases. 1,20-22 In addition, all current standard imaging modalities (i.e., computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonography) are able to provide insight into whether or not renal masses are localized or locally advanced, which suggests pathologic aggressiveness. Larger or central tumors are more likely to be invasive, but small peripheral tumors may also be invasive. 18,23

Percutaneous renal mass sampling may be offered as a diagnostic adjunct to imaging studies such as CT, MRI, and ultrasonography. Percutaneous renal mass sampling can be done by fine needle aspiration with a reading of the sample by a cytopathologist or via core biopsy with a reading by a surgical pathologist. In one retrospective study, percutaneous renal mass biopsy was diagnostic in 81 percent of cases, with 79 percent of diagnostic biopsies showing evidence of malignancy.²⁴ However, percutaneous renal mass sampling carries a small risk of bleeding and a theoretical risk of tumor seeding, limiting its widespread use and a well-defined role in the evaluation of localized renal masses. Despite the shortcomings in diagnostic testing, management decisions are made based on estimates of malignant potential and are driven by surgeon advice and patient preference.

Therapeutic Interventions and Outcomes

Several options exist for the management of clinically localized renal masses suspicious for RCC, including active surveillance, surgical removal, and thermal ablation. Given the increased incidence in early, low-stage tumors without improvement in cancer-related deaths (see the discussion above), active surveillance has emerged as an option for patients with small renal masses, a low likelihood of aggressive malignancy, procedure-limiting comorbidity, and/or a limited life-expectancy. It is important to note a difference between active surveillance with curative intent versus watchful waiting. The latter constitutes a strategy where treatment is never entertained and surveillance imaging is infrequent or does not occur at all. Studies of watchful waiting are not examined in this report. Surgical removal options partial nephrectomy (removal of the tumor and a margin of surrounding normal kidney) or radical nephrectomy (removal of the entire kidney), which can be performed through a minimally invasive or open approach. Minimally invasive options include both standard laparoscopy and robot-assisted laparoscopy as well as percutaneous options for thermal ablation. Surgical removal (either radical or partial nephrectomy) is the gold standard for the treatment of RCC. The American Urological Association (AUA) Guideline, which only considers clinical stage 1 renal masses, considers partial nephrectomy and radical nephrectomy as "standard" treatment modalities for clinical stage T1a tumors (≤ 4 cm in diameter) and T1b (4-7cm) tumors. Thermal ablation and active surveillance are considered "options" or "recommendations" for T1a tumors, but are only considered "options" (no longer a "recommendation") for T1b tumors. 11 Thermal ablation, which may include cryoablation or radiofrequency ablation, can either be performed laparoscopically or percutaneously. However, professional organizations refrain from defining strict selection criteria (i.e., patient or tumor) for particular management strategies, and the existing selection criteria vary by organizational guideline. 11,25,26

Controversies exist regarding the ideal management for renal masses of different stages. For example, partial nephrectomy has emerged as the recommended treatment for T1 renal masses,

yet the single randomized, prospective study demonstrated no difference in overall survival between radical and partial nephrectomy in patients with kidney cancer.²⁷

The role of age in selecting patients for surgery and type of surgery is not well established. Older patients may have very different tumors than young patients, and may appear to need nephron-sparing approaches based on their co-morbidities, but may not live long enough to see the outcome of end-stage renal disease.²⁸ Moreover, cryoablation and partial nephrectomy may have comparable oncologic outcomes to partial nephrectomy for some tumors, although it is not clear which patients are best served with each treatment modality.²⁹

The main outcomes of interest in this population are cancer-specific and recurrence-free survival, renal functional outcomes, and the complications associated with each procedure. All extirpative options are associated with an excellent oncologic cure rate (greater than 95 percent 5-year disease specific survival for stage T1 tumors, and greater than 85 percent 5-year disease specific survival for stage T2 tumors). Based on the current literature, it is generally believed that nephron-sparing approaches (i.e., partial nephrectomy or thermal ablation) are associated with improved renal functional outcomes, but may not have an overall survival benefit. ^{27,30,31} It is also believed that surgical options (i.e., partial nephrectomy and radical nephrectomy) may have better oncologic outcomes than active surveillance or thermal ablation. However, surgical interventions (i.e., partial nephrectomy and radical nephrectomy) are associated with significantly higher complication rates than thermal ablation or active surveillance; in general, partial nephrectomy has a higher complication rate than radical nephrectomy. All of the technologies described here are approved in the United States, and are established treatment options for renal tumors.

Current Guidelines and Shortcomings

Numerous leading organizations have put forth clinical guidelines on the management of renal masses, including the AUA, the European Association of Urology, and the National Comprehensive Cancer Network. 11,25,26 The American College of Radiology published a guideline in 2010 to evaluate the appropriateness of radiologic examinations for patients with an indeterminate renal mass (defined as a mass unable to be confidently diagnosed as benign or malignant at the time of discovery). 32

In 2009, the AUA published the guideline used most widely by the United States urological community. This guideline was based on expert opinions and a meta-analysis of the best studies available at the time, which were observational and retrospective in design. 11 Since its publication, multiple significant advances in renal mass detection, diagnosis, risk stratification, and treatment have been made, making a systematic, evidenced-based update of the guidelines necessary. For example, an important recent contribution to the literature is a randomized trial of partial nephrectomy and radical nephrectomy that failed to demonstrate a clinically significant benefit for partial nephrectomy with respect to oncologic or renal functional outcomes.²² Additionally, a relatively new concept around chronic kidney disease that is related to surgical and medical disease has emerged that could change how clinicians view existing evidence on the benefits and harms of different strategies for managing a renal mass.³³ Patients with medical chronic kidney disease have a progressive loss of renal function and poor prognosis related to global renal function and overall survival. Patients with surgical chronic kidney disease (defined as chronic kidney disease as a result of surgical nephron loss or injury) are different, with more stable long-term renal function and improved overall survival for most, compared to patients with chronic kidney disease resulting from medical renal disease.

Determining the best approach to management of clinically localized renal masses is a complex task. Creating a patient-centered treatment strategy that incorporates factors related to the renal mass (e.g., oncologic outcomes, renal functional outcomes, and complications) as well as competing health risks was not feasible in the 2009 AUA guidelines. Treatments such as robotic partial nephrectomy were still in their infancy, and the large clinical data sets lacked the granularity of more recent data.

Scope and Key Questions

We conducted a systematic review of the effectiveness and comparative effectiveness of different strategies for treating patients with a renal mass suspicious for RCC. The questions were nominated for the Agency for Healthcare Research and Quality (AHRQ) Evidence-based Practice Center (EPC) Program. We developed analytic frameworks to illustrate the different questions and outcomes we considered (Figures 1 and 2), and we sought to address the following Key Questions (KQ):

KQ 1: In patients that undergo surgery for a renal mass that is suspicious for stage I or II renal cell carcinoma, how does the pathologic diagnosis compare to the likelihood of malignancy predicted by using a preoperative composite profile of patient characteristics, including demographics, clinical characteristics, blood/urine markers, and/or imaging?

For the purpose of this question and further Key Questions, a renal mass suspicious for stage I or II RCC includes all solid renal masses and cystic renal masses with a solid component.

KQ 2a: In patients that undergo surgery for a renal mass suspicious for stage I or II renal cell carcinoma, what is the accuracy (i.e., sensitivity, specificity, positive and negative predictive value) of percutaneous renal mass sampling (using fine needle aspiration with cytopathology or core biopsy with surgical pathology) in establishing a diagnosis (e.g., malignancy, histology, and grade)?

KQ 2b: In patients with a renal mass suspicious for stage I or II renal cell carcinoma, what are the adverse effects associated with using renal mass sampling (see KQ2a) to estimate the risk of malignancy, including direct complications (e.g., pain, infection, hemorrhage, and radiation exposure) and harms related to false positives, false negatives, or nondiagnostic results?

KQ 3a: In patients with a renal mass suspicious for stage I or II renal cell carcinoma, what is the effectiveness and comparative effectiveness of the available management strategies on health outcomes?

KQ 3b: Do the comparative benefits and harms of the available management strategies differ according to a patient's demographic or clinical characteristics, or disease severity defined in terms of clinical presentation, tumor characteristics (imaging), renal mass sampling results, or laboratory evaluations?

Figure 1. Analytic framework for systematic review of the management of renal masses and localized kidney cancer

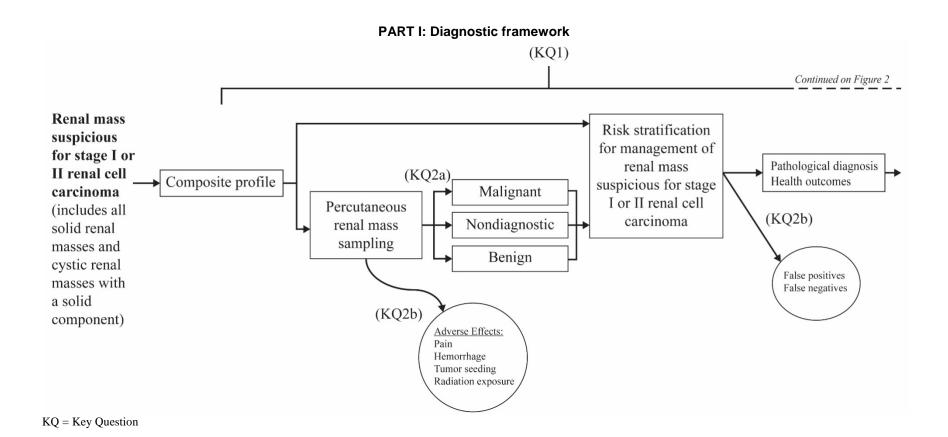
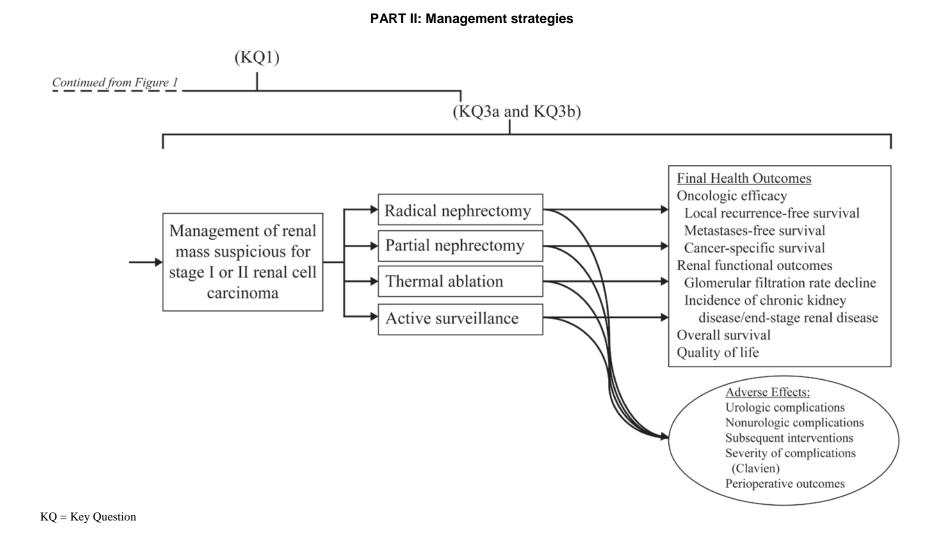



Figure 2. Analytic framework for systematic review of the management of renal masses and localized kidney cancer

Methods

The methods for this review follow the AHRQ "Methods Guide for Effectiveness and Comparative Effectiveness Reviews." ³⁴

Protocol Development

Representatives from the AUA posed the questions for this review. With feedback from these representatives, AHRQ representatives, our Key Informants, and Technical Expert Panel, we refined these questions and developed a protocol for this systematic review. Our protocol was registered on PROSPERO (CRD42015015878).

Search Strategy

We searched MEDLINE, Embase[®], and the Cochrane Central Register of Controlled Trials (CENTRAL) from January 1, 1997 (the year the TNM Classification of Malignant Tumor staging system for renal cell carcinoma was modified and the distinctions of T1a/T1b and T2a/T2b were created) through May 1, 2015. We developed a search strategy for MEDLINE, which was accessed via PubMed[®] and based on medical subject headings (MeSH[®]) terms and text words of key articles (Appendix A), and we requested Scientific Information Packets from device manufacturers. There were no language restrictions in the search strategies. Additionally, we searched Clinicaltrials.gov to identify relevant registered trials.

Study Selection

Study selection was based on predefined eligibility criteria of patient populations, interventions, outcome measures, and study design (see Tables 1 and 2). Abstracts were screened independently by two reviewers and were excluded if both reviewers agreed that one or more of the exclusion criteria was met (see the Abstract Screen Form in Appendix B). Differences between reviewers regarding abstract eligibility were resolved through consensus. We used DistillerSR (Evidence Partners, 2010) to manage the screening process.

Citations promoted on the basis of the abstract screen underwent another independent screen using the full text of the articles. Additional exclusion criteria were applied at this level (see Table 2 and the Abstract Screen Form in Appendix B). Differences regarding citation eligibility were resolved through consensus.

Full text articles underwent an additional independent review by paired investigators to determine whether or not they should be included in the full data abstraction. (See the KQ Applicability Form in Appendix B).

Data Abstraction and Data Management

We created and pilot tested data extraction forms in Excel (Microsoft, Redmond, WA, see Appendix B). Reviewers extracted information on general study characteristics (e.g., study design, study period, and followup), study participants (e.g., age, gender, race/ethnicity, etc.), eligibility criteria, interventions, outcome measures, and the method of ascertainment, as well as the results of each outcome, including measures of variability.

One reviewer completed the data abstraction, and a second reviewer checked the first reviewer's abstraction for completeness and accuracy. We resolved differences through discussion and, as needed, through consensus among our team.

Table 1. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)
Population(s)	Newly diagnosed adults (18 years or older) with solid renal masses (or cysfor stage I and II renal cell carcinoma, which corresponds to clinical stage than 7 cm and organ confined) renal masses	
Interventions	 Percutaneous renal mass sampling (fine needle aspiration or biopsy) Composite models (e.g., combination of demographics, clinical characteristics, blood/urine tests, and tumor imaging characteristics) for predicting malignancy Demographic characteristics: age, sex, smoking, race, marital status, education Clinical characteristics: obesity and comorbidities, specifically cardiovascular disease and chronic kidney disease Blood/urine tests: measures of kidney function, markers of paraneoplastic syndromes and predictors of advanced/metastatic disease (e.g., complete metabolic panel, complete blood count, coagulation parameters, erythrocyte sedimentation rate) Imaging characteristics: computed tomography, ultrasonography, magnetic resonance imaging 	 Radical nephrectomy (open and minimally invasive) Partial nephrectomy (open and minimally invasive) Thermal ablation (e.g., radiofrequency ablation, cryoablation; surgical versus image-guided) Active surveillance Minimally invasive surgery may refer to standard laparoscopy or robot-assisted laparoscopy No microwave ablation
Comparators	Comparisons are between biopsy results, composite models, and pathologic diagnosis after surgical intervention	Comparisons include all of the management options listed above
Outcomes	Diagnostic test-related Outcomes False positives False negatives Radiation exposure Adverse effects of percutaneous renal mass sampling Pain Hemorrhage Tumor seeding	Final health outcomes Oncologic efficacy Local recurrence-free survival Metastasis-free survival Cancer-specific survival Renal functional outcomes Glomerular filtration rate decline Incidence of chronic kidney disease Incidence of end-stage renal disease Overall survival Quality of life

Table 1. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs (continued)

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)		
Outcomes		Adverse effects of management strategies		
(continued)		 Urologic complications 		
		 Acute kidney Injury 		
		 Hemorrhage 		
		 Urine leak 		
		 Hematuria 		
		 Loss of kidney 		
		 Ureteral injury (any injury of collecting 		
		system and ureter)		
		 Urinary tract infection 		
		 Nonurologic complications (by organ system) 		
		Hematologic (thromboembolic)		
		 Gastrointestinal 		
		 Cardiovascular 		
		 Respiratory 		
		 Neurologic 		
		 Wound complications (e.g. hernia and 		
		dehiscence)		
		 Infectious disease 		
		 Listed by severity of complications (using 		
		the Clavien Grading System if available):		
		 Minor versus major 		
		 Minor (Clavien 1-2)^a: conservative 		
		management or medications only		
		 – Major (Clavien 3-4)^b: requiring 		
		intervention, resulting in permanent		
		disability or death		
		 Need for subsequent interventions: 		
		embolization, drain placement, stent		
		placement, etc.		
		Perioperative outcomes		
		 Blood loss (cc or mL) 		
		 Blood transfusion (yes or no) 		
		 Conversion to open surgery (%) 		
		 Conversion to radical nephrectomy (%) 		
		 Length of stay (days) 		

Table 1. PICOTS (population, interventions, comparators, outcomes, timing, and setting) for the KQs (continued)

PICOTS	Diagnostic (KQs 1, 2a, and 2b)	Management (KQs 3a and 3b)		
Type of study	Any study design except case report	Controlled studies (randomized controlled trials, nonrandomized controlled trials, and comparative cohort studies): All comparisons between interventions		
		Uncontrolled studies (single cohort studies): Data from uncontrolled studies that addressed active surveillance are described in the report. Every other uncontrolled study that addressed KQ 3 is listed in the appendix with the following data: • Author, publication year • Study design • Intervention name • Number of patients • Followup • List of outcomes		
Timing and Setting	Any time point and setting	·		

KQ= Key Question

Clavien-Dindo system currently used for reporting of complications related to urologic surgical interventions:

^aGrade I: Any deviation from the normal postoperative course without the need for pharmacological treatment or surgical, endoscopic and radiological interventions. Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, analgetics, diuretics and electrolytes and physiotherapy. This grade also includes wound infections opened at the bedside.

^aGrade II: Requiring pharmacological treatment with drugs other than such allowed for grade I complications. Blood transfusions and total parenteral nutrition are also included. ^bGrade III: Requiring surgical, endoscopic or radiological intervention.

- 1.(a) not under general anesthesia
- 2.(b) under general anesthesia

^bGrade IV: Life-threatening complication (including CNS complications) requiring IC/ICU-management.

- 1.(a) single organ dysfunction (including dialysis)
- 2.(b) multi-organ dysfunction

Table 2. List of exclusion criteria at the abstract screening, article screening, and KQ applicability levels

Exclusion criteria at abstract screening, article screening, and key question applicability levels	 Does not evaluate renal masses (solid renal masses (or cystic renal masses with a solid component) suspicious for stage I and II renal cell carcinoma, which corresponds to clinical stage T1 (≤ 7 cm, organ confined) or T2 (> 7 cm, organ confined) renal masses) Patients with recurrent renal cell carcinoma Clinically nonlocalized patients Study published before 1997 Not conducted in humans No original data (systematic reviews, meta-analysis, editorial, commentary) Study of children only Not relevant to key questions
Additional exclusion criteria at the article screening and key question applicability levels	 Patients on hemodialysis and transplant Study focuses on familial carcinomas Evaluating novel techniques Tumor stage not specified^a Study addresses KQ 1 but does not include imaging or one element from at least 2 of the categories - demographic characteristics, clinical characteristics, and blood/urine tests KQ 3a: Do not give an adequate description (Clavien grading) of how complications and peri-operative outcomes were assessed or report only selected complications or peri-operative outcomes of interest unless primary objective of the study was to assess the complications Address management strategy question (KQ 3) but compare two different forms of the same management intervention (e.g., open partial nephrectomy vs robotic partial nephrectomy) Does not provide any outcome of interest

^aWe included patents with clinically localized tumors but for partial nephrectomy and thermal ablation, we assumed patients had a clinically localized mass because nephron sparing treatments (partial nephrectomy, thermal ablation) are only indicated for clinically localized tumors, otherwise radical nephrectomy is indicated for advanced disease.

Risk of Bias Assessment

Two reviewers independently assessed risk of bias for individual studies. We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies.³⁵ For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI).³⁶ For diagnostic studies, we used the quality assessment tool for diagnostic accuracy studies (QUADAS -2).³⁷ Differences between reviewers were resolved through consensus.

Data Synthesis

For each KQ, we created a detailed set of evidence tables containing all of the information abstracted from eligible studies.

- 1. For KQ2, biopsies were considered diagnostic if sufficient tissue was obtained to demonstrate etiology of the renal lesion and nondiagnostic if insufficient tissue for diagnosis was obtained or benign renal parenchyma was found without an etiology for the renal lesion (e.g., benign fibrosis). The following definitions were used for diagnostic performance characteristics:
 - a. Sensitivity: the proportion of all patients with malignancy identified as positive on biopsy (true positives divided by (true positives plus false negative));

- b. Specificity: the proportion of all patients without malignancy identified as negative on biopsy (true negatives divided by (true negatives plus false positives));
- c. Positive predictive value (PPV): the proportion of patients with malignancy out of all those testing positive on biopsy (true positives divided by (true positives plus false positives));
- d. Negative predictive value (NPV): the proportion of patients without malignancy out of all those testing negative on biopsy (true negatives divided by (true negatives plus false negatives));
- e. False positive rate: the proportion of patients who falsely test positive out of all patients without malignancy (false positives divided by (false positives plus true negatives));
- f. False negative rate: the proportion of patients who falsely test negative out of all patients with malignancy (false negatives divided by (false negatives plus true positives).
- 2. For KQ3a and KQ3b, only comparative studies of clinically localized renal masses were included. When clinical staging was not available, comparative arms of radical nephrectomy were excluded and the study was considered uncontrolled. This methodology was rationalized given the indication for partial nephrectomy or thermal ablation is a clinically localized renal mass suspicious for malignancy, while the indications for radical nephrectomy may include clinically localized, locally advanced, and metastatic (i.e. cytoreductive) renal masses. We excluded the emerging literature on partial nephrectomy for locally advanced disease. We also excluded the studies on microwave ablation.
- 3. All studies (diagnostic and management) were summarized qualitatively except the uncontrolled studies included for KQ3a and b.
- 4. The data from uncontrolled studies that addressed active surveillance were described in the report. Every other uncontrolled study that addressed KQ3 was simply listed in Appendix E.
- 5. We used the following definition for cancer-specific survival:
 - a. Cancer-specific survival is defined as the proportion of patients surviving without death due to cancer in the absence of other causes of death. Individuals who die of other causes or are alive at the end of followup are censored at that time. The product limit estimator, or Kaplan-Meier method, was the preferred method employed in many of the larger studies to calculate cancer-specific survival. Smaller studies often only reported the absolute proportion of patients who survived without death due to cancer at median followup. These methods may generally overestimate cancer-specific survival but were consistently employed and defined in the available literature. Cancer-specific survival (as defined above) is the predominant oncologic outcome reported in the literature surrounding this topic. Other measures of oncologic outcome, specifically cancer-free survival (the proportion of patients free of cancer or alive), are inconsistently reported in the literature and therefore not included in this systematic review.
- 6. Renal functional outcomes were assessed at the time point closest to one year after intervention. We chose this time point as the timing of assessment was not standardized across studies, one year was a common measure seen in multiple studies, and one year

- was likely sufficient for postoperative changes and any immediate adaptive changes to occur.
- 7. When examining <u>harms</u>, <u>which generally were infrequent</u>, differences were considered clinically important if a reported value or proportion for one treatment modality was 100 percent greater than the contrasting modality, or if a zero value was encountered in one of the treatment modalities, and an incidence greater than 1 percent was present in the other modality.
 - a. The Clavien-Dindo system for surgical harms was utilized.³⁹
 - i. Grade I: Any deviation from the normal postoperative course without the need for pharmacological treatment or surgical, endoscopic and radiological interventions. Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, analgetics, diuretics and electrolytes and physiotherapy. This grade also includes wound infections opened at the bedside.
 - ii. Grade II: Requiring pharmacological treatment with drugs other than such allowed for grade I complications. Blood transfusions and total parenteral nutrition are also included.
 - iii. Grade III: Requiring surgical, endoscopic or radiological intervention.
 - 1. (a) not under general anesthesia
 - 2. (b) under general anesthesia
 - iv. Grade IV: Life-threatening complication (including CNS complications: brain hemorrhage, ischemic stroke, subarrachnoidal bleeding,but excluding transient ischemic attacks (TIA);IC: Intermediate care; ICU: Intensive care unit) requiring IC/ICU-management.
 - 1. (a) single organ dysfunction (including dialysis)
 - 2. (b) multi-organ dysfunction
 - v. Grade V: Death of a patient.
 - vi. Grade I and II complications were considered minor complications.
 - vii. Grade III and IV complications were considered major complications.
 - viii. Grade IV complications were listed as death.

We conducted meta-analyses when there were sufficient data (at least 2 studies of the same design that reported or provided data to calculate the standard error for a difference in differences, with effect measures and categorical values of specific outcomes or variables) and studies were judged to be sufficiently homogenous with respect to key variables (population characteristics, intervention, and outcome). For studies amenable to meta-analysis, we calculated a weighted mean difference, effect size, and risk ratios using a random effects model with the DerSimonian and Laird method. We evaluated statistical heterogeneity among studies using an I-squared statistic. We examined the forest plots to identify trials that appeared to have quite different results and considered if these trials had different characteristics. All analyses were conducted using STATA versions 12.0 (StataCorp LP).

Strength of the Body of Evidence

We graded the strength of evidence using the scheme recommended by the AHRQ EPC "Methods Guide for Effectiveness and Comparative Effectiveness Reviews."³⁴ For this report, we graded the strength of evidence for the outcomes we classified during protocol development as the most important or critical outcomes, including oncologic efficacy, renal functional

outcomes, quality of life, and overall survival. We considered five domains: study limitations, directness, consistency, precision, and reporting bias. We classified the strength of evidence pertaining to the KQs into four basic categories or grades: high, moderate, low, and insufficient (see Table 3).

The investigators writing each section completed the strength of evidence grading. Throughout the report writing process, team members reviewed the grading and discussed the process they each used to grade the evidence.

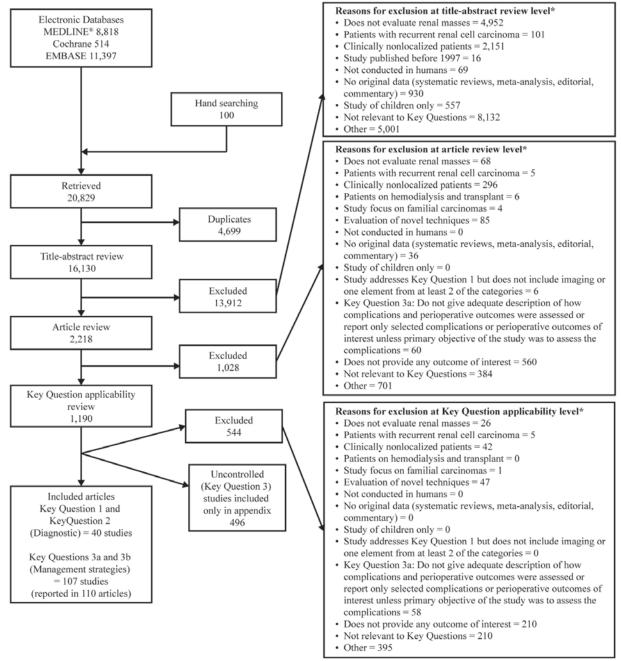
Table 3. Strength of evidence grades and definitions

Grade	Definition
High	We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable.
Moderate	We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
Low	We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
Insufficient	We have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of effect for this outcome. The body of evidence may have unacceptable deficiencies, precluding judgment.

Applicability

For the entire body of work, applicability was assessed separately for the different outcomes and was guided by the PICOTS framework as recommended in the Methods Guide for Comparative Effectiveness Reviews of Interventions. We considered important population characteristics (e.g., gender, race, and ethnicity), comorbidities (e.g., cardiovascular disease and chronic kidney disease), and intervention features (e.g., co-intervention) that may cause heterogeneity of treatment effects and affect generalizability of the findings.

Peer Review and Public Comment


The draft report was peer reviewed and posted for public comment from May 28, 2015, through June 25, 2015. Comments received from invited reviewers and through the public comment website were compiled and addressed. A disposition of comments will be posted on the AHRQ Web site 3 months after the release of the final report.

Results

Results of the Search

Figure 3 summarizes the results of our searching for relevant studies. The literature search identified 20,829 unique citations. During the title and abstract screening, we excluded 13,912 citations. During the article screening, we excluded 1028 citations. During KQ applicability screening, we excluded an additional 1190 articles that did not meet one or more of the inclusion criteria (See Appendix C for list of excluded articles with reasons for exclusion). As part of the grey literature search, we asked device manufacturers to provide information about pertinent studies conducted with their products (published, unpublished, and ongoing clinical trials). Of the 10 companies contacted, two companies responded. The references provided by these two companies were carefully cross-checked against our existing database. This review focuses on 147 studies, reported in 150 articles that met the inclusion criteria.

Figure 3. Summary of the literature search

^{*} Reviewers were allowed to mark more than one reason for exclusion.

Overview of Included Studies by KQs

We list the number of studies identified as addressing each question in Table 4.

Table 4. List of included studies by KQ

	Key Question	Number of Studies		
Diagnostic	KQ1 (Pathologic diagnosis compared to the likelihood of malignancy predicted by using a preoperative composite profile of patient characteristics)	20 studies		
	KQ2a (Diagnostic test-related outcomes)	20 studies		
	KQ2b (Harms and adverse events associated with percutaneous renal mass sampling)	16 studies		
Management Strategies	KQ3a (Effectiveness and comparative effectiveness of the available management strategies on health outcomes): included studies by outcomes	107 studies (reported in 110 articles)		
	Oncology efficacy	60 cohort studies (reported in 61 articles)		
		1 RCT		
	Renal functional outcomes	52 cohort studies		
		1 RCT (reported in 2 articles)		
	Overall survival	47 cohort studies (reported in 48 articles)		
		1 RCT		
	Quality of life	4 cohort studies		
	Harms	46 cohort studies		
		1 RCT (reported in 2 articles)		
	Peri-operative	37 cohort studies		
		1 RCT		
	Uncontrolled studies for active surveillance	8 single arm cohort studies		
	KQ3b (Comparative benefits and harms of the available management strategies differ according to a patient's demographic or clinical characteristics, or disease severity)	Cancer-specific survival: 19 Metastases-free survival: 1 Local recurrence-free survival: 3 Overall survival: 22 Renal Functional Outcomes: 27 Quality of Life: 2 Perioperative Outcomes and Harms: 3		

KQ = Key Question; RCT = randomized clinical trial

Organization of Results Chapter

We present our results by KQ. For the studies on each KQ, we provide a summary of study characteristics, population characteristics, intervention characteristics, tumor characteristics, and outcomes.

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Key Points

- Composite models were used to predict benign pathology as well as malignant pathology.
- Twenty studies used a composite model to predict pathologic outcomes; eighteen were retrospective studies.
- Imaging characteristics were included in 19 of 20 models, whereas only one study evaluated laboratory testing.
- Tumor size, tumor characteristics, age, sex, and body mass index (BMI) were commonly used variables in composite models. None were universally predictive of malignant or benign disease.
- In general, increased tumor size (pooled odds ratio of 1.33-fold increased risk of malignancy per cm increase in tumor diameter) and male sex (pooled odd ratio 2.71) were most strongly associated with increased likelihood of malignancy.
- The strength of evidence was moderate for sex and tumor size, based largely on the consistency of findings among studies.
- The strength of evidence was moderate that incidental presentation does not predict benign or malignant pathology.
- The strength of evidence was low for tumor characteristics and age as not being predictive of malignancy and low for composite models as a whole, based on inconsistencies among studies involving inclusion criteria, controlling variables in composite profiles, and study design.
- The data regarding BMI and association with malignant and benign disease in composite models was insufficient to draw conclusions.

Study Characteristics

Twenty studies evaluated composite models to predict pathologic diagnosis, adjusting for imaging characteristics, demographic characteristics, clinical characteristics, and other diagnostic tests (i.e., blood and urine tests.). Two studies evaluated a composite model in prospective studies, ^{40,41} and the remainder were retrospective analyses of cohort studies. Two studies ^{42,43} involved a five–center consortium of renal surgery outcomes, however the data was sufficiently different from each study to warrant inclusion as separate studies. The remainder of studies were single-center analyses. Ten studies were completed in Asia, ^{40,44-52} nine in North America, ^{41-43,53-58} and one in Europe. ⁵⁹ The median study start year was 2000 (1988 to 2010).

Population Characteristics

In total, 12,149 patients among the 20 studies were included in the analysis. Not all studies reported all population characteristics, and some studies included statistics in sub-groups (indicated by an asterisk in Table 5). Eighteen of 20 studies reported the number or proportion of women in the study (Table 5). For those that provided data that could be analyzed for the entire cohort, women constituted a median 35 percent (24.4 percent to 48.0 percent) of the study populations, and the median of the mean age of the study populations was 60.5 years (range 54–34.8 years).

Table 5. Participant characteristics of studies addressing predictors of pathologic outcomes

Author, Year	Year Start	Patients,	Women, n	Women,	Mean or Median Age	Age, min.	Age, max.
Keehn,2014 ⁵³	2002	125	60	48.0	63	53.5	70.5
Bazzi,2014 ⁵⁴	1998	1,726	681	39.5	60.5	51.6	69.1
Antonelli ,2014 ⁵⁵	2010	506	183	36.2	64.8	14	85
Nishikawa,2014 ⁴⁴	2002	144	49	34.0	60.9	NR	NR
Koo,2013 ⁴⁵	2005	1,129	381	33.7	54	18	88
Fujita,2013 ⁴⁰	2000	149	49	32.9	NR*	23	81
Mullins,2012 ⁴²	2007	873	NR	NR	NR	NR	NR
Kava,2012 ⁴¹	1992	316	137	43.4	NR*	NR*	NR*
Soga,2012 ⁴⁶	1991	409	100	24.4	60.5	22	86
Akdogan,2012 ⁵⁹	1990	450	174	38.7	54.5	NR	NR
Park,2011 ⁴⁷	2000	1,598	517	32.4	NR*	10	86
Xiong,2010 ⁴⁸	1999	303	112	37.0	NR	NR	NR
Jeon,2010 ⁴⁹	1997	376	123	32.7	NR*	NR	NR
Murphy,2009 ⁵⁶	1988	775	243	31.4	NR*	NR	NR
Lane,2007 ⁵⁷	1999	851	NR	36.0	60	23	87
Rosenkratz,2014 ⁵⁸	NR	86	41	47.7	61	NR	NR
Chung,2014 ⁵⁰	2008	111	NR	NR	NR	17	78
Choi,2012 ⁶⁰	2000	84	27	32.1	NR*	31	83
Shin,2013 ⁵²	2005	1,129	381	33.7%	54.9	NR	NR
Ball,2015 ⁴³	2007	1,009	402	39.8%	59.5	52	67

^{*}Studies included statistics in sub-groups

Tumor Characteristics

Tumor characteristics are detailed in Table 6. Not all studies reported all tumor characteristics, and some studies included statistics in sub-groups (indicated by an asterisk in Table 5). Only nine studies reported tumor size for the entire cohort. In these studies, median tumor size was 2.5 cm (0.7 to 4 cm).

Eleven studies were limited to clinical stage T1a tumors smaller than or equal to 4 cm, ^{40,43-45,49,51,53-55,58,60} and an additional five studies were limited to clinical stage T1 tumors smaller than or equal to 7 cm. ^{41,52,56,57,59} Seventeen of 20 studies reported tumor histology and the proportion of benign and malignant tumors was either provided for or calculated for all studies. The pathology was clear-cell renal cell carcinoma, papillary renal cell carcinoma, chromophobe renal cell carcinoma, oncocytoma, and angiomyolipoma (AML) in a median 63 percent (34.9 percent to 89.2 percent), 9 percent (2.9 percent to 29.1 percent), 7 percent (1.0 percent to 10.8 percent), 7 percent (1.0 percent to 15.1 percent), and 7 percent (1.7 percent to 19.8 percent) respectively. Three studies reported only relative rates of benign and malignant pathology (8.1 percent benign, ⁴⁰ 24.1 percent benign, ⁴¹ and 10.2 percent benign ⁴⁸), but did not report histologic subtype. Therefore, the median rates of malignant and benign pathology in all twenty studies were 79 percent (62.2 percent to 93.2 percent) and 13 percent (2.7 percent to 37.0 percent) respectively.

Table 6. Tumor characteristics of studies addressing predictors of pathologic outcomes

Author, Year	Tumor (cm)	Clear cell n (%)	Papillary n (%)	Chromophobe n (%)	Oncocytoma n (%)	Angiomyolipoma n (%)	Malignant	Benign
Keehn, 2014 ⁵³	2.5	54(43)	27(22)	9(7)	NR	NR	72%	26%
Bazzi, 2014 ⁵⁴	2.5	1008(58)	260(15)	158(9)	162(9)	63(4)	83%	13%
Antonelli, 2014 ⁵⁵	2.5	293(58)	54(11)	43(9)	NR	NR	77%	20%
Nishikawa, 201444	2.4	107(74)	8(6)	8(6)	5(4)	11(8)	85%	11%
Koo, 2013 ⁴⁵	3.0	850(75)	74(7)	69(6)	NR	NR	88%	10%
Fujita, 2013 ⁴⁰	NR ^a	NR	NR	NR	NR	NR	92%	8%
Mullins ,2012 ⁴²	NR ^a	431(49)	156(18)	62(7)	77(9)	63(7)	74%	16%
Kava, 2012 ⁴¹	NR ^a	NR	NR	NR	26(8)	29(9)	76%	24%
Soga ,2012 ⁴⁶	5.0	365(89)	12(3)	4(1)	4(1)	7(2)	93%	3%
Akdogan ,2012 ⁵⁹	NR ^a	285(63)	32(7)	21(5)	39(9)	22(5)	75%	14%
Park ,2011 ⁴⁷	NR ^a	1259(79)	97(6)	93(6)	23(1)	47(3)	91%	4%
Xiong ,2010 ⁴⁸	NR ^a	NR	NR	NR	4(1)	15(5)	90%	10%
Jeon ,2010 ⁴⁹	NR ^a	238(63)	26(7)	14(4)	11(3)	35(9)	74%	12%
Murphy, 2009 ⁵⁶	NR ^a	503(65)	104(13)	55(7)	57(7)	21(3)	85%	10%
Lane, 2007 ⁵⁷	3.0	467(55)	148(17)	55(7)	NR	NR	79%	20%
Rosenkratz, 2014 ⁵⁸	1.5	30(35)	25(29)	9(11)	13(15)	8(9)	74%	24%
Chung, 2014 ⁵⁰	NR ^a	59(53)	10(9)	12(11)	2(2)	22(20)	73%	22%
Choi, 2012 ⁶⁰	NR ^a	57(68)	4(5)	5(6)	8(10)	6(7)	79%	17%
Shin,2013 ⁵²	NR ^a	850(84)	74(7)	69(7)	NR	NR	90%	10%
Ball,2015 ⁴³	2.4	472(62)	175(23)	68(9)	NR	NR	76%	24%

NR=Not reported aStudies included statistics in sub-groups.

Intervention Characteristics

To meet the inclusion criteria (composite models need to adjust for imaging characteristics [i.e., tumor size] or at least one element from 2 of the categories) for this KQ, two of the 18 studies used imaging alone, ^{45,50} and the remainder used a composite model (Table 7).

Table 7. Studies addressing predictors of pathologic outcomes, by factors included in composite model

Composite Model	No. Studies
Imaging alone	2 ^{45,50}
Imaging, Demographics, Clinical Features, Other	1 54
Diagnostic Tests	
Imaging, Demographics, Clinical Features	6 40 41 49 57 43,52
Imaging, Demographics	9 53 55 44 42 46 59 47 48 60
Imaging, Clinical Feature	1 58
Demographics, Clinical Feature	1 56

Risk of Bias

We used the quality assessment tool for diagnostic accuracy studies (QUADAS -2).³⁷ There were no RCTs examining preoperative composite models in the prediction of malignancy in clinically localized renal masses suspicious of malignancy. Overall, 2 of the 20 studies were determined to be of low risk of bias. The majority of studies (12 of 20) were at low risk of bias for patient selection and the index test. The primary sources of bias were unclear evaluation of bias in flow and timing, reference standards, index test, and patient selection (Figure 4).

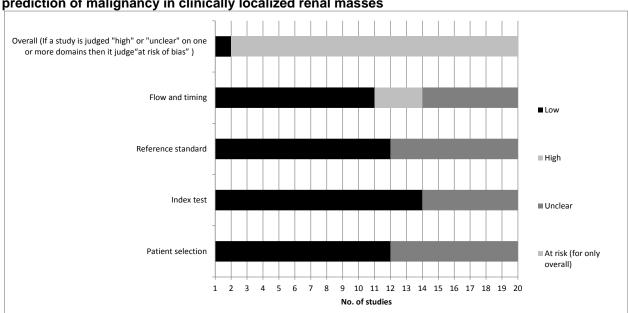


Figure 4. Risk of bias across studies investigating preoperative composite models in the prediction of malignancy in clinically localized renal masses

Outcomes

The predictive and nonpredictive variables included in the composite (i.e., multivariable) model from each study are detailed in Table 8. Ten studies were designed to predict malignant pathology 42-45,52-55,57,58 while the remaining 10 were designed to predict benign pathology. 40,41,46-50,56,59,60

Table 8. Variables predictive of malignant or benign disease

Author, Year	Malignant /Benign	Predictive Variables	NonPredictive Variables	Additional Findings
Keehn,2014 ⁵³	Malignant	None	Age, sex, race, BMI, visceral and subcutaneous fat	Visceral fat predicts high- grade renal cell carcinoma
Bazzi,2014 ⁵⁴	Malignant	Tumor size, sex, ASA	Age, race, creatinine	
Antonelli,2014 ⁵⁵	Malignant	Sex, nephrometry (H)	Age, nephrometry (E.N.L.)	None predictive of grade
Nishikawa,2014 ⁴⁴	Malignant	Enhancement pattern	Age, sex, Size, BMI,	
Koo,2013 ⁴⁵	Malignant	Nephrometry		
Fujita,2013 ⁴⁰	Benign	Age, sex, nephrometry (E.)	Tumor size, tumor location, tumor complexity, incidental	
Mullins,2012 ⁴²	Malignant	Sex, nephrometry		Male sex and complexity predict malignancy in cT1a subset. Male sex and nephrometry predict high-grade renal cell carcinoma. Nephrometry predicts clear cell histology.
Kava,2012 ⁴¹	Benign	Age, BMI, tumor location		

Table 8. Variables predictive of malignant or benign disease (continued)

Author, Year	Malignant /Benign	Predictive Variables	NonPredictive Variables	Additional Findings
Soga,2012 ⁴⁶	Benign	Sex, tumor size	Age, surgery year	Incidence of benign highest in women with tumors < 2 cm.
Akdogan,2012 ⁵⁹	Benign	Sex, tumor size, tumor architecture, partial nephrectomy	Age, symptom, surgery year	
Park,2011 ⁴⁷	Benign	Sex, tumor size, tumor architecture	Age, incidental	
Xiong,2010 ⁴⁸	Benign	Sex, tumor size		
Jeon,2010 ⁴⁹	Benign	Age, sex, surgery year	Tumor size, BMI, incidental	
Murphy,2009 ⁵⁶	Benign	Sex, tumor size, Surgery year	Age, race, BMI, incidental	
Lane,2007 ⁵⁷	Malignant	Age, sex, tumor size, smoking	Incidental	This was the only study to create a preoperative nomogram for the prediction of malignant histology at surgery.
Rosenkratz,2014 ⁵⁸	Malignant	None	Age, tumor architecture	Clear-cell histology was predicted by MRI enhancement patterns.
Chung,2014 ⁵⁰	Benign	Enhancement (MRI)		MRI enhancement predicts fat-poor AML from renal cell carcinoma.
Choi,2012 ⁶⁰	Benign	Sex, enhancement (corticomedullary)	Enhancement (nephrogenic)	
Shin,2013 ⁵²	Malignant	Age, sex, tumor size	Tumor location, exophytic	In subset analysis of T1a tumors, age, male sex, tumor size, and endophytic nature predict malignancy. High-grade pathology was predicted by age, sex, tumor size and endophytic nature for T1 tumors; age, tumor size and endophytic nature for T1a tumors.
Ball,2015 ⁴³	Malignant	Tumor size, nephrometry, sex	Age, institution	High-grade or T3a upstaging was predicted by tumor size, nephrometry, and sex.

BMI = body mass index; MRI = magnetic resonance imaging; ASA = American Society of Anesthesiologists; R.E.N.A.L. nephrometry score consists of (R)adius (tumor size as maximal diameter), (E)xophytic/endophytic properties of the tumor, (N)earness of tumor deepest portion to the collecting system or sinus, (A)nterior (a)/posterior (p) descriptor and the (L)ocation relative to the polar line

Variables Predictive of Malignant or Benign Disease

The most common variables included in composite models were tumor size, age, sex, body mass index (BMI), and incidental presentation.

Imaging Characteristics

Nineteen studies reported on models that included imaging characteristics. The most commonly included tumor-related findings were size. Ten studies included tumor size, 40,43,44,46-49,52,54,56,57,59 eight studies included location or complexity (i.e. RENAL nephrometry score) 40-40.

^{45,52,55} and three included enhancement patterns. ^{44,50,60} The RENAL nephrometry scoring system is an objective scoring system to describe the "complexity" of solid renal masses. R refers to the radius (or tumor size) of the tumor; E, exo- or endophytic nature; N, nearness to the renal collecting system; A, anterior or posterior tumor; and L, location relative to the renal polar anatomy. A more detailed explanation can be found at: http://www.nephrometry.com.

Tumor Size

Twelve studies evaluated tumor size as a predictor of pathological outcome. 40,43,44,46-49,52,54,56, 57,59 Nine of 12 studies (75 percent) found tumor size to be predictive of malignant or benign disease 43,46-48,52,54,56,57,59; 3 (25 percent) found tumor size not to be predictive. 40,44,49

Five studies included patients with only T1a tumors;^{40,43,44,49,54} three studies included patients with T1a and T1b masses, but subgroup analyses were not performed.^{56,57,59} One study evaluated T1 tumors and performed a subset analysis of T1a tumors.⁵² One study did not report an upper limit for tumor size.⁴⁸

Only two studies included patients with pathological T2 tumors. 46,47 These studies included tumor sizes representative of the largest ranges of clinically localized tumors, ranging from 0.6 cm to 24 cm. Accordingly, the median percentages of malignant tumors were higher in these studies (93.2 percent and 90.7 percent, respectively) than the median across all studies (78.7 percent). These two studies were international studies, conducted in Japan and Korea respectively.

Six studies were included in our meta-analysis, demonstrating an effect size of 1.3 per cm increase in tumor diameter (95% confidence interval (CI): 1.22 to 1.43; Figure 5). 40,43,49,52,54,56 Three studies were excluded from meta-analysis as they evaluated tumor size as a categorical variable; all three demonstrated an increased risk of malignancy with increasing tumor size. 46,47,59 The three remaining studies had unclear methods or did not provide odds ratios in their multivariate regression and were therefore excluded from meta-analysis. 44,48,57 The strength of evidence was moderate.

Tumor Characteristics: Location, Complexity, and Architecture

Nine studies evaluated specific tumor characteristics including RENAL nephrometry, tumor location, tumor architecture (cystic versus solid nature), and exophytic/endophytic nature of the tumor. ^{40,42,43,45,47,52,55,58,59} Seven of the nine (77.8 percent) studies demonstrated a tumor characteristic to predict malignant pathology. ^{40,42,43,45,47,55,59}

Five studies specifically evaluated the RENAL nephrometry score in a composite model. 40,42,43,45,47,52,55,58,59 All five demonstrated the RENAL nephrometry score or one of its components to predict malignancy. Three studies demonstrated increasing overall RENAL nephrometry score to predict malignancy. 42,43,45 The study by Antonelli, et al 55 demonstrated only the hilar component to predict malignant pathology, while the study by Fujita, et al. 40 demonstrated the endophytic score to predict malignancy. Heterogeneity of data prevented a meaningful meta-analysis from being performed.

Three studies evaluated tumor architecture. ^{47,58,59} Studies by Akdogan, et al, ⁵⁹ and Park, et al, ⁴⁷ demonstrated solid tumors to predict malignancy while the study by Rosenkrantz, et al, ⁵⁸ did not demonstrate tumor architecture to predict malignancy.

Tumor location, as an independent variable or as a component of the RENAL nephrometry score, did not predict malignancy in three studies.⁵⁵ The strength of evidence was low.^{40,52}

% ES (95% CI) Weight Author, Year Ball,2015 1.430 (1.190, 1.720) 15.50 Bazzi, 2014 1.400 (1.200, 1.620) 24.69 Fujita, 2013 1.890 (0.700, 5.102) 0.22 Jeon, 2010 1.190 (0.855, 1.695) 6.17 Murphy, 2009 1.230 (1.070, 1.410) 37.67 Shin,2013 1.382 (1.144, 1.670) 15.74 Overall (I-squared = 0.0%, p = 0.681) 1.326 (1.222, 1.430) 100.00

Figure 5. Meta-analysis showing effect of tumor size as a predictor of malignancy

Effect Size and 95% confidence intervals per cm tumor size

Favors Malignant ->

.5

<- Favors Benign

CI = confidence interval: ES = effect size: OR = odds ratio

The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Weighting is based on the inverse of the variance of each study estimate.

Demographic Characteristics

Seventeen studies reported on analyses including demographic characteristics. Fifteen studies included age and 16 included sex.

Age

Fifteen studies included age as a predictor of pathological outcome. 40,41,43,44,46,47,49,52-59 Five of 15 studies (38.5 percent) found age to be predictive of malignant or benign disease; 40,41,49,52,57 10 (69 percent) found age not to be predictive. 43,44,46,47,53-56,58,59

Nine studies included data appropriate for meta-analysis, ^{40,43,47,49,52,54-56,59} one study did not provide the odds ratio in the multivariate analysis, ⁵⁷ and two studies ^{44,46} were excluded from meta-analysis as they evaluated age as a categorical variable.

Both of the studies evaluating age as a categorical variable ^{44,46} dichotomized age as less than 60 years and greater than or equal to 60 years. The respective odds ratios predicting malignancy for patients greater than or equal to age 60 were 2.86 (no CI reported, p=0.054)⁴⁴ and 2.96 (95% CI: 1.00 to 8.77; p = 0.051), ⁴⁶ respectively. The effect size in meta-analysis was 0.998 per increasing year of age (CI: 0.993–1.004; Figure 6). Therefore, age did not have a statistically significant association with malignancy in this analysis. The study by Lane, et al.⁵⁷ represented a particularly important study regarding age as a predictive factor. This study contained the largest age range of all relevant studies, with ages ranging from 23 to 87 years. This study identified age as a significant predictor of benign disease and further identified age as a predictor of indolent or

aggressive disease. However, this study did not include data that could be extracted into metaanalysis. ⁵⁷ The strength of evidence was low that age was not predictive of pathology.

Figure 6. Meta-analysis showing effect of age as a predictor of malignancy

			%
Author, Year		ES (95% CI)	Weight
Akdogan, 2012 —	•	1.031 (0.617, 1.724)	0.01
Antonelli, 2014 —	•	0.900 (0.660, 1.240)	0.04
Ball,2015	+	0.990 (0.980, 1.010)	15.17
Bazzi, 2014	+	0.990 (0.980, 1.000)	34.13
Fujita, 2013	-	1.060 (1.002, 1.122)	0.94
Jeon, 2010	•	1.031 (1.010, 1.053)	7.55
Murphy, 2009	+	0.990 (0.980, 1.010)	15.17
Park, 2011		0.994 (0.980, 1.010)	15.17
Shin,2013	•	1.024 (1.007, 1.041)	11.81
Overall (I-squared = 71.1%, p = 0.001)		0.998 (0.993, 1.004)	100.00
		T	
0 .5 <- Favors Benign	1 Fa	2 vors Malignant ->	

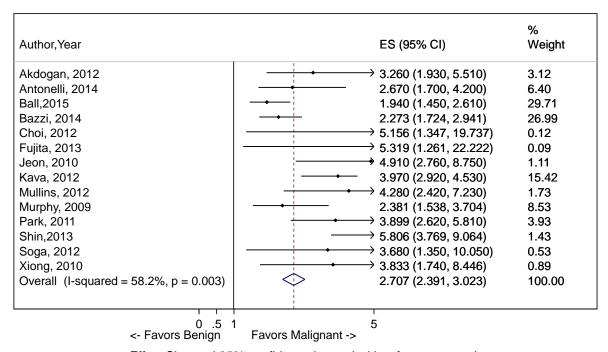
Effect Size and 95% confidence interval per year of age

Sex

Sixteen studies included sex as a predictor of pathological outcome. 40,42-44,46-49,52-57,59,60 Fourteen of 16 (88 percent) studies found sex to be predictive of malignant or benign disease 40,42,43,46-49,52,54-57,59,60; 2 found sex not to be predictive. 44,53

The two studies that found sex not to be predictive of histology were not included in a metaanalysis because one study 53 did not report a relative risk for malignancy based on sex, and the other study 44 did not provide CIs for the multivariable analysis but found that 9 out of 95 men (9.5 percent) and 11 out of 49 women (22.4 percent) had benign pathologies (multivariate odds ratio: 2.62, p = 0.079). The meta-analysis therefore included fourteen studies and indicated an effect size of 2.71 (95% CI: 2.39 to 3.02; Figure 7).

Of all composite model studies, Bazzi, et al. included the largest overall patient cohort (1726 patients), and the percent of women in the study (39.5 percent) was similar to the median percent across all studies (35.0 percent). The results of this study demonstrated that females had an odds ratio of 0.44 (95% CI: 0.34 to 0.58; p < 0.01) on multivariable analysis. Multivariable logistic regression was performed after differentiating patients based on sex, revealing different


CI = confidence interval; ES = effect size; OR = odds ratio

The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Weighting is based on the inverse of the variance of each study estimate.

and significant sex-specific variables that predicted malignancy. This study was limited, however, in that it included only renal masses smaller than 4 cm. The strength of evidence was moderate (Table 9).

Figure 7. Meta-analysis showing effect of sex as a predictor of malignancy

Effect Size and 95% confidence interval with reference to male sex

The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

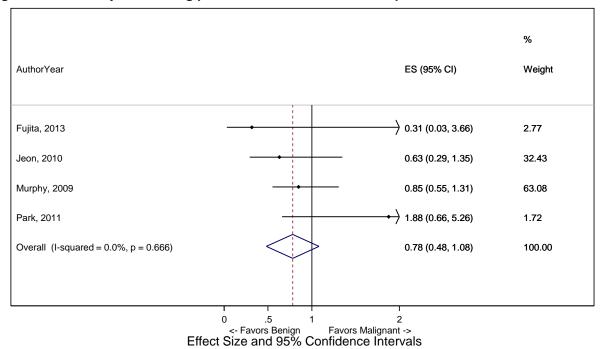
Weighting is based on the inverse of the variance of each study estimate.

Clinical Characteristics

Seven studies reported on analyses including clinical characteristics. Five studies included BMI and five included incidental presentation.

BMI

Five studies included BMI as a potential predictor of pathological diagnosis. 41,44,49,53,56 The data could not be sufficiently combined for a meta-analysis of BMI. The study by Keehn 53 did not provide any details of multivariate analysis. The other four studies reported conflicting odds ratio (OR) point estimates of greater than and less than one for the likelihood of benign disease associated with a BMI greater than 25 (i.e. overweight). 44,41,49,56 However, the study by Nishikawa 44 did not provide upper and lower limits of the OR in the multivariate model, and the studies by Jeon and Murphy 56 used multiple different categories of BMI. For instance, Jeon reported on the relationship between increased BMI and benign disease and found conflicting, nonsignificant results with increasing BMI. Compared to those patients with BMI less than 23 kg/m², patients with a BMI 23 to 25 kg/m² had an increased likelihood of benign disease (OR: 1.19 (95% CI: 0.59-2.41), p=0.61), and patients with a BMI greater than 25 kg/m² had an decreased likelihood of benign disease (OR: 0.8 (95% CI: 0.4-1.59), p=0.54). Murphy et al. 56


CI = confidence interval; ES = effect size; OR = odds ratio

reported an OR of 1.61 for an increased likelihood of benign disease in patients who were overweight (95% CI: 0.84-3.09) and an OR of 2.35 for patients who were obese (95% CI: 1.01-5.84). However, none of these relationships reached traditional levels of statistical significance. The study by Kava, et al. directly addressed the relationship between BMI and benign histology and found decreasing BMI to be associated with an increased likelihood of benign disease.⁴¹ The reported percentages of malignant versus benign tumors (75.9 percent vs. 24.1 percent, respectively) were similar to the median reported percentages across all relevant composite model studies (78.7 percent vs. 13.3 percent, respectively). Mean BMI in patients with benign and malignant tumors was $26.5 + 4.5 \text{ kg/m}^2$ (standard deviation) and $28.6 + 5.6 \text{ kg/m}^2$ respectively (P=0.012). Thirty-two percent of patients with BMI <25 kg/m² had benign disease and 20 percent of patients with BMI \geq 25 kg/m² had malignant tumors (P=0.023). On multivariate analysis, BMI <25 kg/m² was independently associated with benign disease (OR: 1.5 (95% CI: 1.12-1.94), p=0.015). It should be noted that these studies originate in difference geographic regions: studies by Kava, et al. and Murphy, et al. investigate US populations, while the studies by Nishikawa, et al. and Jeon, et al. are from Japan and Korea. Population-based differences in BMI may explain differences in observed rates of malignant and benign disease that cannot be determined by the current literature. The stength of evidence was insufficient on BMI (Table 9).

Incidental Presentation

Five studies included incidental presentation in the analysis of predictors of pathological outcome. 40,47,49,56,57 The study by Lane ⁵⁷ did not provide data that could be included in meta-analysis. Five of five (100 percent) studies found incidental presentation not to be predictive of malignancy and the meta-analysis indicated an aggregate effect size of 0.78 (95% CI: 0.48 to 1.08; Figure 8). The strength of evidence was moderate (Table 9).

Figure 8. Meta-analysis showing pooled odds ratio of incidental presentation

CI=Confidence Interval; ES=Effect size; OR=Odds Ratio

The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Weighting is based on the inverse of the variance of each study estimate.

Other Characteristics

Of the seven studies incorporating a clinical feature into analysis of factors predictive of malignancy, three (43 percent) included surgery year. ^{49,56,59} The one study that included laboratory testing used serum creatinine.⁵⁴

Table 9. Strength of evidence for predictors of malignant or benign pathology

Key Outcomes	No. Studies (N)	Study limitation	Directness	Consistency	Precision	Reporting Bias	Strength of evidence Finding
Pre-operative composite profiles	20 (12,149)	Medium	Direct	Inconsistent	Precise	Undetected	Pre-operative composite models were created using different populations (i.e. inclusion criteria), included different variables in their models, and, in some cases, were examining a specific outcome or measure as part of a composite model. For instance, the study by Keehn ⁵³ used a composite model in the context of evaluating visceral and subcutaneous fat content on CT imaging. Only one study was explicitly designed as a "nomogram" to predict malignant pathology. ⁵⁷
		Individ	ual predictors	s of malignant or	benign patho		
Tumor Size	12 (9,401)	Medium	Direct	Consistent	Precise	Undetected	Moderate Increasing tumor size consistently is associated with an increased risk of malignancy.
Tumor Characteristics	9 (6,942)	Medium	Direct	Consistent	Precise	Undetected	Low Increasing RENAL nephrometry score is consistently associated with malignancy. The data regarding individual components of the RENAL nephrometry score and other tumor characteristics is insufficient to draw conclusions.
Age	15 (10,150)	Medium	Direct	Inconsistent	Precise	Undetected	Low While the relationship between age and malignant pathology varies among studies, the effect size due to age is small in all studies.
Sex	16 (10,475)	Medium	Direct	Consistent	Precise	Undetected	Moderate Women are more likely to have benign tumors in all studies. The effect size varied by inclusion criteria and other variables (i.e. age, tumor size).

Table 9. Strength of evidence for predictors of malignant or benign pathology (continued)

Key Outcomes	No. Studies (N)	Study limitation	Directness	Consistency	Precision	Reporting Bias	Strength of evidence Finding
Body Mass Index	5 (2,224)	Medium	Direct	Inconsistent	Imprecise	Undetected	Insufficient Conflicting and nonsignificant results in studies make it difficult to form meaningful conclusions. In addition, geographic and population-based differences in body mass index make interpretation of the association of body mass index with malignant disease difficult.
Incidental Presentation	5 (4,229)	Medium	Direct	Consistent	Precise	Undetected	Moderate All studies demonstrate no relationship between an incidental finding and malignant pathology.
Harms	12 (1,097)	Medium	Direct	inconsistent	Precise	Undetected	Low A small, but notable, proportions of patients experience harms due to renal mass biopsy with hematoma (5%) being the most common direct complication. Studies were inconsistent in which harms, if any, were reported.

N = number; NA = not applicable

KQs 2a and 2b: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Key Points

- Most included studies focus on core biopsy as it has been the preferred diagnostic renal
 mass sampling technique over fine needle aspiration in recent years. Only one study
 directly evaluated fine needle aspiration.
- About 14 percent of biopsies lead to a nondiagnostic result; of these patients who underwent surgery, the majority (90.4 percent) possess malignant tumors.
- Repeat biopsy led to a diagnosis in 80 percent of patients with initially nondiagnostic results, but was only performed in 20 percent of cases.
- Percutaneous renal mass biopsies have a low false positive rate (4.0 percent) for localized renal masses, as well as substantial histologic (77.5 percent to 100 percent) and RCC subtype identification rates (~90 percent), instilling confidence in a malignant biopsy result.
- Among patients who undergo extirpative surgery for tumor removal, about one-third of those with negative biopsy results are found to have malignant disease on surgical pathology (36.7 percent), leading to a negative predictive value of 63.3 percent (CI, 52.4 percent to 74.2%) overall and 68.5 percent (CI, 57.6-79.4%) for the core biopsy subset.
- Core biopsy is highly sensitive (97.5%; 95% CI: 96.5% to 98.5%) in the diagnosis of localized malignant renal masses, when a diagnostic result is obtained. However, most patients (~80 percent) do not undergo surgery after a benign biopsy result, leading to uncertainty about the true proportion of false negatives.
- The majority of patients with RCC on biopsy have a sufficient specimen size to assign a Fuhrman grade, but a portion of these patients (16 percent) are upgraded from a low grade (1–2) to a high grade (3–4) on final surgical pathology.
- Strength of evidence is moderate for diagnostic accuracy. The primary limitation was the lack of surgical pathology for benign biopsies to augment true negative and false negative results (verification bias).
- Percutaneous renal mass sampling is associated with infrequent direct complications, including hematoma (4.9 percent), clinically significant pain (1.2 percent), gross hematuria (1.0 percent), pneumothorax (0.6 percent), and hemorrhage (0.4 percent).
- Indirect considerations include percutaneous renal mass sampling being performed with radiation exposure due to CT guidance (44 percent of the time). Nondiagnostic biopsies may lead to a need for further intervention, and false negative results have the potential to lead to inappropriately conservative management.
- Strength of evidence was rated as low for the evaluation of harms of renal mass biopsy including the finding of hematoma (4.9 percent) as the most common direct complication. Studies were inconsistent in which harms were reported with multiple studies missing harms of interest (hemorrhage, hematoma, pain) and less than half-including pneumothorax and gross hematuria.
- The studies had no reports of tumor seeding.

Study Characteristics

Twenty studies evaluated percutaneous renal mass sampling via fine needle aspiration or core biopsy for localized renal masses (Table 10). ^{51,61-79} Only one study meeting the inclusion criteria evaluated fine needle aspiration with cytopathology alone. ⁶¹ All other studies evaluated core needle biopsy with surgical pathology, and three included patients also undergoing fine needle aspiration at the time of core biopsy. ^{64,74,77} Four studies were designated prospective cohorts ^{61,72,76,77} while the remainder were retrospective cohorts; all 20 were single center experiences.

Ten studies included consecutively performed biopsies. ^{51,61,69,71-74,76-78} Nine studies were performed in North America ^{61,63-66,74,75,78,79}, five in Europe ^{62,68,69,76,77}, and three each were performed in Asia ^{51,70,72} and Australia. ^{67,71,73} No study reported funding source. One study ⁷¹ was an update of a previously published series. ⁷³

Population Characteristics

A total of 2979 unique patients were included across all studies; the patient populations for each study varied between 25 and 525. For the studies that reported mean (N=13) and median (N=7) ages, the mean age ranged from 56.1 to 67.2 years, while the median age ranged from 60 to 65 years. Gender was reported for 1795 patients (60.3 percent), of which 673 (37.5 percent) were female (N=12 studies). Only two studies reported race, with the majority of patients classified as white (81.0 percent). Ten studies reported biopsies performed on consecutively eligible patients meeting inclusion criteria (Table 10). 51,61,69,71-74,76-78

Intervention Characteristics

Type of biopsy, needle size, and image guidance varied among percutaneous renal mass sampling interventions. Only one study⁶¹ reported results of fine needle aspiration with cytopathology, while all others focused primarily on the performance of percutaneous core biopsy with surgical pathology.^{51,62-79} One study included the concomitant performance of fine needle aspiration on all patients⁶⁴ while two other studies included a subset of patients receiving both core biopsy and fine needle aspiration.^{74,77}

Three studies including the performance of fine needle aspiration used 22 gauge needles^{61,64,74} while one did not specify.⁷⁷ Fifteen of the 19 core biopsy studies used 18 gauge needles,^{51,62,64,65,67,69,71-79} 2 included a variety of needle sizes,^{66,70} 1 used 17 gauge needles,⁶⁸ and 1 did not report needle size.⁶³

Eleven of the 20 studies included a combination of biopsies performed under different imaging modalities (modalities were primarily computed tomography or ultrasound). Six studies used solely computed tomography (CT) guidance, 61,64,68-70,77 and 3 only used ultrasound guidance. 51,62,76

Tumor Characteristics

A total of 3074 tumors were biopsied in the included studies. Eleven studies focused specifically on localized clinical T1a tumors^{51,62,63,65,67-70,74,75,78} and another three ^{61,71,73} focused on tumors smaller than or equal to 5 cm; among these studies, mean tumor size ranged from 2.3 to 3 cm (Table 11). Two studies reported on larger tumors with mean size of 5.5 cm⁶⁶ and 6.4 cm,⁷² and one study did not provide tumor size.⁶⁴ Seven studies reported on tumor laterality with

a total of 1090 tumors of which 563 (51.7 percent) were located in the right kidney. 69,70,72,74,75,77,78

Table 10. Characteristics of studies evaluating percutaneous renal mass sampling

Author, Year	n	Women: n (%)	Age (years): Mean, Median, Range, SD	Race: n (%)
Campbell, 1997 ⁶¹	25	NR	NR	NR
Chyhrai, 2010 ⁶²	25	NR	Mean:63.0 SD:7.7	NR
Halverson, 2013 ⁶³	151	NR	Mean:59.0 SD:14	NR
Harisinghani, 2003 ⁶⁴	28	10(36)	Range:40-70	NR
Leveridge, 2011 ⁶⁵	294	NR	Median:64 Range:26-90	NR
Londono, 2013 ⁶⁶	126	42(33)	Mean:65.3 SD:14.6	W: 96(76)
Menogue, 2012 ⁶⁷	250	NR	Median:64 Range:22-88	NR
Millet, 2012 ^{68a}	187	30a(50a)	Median:60 Range:20-85	NR
Neuzillet, 2003 ⁶⁹	88	40(45)	Mean:61.32 Median:64 Range:21-88 SD:13.19	NR
Park, 2013 ⁵¹	58	18(31)	Mean:56.8 Range:24-79	NR
Prince, 2015 ⁷⁹	525	191(36)	Median:65	NR
Reichelt, 2007 ⁷⁶	30	12(40)	Mean:63.0 SD:7.7	NR
Richard, 2015 ⁷⁸	509	210(40)	Mean:64.0	NR
Salem, 2012 ⁷⁰	145	46(31)	Mean:67.2 SD:11.6	NR
Schmidbauer, 2008 ⁷⁷	78	15(19)		NR
Shannon, 2008 ^{71b}	221	NR	Mean:64.0 Range:22-92	NR
Sofikerim, 2009 ⁷²	42	21(50)	Mean:56.1 Range:21-77	NR
Vasudevan, 2006 ^{73b}	92	NR	Mean:62.0 Range:22-92	NR
Volpe, 2008 ⁷⁴	91	NR	Median:60 Range:25-89	NR
Wang, 2009 ⁷⁵	106	38(36)	Mean:60.4 Range:28-91 SD:15.4	W:92(87)
Summary ^b	2979 ^b	673 (38)	Mean:56.1-67.2 Median: 60-64 Range: 20-92	188 (81)

N = sample size; NR = not reported; SD = standard deviation; W = White

^aOnly reported for patients with surgical pathology (N=60). ^bSummarized for unique patients; Shannon 2008 is an update of Vasudevan 2006.

Table 11. Characteristics of tumors in the studies evaluating percutaneous renal mass sampling

Author, Year	nª	T1, n (%)	T1a, n (%)	T1-2, n (%)	Tumor Size (cm)	Tumor Location- Right, n (%)
Campbell, 1997 ⁶¹	25	25 (100)	NR	NR	Mean: 3.0 Median: 2.7 Range: 1.2-5.0 SD: 1.1	NR
Chyhrai, 2010 ⁶²	25	NR	25(100)	NR	Mean: 2.5 Range: 1.5-4.0 SD: 1.03	NR
Halverson, 2013 ^{63b}	151	NR	151(100)	NR	Mean: 2.8* Range: 1.0-4.0 SD: 0.8	NR
Harisinghani, 200364	28	NR	NR	28(100)	NR	NR
Leveridge, 2011 ⁶⁵	314	NR	314(100)	NR	Median: 2.5 Range: 0.6-4.0	NR
Londono, 2013 ⁶⁶	126	NR	NR	126(100)	Mean: 5.5 SD: 3.7	NR
Menogue, 2012 ⁶⁷	250	NR	250(100)	NR	Median: 2.5 Range: 0.9-4.0	NR
Millet, 2012 ⁶⁸	187	NR	187(100)	NR	Median: 3 Range: 0.9-4.0	NR
Neuzillet, 2003 ⁶⁹	88	NR	88(100)	NR	Median: 2.8 Range: 0.2-4.0	40(46)
Park, 2013 ⁵¹	59	NR	59(100)	NR	Mean: 2.3 Range: 1.1-3.9	NR
Prince, 2015 ^{79c}	565	NR	413(73)	152(27)	Mean: 2.9, 2.2	NR
Reichelt, 2007 ⁷⁶	30	30	NR	NR	Mean: 2.9 SD: 1.1	NR
Richard, 2015 ⁷⁸	529	NR	529(100)	NR	Mean: 2.5	289(55)
Salem, 2012 ⁷⁰	145	NR	145(100)	NR	Mean: 2.4 SD: 1.1	77(53)
Schmidbauer, 2008 ⁷⁷	78	NR	44(56)	34(44)	Mean: 4.0 Median: 3.9 Range: 0.8-9.0 SD: 1.8	39(50)
Shannon, 2008 ^{71d}	222	222(100)	NR	NR	Median: 2.9 Range: 1.0-4.9	NR
Sofikerim, 2009 ⁷²	42	NR	NR	42 100	Mean: 6.4 Range: 2.5-14.0	21(50)
Vasudevan, 2006 ^{73d}	92	92(100)	NR	NR	NR	NR
Volpe, 2008 ⁷⁴	100	NR	100(100)	NR	Median: 2.4 Range: 0.8-4.0	47(47)
Wang, 2009 ⁷⁵	110	NR	110(100)	NR	Mean: 2.7 Range: 0.5-4.0 SD: 0.9	50(46)
Summary ^b	3074	277 (9)	2415 (79)	382 (12)	Mean: 2.3-6.4 Median: 2.2-3.9 Range: 0.5-14.0	563(52)

N =sample size; NR =not reported; SD =standard deviation a51,65,71,74,75 include a few patients with multiple tumors biopsied.

^bTumor size only reported for patients with malignant results on biopsy (N=133).

^cTumor size given for diagnostic and nondiagnostic groups separately as listed in table, respectively

^dSummarized for unique patients; Shannon 2008 is an update of Vasudevan 2006.

Risk of Bias

We used the quality assessment tool for diagnostic accuracy studies (QUADAS -2).³⁷ Overall, 5 of the 20 studies were determined to be of low risk of bias (Figure 9).^{61,63,72,76,77} All studies were at low risk of bias for the reference standard test and the index test. The majority of studies (17 of 20) were also at low risk of bias for patient selection. However, the assessment of flow and timing showed 14 of 20 studies to have high potential risk of bias due to missing reference standard evaluations (surgical pathology) among patients with benign biopsy results limiting the tabulation of data on true negatives and false negatives.

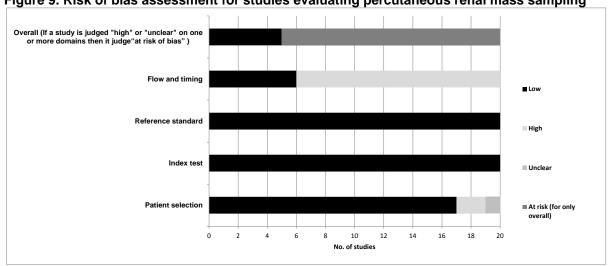


Figure 9. Risk of bias assessment for studies evaluating percutaneous renal mass sampling

Percutaneous Renal Mass Sampling

Histology

A total of 3,113 biopsies were performed, including 39 tumors in three studies on which more than one biopsy was performed (Tables 12a and 12b).^{65,66,71} Overall, 67.6 percent of the eligible biopsies were reported as malignant and 19.0 percent were reported as benign. The proportion of nondiagnostic biopsies was 14.1 percent overall and 13.9 percent when limited to core biopsy studies. Fourteen biopsies from one study were classified as normal and considered diagnostic benign lesions.⁷⁵ These lesions were managed with observation or ablation. However, these biopsies could be considered nondiagnostic, as no etiology of the renal mass was given (i.e., cystic process or fibrosis), which would lead to estimates of nondiagnostic rates of 14.5 percent overall and 14.3 percent for core biopsy only, respectively. Clear cell renal cell carcinoma was the most common diagnosis across all studies, ranging from 30.4 percent to 80.0 percent of biopsies, depending on nondiagnostic rates. Other histologic results are given in Table 12a and 12b, and details of other malignant tumors, benign tumors, and conditions determined not to be neoplastic (Table 13).

Table 12a. Details of biopsy pathology results across included studies

Author, Year	N	Nondiagnostic n (%)	Malignant n (%)	Benign n (%)	Clear cell RCC n (%)	Papillary RCC n (%)	Chromophobe RCC, n (%)	RCC (Uncategorized) n (%)
Campbell, 1997 ⁶¹	25	9(36)	10(40)	6(24)	NR	NR	NR	NR
Chyhrai, 2010 ⁶²	25	2(8)	16(64)	7(28)	14(56)	1(4)	NR	NR
Halverson, 2013 ⁶³	151	14(9)	130(86)	7(5)	97(64)	25(17)	3(2)	3(2)
Harisinghani, 2003 ⁶⁴	28	0	17(61)	11(39)	NR	NR	NR	16(57)
Leveridge, 2011 ⁶⁵	345	67(19)	221(64)	57(17)	122(35)	48(14)	13(4)	25(7)
Londono, 2013 ⁶⁶	132	7(5)	87(66)	38(29)	NR	NR	NR	NR
Menogue, 2012 ⁶⁷	250	52(21)	148(59)	50(20)	100(40)	33(13)	11(4)	NR
Millet, 2012 ^{68a}	187	NR	145(78)	NR	NR	NR	NR	132(71)
Neuzillet, 2003 ⁶⁹	88	8(9)	66(75)	14(16)	49(56)	10(11)	6(7)	NR
Park, 2013 ⁵¹	59	11(19)	37(63)	11(19)	NR	NR	NR	29(49)
Prince, 2015 ⁷⁹	565	83(15)	393(70)	89(16)	260(46)	48(9)	5	33(6)
Reichelt, 2007 ⁷⁶	30	5(17)	17(57)	8(27)	NR	NR	NR	16(53)
Richard, 2015 ^{78b}	529	53(10)	353(67)	123(23)	214(41)	95(18)	26(5)	17(3)
Salem, 2012 ⁷⁰	145	19(13)	107(74)	19(13)	57(39)	22(15)	8(6)	2(1)
Schmidbauer, 2008 ⁷⁷	78	2(3)	60(77)	16(21)	48(80)	3(4)	3(4)	4(5)
Shannon, 2008 ^{71c}	224	50(22)	132(59)	42(19)	85(38)	25(11)	11(5)	3(1)
Sofikerim, 2009 ⁷²	42	3(7)	33(79)	6(14)	32(76)	1(2)	0	NR
Vasudevan, 2006 ^{73c}	92	29(32)	43(47)	20(22)	28(30)	4(4)	5(5)	NR
Volpe, 2008 ⁷⁴	100	16(16)	66(66)	18(18)	37(37)	16(16)	3(3)	4(4)
Wang, 2009 ⁷⁵	110	10(9)	65(59)	35(32)	NR	NR	NR	56(51)
Summary ^c	3113	411(14.1 ^a)	2103 (68)	557(19 ^a)	1115(36)	327(11)	89(3)	340(11)

AML = angiomyolipoma; n = sample size; NR = not reported; RCC = renal cell carcinoma

^a42 (22.5%) biopsies were benign or nondiagnostic but the proportion of each was not reported; therefore, Millet, 2012is excluded from calculation of proportion of nondiagnostic and benign biopsies.

^bBiopsy pathology results includes 20 repeat biopsies which were diagnostic.

^cSummarized for unique patients/biopsies; Shannon 2008 is an update of Vasudevan 2006; histology percentages add to 100% after inclusion of 42 unclassified benign and nondiagnostic biopsies ⁶⁸ and absence of histologies from 125 Londono, 2013 and 16 Campbell, 1997 biopsies.

Table 12b. Details of biopsy pathology results across included studies

Author, Year	N	Other Malignant n (%)	Oncocyto ma n (%)	AML n (%)	No Neoplasm n (%)	Other Benign n (%)
Campbell, 1997 ⁶¹	25	NR	NR	NR	NR	NR
Chyhrai, 2010 ⁶²	25	1(4)	6(24)	NR	NR	1(NR)
Halverson, 2013 ⁶³	151	2(1)	3(2)	NR	NR	4(3)
Harisinghani, 2003 ⁶⁴	28	1(4)	1(4)	NR	9(32)	1(4)
Leveridge, 2011 ⁶⁵	345	13(4)	32(9)	11(3)	NR	14(4)
Londono, 2013 ⁶⁶	132	NR	NR	NR	NR	NR
Menogue, 2012 ⁶⁷	250	4(2)	33(13)	9(4)	6(2)	2(1)
Millet, 2012 ^{68a}	187	13(7)	NR	NR	NR	NR
Neuzillet, 2003 ⁶⁹	88	1(1)	10(11)	3(3)	NR	1(1)
Park, 2013 ⁵¹	59	8(14)	2(3)	6(10)	3(5.)	NR
Prince, 2015 ⁷⁹	565	47(8)	77(14)	11(2)	NR	1(0.2)
Reichelt, 2007 ⁷⁶	30	1(3)	6(20)	NR	NR	2(7)
Richard, 2015 ^{78b}	529	13(3)	80(15)	36(7)	NR	15(3)
Salem, 2012 ⁷⁰	145	18(12)	15(10)	NR	4(3)	NR
Schmidbauer, 2008 ⁷⁷	78	2(3)	13(17)	2(3)	1(1)	NR
Shannon, 2008 ^{71c}	224	8(4)	25(11)	13(6)	3(1)	1(0.4)
Sofikerim, 2009 ⁷²	42	NR	4(10)	1(2)	NR	1(2)
Vasudevan, 2006 ^{73c}	92	6(7)	11(12)	9(10)	NR	NR
Volpe, 2008 ⁷⁴	100	6(6)	7(7)	5(5)	4(4)	2(2)
Wang, 2009 ⁷⁵	110	11(10)	13(12)	3(3)	16(15)	1(1)
Summaryb	3113	149(5)	327(11)	100(3)	46(2)	46(2)

AML = angiomyolipoma; cc = clear cell; N = sample size; NR = not reported; p = papilloma; RCC = renal cell carcinoma ^a42 (22.5%) biopsies were benign or nondiagnostic but the proportion of each was not reported; therefore, Millet, 2012is excluded from calculation of proportion of nondiagnostic and benign biopsies.

^bBiopsy Pathology Results includes 20 repeat biopsies which were diagnostic.

^cSummarized for unique patients/biopsies; Shannon 2008 is an update of Vasudevan 2006; histology percentages add to 100 percent after inclusion of 42 unclassified benign and nondiagnostic biopsies ⁶⁸ and absence of histologies from 125 Londono, 2013 and 16 Campbell, 1997 biopsies.

Table 13. Details about patients with biopsies showing no neoplasm or other malignant or benign results

Author, Year	No Neoplasm: n (details)	Other Malignant: n (details)	Other Benign: n (details)
Campbell, 1997 ⁶¹	NR	NR	NR
Chyhrai, 2010 ⁶²	NR	1 (1 adenocarcinoma)	1 (1 leiomyoma)
Halverson, 2013 ⁶³	NR	2 (1 urothelial, 1 sarcomatoid renal	4 (4 unspecified benign biopsies)
		cell carcinoma)	
Harisinghani, 2003 ⁶⁴	9 (6 hemorrhagic cysts, 3 inflammatory cysts)	1 (1 lymphoma)	1 (1 metanephric adenoma)
Leveridge, 2011 ⁶⁵	NR	13 (13 unspecified malignant)	14 (14 "other" benign)
Londono, 2013 ⁶⁶	NR	NR	NR
Menogue, 2012 ⁶⁷	6 (6 cysts)	4 (1 multilocular renal cell carcinoma, 1 urothelial, 1 TCC 1 metastasis)	2 (1 metanephric adenoma, 1 leiomyoma)
Millet, 2012 ⁶⁸	NR	13 (13 "other' malignant)	NR (42 benign or nondiagnostic biopsies
Neuzillet, 2003 ⁶⁹	NR	1 (1 lymphoma)	1 (1 cystadenoma)
Park, 2013 ⁵¹	3 (3 inflammatory cysts)	8 (4 metastasis, 2 urothelial, 1 PTLD, 1 lymphoma)	NR
Prince, 2015 ⁷⁹	NR	47 (unspecified urothelial, collecting duct, lymphoma, leukemia)	
Reichelt, 2007 ⁷⁶	NR	1 (1 collecting duct carcinoma)	
Richard, 2015 ⁷⁸	NR	13 (1 mucinous tubular and spindle	15 (3 metanephric adenoma, 2
		cell carcinoma, 9 metastasis, 3 "other" malignant)	leiomyoma, 10 "other" benign)
Salem, 2012 ⁷⁰	4 (4 cysts)	18 (1 renal medullary, 2 lympoma, 15	NR
,		metastasis)	
Schmidbauer, 2008 ⁷⁷	1 (1 cyst)	2 (1 TCC, 1 metastasis)	NR
Shannon, 2008 ⁷¹	3 (3 cysts)	8 (5 metastasis, 2 TCC, 1 collecting duct carcinoma)	1 (1 metanephric adenoma)
Sofikerim, 2009 ⁷²	NR	NR	1 (1 leiomyoma)
Vasudevan, 2006 ⁷³	NR	6 (6 metastasis)	NR
Volpe, 2008 ⁷⁴	4 (2 inflammatory cysts, 2 fibrosis)	6 (2 metastasis, 1 TCC, 1 SCC, 2 other malignant)	2 (2 leiomyoma)
Wang, 2009 ⁷⁵	16 (14 normal tissue, 1 fibrosis, 1 sarcoid lesion)	11 (3 lymphoma, 5 metastasis, 1 PTLD, 2 mixed epithelial/stroma tumor)	1 (1 metanephric adenoma)
Summary	46	149	46

n = sample size; NR = not reported; PTLD = post-transplant lymph proliferative disorder

Fuhrman Grade

Twelve studies ^{51,61,63,65,67-70,72,74,77,78} provided data on the Fuhrman grade assigned at biopsy (Table 14), including one using fine needle aspiration;⁶¹ the remainder used core biopsy. Grades were assigned for the 67.3 percent of biopsies showing RCC. Results showed 688 (87.8 percent) of patients with low grade (1–2) and 96 (12.2 percent) with high grade (3–4) tumors on biopsy. Surgical pathology was available for 489 tumors.

Ten studies^{51,61,63,67-69,72,74,77,78} reported tumor upgrading from low to high Fuhrman grade, resulting in an overall proportion of 16.0 percent being upgraded at surgical pathology. The accuracy of grades between biopsy and surgical pathology results varied, with studies reporting concordances of 51.5 percent,⁷² 63.4 percent,⁷⁸ 65 percent,⁶³ 66.7 percent,⁷⁴ 69.8 percent,⁶⁹ 75 percent,⁶⁸ and 75.9 percent.⁷⁷ Two studies reported no low to high upgrading.^{68,74} Millet, et al. (2012),⁶⁸ reporting one of the highest grade concordances (75 percent) and no upgrading, also grouped grades as low and high which showed a concordance of 93 percent and a kappa of 0.71. Other studies did not routinely report kappa statistics. The strength of evidence was low (Table 18).

Table 14. Fuhrman grading results for studies reporting grade at biopsy

Table 14. Fullillian g	1		Grade	Fuhrman	· ,	
Author, Year	N	Renal Cell Carcinoma, n	Assigned, n (%)	Grade: 1-2: n (%)	Surgical Path	Upgraded: n (%)
				3-4: n (%)		
Campbell,1997 ⁶¹	25	10	10(100)	1-2: 7(70) 3-4: 3(3)	10	1(10)
Halverson, 2013 ⁶³	151	125	97(78)	1-2: 85(88) 3-4:12(12)	97	37(38)
Leveridge, 2011 ⁶⁵	345	183	100(55)	1-2: 89(89) 3-4:11(1)	NR	NR
Menogue, 2012 ⁶⁷	250	144	122(85)	1-2: 115(94) 3-4: 7(5.7)	72	17(24)
Millet, 2012 ⁶⁸	187	132	NRª	1-2: 53(87) 3-4: 8(13)	61	0(0
Neuzillet, 2003 ⁶⁹	88	65	61(94)	1-2: 55(90) 3-4:6(9.83)	52	7(13)
Park, 2013 ⁵¹	59	29	4(14)	NR	4	2(50)
Richard, 2015 ⁷⁸	529	352	211(60)	1-2: 194(92) 3-4: 17(8)	101	6(6)
Salem, 2012 ⁷⁰	145	90	47(52)	1-2: 28(60) 3-4: 19(40)	33	NR
Schmidbauer, 2008 ⁷⁷	78	58	47(81)	NR	47	2(4)
Sofikerim, 2009 ⁷²	42	34	34(100)	1-2: 32(94) 3-4: 2(6)	33	6(18)
Volpe, 2008 ⁷⁴	100	60	41(68)	1-2: 30(73) 3-4: 11(27)	12	0(0)
Summary	1999	1282	774(67 ^b)	1-2: 688(88) 3-4: 96(12)	489 ^c	78(16)

n = sample size; NR = not reported; SD = standard deviation; W = White

^aProportion of biopsies showing renal cell carcinoma that had grade assigned not reported; however, biopsy grade for 61 with surgical pathology available is reported.

^bDenominator excludes ⁶⁸ (N=132) as overall proportion assigned grade at biopsy not reported. ^cTotal excludes ⁶⁸ and ⁷⁰ as proportion upgraded on surgical pathology not given.

Outcomes

Diagnostic Test-Related Outcomes (KQ2a)

Studies varied on which diagnostic test performance characteristics were reported and how these accuracy measures were calculated for renal mass biopsy. To standardize results, we cross-tabulated percutaneous renal mass biopsy results from the first attempted biopsy into contingency tables based on surgical pathology findings. Benign biopsy results were classified as true negatives or false negatives, and malignant biopsy results were classified as true positives or false positives. Nondiagnostic biopsy rate was considered a separate measure and was **excluded** from the primary diagnostic accuracy calculations. Nondiagnostic biopsies are **NOT** considered negative results in this analysis. After pooling patients from all studies, we performed diagnostic accuracy calculations for the pooled samples and the core biopsy subset.

False Positives, False Negatives and Nondiagnostic Biopsies

Of the 20 included studies, 19 reported at least some data on these outcomes (Table 15).^{51,61-78} Importantly, among 1710 malignant biopsies from these studies, 965 (56.4 percent) proceeded to surgery with available pathology results, among which only 2 (0.21 percent) were false positives. In contrast, only 79 (16.9 percent) of 468 benign biopsies had surgical pathology available; 29 (36.7 percent) of the 79 were false negatives. The false negative rate (percentage of specimens having malignancy on surgical pathology for which the biopsy was falsely negative) was 3.1 percent (29/931), and the false positive rate was 4.0 percent (2/50). Of note is that nondiagnostic biopsies are **NOT** used to calculate these parameters and only diagnostic biopsies were considered for calculation of true positives, true negatives, false positives, and false negatives. Among the 73 (22.3 percent) nondiagnostic biopsies with surgical pathology available, 90.4 percent of the tumors were found to be malignant.

Table 15. Calculated performance characteristics from each individual study based on patients with available surgical pathology

Author Voor	Biopsy Surgery		Nondiagnostic Biopsy		Benign Biopsy		Malignant Biopsy		Sensitivity	Specificity	PPV	NPV
Author, Year n		n (%)	Surgery	Malignant	True	False	True	False Positive	(%)	(%)	(%)	(%)
Campbell, 1997 ⁶¹	25	25(100)	9	n (%) 9(100)	Negative 0	Negative 6	Positive 10	0	63	NA	100	0
		` ,	9	` ,		4		ŭ				
Chyhrai, 2010 ⁶²	25	21(84)	ND.	1(100)	5	1	14	0	94	100	100	83
Halverson, 2013 ⁶³	151	151(100)	NR	NR	4	3	130	0	98	100	100	57
Harisinghani, 2003 ⁶⁴	28	16(57)	0	NR	1	0	16	0	100	100	100	100
Leveridge, 2011 ⁶⁵	345	74(21)	6	5(83)	NR	NR	NR	NR	NA	NA	NA	NA
Londono, 2013 ⁶⁶	132	63(48)	2	2(100)	2	13	46	0	78	100	100	13
Menogue, 2012 ⁶⁷	250	129(52)	9	8(89)	6	0	114	0	100	100	100	100
Millet, 2012 ^{68a}	187	61(33)	NR	NR	NR	NR	61	0	NA	NA	100	NA
Neuzillet, 2003 ⁶⁹	88	62(70)	5	5(100)	1	0	56	0	100	100	100	100
Park, 2013 ⁵¹	59	13(22)	2	2(100)	0	0	11	0	100	NA	100	NA
Prince, 2015 ⁷⁹	565	NR	NR	NR	NR	NR	NR	NR	NA	NA	NA	NA
Reichelt, 2007 ⁷⁶	30	22(73)	4	4(100)	4	0	14	0	100	100	100	100
Richard, 2015 ⁷⁸	529	171(32)	4	4(100)	3	0	163	1	100	75	99.4	100
Salem, 2012 ⁷⁰	145	93(64)	6	6(100)	0	0	87	0	100	NA	100	NA
Schmidbauer, 2008 ⁷⁷	78	78(100)	2	2(100)	13	3	60	0	95.2	100	100	81.3
Shannon, 2008 71b	224	118(53)	15	12(80)	7	0	96	0	100	100	100	100
Sofikerim, 2009 ⁷²	42	42(100)	3	3(100)	3	3	32	1	91	75	97	50
Vasudevan, 2006 73b	92	48(52)	9	8(89)	3	0	36	0	100	100	100	100
Volpe, 2008 ⁷⁴	100	23(23)	3	1(33)	0	0	20	0	100	NA	100	NA
Wang, 2009 ⁷⁵	110	36(33)	2	2(100)	1	0	33	0	100	100	100	100
Summary	2640 ^b	1246(47)	73	66(90.4)			1: .: 1		-			

n = sample size; NA = not applicable; NPV = negative predictive value; NR = not reported; PPV = positive predictive value ^a42 (22.5%) biopsies were benign or nondiagnostic but the proportion of each is not reported. ^bSummarized for unique patients/biopsies; Shannon 2008 is an update of Vasudevan 2006.

Sensitivity, Specificity, and Positive and Negative Predictive Value

The one study evaluating fine needle aspiration had a sensitivity of 62.5 percent, which was related to the detection of malignant renal masses among diagnostic biopsies. ⁶¹ Only two studies included consecutive patients undergoing core biopsy with surgery pathology available for all tumors.^{72,77} The larger of these included 78 patients and showed a sensitivity of 95.2 percent, specificity of 100 percent, positive predictive value of 100 percent, and negative predictive value of 81.3 percent. The other study included 42 patients and showed a sensitivity of 91.4 percent, specificity of 75.0 percent, positive predictive value of 97.0 percent, and negative predictive value of 50.5 percent. 72 Table 16 presents pooled diagnostic accuracy estimates for all diagnostic biopsies as well as the core biopsy subset. Core biopsy had a sensitivity of 97.5 percent, specificity 96.2 percent, positive predictive value of 99.8 percent, and negative predictive value of 68.5 percent. The negative predictive value indicates the percentage of negative (nonmalignant) biopsies confirmed negative (nonmalignant) on surgical pathology. Calculated likelihood ratios for core biopsy based on pooled estimates lead to a positive likelihood ratio of 25.3 and negative likelihood ratio of 0.026. However, likelihood ratios are derived only from sensitivity and specificity, which are prone to verification bias among the included studies. Given the studies appear to include a representative prevalence of small renal mass histologies, predictive values from the data may be more clinically relevant than likelihood ratios. Among core biopsy studies judged to be at low risk of bias, similar diagnostic accuracy estimates were obtained with sensitivity of 96.3%, specificity 96.0%, positive predictive value 99.6%, and negative predictive value 72.7%. 63,72,76,77

Table 16. Pooled diagnostic accuracy estimates

	Sensitivity (%)	95% CI	Specificity (%)	95% CI	PPV* (%)	95% CI	NPV (%)	95% CI
Diagnostic Biopsies Only	96.9	95.8- 98.0	96.2	90.7-	99.8	99.5- 100	63.3	52.4- 74.2
Core Biopsy Subset	97.5	96.5- 98.5	96.2	90.7- 100	99.8	99.5- 100	68.5	57.6- 79.4

NPV = negative predictive value; PPV = positive predictive value

Histologic Concordance and Repeat Biopsies

Histologic concordance was generally high among studies reporting specific histology. Three studies ^{68,74,75} reported 100 percent histopathology concordance, and one each reported 94.7 percent, ⁷⁷ 93 percent, ⁷⁸ 92 percent, ⁶⁹ and 77.5 percent. ⁷² The RCC subtype concordance was also substantial with studies reporting concordance in 53 of 58 masses, ⁷⁵ 28 of 29 masses, ⁷⁵ 27 of 29 masses, ⁶⁶ and a final study reporting a kappa of 0.69. ⁶⁵

There was variation in the performance and reporting on repeat biopsies for nondiagnostic lesions. Repeat biopsies were reported for 84 of 411 (20.4 percent) nondiagnostic biopsies. A single repeat biopsy helped diagnose 19 of 24,⁷⁹ 20 of 24,⁷⁸ 6 of 9,⁷⁰ 10 of 12,⁶⁵ 9 of 12,⁷¹ and 3 of 3⁵¹ initially nondiagnostic lesions among studies for an overall rate of 67 (79.8 percent) out of 84. A third biopsy led to diagnosis in a 10th patient in one study.⁷¹

Harms and Adverse Events Associated With Percutaneous Renal Mass Sampling (KQ2b)

Direct Complications

Direct complications for percutaneous renal mass sampling were infrequent (Table 17). The most common complications were development of a hematoma (4.9 percent) and clinically significant pain (1.2 percent). The definition for hematoma varied between studies, but the majority of patients underwent CT to check for any procedure-related complications, including hematoma development. No study reported any cases of tumor seeding.

Clinically significant pain was defined as requiring medication⁵¹ or emergency department evaluation.⁷⁵ Gross hematuria (1.0 percent), pneumothorax (0.6 percent), and hemorrhage (0.4 percent) were rarer events but were noted in some patients. Three studies specifically referenced Clavien graded complications.^{65,78,79} One study noted Clavien 1 complications in 10.1 percent of patients and observed a single Clavien 3a complication (0.3 percent).⁶⁵ The Clavien 3a complication involved gross hematuria leading to urinary retention due to formation of clots. A second study noted a Clavien 3b complication (percutaneous angioemolization)⁷⁸ and third study noted a Clavien 3a complication (selective renal artery embolization for bleeding leading to hemodynamic instability).⁷⁹

Indirect Diagnostic Test-Related Considerations

Percutaneous renal mass sampling often requires radiation exposure when computed tomography (CT) is used. Biopsy was performed under computed tomography (CT) guidance with or without ultrasound in 44.3 percent of patients. Three studies used ultrasound guidance only. False positives were rare (as previously noted) with only two cases (0.21 percent) among the included studies. False negative results presented a greater potential harm, as 36.7 percent of negative biopsies in these studies were found to be malignant on surgical pathology.

However, the majority of patients with benign biopsies do not undergo extirpative management, leading to greater uncertainty in the true proportion of false negatives, which may lead to inappropriately conservative management. Furthermore, the majority of nondiagnostic biopsies that undergo surgical management are found to be malignant (90.4 percent), indicating that further workup or intervention may be needed for a nondiagnostic biopsy. Additional considerations include lack of individual-level details in some studies for patients developing perirenal hematomas, such as preexisting risk factors contributing to hematoma, harms of needing to be off anticoagulation therapy to perform a biopsy, and effect of hematoma on delay to surgery or the ability to perform partial nephrectomy.

Table 17. Studies reporting harms and adverse events associated with percutaneous renal mass sampling

Author, Year	N	Radiation Exposure, n (%)	Hemorrhage, n (%)	Hematoma, n (%)	Pain, n (%)	Pneumothorax, n (%)	Tumor Seeding, n (%)	Hematuria, n (%)	Other
Campbell, 1997 ⁶¹	25	25(100)	0	10(40)	NR	0	0	NR	
Chyhrai, 2010 ⁶²	25	0	1(4)	NR	1(4)	0	0	NR	
Harisinghani, 2003 ⁶⁴	28	28(100)	NR	NR	NR	NR	NR	NR	
Leveridge, 2011 ⁶⁵	227ª	151 (of 336) (45)	0	22(10)	NR	2(1)	0(0)	3(1) ^a	1 syncope
Millet, 2012 ⁶⁸	187	187(100)	NR	NR	NR	NR	NR	NR	
Neuzillet, 2003 ⁶⁹	88	88(100)	0	0	0	NR	0	NR	
Park, 2013 ⁵¹	59	0	0	9(15)	3(5)	0	NR	0	
Prince, 2015 ⁷⁹	565	48(9)	3(0.5) ^b	NR	NR	NR	NR	NR	7 hospital admissions
Reichelt, 2007 ⁷⁶	30	0	1(3)	1(3)	1(3)	NR	NR	NR	
Richard, 2015 ⁷⁸	492	115 (of 503) (23)	NR	24(5) ^c	3(0.6)	NR	0	5(1)	12 coaxial sheath venous bleeding, 2 dizziness, 2 nausea/vomiting, 1 skin hematoma
Salem, 2012 ⁷⁰	145	145(100)	0	2(1)	0	NR	0	NR	1 flank ecchymosis
Schmidbauer, 2008 ⁷⁷	78	78(100)	0	4(5)	NR	1(1)	NR	NR	
Shannon, 2008 ⁷¹	221	NR	1(0.4)	1(0.4)	NR	NR	0	NR	
Sofikerim, 2009 ⁷²	42	42(100)	0	0	0	NR	0	0	
Volpe, 2008 ⁷⁴	100	55(55)	0	NR	1(1)	1(1)	0	NR	1 syncope
Wang, 2009 ⁷⁵	110	66(60)	NR	2(2)	4(4)	0	NR	NR	1 wound infection, 1 hypotension requiring fluid resuscitation
Summary		1028(44)	6(0.4)	75(5)	13(1.2)	4(0.6)	0(0)	8(1)	

n =sample size; NR =not reported

^a67 patients without complication data available; Clavien 1 complications in 10.1 percent of patients; one Clavien 3a complication (0.3%) noted involving gross hematuria leading to urinary retention due to formation of clots.

^bOne Clavien 3a complication (selective renal artery embolization for bleeding leading to hemodynamic instability).

^cOne Clavien 3b complication (required percutaneous embolization).

Table 18. Strength of evidence for renal mass biopsy outcomes

Key Outcomes	No. Studies (N)	Study Limitation	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Diagnostic Accuracy	18 (2,203)	Medium	Direct	Consistent	Precise	Undetected	Moderate Renal mass biopsy has a high positive predictive value (99.8%) for the diagnosis of renal malignancy but also a notable nondiagnostic (~14%) rate and low negative predictive value (<70%). The primary limitation is the absence of surgical pathology for benign biopsies, but sensitivity and specificity of a diagnostic biopsy result appear to be over 90.
Fuhrman Grade	12 (1,999)	High	Direct	Consistent	Imprecise	Undetected	Low Fuhrman upgrading on final pathology occurred in 20.5% of biopsies, but many studies did not provide data on grade concordance.
Harms	16 (2,422)	Medium	Direct	Inconsistent	Precise	Undetected	Low A small, but notable, proportion of patients experience harms due to renal mass biopsy with hematoma (5%) being the most common direct complication. Studies were inconsistent in which harms, if any, were reported.

N = number; NA = not applicable

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Key Points

Controlled Studies

Oncologic Efficacy and Overall Survival

- In the only comparative study including active surveillance as a management option, active surveillance was similar to radical nephrectomy in overall survival and cancerspecific survival in patients more than 75 years old, after adjustment for age and comorbidity.
- Nonsurgical management (in studies of the Surveillance, Epidemiology, and End Results (SEER) database) was associated with a two-fold inferior overall survival and cancerspecific survival compared with radical nephrectomy and partial nephrectomy (low strength of evidence).
- Overall survival was similar between radical nephrectomy and partial nephrectomy (low strength of evidence). The only randomized trial confirmed this finding in patients with RCC. Population-based studies using the SEER database consistently revealed a higher overall survival for partial nephrectomy compared with radical nephrectomy in patients with T1a tumors (hazard ratio (HR) 1.23, CI 1.13 to 1.33).
- Partial nephrectomy was associated with equivalent cancer-specific survival compared
 with radical nephrectomy for T1 tumors (moderate strength of evidence) across SEER
 (HR 1.18, CI 0.94 to 1.42) and non-SEER (HR 1.08, CI 0.87 to 1.33) studies. Only one
 study compared partial nephrectomy with radical nephrectomy specifically for T2 tumors
 and demonstrated similar cancer-specific survival.
- Thermal ablation was generally associated with similar or worse overall survival compared with partial nephrectomy (low strength of evidence) due to the selection of older patients with greater comorbidity to undergo the procedure. Strength of evidence was insufficient for the comparison of overall survival between thermal ablation and radical nephrectomy.
- Thermal ablation demonstrated similar cancer-specific survival and metastasis-free survival compared with radical nephrectomy (moderate strength of evidence) and partial nephrectomy (low strength of evidence).
- Thermal ablation was associated with worse local recurrence-free survival compared with radical nephrectomy (low strength of evidence) and partial nephrectomy (moderate strength of evidence). The interquartile ratio was 84.7 percent to 94.7 percent for thermal ablation compared to 97 percent to 100 percent for partial nephrectomy across studies. After repeat treatments, secondary efficacy of thermal ablation more closely approximated the local cancer control rates of radical nephrectomy and partial nephrectomy.

Renal Functional Outcomes

- In patients undergoing treatment for a renal mass suspicious for stage T1 or T2 RCC, kidney function (measured through estimated glomerular filtration rate (eGFR)) consistently appeared to worsen by 1-40 ml/min/1.73 m² in the immediate postoperative setting but improved over the next 1 to 6 months and remained relatively stable after that point.
 - o This improvement was more pronounced in thermal ablation arms, where final eGFR was on average 2.83 ml/min//1.73 m² better than postoperative eGFR.
 - o This improvement was not as common in radical nephrectomy arms, where final eGFR was on average 0.83 ml/min//1.73 m² better than postoperative eGFR.
- Radical nephrectomy was associated with worse renal outcomes when compared with partial nephrectomy and with thermal ablation:
 - O The final eGFR rate fell, on average, 3.6 ml/min/1.73 m² lower (range -1.2 to 37.5) with radical nephrectomy than with partial nephrectomy (moderate strength of evidence), with an increased risk of all stages of chronic kidney disease (1.3 to 2.7 times higher risk, moderate strength of evidence). The incidence of chronic kidney disease was estimated at 32 percent for radical nephrectomy, with range of average incidence across studies 2 to 70 percent.
 - Significant heterogeneity in the estimated glomerular filtration rate outcome existed, with one of the largest studies showing the smallest difference between partial nephrectomy and radical nephrectomy.
 - Individual decline in eGFR and risk of chronic kidney disease therefore can be more or less extreme than this (range of average decline seen across studies was -1.2 to 37.5 ml/min/1.73 m2 more for radical nephrectomy)
 - The final eGFR fell, on average, 9.9 ml/min/1.73 m² (range -1.5 to 22.4) more with radical nephrectomy than with thermal ablation (moderate strength of evidence), with 3.48-fold [95% CI 1.08-11.15] higher risk of chronic kidney disease stage 3 for those receiving radical nephrectomy (moderate strength of evidence).
- Partial nephrectomy was associated with similar renal outcomes when compared with thermal ablation, with all comparisons not reaching statistical significance:
 - o The final eGFR rate fell, on average, 1.0 ml/min/1.73 m² [95% CI -0.2-2.1] less with thermal ablation than with partial nephrectomy (low strength of evidence).
 - o The risk of all stages of chronic kidney disease were not significantly different between groups (1.14 [95% CI 0.77-1.67] times higher risk of CKD stage 3 for thermal ablation; 2.78 [95% CI 0.47-16.54] times higher risk of CKD stage 4 for partial nephrectomy; 1.09 [95% CI 0.23-5.20] times higher risk of ESRD for partial nephrectomy; low strength of evidence).
- Only two comparative studies of renal functional outcomes included active surveillance. These studies demonstrated higher final eGFR, a smaller change in eGFR, and a lower incidence of stage III chronic kidney disease with active surveillance than with radical nephrectomy, and similar final kidney function between active surveillance and the nephron sparing arms. The strength of evidence was insufficient to support a conclusion.
- The incidence of end stage renal disease was low in all interventions; however, most studies have limitations of few patients and events, and only short term followup.

Quality of Life

- The strength of evidence was insufficient for health-related quality of life given only four studies evaluated comparative health-related quality of life outcomes after radical nephrectomy and partial nephrectomy.
- No studies evaluated comparative health-related quality of life for thermal ablation or active surveillance.
- Results among studies were not directly comparable. However, the evaluable studies demonstrated:
 - Cancer-specific health-related quality of life (as specified by the CARES-SF questionnaire) was better in patients undergoing radical nephrectomy in comparison to partial nephrectomy.⁸⁰
 - Anxiety and depression following surgery were less with partial nephrectomy than with radical nephrectomy.
 - Physical function was better after partial nephrectomy than after radical nephrectomy in one study, ⁸² and was not significantly different in two other studies. ^{80,83}
 - o General and mental health-related quality of life after surgery was not different between radical and partial nephrectomy.
 - o Health-related quality of life was related to complications, regardless of the surgical approach.

Perioperative Outcomes and Harms

Perioperative Outcomes

- The strength of evidence was moderate for perioperative outcomes comparing radical and partial nephrectomy, and partial nephrectomy and thermal ablation. Strength of evidence was low or insufficient for other comparisons.
- Thermal ablation had the most favorable perioperative outcomes with fewer conversions to open surgery and shorter length of stay when compared to radical nephrectomy (low strength of evidence); and less estimated blood loss, less blood transfusions, no conversions to open surgery or radical nephrectomy, and shorter length of stay when compared to partial nephrectomy (moderate strength of evidence).
- Partial nephrectomy had a higher blood transfusion rate than radical nephrectomy (16.3 percent vs. 7.3 percent respectively) and thermal ablation (4.6 percent vs. 0.4 percent respectively).
 - o These data are supported by meta-analysis that demonstrates a relative risk (RR) of blood transfusion that favors radical nephrectomy (RR 0.8, 95% CI: 0.6-0.9) and thermal ablation (RR: 1.6, 95% CI: 1.1-2.5) in comparison to partial nephrectomy.
- Other perioperative outcomes were similar between radical nephrectomy and partial nephrectomy.

Harms

• In meta-analysis, minor and major complication rates were similar for patients undergoing radical nephrectomy, partial nephrectomy and for those undergoing thermal ablation.

- While overall rates of harms were similar, specific complications varied among management strategies:
 - O Patients undergoing partial nephrectomy had higher rates of urologic complications including renal abscess, subsequent intervention, ureteral injury, urine leak, and other urologic complications in comparison to patients undergoing radical nephrectomy (low strength of evidence).
 - Patients undergoing radical nephrectomy had higher rates of acute kidney injury and nonurological complications, but lower rates of bleeding or urine leak when compared to patients undergoing thermal ablation (low strength of evidence).
 - Patients undergoing partial nephrectomy had higher rates of acute kidney injury, cardiovascular, hematologic and respiratory harms, but lower rates of infectious disease and wound complications in comparison to patients undergoing thermal ablation (low strength of evidence).
- No study reported on the perioperative (i.e., procedural) outcomes or harms in patients receiving active surveillance.

Uncontrolled Studies

Active Surveillance

- Objective selection criteria for active surveillance were not indicated in any study.
- Patients were primarily more than 70 years old and had clinically localized tumors on the order of 2 cm in diameter.
- There was no standard active surveillance protocol.
 - Two prospective studies^{84,85} and one, detailed retrospective series⁸⁶⁻⁸⁸ described interval imaging every 3-6 months for 2-3 years and annually thereafter, annual metastatic evaluation including chest imaging and laboratory evaluations, and inconsistent use of renal mass biopsy.
 - o Data from retrospective studies included a variety of imaging modalities at various imaging intervals, ranging primarily from 3 to 6 months.
- Cancer-specific survival rates and metastasis-free survival rates were excellent, on the order of 98 percent to 100 percent with short followup (12-36 months). Few patients developed metastatic disease or died of renal cancer. Overall survival ranged from 69 percent to 94 percent over the same time interval.

Controlled Studies

Study Characteristics

Ninety-nine comparative studies (reported in 102 articles) addressed the effectiveness of management strategies for localized renal masses concerning for RCC. There was one RCT (reported in 3 articles), ^{89,90} and the remainder were cohort studies. There were 28 multi-institutional studies and 67 single-institution studies. Fifteen of the studies were conducted in Asia, 16 were conducted primarily in Europe, one was a collaborative effort between European and American institutions, and 62 were conducted in North America. Eleven studies received government or nonprofit funding, 3 received industry funding, ^{92,93} and the remainder did not report any funding source.

Population Characteristics

In total, 179,740 patients were included in the comparative studies on KQ 3a. The characteristics of the study populations are summarized in Table 19. The median of the reported mean age of patients was lower for radical nephrectomy and partial nephrectomy than for thermal ablation and active surveillance. Gender was reported in 87 studies, with women accounting for 45 percent or less of patients in most studies except for the studies on active surveillance. Most studies did not report details on race/ethnicity, making it difficult to determine the typical racial/ethnic distribution of the study populations. Only a minority of studies reported on the baseline body mass index (25 studies), smoking status (9 studies), and specific comorbid conditions of the study populations, such as hypertension (26 studies), diabetes mellitus (35 studies), cardiovascular disease (12 studies), or chronic kidney disease (16 studies). Fifty-nine studies reported data on estimated glomerular filtration rate or serum creatinine at baseline, showing a mean estimated glomerular filtration rate that was somewhat lower in patients undergoing thermal ablation than in patients undergoing radial or partial nephrectomy.

Tumor Characteristics

Most of the comparative studies included in our review on KQ 3a focused on patients with clinical stage T1 tumors, but some studies focused on clinical stage T2 tumors or included patients with either T1 or T2 tumors (see Table 20). In the studies of radical or partial nephrectomy that reported on postsurgical upstaging to pathologic stage T3, a small percentage of tumors were upstaged. The median of the reported mean tumor size was greater for patients receiving radical nephrectomy than for patients receiving partial nephrectomy, thermal ablation, or active surveillance. Although many studies did not report on the histologic subtypes of the tumors, the most commonly reported histologic type was clear cell carcinoma for patients undergoing nephrectomy or thermal ablation. Data on intra-operative ischemia time was reported in only 15 studies. Data on surgical margin status was reported in only 15 studies.

Intervention Characteristics

Radical Nephrectomy

Radical nephrectomy was evaluated in 80 of the comparative studies on KQ 3a. Studies included minimally invasive (laparoscopic or robotic-assisted laparoscopic) surgery, open surgery, or both. Sixteen studies were exclusively minimally invasive surgery, and 12 studies were exclusively open surgery. The remainder of the studies either contained a combination of the two techniques or did not specify the technique.

Partial Nephrectomy

Partial nephrectomy was evaluated in 97 of the comparative studies on KQ 3a. Studies included minimally invasive (laparoscopic or robotic-assisted laparoscopic) surgery, open surgery, or both. Twenty-three studies were exclusively minimally invasive surgery. Fifteen studies were exclusively laparoscopic surgery, 3 studies were exclusively robotic-assisted laparoscopic surgery, and 5 were a combination of laparoscopic approaches. Eighteen studies were exclusively open surgery. The remainder of the studies either had a combination of open and laparoscopic techniques or did not specify the technique.

Thermal Ablation

Thermal ablation was evaluated in 29 of the comparative studies on KQ 3a. Studies included cryoablation, radiofrequency ablation, or both. The approach to these techniques included laparoscopic, percutaneous (image guided), or both. Eleven studies were exclusively cryoablation and 13 were exclusively radiofrequency ablation. The remainder of the studies either had a combination of the two techniques or did not specify the technique. Nine studies were exclusively laparoscopic, and the remainder of the studies either had a combination of the two techniques or did not specify the technique.

Active Surveillance

Active surveillance was evaluated in five of the comparative studies on KQ 3a. These studies included patients who were placed on a surveillance protocol as well as those who underwent delayed primary intervention.

Table 19. Participant characteristics of included studies by interventions

Participant Characteristics	Radical Nephrectomy	Partial Nephrectomy	Thermal Ablation	Active Surveillance
# of studies	80	97	29	5
# of patients (median; range)	119,328 (171.5; 13 to 14,807)	53,928 (100; 6 to 7704)	4089 (51; 9 to 1114)	4952 (754; 68 to 3271)
median of mean age, years (# of studies)	61.9(56)	60.1 (71)	66.6 (23)	73.4 (2)
Age range, years	18 to 97	18 to 92	19 to 90	Not reported
Median of % women (# of studies)	40 (65)	37 (74)	36.0 (20)	45 (3)
Mean of % nonwhite (# of studies)	20.1 (25)	21.1 (28)	31.1 (9)	24.2% (4)
Median of mean BMI, kg/m ² (# of studies)	25 (14)	28.5 (24)	29.3 (11)	28.7(1)
Mean % of smokers (# of studies)	39.4 (8)	35.1(10)	20.2 (2)	0
Mean % of hypertensive patients (# of studies)	56.3 (26)	54.6 (29)	30.9 (4)	62 (2)
Mean % of diabetes patients (# of studies)	20.4 (26)	21.5 (29)	23.4(8)	32 (1)
Mean % of cardiovascular disease patients	37.5 (11)	27.1 (12)	28.7(5)	7(1)
Mean % of chronic kidney disease patients (# of studies)	38 (8)	53.2 (9)	52.8 (7)	28 (2)
Mean % of solitary kidney patients (# of studies)	0.24 (20)	11.04 (28)	24.9 (13)	4.5 (2)
# of studies with > 50% solitary kidney	0	2	2	0
Median of mean GFR,mL/min (# of studies)	75.1 (20)	74.95 (27)	61.1 (13)	81.45(1)
Median of mean Creatinine, mg/dL (# of studies)	1(18)	1.01 (28)	1.3 (12)	Not reported
Median of mean followup, months (# of studies)	30 (38)	30 (51)	32.7 (19)	58.2 (2)

Table 20. Tumor characteristics of included studies by intervention

Tumor Characteristics	Radical Nephrectomy	Partial Nephrectomy	Thermal Ablation	Active Surveillance
No. of studies	80	97	29	5
No. studies with clinical Stage T1 (T1a, T1b, combined T1)	T1a:28 T1b:19 T1:28	T1a:41 T1b:22 T1:30	T1a:15 T1b:4 T1:5	T1a:3 T1b:1 T1:2
No. studies with clinical Stage T2	9	10	0	0
No. studies with combined clinical Stage T1 and T2	7	7	2	1
Median % upstaging to pT3 (no. of studies)	11 (25)	5.8 (23)	0 (1)	Not reported
Median of mean tumor size, cm (no. of studies)	4.7 (47)	2.9 (73)	2.5 (20)	2.92 (2)
Range of mean tumor size, cm	2.8 to 6.1	1.7 to 8.8	2 to 5	2.04 to 3.8
Median % with clear cell carcinoma (no. of studies)	79.5 (39)	72.5 (55)	66.7 (13)	31.6 (1)
Median % with papillary renal cell carcinoma (no. of studies)	8.4 (33)	13.6 (48)	8 (12)	5.5 (1)
Median % with chromophobe renal cell carcinoma (no. of studies)	5.1 (30)	6.3 (44)	2.65 (10)	3 (1)
Median % with Fuhrman grade 1 or 2 renal cell carcinoma (no. of studies)	70.3 (26)	70.9 (34)	85 (5)	41.4 (1)

pT3 = pathologic stage T3

Outcomes

Oncologic Efficacy

Sixty studies (reported in 61 articles) provided data on at least one oncologic efficacy outcome (cancer-specific survival, metastasis-free survival, or local recurrence-free survival) (Table 21). A specific distinction is made for nonsurgical management in the SEER database. As SEER is encoded by diagnostic and surgical codes, patients can only be identified by disease state and the presence or absence of surgical management. The SEER database does not identify the reason for nonsurgical management. Therefore, in SEER, patients cannot be identified as undergoing active surveillance, but only as not having undergone surgery. A further limitation of the SEER database is a potential selection bias for patients selected to undergo partial nephrectomy as compared to radical nephrectomy, which has been repeatedly suggested in the literature as well as analyzed in a well-designed study. Therefore, when possible, results are stratified by SEER and SEER studies to account for this potential bias.

The studies were grouped into the following categories: one RCT, ⁹⁰ 48 institutional cohorts, ^{82,83,92,96-140} and 11 studies (in 12 articles) of the SEER dataset. ¹⁴¹⁻¹⁵² Three of the institutional cohorts evaluated patients with solitary kidneys. ^{126,137,138} One of these studies ¹³⁷ is an update to a previous study ¹³⁸ from the same institution with overlap of cohorts.

It is important to distinguish large, institutional comparisons from the national SEER analyses, as both sources of data have significant benefits and shortcomings. In general, institutional databases have more granular data, but are often limited to one location. The SEER Registry provides a wider, national perspective, but lacks important granular data to help account for all potential confounding variables.

In addition, a number of studies reported on stage-specific and time-specific outcomes. These stratified results are also reported within the tables in this document. Meta-analyses were conducted where appropriate, using effect measures if provided or absolute survival estimates based on empirically selected followup time windows (at 60 months or 48 months \pm 12 months).

Table 21. Number of studies comparing oncologic efficacy outcomes between management strategies

Management Strategy	Cancer-Specific Survival	Metastasis-Free Survival	Local Recurrence-Free Survival
Radical nephrectomy vs. partial nephrectomy	37 studies	13 studies	21 studies
Radical nephrectomy vs. thermal ablation	2 studies	2 studies	2 studies
Radical nephrectomy vs. active surveillance	1 study	1 study	1 study
Partial nephrectomy vs. thermal ablation	9 studies	8 studies	14 studies
Partial nephrectomy vs. active surveillance	0	0	0
Nonsurgical management vs. radical nephrectomy vs. partial nephrectomy	3 studies	0	0

Risk of Bias

We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies. For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for NonRandomized Studies of Interventions (ACROBAT-NRSI). Two studies used identical patient cohorts and were considered as one study for risk of bias assessment. Among nonrandomized cohort studies, the overall risk of bias was moderate in 34 (58 percent) studies and serious in 25 (42 percent) studies (see Figure 10). The risk of bias ratings were largely driven by potential bias in selection of participants into the study (no study received a low risk of bias rating for this component) and by potential bias due to confounding (only 6 studies received low risk of bias ratings). The majority of studies were rated low on bias due to missing data, departure from intended interventions, measurement of outcomes, selection of reported result, and measurement of interventions. One randomized trial was also assessed for bias and rated in the middle category of unclear risk of bias due to unclear assessments of allocation concealment (varied by center), blinding of personnel, blinding of assessors, and blinding of outcome assessors. It was rated as low risk of bias for random sequence generation, incomplete outcome data, selective outcome reporting, and any other source of bias.

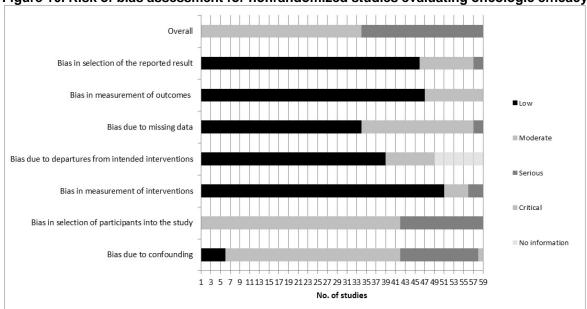


Figure 10. Risk of bias assessment for nonrandomized studies evaluating oncologic efficacy

Cancer-Specific Survival

Cancer-specific survival is defined as the proportion of patients surviving without death due to cancer in the absence of other causes of death.³⁸ Individuals who die of other causes or are alive at the end of followup are censored at that time. The product limit estimator, or Kaplan-Meier method, was the preferred method employed in many of the larger studies to calculate cancer-specific survival. Smaller studies often only reported the absolute proportion of patients who survived without death due to cancer at median followup. These methods may generally overestimate cancer-specific survival but were consistently employed and defined in the available literature. Cancer-specific survival (as defined above) is the predominant oncologic outcome reported in the literature surrounding this topic. Other measures of oncologic outcome, specifically cancer-free survival (the proportion of patients free of cancer or alive), are inconsistently reported in the literature and therefore not included in this systematic review.

The summary statistics for the cancer-specific survival rates for the reviewed studies are detailed in Table 22.

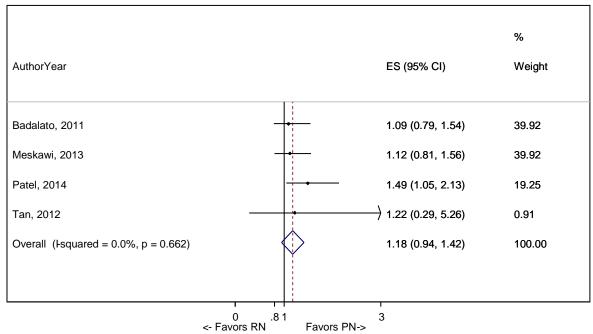
Table 22. Number of studies and patients for cancer-specific survival comparisons between

management strategies (41 studies in total)

Comparisons of Cancer- Specific Survival	Partial Nephrectomy		Ablativ	e Therapies	Active Surveillance	
	Studies	Patients	Studies	(Patients)	Studies	(Patients)
Radical Nephrectomy	37	77,671	2	10,803	1	251
Partial Nephrectomy	Х	Х	9	14,625	0	0
Ablative Therapies	Х	Х	Х	X	0	0

Radical Nephrectomy Versus Partial Nephrectomy

Thirty-seven studies assessed cancer-specific survival for radical nephrectomy versus partial nephrectomy. ^{83,90,92,97-117,139-150,152} One RCT compared cancer-specific survival between partial nephrectomy and radical nephrectomy ⁹⁰ for tumors that were smaller than or equal to 5 cm and found no statistically significant differences, with a hazard ratio of 2.06 (95% CI, 0.62 to 6.18), after a relatively long median followup of 111.6 months.

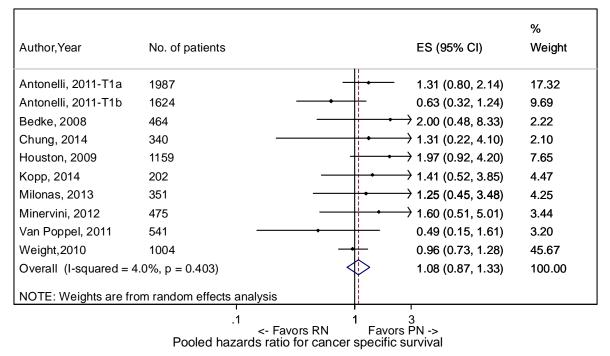

Institutional cohorts generally showed comparable cancer-specific survival when comparing radical nephrectomy with partial nephrectomy. One study, primarily assessing the impact of intra-operative ischemia in partial nephrectomy, reported on a statistically significant cancer-specific survival advantage for partial nephrectomy over radical nephrectomy of 98.7–99.1 percent (cancer-specific survival reported separately for limited, unknown, and extended ischemia) versus 93.8 percent, respectively, at 5 years. ¹⁰⁵

Eleven SEER studies comprised the majority of patients for comparing partial nephrectomy and radical nephrectomy. ^{141-150,152} Results were mixed among four studies of T1a tumors, with two studies showing a statistically significant cancer-specific survival benefit for partial nephrectomy and two studies demonstrating no difference. ^{145,147,150,152} Three studies of T1b tumors showed no cancer-specific survival difference between partial nephrectomy and radical nephrectomy. ^{141,143,146}

The cancer-specific survival estimates from all studies were generally greater than 90-95 percent (followup ranged from 22 to 120 months), and showed a similar decrease in cancer-specific survival with increasing tumor size for both radical nephrectomy and partial nephrectomy (see Table 23). For instance, cancer-specific survival for patients undergoing radical and partial nephrectomy with T1a tumors was 97 and 98.8 percent, and 91 and 90 percent for T1b tumors respectively (Table 23). Only one study specifically compared radical nephrectomy with partial nephrectomy for T2 tumors, and this study showed no statistically significant difference in cancer-specific survival (82.5 percent versus 86.7 percent, respectively, at 5 years; p = 0.41). Lack of granularity among studies prevented evaluation of sub-staging in comparisons of other modalities.

Meta-analyses were conducted for studies providing effect measures. Results were similar among both SEER studies (See Figure 11) and non-SEER studies (See Figure 12) with no statistically significant difference in cancer-specific survival for radical versus partial nephrectomy. The strength of evidence was moderate.

Figure 11. Meta-analysis of cancer-specific survival for radical nephrectomy versus partial nephrectomy among SEER studies providing effect measures



Effect size and 95% confidence interval for cancer specific survival

CI = confidence interval; ES = effect size; HR = hazard ratio; SEER = Surveillance, Epidemiology, and End Results Note: Weighting is based on the inverse of the variance of each study estimate.

The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Figure 12. Meta-analysis of cancer-specific survival for radical nephrectomy versus partial nephrectomy among non-SEER studies providing effect measures

CI = confidence interval; ES = effect size; HR = hazard ratio; SEER = Surveillance, Epidemiology, and End Results Note: Weighting is based on the inverse of the variance of each study estimate.

The width of the horizontal lines represents the 95 percent confidence intervals for each study.

The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Radical Nephrectomy Versus Thermal Ablation

Two studies assessed cancer-specific survival for radical nephrectomy versus thermal ablation. 134,142 A SEER study comparing radical nephrectomy with thermal ablation showed similar cancer-specific survival rates (p = 0.7). 142 A second small institutional study, which had shown inferior overall survival for thermal ablation compared with radical nephrectomy, demonstrated similar cancer-specific survival rates (94 percent versus 100 percent, respectively) at 5 years. 134 The strength of evidence was moderate.

Radical Nephrectomy Versus Active Surveillance

One study assessed cancer-specific survival for radical nephrectomy versus active surveillance. This single institutional study included older patients (age \geq 75 years) and showed similar cancer-specific survival rates (p = 0.33) even though the radical nephrectomy tumors had greater oncologic potential. The strength of evidence was low.

Partial Nephrectomy Versus Thermal Ablation

Nine studies assessed cancer-specific survival for partial nephrectomy versus thermal ablation. $^{122-125,136-138,142,151}$ Two of these studies were based on the SEER database. 142,151 One, with shorter followup, demonstrated comparable 2-year cancer-specific survival for partial nephrectomy versus thermal ablation (99.3 percent vs. 98 percent; adjusted p = 0.2). 142 However, the second study demonstrated 5-year cancer-specific survival for partial nephrectomy versus thermal ablation of 98.2 percent and 94.4 percent, respectively, which was statistically

significant after adjustment, with a hazard ratio equal to 1.9 (95% CI, 1.1 to 3.3) for thermal ablation versus partial nephrectomy. ¹⁵¹

An important note is that histologic diagnosis with biopsy for thermal ablation patients is not uniformly practiced. Thus, some enrichment with benign lesions is expected in the thermal ablation cohorts from SEER, which would be a bias favoring thermal ablation for oncologic outcomes in general.

Five institutional studies demonstrated similar cancer-specific survival for partial nephrectomy versus thermal ablation. $^{122-125,136}$ In contrast to the SEER studies, institutional cohorts reported histology based on biopsy at the time of thermal ablation. Notably, among solitary kidney studies, an institutional report noted no difference in cancer-specific survival for partial nephrectomy versus thermal ablation at 2 years (p = 0.25) 138 but reported worse cancer-specific survival for thermal ablation in an update to the study for cancer-specific survival at 5 years (p<0.05) 137 .

A meta-analysis of absolute cancer-specific survival for partial nephrectomy versus thermal ablation was conducted for studies reporting 5-year survival with significant benefit noted for partial nephrectomy among the 4 studies ^{122,125,136,151}(Appendix F). The effect was driven by Whitson et al. ¹⁵¹, which is a study rated to be at serious risk of bias due to patient selection. The strength of evidence was low.

Partial Nephrectomy Versus Active Surveillance

No study reported cancer-specific survival for radical nephrectomy versus active surveillance.

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

Three studies assessed cancer-specific survival for nonsurgical management versus radical nephrectomy versus partial nephrectomy. 147-149

Radical nephrectomy and partial nephrectomy both demonstrated statistically significant improved cancer-specific survival compared with nonsurgical management in two SEER-Medicare studies of patients with T1a tumors. ^{147,149} A separate study of the same population found comparable cancer-specific survival between the management strategies among patients at high cardiovascular risk. ¹⁴⁸

Table 23a. Cancer-specific survival for studies comparing radical nephrectomy versus partial nephrectomy

				Radical Nep	hrectomy			Partial Nephrectomy							
	No. Studies	No. Patients	Median F/U, months	Range of F/U, months	Median Survival %	Range of Survival	IQR of Survival	No. Patients	Median F/U	Range	Median Survival %	Range	IQR		
CSS	37	57171	60	22-120	95.5	66.8- 100	91-97.5	20500	60	22-120	97.8	80.6- 100	94.4- 99.3		
SEER	11	48908	60	24-120	95.7	89.6- 98.3	93.5- 97.5	13814	60	24-120	98.1	91.4- 100	96.7- 98.6		
Non-SEER	26	8263	60	22-120	95	66.8- 100	90.7- 97.4	6686	60	22-120	97.7	80.6- 100	94.4- 99.8		
T1a	11 PN, 10 RN	16710	60	25-120	97	90.4- 100	95.7- 98.3	7558	60	31-120	98.8	94.9- 100	98.9- 100		
T1b	8	15176	60	41-120	91	66.8- 95.3	69.6- 94.3	2496	58.8	31.3- 120	90	80.6-99	80.8- 93.8		
T2	1	122	60	NA	82.5	NA	NA	80	60	NA	86.7	NA	NA		
5-year Survival	11	15903	60	NA	94.8	82.5- 98.4	93.5- 97.5	6965	60	NA	97.2	86.7- 99.6	93.8- 98.9		
10-year Survival	6	9549	120	NA	89.6	69.6- 98.3	87-95	3481	120	NA	93.9	80.6- 100	90-94.9		

Table 23b. Cancer-specific survival for studies comparing partial nephrectomy versus thermal ablation

			1	Partial Nep	hrectomy	1			T	Thermal A	Ablation		1
	No. Studies	No. Patients	Median F/U	Range	Median Survival	Range	IQR	No. Patients	Median F/U	Range	Median Survival	Range	IQR
CSS	9	12464	60	24-60	100	96.6- 100	99.3- 100	2161	46.8	24-60	95.4	83.9- 100	92-98
SEER	2	11962	42	24-60	98.8	98.2- 99.3	98.2- 99.3	1654	42	24-60	96.2	94.4-98	94.4-98
Non-SEER	7	502	60	24-60	100	96.6- 100	100-100	507	46.8	24-60	94.5	83.9- 100	90.3- 98.6
< 5 year Survival	3	4557	28.8	24-47	100	99.3- 100	99.7- 100	724	24	24-33.6	98	83.9- 100	88.5- 100
5-year Survival	5	7907	60	NA	100	96.6- 100	98.2- 100	1437	60	NA	94.4	92-97.2	92.6- 96.4

CSS = cancer-specific survival; F/U = followup; IQR = interquartile range; NA = not available; PN = partial nephrectomy; RN = radical nephrectomy

Metastasis-Free Survival Outcome

A few of the comparative studies reported on metastasis-free survival, as shown in Table 24.

Table 24. Number of studies and patients for metastasis-free survival comparisons between management strategies (20 studies in total)

<u> </u>							
Comparisons of Metastasis-Free	Partia	Nephrectomy	Ablativ	e Therapies	Active Surveillance		
Survival	Studies	(Patients)	Studies	(Patients)	Studies	(Patients)	
Radical nephrectomy	13	2,513	2	217	1	251	
Partial nephrectomy	Х	Х	8	2,462	0	0	
Ablative therapies	Х	Х	Х	Х	0	0	

Radical Nephrectomy Versus Partial Nephrectomy

Thirteen studies assessed metastasis-free survival for radical nephrectomy versus partial nephrectomy. 82,83,90,96,101,102,104,106,107,114,115,118,119

The single RCT comparing partial nephrectomy and radical nephrectomy for tumors smaller than or equal to 5 cm⁹⁰ showed low rates of metastasis for both interventions with metastasis-free survival of 97.4 percent versus 96.3 percent, respectively, at a relatively long median followup of 111.6 months. The results were similar across institutional cohorts. Few studies provided any direct measures of comparison. One study, of Korean patients who were 70 years of age or older, showed similar rates of metastasis-free survival for radical nephrectomy versus partial nephrectomy (93.9 percent versus 98.1 percent; p = 0.40) at a mean followup of 59.7 months.¹⁰⁴ We conducted a meta-analysis for studies reporting absolute metastasis-free survival with 48 months \pm 12 months of followup, which showed no difference in metastasis-free survival for radical versus partial nephrectomy (Appendix F). The strength of evidence was low.

Radical Nephrectomy Versus Thermal Ablation

Two studies, both institutional analyses, assessed metastasis-free survival for radical nephrectomy versus thermal ablation. 96,134 Two patients in the radical nephrectomy group of the larger study (71 patients) developed metastasis shortly after surgery, possibly indicating preexisting metastatic disease; none of the patients undergoing radiofrequency ablation (86 patients) developed metastasis after the procedure (metastasis-free survival 97.2 percent versus 100 percent, respectively). 96 The rate of metastasis-free survival was also similar in the second, smaller study, with 92.3 percent versus 90.5 percent for radical nephrectomy (39 patients) compared with radiofrequency ablation (21 patients), respectively. The strength of evidence was low.

Radical Nephrectomy Versus Active Surveillance

One study assessed metastasis-free survival for radical nephrectomy versus active surveillance. The single institutional study of older patients (age \geq 75 years) showed similar metastasis-free survival for radical nephrectomy versus active surveillance (94.5 percent versus 94.3 percent) at median followup of 52.8 and 44.4 months, respectively. The strength of evidence was low.

Partial Nephrectomy Versus Thermal Ablation

Eight studies assessed metastasis-free survival for partial nephrectomy versus thermal ablation. $^{96,123,126-129,136,137}$ The rates of metastasis-free survival in studies comparing partial nephrectomy and thermal ablation were generally high (see Table 6). Three studies observed no development of distant metastatic disease. 96,123,128 Two studies demonstrated similar metastasis-free survival; one compared partial nephrectomy with a mixed thermal ablation group for patients with solitary kidneys (p = 0.33), 126 and the other compared partial nephrectomy with a radiofrequency ablation group (p = 0.35). 136

One study showed similar metastasis-free survival for partial nephrectomy compared with percutaneous cryoablation for both T1a (p=0.31) and T1b (p=0.45) disease; however, the same study found radiofrequency ablation inferior in terms of metastasis-free survival to both partial nephrectomy and cryoablation for T1a tumors. One study suggested partial nephrectomy led to better metastasis-free survival compared with laparoscopic cryoablation (p=0.002) but mean followup dramatically differed between the partial nephrectomy (4.8 months) and thermal ablation (44.5 months) groups. A solitary kidney study reported 4 (13.3 percent) cases of metastasis in their cryoablation cohort compared to 1 (2.1 percent) in the partial nephrectomy cohort, which had borderline statistical significance (p=0.05).

We conducted a meta-analysis for studies reporting absolute metastasis-free survival with 48 months \pm 12 months of followup, which showed no difference in metastasis-free survival for partial nephrectomy versus thermal ablation (Appendix F). The strength of evidence was moderate.

Partial Nephrectomy Versus Active Surveillance

No study reported metastasis-free survival for radical nephrectomy versus active surveillance.

Local Recurrence-Free Survival Outcome

Local recurrence-free survival is defined as any persistent or recurrent disease present in the treated region of the kidney or associated renal fossa after a single, curative-intent initial treatment. The recurrence can include persistent enhancement of any treated mass, a visually enlarging neoplasm, new nodularity, failure of regression in size of the treated lesion(s), or new satellite or port site lesions. Local recurrence or persistence after thermal ablation is determined after a single, curative-intent initial treatment (i.e., primary efficacy), but some studies also report a measure of secondary efficacy, which is determined after multiple ablations. These results are addressed below (Table 25).

Table 25. Number of studies and patients for local recurrence-free survival comparisons between management strategies (36 studies in total)

Comparisons of Local Recurrence- Free Survival	Partial	Nephrectomy	Ablative	Therapies	Active Surveillance		
	Studies	(Patients)	Studies	(Patients)	Studies	(Patients)	
Radical nephrectomy	21	10,090	2	217	1	251	
Partial nephrectomy	Х	Х	14	3,916	0	0	
Ablative therapies	Х	X	Х	X	0	0	

Radical Nephrectomy Versus Partial Nephrectomy

Twenty-one studies assessed local recurrence-free survival for radical nephrectomy versus partial nephrectomy. $^{82,90,96-98,101,102,106,107,110-112,114-116,118-121,139,140}$ The RCT comparing partial nephrectomy and radical nephrectomy for tumors smaller than or equal to 5 cm⁹⁰ did not provide a statistical test but reported a somewhat higher rate of local recurrence for partial nephrectomy (6 patients) compared with radical nephrectomy (1 patient) at a median followup of 111.6 months. No institutional cohort study found a statistically significant difference in local recurrence rates between radical nephrectomy and partial nephrectomy with comparable estimates and followup time. We conducted a meta-analysis for studies reporting absolute local recurrence-free survival with 48 months \pm 12 months of followup, which showed no difference in local recurrence-free survival for radical versus partial nephrectomy (Appendix F). The strength of evidence was moderate (Table 27).

Radical Nephrectomy Versus Thermal Ablation

Two instutional studies assessed local recurrence-free survival for radical nephrectomy versus thermal ablation. 96,134 Using the definition of local recurrence as occurring after a single, curative-intent initial treatment, both studies reported worse local recurrence-free survival for thermal ablation as compared with radical nephrectomy. The larger study reported local recurrence-free survival of 100 percent versus 93.0 percent for radical nephrectomy versus thermal ablation, respectively. 96 Three of the six local recurrences among the thermal ablation group went on to be re-ablated. The smaller study reported a local recurrence-free survival of 97.4 percent for radical nephrectomy versus 81.0 percent for thermal ablation. 134 All four tumors with residual enhancement in the thermal ablation group (21 patients) were re-ablated after 1 week, for a secondary efficacy of 100 percent. The strength of evidence was low (Table 27).

Radical Nephrectomy Versus Active Surveillance

One study assessed local recurrence-free survival for radical nephrectomy versus active surveillance. The single institutional study of older patients (age \geq 75 years) showed no local progression of disease in the cohort.

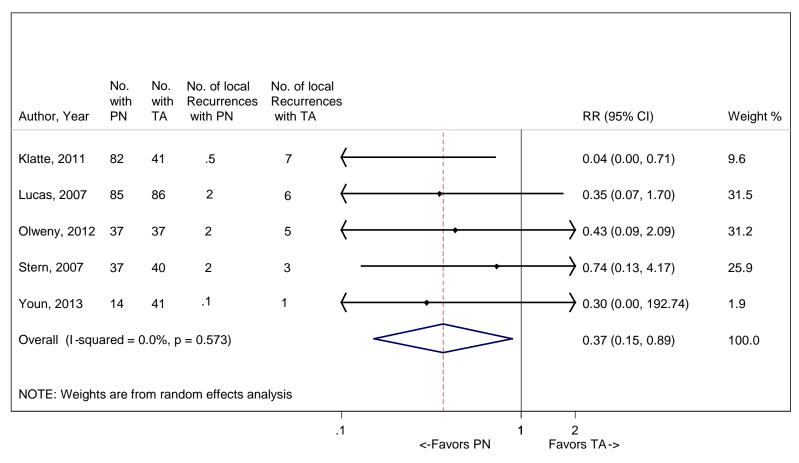
Partial Nephrectomy Versus Thermal Ablation

Fourteen studies assessed local recurrence-free survival for partial nephrectomy versus thermal ablation. $^{96,123,124,126-133,136-138}$ Local recurrence-free survival rates were generally higher in studies for partial nephrectomy as compared with thermal ablation (median 98.9 percent (interquartile ratio 94.6 percent to 100 percent) versus 93.0 percent (IQR 89.9 percent to 96.0 percent) (Table 6). Although followup differed between groups (4.8 versus 44.5 months, respectively), a large series from the Cleveland Clinic reported no local recurrences in the partial nephrectomy group (210 patients) and 25 local recurrences (out of 226 patients) in the laparoscopic cryoablation cohort (local recurrence-free survival 100 percent versus 88.9 percent; p < 0.01). 129 Of these recurrences, nine were monitored with surveillance while eight underwent repeat cryoablation, four underwent radiofrequency ablation, and four underwent radical nephrectomy. A different study from the same institution on solitary kidneys also showed worse 5-year local recurrence-free survival for cryoablation compared to partial nephrectomy (p = 0.02). 138

Similarly, a cohort from Austria showed statistically significant improved 3-year local recurrence-free survival after partial nephrectomy compared with laparoscopic cryoablation (100

percent versus 83 percent; p = 0.015) with no technical failures in the cryoablation group and all four local recurrences occurring after prior imaging had shown no evidence of persistent enhancement. One study showed similar 3-year local recurrence-free survival for partial nephrectomy and radiofrequency ablation (95.8 percent versus 93.4 percent, respectively; p = 0.67). ¹²⁴

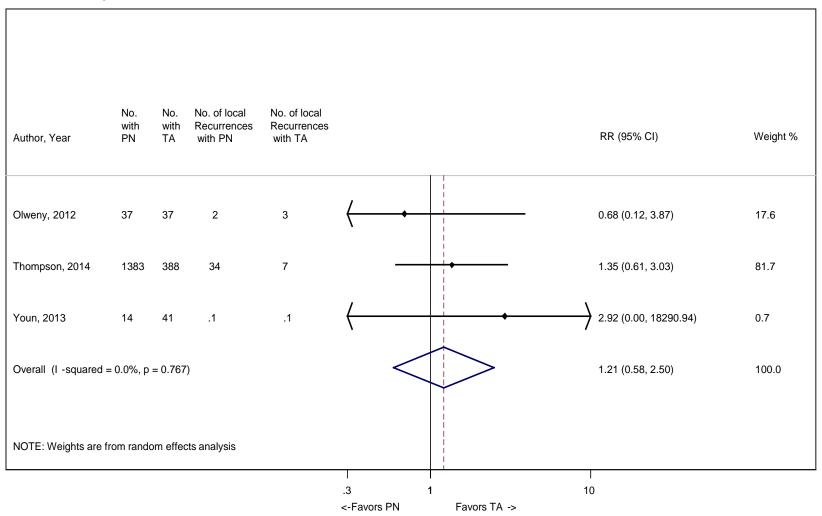
Although four studies 126,128,132,136 reported both local recurrence-free survival as well as secondary efficacy, three 127,130,131 only noted secondary efficacy estimates for thermal ablation. Retreatment can lead to secondary efficacy rates for thermal ablation that are more comparable with local recurrence-free survival for partial nephrectomy. Two retreatments with cryoablation led to a secondary efficacy rate of 100 percent for thermal ablation compared with local recurrence-free survival of 100 percent for partial nephrectomy in one study. 132 A large institutional cohort from the Mayo Clinic (1771 patients) showed comparable estimates for partial nephrectomy compared with radiofrequency ablation and cryoablation for T1a tumors at 3 years (p = 0.49) as well as for partial nephrectomy compared with cryoablation for T1b tumors at 3 years (p = 0.81). 127


The study with the longest reported followup reported similar secondary efficacy at 5 years (p = 0.96). Another cohort showed secondary efficacy for thermal ablation that was still slightly inferior to local recurrence-free survival after partial nephrectomy for patients with solitary kidneys (92.9 percent versus 97 percent; p = 0.04) (Tables 26a and 26b). 126

We conducted a meta-analysis for studies reporting absolute local recurrence-free survival with 48 months \pm 12 months of followup, which showed a borderline significant result in improved local recurrence-free survival for partial nephrectomy as compared to thermal ablation (see Figure 13). A meta-analysis looking at secondary efficacy of thermal ablation showed more similar results when compared to local recurrence-free survival for partial nephrectomy (Figure 14). The strength of evidence was moderate (Table 27).

Partial Nephrectomy Versus Active Surveillance

No study reported local recurrence-free survival for partial nephrectomy versus active surveillance.


Figure 13. Meta-analysis of local recurrence rates for partial nephrectomy versus thermal ablation among studies with followup of 48 months \pm 12 months.

Risk Ratio and 95% Confidence Intervals of Local Recurrence

CI = confidence interval; N = number; PN = partial nephrectomy; RN = radical nephrectomy; RR = risk ratio for local recurrence; TA = thermal ablation Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Figure 14. Meta-analysis of local recurrence-free survival for partial nephrectomy versus secondary efficacy of thermal ablation among studies with followup of 48 months \pm 12 months

Risk Ratio and 95% Confidence Intervals of Local Recurrence

N = number; RN = radical nephrectomy; PN = partial nephrectomy, TA = thermal ablation; RR = risk ratio

Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Table 26a. Metastasis-free survival and local recurrence-free survival for studies comparing radical nephrectomy versus partial nephrectomy

				Radical N	ephrectomy	/		Partial Nephrectomy						
	No. Studies	No. Patients	Median F/U, Months	Range of F/U, Months	Median Survival, %	Range of Survival, %	IQR of Survival, %	No. Patients	Median F/U	Range	Median Survival, %	Range of Survival, %	IQR of Survival, %	
Metastasis-free survival	13	1296	50.4	18.6- 111.6	97.2	86-100	93.9-100	1217	44	15- 111.6	98	93-100	97.1-100	
Local recurrence free survival	21	5870	51.3	12- 111.6	99.6	93-100	98.5-100	4220	46.1	12- 111.6	98.8	92.7-100	96.4-100	

Table 26b. Metastasis-free survival and local recurrence-free survival for studies comparing partial nephrectomy versus thermal ablation

			ı	Partial No	ephrectomy	1	ı	Thermal Ablation						
	No. Studies	No. Patients	Median F/U	Range	Median Survival	Range	IQR	No. Patients	Median F/U	Range	Median Survival	Range	IQR	
Metastasis-free survival	8	1686	39.3	4.8-60	99	91.8-100	97.9-100	776	42.3	31-60	97.6	86.7-100	93- 100	
Local recurrence free survival ^a	12 PN, 11 TA	2374	36	4.8-60	99.4	94.6-100	97-100	795	36	14-60	89.3	55.2- 97.6	84.7- 94.7	
Secondary Efficacy	7 TA	-	-	-	-	-	-	747	31.3	24.6- 60	97.4	91.7-100	97-98	

MFS = metastasis-free survival; LRFS = local recurrence-free survival; PN = partial nephrectomy; RN = radical nephrectomy; TA = thermal ablation

^aAfter single, curative-intent initial treatment.

Table 27. Strength of evidence domains for oncologic outcomes

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Partial Nephrectomy	Cancer-specific survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Versus Active Surveillance	Metastasis-free survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
	Local recurrence- free survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Partial Nephrectomy Versus Thermal Ablation	Cancer-specific survival	9 (14,625)	High	Direct	Inconsistent	Precise	Undetected	Cancer-specific survival was comparable between partial nephrectomy and thermal ablation. One study, at high risk of bias, suggested partial nephrectomy may be associated with better long-term cancer-specific survival.
	Metastasis-free survival	8 (2,462)	Medium	Direct	Consistent	Precise	Undetected	Moderate Metastasis-free survival was comparable between partial nephrectomy and thermal ablation.
	Local recurrence- free survival	14 (3,916)	Medium	Direct	Consistent	Precise	Undetected	Moderate Partial nephrectomy was associated with better local recurrence-free survival compared to thermal ablation across studies. Allowing for multiple retreatments led to a more comparable secondary efficacy rate for thermal ablation.

Table 27. Strength of evidence domains for oncologic outcomes (continued)

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Radical Nephrectomy Versus Active Surveillance	Cancer-specific survival	1 (251)	Medium	Direct	Unknown	Imprecise	Undetected	Low A single study demonstrated a similar cancer-specific survival despite greater oncologic potential of tumors undergoing radical nephrectomy.
	Metastasis-free survival	1 (251)	Medium	Direct	Unknown	Imprecise	Undetected	Low A single study showed similar metastasis-free survival for radical nephrectomy vs. active surveillance.
	Local recurrence- free survival	1 (251)	Medium	Direct	Unknown	Imprecise	Undetected	Insufficient No local recurrences were reported in this single study.
Radical Nephrectomy Versus Partial Nephrectomy	Cancer-specific survival	37 (77,671) RCT: 1 Institutional: 25 SEER: 11	Medium	Direct	Consistent	Precise	Undetected	Moderate Cancer-specific survival was comparable for radical nephrectomy and partial nephrectomy across the SEER and institutional studies. The one RCT reported few cancer deaths.
	Metastasis-free survival	13 (2,513)	Medium	Direct	Consistent	Imprecise	Undetected	Low Metastasis-free survival for radical nephrectomy compared to partial nephrectomy was similar across all 13 studies.
	Local recurrence- free survival	21 (10,090)	Medium	Direct	Consistent	Precise	Undetected	Moderate Local-recurrence free survival for radical nephrectomy compared to partial nephrectomy was similar across studies. No study reported a statistically significant difference.

Table 27. Strength of evidence domains for oncologic outcomes (continued)

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Radical Nephrectomy Versus Thermal Ablation	Cancer-specific survival	2 (10,803)	Medium	Direct	Consistent	Precise	Undetected	Moderate Both studies reported comparable cancer-specific survival for radical nephrectomy compared to thermal ablation.
	Metastasis-free survival	2 (217)	Medium	Direct	Consistent	Imprecise	Undetected	Low Both studies reported comparable metastasis-free survival for radical nephrectomy compared to thermal ablation but included few patients and events.
	Local recurrence- free survival	2 (217)	Medium	Direct	Consistent	Imprecise	Undetected	Low Both studies reported better local recurrence-free survival for RN compared to thermal ablation but included small sample sizes.
Thermal Ablation	Cancer-specific survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Versus Active Surveillance	Metastasis-free survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
GEED G 'II	Local recurrence- free survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies

SEER = Surveillance, Epidemiology, and End Results

Overall Survival

A total of 48 comparative studies (reported in 49 articles) addressed overall survival, of which one was an RCT⁹⁰ and 9 were studies (reported in 10 articles) of the SEER dataset (see Table 28). 141,142,144,145,147,148,150,153-155

Table 28. Number of studies and patients for overall survival comparisons between management strategies (4,242 studies in total)

Comparisons of Overall	Partial	Nephrectomy	Ablativ	e Therapies	Active Surveillance		
Survival	Studies	(Patients)	Studies	(Patients)	Studies	(Patients)	
Radical Nephrectomy	36	72,308	3	10,908	1	251	
Partial Nephrectomy	Х	Х	13	8,451	0	0	
Ablative Therapies	Х	Х	Х	Х	0	0	

Risk of Bias

We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies. ³⁵ For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI). ³⁶ Two studies used identical patient cohorts and are considered as one study for risk of bias assessment. ^{147,148} Among nonrandomized cohort studies, overall risk of bias was moderate in 30 studies and serious in 17 studies (Figure 15). The risk of bias ratings were largely driven by potential bias in selection of participants into the study (no study received a low risk of bias rating for this component) and by potential bias due to confounding (5 studies received low risk of bias ratings). The majority of studies were rated low on bias due to missing data, departure from intended interventions, selection of reported result, measurement of outcomes, and measurement of interventions.

One randomized trial was also assessed for bias and rated in the middle category of unclear risk of bias due to unclear assessments of allocation concealment (varied by center), blinding of personnel, blinding of assessors, and blinding of outcome assessors. It was rated as low risk of bias for random sequence generation, incomplete outcome data, selective outcome reporting, and any other source of bias.

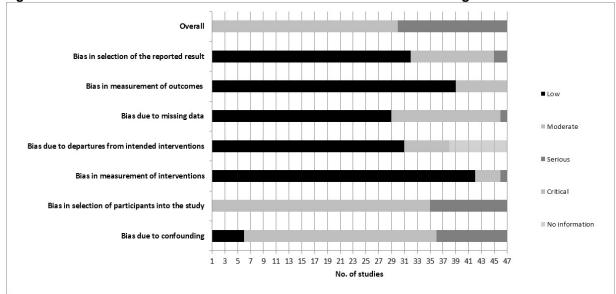


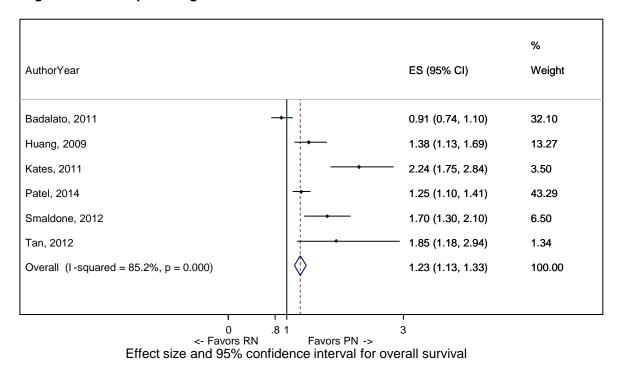
Figure 15. Risk of bias assessment for nonrandomized studies evaluating overall survival

Radical Nephrectomy Versus Partial Nephrectomy

Thirty-six studies evaluated overall survival for radical nephrectomy versus partial nephrectomy. $^{83,90,92,94,100-110,113,114,117,118,139-142,144,145,147,148,150,153-160}$

One RCT compared overall survival for tumors smaller than or equal to 5 cm between partial nephrectomy and radical nephrectomy, and demonstrated a statistically significant difference in an "intent to treat" analysis, with a hazards ratio equal to 1.50 (95% CI, 1.03 to 2.16), in favor of radical nephrectomy. ⁹⁰ A separate analysis of RCC patients showed no difference in overall survival between the partial nephrectomy and radical nephrectomy groups in this study.

Institutional cohorts generally showed minimal difference in overall survival between radical nephrectomy and partial nephrectomy, with the majority showing no statistically significant differences. 92,100,101,103,104,106,109,110,113,114,140,156-158 Three retrospective studies commented on a statistically significant overall survival advantage for partial nephrectomy over radical nephrectomy, but acknowledged differences in baseline characteristics (i.e., selection bias) that may have contributed. 105,107,108,159 One study found an overall survival advantage for partial nephrectomy compared to radical nephrectomy among younger Korean patients (<65 years of age; p=0.015) but not older patients (p=0.698). 139

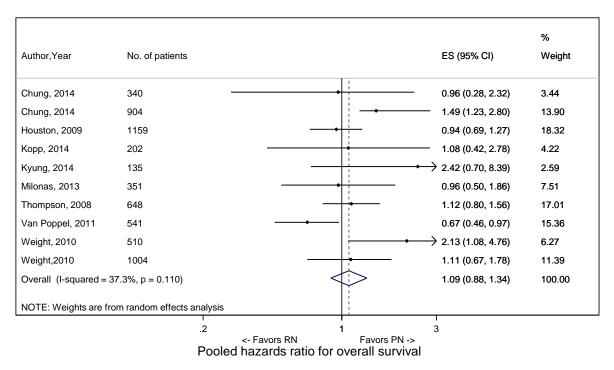

Ten studies derived groups from SEER databases and comprised the majority of patients. ^{141,142,144,145,147,148,150,153-155} In these SEER studies, partial nephrectomy was found to be associated with a statistically significant overall survival benefit compared with radical nephrectomy for T1a tumors. ^{144,145,147,148,150,153-155} In a SEER analysis of T1b tumors, no significant difference in overall survival was found. ¹⁴¹

Fifteen studies reported survival probabilities out to as far as 5 years, 92,103-107,139-141,145,147,156, 158-160 and seven reported survival probabilities out to 10 years 90,101,109,110,114,144,155 for radical nephrectomy versus partial nephrectomy, with median estimates of 86.4 percent and 93.9 percent at 5 years, and 71.5 percent and 73.8 percent at 10 years, respectively.

Meta-analyses were conducted for studies providing effect measures. Results were different for SEER studies (Figure 16) and non-SEER studies (Figure 17), with the former showing a

significant overall survival benefit for patients receiving partial nephrectomy while the latter showed no statistically significant difference. The strength of evidence was low.

Figure 16. Meta-analysis of overall survival for radical nephrectomy versus partial nephrectomy among SEER studies providing effect measures



CI=Confidence Interval; ES=Effect Size; HR=Hazard Ratio; SEER=Surveillance, Epidemiology, and End Results Weighting is based on the inverse of the variance of each study estimate.

The diamond at the bottom of the graph indicates the 95 percent confidence interval.

The width of the horizontal lines represents the 95 percent confidence intervals for each study.

Figure 17. Meta-analysis of overall survival for radical nephrectomy versus partial nephrectomy among non-SEER studies providing effect measures

CI = confidence interval; ES = effect size; HR = hazard ratio; SEER = Surveillance, Epidemiology, and End Results Note: Weighting is based on the inverse of the variance of each study estimate.

The width of the horizontal lines represents the 95 percent confidence intervals for each study.

The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Radical Nephrectomy Versus Thermal Ablation

Three studies evaluated overall survival for radical nephrectomy versus thermal ablation. 134,142,160 One was a SEER study consisting of a combined radiofrequency ablation and cryoablation cohort compared with radical nephrectomy (overall survival 92.5 percent versus 94.6 percent, respectively, at 2 years; p = 0.73). The institutional studies were smaller cohorts (60 patients and 105 patients) comparing radiofrequency ablation with radical nephrectomy. The majority of radiofrequency ablation patients (86 percent) in one study were not surgical candidates, and patients in the other study were generally older and had multiple comorbidities, which led to lower overall survival compared with radical nephrectomy. The evidence was insufficient.

Radical Nephrectomy Versus Active Surveillance

One study evaluated overall survival for radical nephrectomy versus active surveillance. The single institutional study included older patients (age \geq 75 years) and compared overall survival for radical nephrectomy with active surveillance, showing similar overall survival with an adjusted hazard ratio equal to 0.75 (95% CI, 0.45 to 1.26). The multivariable analysis adjusted for the greater comorbidity burden and age among active surveillance patients. The strength of evidence was low.

Partial Nephrectomy Versus Thermal Ablation

Thirteen studies evaluated overall survival for partial nephrectomy versus thermal ablation. $^{122,125-127,130-133,136-138,142,160}$

All studies demonstrated lower overall survival probabilities for thermal ablation compared with partial nephrectomy (Table 29), with the acknowledgment that thermal ablation was often chosen based on presence of comorbidity and surgical risk. However, the difference was not statistically significant in a subset of studies providing comparative measures. 122,126,131,136,142

The largest institutional comparison showed no statistical difference in overall survival when comparing partial nephrectomy with radiofrequency ablation for T1a tumors after multivariable adjustment. A statistically significant overall survival advantage for partial nephrectomy over cryoablation persisted for both T1a and T1b tumors after adjustment.

A meta-analysis of absolute overall survival for partial nephrectomy versus thermal ablation was conducted for studies reporting 5-year survival with significant benefit noted for partial nephrectomy in the 4 studies 122,125,136,160 (Appendix F). The strength of evidence was low.

Partial Nephrectomy Versus Active Surveillance

No study evaluated overall survival for partial nephrectomy versus active surveillance.

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

Two studies evaluated overall survival for nonsurgical management versus radical nephrectomy versus partial nephrectomy. Addical nephrectomy and partial nephrectomy both demonstrated statistically significant improved overall survival compared with nonsurgical management in a SEER-Medicare cohort of patients with T1a tumors.

Table 30 presents the strength of evidence domains for overall survival.

Table 29. Overall survival for studies comparing radical nephrectomy versus partial nephrectomy and partial nephrectomy versus thermal ablation

				R	adical Ne	phrectomy			Partial Nephrectomy					
Compa	rison	No. Studies	No. Patients	Median F/U	Range	Median Survival	Range	IQR	No. Patients	Median F/U	Range	Median Survival	Range	IQR
Radical Nephrectomy	Overall Survival	36	50110	60	12-120	86.3	53.7-100	76-91.9	22198	60	12-120	92.3	55.2-100	82.7- 96.7
Versus Partial Nephrectomy	SEER	10	44452	60	24-120	80.6	58.5- 94.6	68.1- 88.7	16120	60	24-120	82.8	71.3- 97.6	74.4- 94.9
	Non-SEER	26	5658	60	12-120	88.7	53.7-100	78-94	6078	60	12-120	93.8	55.2-100	85-97.7
	5-Year Survival	15	19863	60	NA	86.4	65-94	79-93.0	71445	60	NA	93.9	74-100	85-99.7
	10-Year Survival	7	7184	120	NA	71.5	53.7- 89.7	67.2- 81.1	3501	120	NA	73.8	55.2-94	67.7- 87.6
				F	Partial Ne	phrectomy					Thermal	Ablation		
Partial Nephrectomy	Overall Survival	13	6620	30	5.8-60	97.8	91.2-100	93-100	1831	33.7	14-60	88	74-98.7	83.0- 95.3
Versus	SEER	1	4402	24	NA	97.6	NA	NA	578	24	NA	92.5	NA	NA
Thermal Ablation	Non-SEER	12	2218	36	5.8-60	98	91.2-100	93-100	1253	36	14-60	88	74-98.7	82-95.9
	<3-Years F/U	7	4880	19.2	5.8-24	99.5	97.6-100	98-100	999	24.3	14-31.3	93.6	83.9- 98.7	86.4- 96.3
	≥3-Years F/U	6	1740	60	36-60	95	91.7-100	93-100	832	60	36-60	83.8	74-97.2	76.1-88

F/U = followup, SEER=Surveillance, Epidemiology, and End Results

Table 30. Strength of evidence domains for overall survival

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Partial Nephrectomy Versus Active Surveillance	Overall Survival	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Partial Nephrectomy Versus Thermal Ablation	Overall Survival	13 (8,451)	High	Direct	Consistent	Precise	Undetected	All 13 studies demonstrated worse overall survival for thermal ablation compared to partial nephrectomy, likely due to age and comorbidity.
Radical Nephrectomy Versus Active Surveillance	Overall Survival	1 (251)	Medium	Direct	Unknown	Imprecise	Undetected	Low Single study demonstrated comparable overall survival with radical nephrectomy and active surveillance with a wide confidence interval [hazard ratio 0.75 (95% CI, 0.45 to 1.26)].
Radical Nephrectomy Versus Partial Nephrectomy	Overall Survival	36 (72,308) RCT: 1 Institutional: 25 SEER: 10	Medium	Direct	Inconsistent	Imprecise	Undetected	Low Overall survival was similar for radical nephrectomy and partial nephrectomy, but studies were inconsistent. SEER analyses showed a survival advantage for partial nephrectomy while institutional cohorts and the 1 RCT did not demonstrate this.
Radical Nephrectomy Versus Thermal Ablation	Overall Survival	3 (10,908)	High	Direct	Inconsistent	Imprecise	Undetected	Insufficient The results of the three studies were too inconsistent to support a conclusion, especially given the limitations of the studies.
Thermal Ablation Versus Active Surveillance	Overall Survival	0 (0)	NA	NA F. LD. I	NA	NA	NA	Insufficient No eligible studies

RCT = randomized controlled trial; SEER = Surveillance, Epidemiology, and End Results

Renal Functional Outcomes

Fifty-three studies (reported in 54 articles, total of 17,784 patients) addressed renal functional outcomes in comparative studies (Table 31). Seven studies reported renal functional outcomes for more than one management strategy. 96,160-165 Only two studies reported comparative effectiveness that included active surveillance. The baseline kidney function reported in the studies is presented in Table 32. Studies reported both continuous and categorical renal functional outcomes, including evaluation of postoperative serum creatinine and estimated glomerular filtration rate, as well as the incidence and prevalence of chronic kidney disease and end stage renal disease. The median eGFR across studies was 73 (standard deviation 20) ml/min/1.73 m² (Table 33).

Table 31. Number of studies reporting renal functional outcomes^a by management comparison

Comparison	Number of studies					
Radical Nephrectomy versus Partial Nephrectomy	38 studies ^{83,89,90,93,94,96,98,101,104-08,113,114,118,119,121,139,156,158,} 160-176					
Radical Nephrectomy versus Thermal Ablation	8 studies ^{96,134,160-165}					
Partial Nephrectomy versus Thermal Ablation	21 studies ^{96,123,125,126,128,129,131-133,137,138,160-165,177-180}					
Radical Nephrectomy versus Active Surveillance	2 studies ^{135,165}					
Partial Nephrectomy versus Active Surveillance	1 study ¹⁶⁵					
Thermal Ablation versus Active Surveillance	1 study ¹⁶⁵					

^aRenal functional outcomes included change in creatinine, change in estimated glomerular filtration rate, incidence of chronic kidney stages 3, 3b, and 4, and incidence of end stage renal disease.

Time Points for Renal Functional Outcomes

Time points for renal functional outcomes after surgery ranged from 1 month to 10 years. Seventy-nine percent of primary outcomes were greater than or equal to 1 year, and 35 percent of primary renal functional outcomes were reported at time of last followup. Where possible, we used the primary renal functional outcomes from the Kaplan-Meier curves that were closest to 1 year (or tabulated data), to avoid including competing causes of chronic kidney disease other than the surgical procedure.

Table 32. Renal function characteristics of patients in comparative studies of management of small renal masses

	Radical N	lephrectomy	Partial	Nephrectomy	Therm	al Ablation	Active Surveillance	
Author, Year	Number of Patients	Baseline eGFR Mean (SD)						
Antoniewicz,2012 ¹⁷¹	33	71 (18)	18	74 (21)	-	-	-	-
Barbalias, 199998	48	107 (6)	41	105 (6)	-	-	-	-
Brewer, 2012 ¹⁷⁰	108	70 (21)	45	75 (26)	-	-	-	-
Chang, 2014 ⁹⁴	339	80.1 (17.6)	218	83.9 (15.1)	-	-	-	-
Chang, 2015 ¹⁸⁰	-	-	29	86 (29)	27	79 (29)	-	-
Chung, 2014 ¹³⁹	622	80 (15)	622	80 (15)	-	-	-	-
Cooper, 2015 ¹⁶⁴	31	53 (13)	9	57 (7)	9	52 (12)	-	-
Danzig, 2015 ¹⁶⁵	15	73 (18)	65	90 (12)	14	89 (13)	68	82 (12)
Dash, 2006 ¹⁷⁵	151	NRª	45	NR ^a	-	-	-	-
Deklaj, 2010 ¹⁶²	19	63 (16)	28	63 (18)	19	65 (26)	-	-
Deklaj, 2010 ¹¹⁸	52	101 (42)	33	87 (39)	-	-	-	-
Desai, 2005 ^{131 b}	-	-	153	NR*	78	NR*	-	-
Emara, 2014 ¹³²	-	-	47	NR*	56	NR*	-	-
Faddegon, 2013 ¹⁷⁷	-	-	142	75 (23)	205	81 (22)	-	-
Foyil, 2008 ^{163 b}	50	56 (25)	98	67 (27)	49	56 (28)	-	-
Gratzke, 200983	73	NR	44	NR	0	0	-	-
Guillotreau,2012129 b	-	-	210	86 (36)	226	66 (29)	-	-
Haramis, 2012 ¹³³	-	-	92	NR ^a	75	NR ^a	-	-
Huang, 2006 ¹⁷⁴	262	69 (13)	385	70 (16)	-	-	-	-
lizuka, 2012 ¹⁰¹	195	70 (29)	67	71 (25)	-	-	-	-
Jeon, 2009 ¹⁷²	129	83 (17)	96	84 (16)	-	-	-	-
Kim, 2003 ¹¹⁹	35	NRª	79	NR ^a	-	-	-	-
Kim, 2010 ¹⁵⁸	52	81 (20)	18	86 (20)	-	-	-	-
Kiriluk, 2011 ¹⁷⁹	-	-	51	87 (30)	51	88 (39)	-	-
Klatte, 2011 ¹²³	-	-	82	64 (27)	41	64 (22)	-	-

Table 32. Renal function characteristics of patients in comparative studies of management of small renal masses (continued)

	Radical N	lephrectomy	Partial	Nephrectomy	Therm	al Ablation	Active S	Surveillance
Author, Year	Number of Patients	Baseline eGFR Mean (SD)						
Kowalczyk, 2013 ^{161 b}	939	NR	490	NR	211	NR	-	-
Kyung, 2014 ¹⁰⁴	82	68 (23)	53	69 (22)	-	-	-	-
Lane, 2010 ¹⁰⁵	569	83 (21)	1833	83 (20)	-	-	-	-
Lane, 2010 ^{135b}	146	64 (16)	-	-	-	-	105	54 (19)
Li, 2007 ¹⁰⁶	86	NR ^a	35	NR ^a	-	-	-	-
Lucas, 2007 ⁹⁶	71	75 (10)	85	71 (7)	86	73 (8)	-	-
Mariusdottir, 2013 ¹⁰⁷	44	65 (16)	44	69 (16)	-	-	-	-
Matin, 2002 ¹⁷⁶	35	NR ^a	82	NR ^a	-	-	-	-
McKiernan, 2002 ¹²¹	173	NR ^a	117	NR ^a	-	-	-	-
Medina-Polo, 2011 ¹⁰⁸	174	78 (20)	116	76 (22)	-	-	-	-
Mitchell, 2011 ¹⁷⁸	-	-	62	54 (26)	50	53 (14)	-	-
Miyamoto, 2012 ¹⁶⁸	152	71 (16)	59	71 (20)	-	-	-	-
Mues, 2012 ¹²⁶	-	-	100	59 (59)	98	59 (59)	-	-
Pascal, 2011 ¹³⁷	-	-	48	62 (19)	30	54 (19)	-	-
Roos, 2010 ¹¹³	100	77 (22)	69	82 (40)	-	-	-	-
Roos, 2012 ¹¹⁴	146	78 (18)	101	79 (32)	-	-	-	-
Scosyrev, 201489	259	NR ^a	255	NR ^a	-	-	-	-
Snow, 2008 ⁹³	37	90 (17)	48	90 (22)	-	-	-	-
Sun, 2012 ¹⁶⁹	840	NR	840	NR	-	-	-	-
Takagi, 2011 ¹⁵⁶	51	50 (7)	44	50 (8)	-	-	-	-
Takaki, 2010,160	54	68 (20)	10	69 (17)	46	49 (18)	-	-
Takaki, 2014 ¹³⁴	39	88 (22)	-	-	21	63 (28)	-	-
Tanagho, 2013 ^{125 b}	-	-	233	85 (21)	267	66 (25)	-	-
Turna, 2009 ¹³⁸	-	-	36	65 (24)	65	53 (18)	-	-
Van Poppel, 2010 ⁹⁰	273	NR ^a	268	NR ^a	-	-	-	-

Table 32. Renal function characteristics of patients in comparative studies of management of small renal masses (continued)

Author, Year	Radical N	ephrectomy	Partial I	Nephrectomy	Therm	al Ablation	Active S	Surveillance
	Number of Patients	Baseline eGFR Mean (SD)						
Woldu, 2014 ¹⁶⁶	767	76 (20)	539	81 (21)	-	-	-	-
Yasuda, 2012 ¹⁶⁷	103	104 (22)	97	106 (15)	-	-	-	-
Youn, 2013 ¹²⁸	-	-	14	73 (2)	41	74 (3)	-	-
Zorn, 2007 ¹⁷³	55	101 (64)	42	94 (64)	-	-	-	-
Overall median	7409	76 (18)	8437	75 (21)	1765	64 (22)	173	68 (16)

NR = not reported; eGFR = estimated glomerular filtration rate; SD = standard deviation ^aBaseline creatinine reported but not eGFR.

bSix studies reported statistically significant differences in baseline preoperative kidney function, with lower estimated kidney function.

Table 33. Renal functional outcomes reported in 54 studies of comparative management for small renal masses

	Author, Year		Continue	ous Outcomes			Categorical Outcomes				
Comparison		Final Serum Creatinine (mg/dL)	Change in Serum Creatinine (mg/dL)	Final eGFR (ml/min/1.73 m²)	Change in eGFR (ml/min/1.73 m²)	Incidence ≥ Mild-Moderate CKD (Stage ≥ III)	Incidence ≥ Moderate- Severe CKD (Stage ≥ IIIb)	Incidence ≥ Severe CKD (Stage ≥ IV)	Incidence Kidney Failure (Stage 5/ESRD)		
Partial	Chang, 2015 ¹⁸⁰			Υ	Υ						
Nephrectomy Versus	Cooper, 2014 ¹⁶⁴	Υ	Υ	Y	Υ						
Thermal	Danzig, 2015 ¹⁶⁵			Υ	Υ	Υ	Υ				
Ablation	Deklaj, 2010 ¹⁶²			Υ	Υ	Υ					
	Desai, 2005 ¹³¹	Υ	Υ								
	Emara, 2014 ¹³²	Υ	Υ			Υ					
	Faddegon, 2013 ¹⁷⁷			Υ	Υ						
	Foyil, 2008 ¹⁶³			Υ	Υ						
	Guillotreau, 2012 ¹²⁹			Υ	Υ	Υ			Υ		
	Haramis, 2012 ¹³³	Υ	Υ								
	Kiriluk, 2011 ¹⁷⁹			Υ	Υ						
	Klatte, 2011 ¹²³			Υ	Υ	Υ					
	Kowalczyk, 2013 ¹⁶¹					Υ					
	Lucas, 2007 ⁹⁶				Υ	Υ	Υ		Υ		
	Mitchell, 2011 ¹⁷⁸	Υ	Υ	Υ	Υ	Υ		Υ			
	Mues, 2012 ¹²⁶			Υ	Υ				Υ		
	Pascal, 2011 ¹³⁷	Υ	Υ	Υ	Υ	Υ		Υ	Υ		
	Takaki, 2010 ¹⁶⁰			Υ	Υ						
	Tanagho, 2013 ¹²⁵	Υ	Υ	Υ	Υ						
	Turna, 2009 ¹³⁸	Υ	Υ	Υ	Υ	Υ			Υ		
	Youn, 2013 ¹²⁸	Υ	Υ	Υ	Υ						

Table 33. Renal functional outcomes reported in 54 studies of comparative management for small renal masses (continued)

	Author, Year			ous Outcomes			Categorical C		
Comparison		Final Serum Creatinine (mg/dL)	Change in Serum Creatinine (mg/dL)	Final eGFR (ml/min/1.73 m²)	Change in eGFR (ml/min/1.73 m²)	Incidence ≥ Mild-Moderate CKD (Stage ≥ III)	Incidence ≥ Moderate- Severe CKD (Stage ≥ IIIb)	Incidence ≥ Severe CKD (Stage ≥ IV)	Incidence Kidney Failure (Stage 5/ESRD)
Radical	Lane, 2010 ¹³⁵			Υ	Υ	Υ			
Nephrectomy Versus Active Surveillance	Danzig, 2015 ¹⁶⁵			Y	Υ	Y	Υ		
Partial Nephrectomy Versus Active Surveillance	Danzig, 2015 ¹⁶⁵			Y	Y	Y	Y		
Thermal Ablation Versus Active Surveillance	Danzig, 2015 ¹⁶⁵			Y	Y	Y	Υ		1
Radical Nephrectomy	Antoniewicz, 2012 ¹⁷¹	Y	Υ	Y	Y				
Versus Partial	Barbalias, 199998			Υ	Υ				
Nephrectomy	Brewer, 2012 ¹⁷⁰			Υ	Υ	Υ			
	Chang, 2014 ⁹⁴			Υ	Υ	Υ			
	Cooper, 2014 ¹⁶⁴	Υ	Υ	Υ	Υ				
	Chung, 2014 ¹³⁹			Υ	Υ	Υ		Υ	
	Danzig, 2015 ¹⁶⁵			Υ	Υ	Υ	Υ		
	Dash, 2006 ¹⁷⁵	Υ	Υ						
	Deklaj, 2010 ¹¹⁸			Υ	Υ	Υ			Υ
	Deklaj, 2010 ¹⁶²			Υ	Υ	Υ			
	Foyil, 2008 ¹⁶³			Υ	Υ				
	Gratzke, 200983				Υ				
	Huang, 2006 ¹⁷⁴					Υ	Υ		Υ
	lizuka, 2012 ¹⁰¹			Υ	Υ				
	Jeon, 2009 ¹⁷²			Υ	Υ	Υ			

Table 33. Renal functional outcomes reported in 54 studies of comparative management for small renal masses (continued)

	Author, Year			ous Outcomes			Categorical (•	
Comparison		Final Serum Creatinine (mg/dL)	Change in Serum Creatinine (mg/dL)	Final eGFR (ml/min/1.73 m²)	Change in eGFR (ml/min/1.73 m²)	Incidence ≥ Mild-Moderate CKD (Stage ≥ III)	Incidence ≥ Moderate- Severe CKD (Stage ≥ IIIb)	Incidence ≥ Severe CKD (Stage ≥ IV)	Incidence Kidney Failure (Stage 5/ESRD)
Radical	Kim, 2003 ¹¹⁹	Υ	Υ						
Nephrectomy Versus Partial	Kim, 2010 ¹⁵⁸	Υ	Υ	Υ	Υ				
Nephrectomy	Kowalczyk, 2013 ¹⁶¹					Υ			
(continued)	Kyung, 2014 ¹⁰⁴			Υ	Υ	Υ			
	Lane, 2010 ¹⁰⁵			Υ	Υ		Υ		Υ
	Li, 2007 ¹⁰⁶	Υ	Υ						
	Lucas, 2007 ⁹⁶				Υ	Υ	Υ		Υ
	Mariusdottir, 2013 ¹⁰⁷			Υ	Υ	Y			
	Matin, 2002 ¹⁷⁶	Υ	Υ						
	McKiernan, 2002 ¹²¹	Υ	Υ			Y			Υ
	Medina-Polo, 2011 ¹⁰⁸			Υ	Υ	Υ	Υ		Υ
	Miyamoto, 2012 ¹⁶⁸	Υ	Υ	Υ	Υ	Y			Υ
	Roos, 2010 ¹¹³			Υ	Υ	Υ			
	Roos, 2012 ¹¹⁴			Υ	Υ	Υ			
	Scosyrev, 201489			Υ	Υ	Υ	Υ	Υ	Υ
	Snow, 2008 ⁹³	Υ	Υ	Υ	Υ				
	Sun, 2012 ¹⁶⁹					Υ			Υ
	Takagi, 2011 ¹⁵⁶						Υ	Υ	Υ
	Takaki, 2010 ¹⁶⁰			Υ	Υ				
	Van Poppel, 2010 ⁹⁰	Υ	Υ						
	Woldu, 2014 ¹⁶⁶			Υ	Υ		Υ	Υ	
	Yasuda, 2012 ¹⁶⁷			Υ	Υ	Υ			
	Zorn, 2007 ¹⁷³	Υ	Υ	Υ	Υ	Υ		Υ	

Table 33. Renal functional outcomes reported in 54 studies of comparative management for small renal masses (continued)

			Continuo	ous Outcomes	_		Categorical C	Outcomes	
Comparison	Author, Year	Final Serum Creatinine (mg/dL)	Change in Serum Creatinine (mg/dL)	Final eGFR (ml/min/1.73 m²)	Change in eGFR (ml/min/1.73 m²)	Incidence ≥ Mild-Moderate CKD (Stage ≥ III)	Incidence ≥ Moderate- Severe CKD (Stage ≥ IIIb)	Incidence ≥ Severe CKD (Stage ≥ IV)	Incidence Kidney Failure (Stage 5/ESRD)
Radical	Cooper, 2014 ¹⁶⁴	Υ	Υ	Υ	Υ				
Nephrectomy Versus	Danzig, 2015 ¹⁶⁵			Υ	Υ	Υ	Υ		
Thermal	Deklaj, 2010 ¹⁶²			Υ	Υ	Y			
Ablation	Foyil, 2008 ¹⁶³			Υ	Υ				
	Kowalczyk, 2013 ¹⁶¹					Υ			
	Lucas, 2007 ⁹⁶				Υ	Υ	Υ		Υ
	Takaki, 2010 ¹⁶⁰			Υ	Υ				
	Takaki, 2014 ¹³⁴			Υ	Υ				
No. of studies re outcome ^a	No. of studies reported each outcome ^a		20	39	41	28	8	7	14

NR = not reported; CKD = chronic kidney disease; ESRD = end-stage renal disease; eGFR = estimated glomerular filtration rate ^{a7} studies had multiple management comparisons.

Risk of Bias

We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies.³⁵ For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI).³⁶ The overall risk of bias in studies assessing the renal functional outcomes is outlined in Figure 18. The use of an RCT examining renal functional outcomes was reported in two articles;^{89,90} the rest were observational studies. For those observational studies, risk of bias in studies was graded as moderate or severe. The primary sources of bias were in the selection of participants and bias due to confounding.

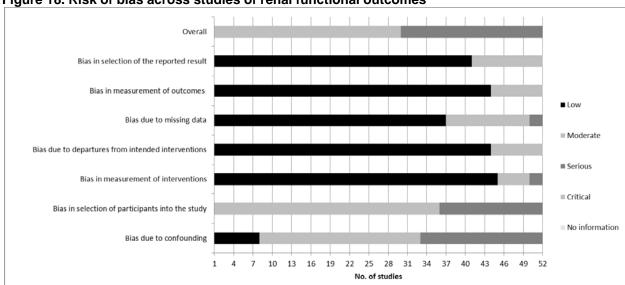


Figure 18. Risk of bias across studies of renal functional outcomes^a

^aRenal functional outcomes included change in creatinine, change in estimated glomerular filtration rate, incidence of chronic kidney stages 3, 3b, and 4, and incidence of end stage renal disease.

Continuous Renal Functional Outcomes

Definitions for Continuous Functional Outcomes

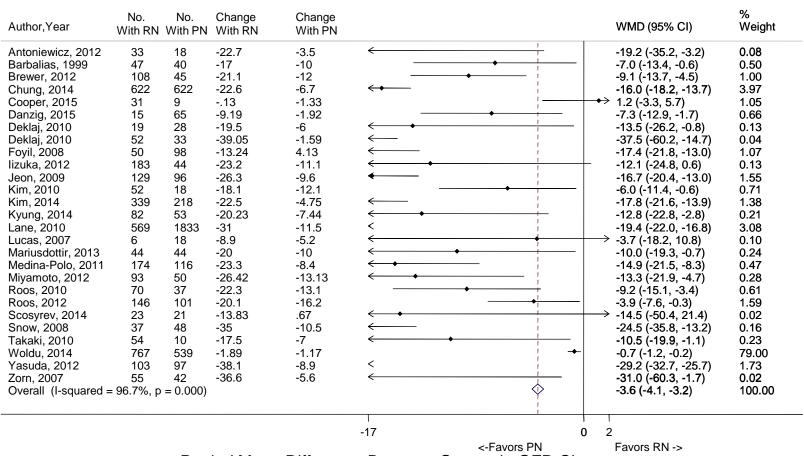
Studies reported several different definitions for continuous functional outcomes, including—

- 1. Serum creatinine at followup and change in creatinine were reported in 20 studies. 90,93,106,119,121,125,128,131-133,137,138,158,164,168,171,173,175,176,178 When change in creatinine was not provided, we calculated this from the preoperative and postoperative values provided.
- 2. eGFR at followup and change in eGFR were reported in 39 studies. 89,93,94,98,101,104,105,107,108,113,114,118,123,125,126,128,129,134,135,137-139,158,160,162-168,170-173,177-180
- 3. Two additional studies reported change in eGFR but not baseline or followup eGFR. 83,96
- 4. When change in eGFR was not provided, we calculated the change from the preoperative and postoperative values provided.

Radical Nephrectomy Versus Partial Nephrectomy

Thirty four studies assessed continuous renal functional outcomes for radical nephrectomy versus partial nephrectomy. ^{83,89,90,93,94,96,98,101,104-108,113,114,118,119,121,139,158,160,162-168,170-173,175,176} Six studies addressed only continuous creatinine changes, ^{90,106,119,121,175,176} twenty two addressed exclusively continuous estimated glomerular filtration rate changes, ^{83,89,94,96,98,101,104,105,107,108,113,114,118,139,160,162,163,165-167,170,172} and six addressed both outcome measures. ^{93,158,164,168,171,173} Most of the 28 studies analyzed management of any localized small renal mass; however, important subgroups were addressed as well, including seven studies that included patients with T1a tumors, ^{93,94,101,160,162,172,176} seven with T1b and T2 tumors, ^{94,101,113,114,118,158,170} four with the young or elderly, ^{104,113,139,162} and four with patients having underlying chronic kidney disease. ^{96,107,108,166} When comparing the final compiled continuous changes in creatinine and estimated glomerular filtration rate, those receiving radical nephrectomy showed more evidence of kidney dysfunction than those receiving partial nephrectomy (Table 34a). The strength of evidence was moderate.

Table 34a. Continuous renal functional outcomes for radical nephrectomy versus partial


nephrectomy

	No.	Ra	dical Nephr	ectomy	Partial Nephrectomy			
Outcome	Studies	No. Patients	Median Measure	Range	No. Patients	Median Measure	Range	
Followup creatinine (mg/dl)	12	966	1.46	1.24 to 1.70	708	1.03	0.96 to 1.70	
The change in creatinine	12	966	0.47	0.30 to 0.51	708	0.12	-0.05 to 0.40	
Followup eGFR (ml/min/1.73 m ²)	26	3713	54.6	42.9 to 90	4080	71.1	55.3 to 98.0	
eGFR change (ml/min/1.73 m ²)	27	3719	-22.4	-39.1 to -0.1	4098	-7.4	-16.2 to 4.1	

eGFR: Estimated glomerular filtration rate

Four studies did not report significant p-values for the relationship of lower renal outcomes for radical nephrectomy. 83,96,98,106 In meta-analysis, the mean change in creatinine was 0.35 mg/dl (95% CI, 0.29 to 0.41) higher (increasing by a larger amount) in the radical nephrectomy group while the mean change in estimated glomerular filtration rate was 3.6 ml/min/1.73 m² (95% CI, 3.2 to 4.1) higher (decreasing by a larger amount) in the radical nephrectomy group than in the partial nephrectomy group (Figure 19). Significant heterogeneity in the estimated glomerular filtration rate outcome existed, with one of the largest studies ¹⁶⁶ showing the smallest difference between partial nephrectomy and radical nephrectomy. This small difference may have been due to the yearly change in estimated glomerular filtration rate being averaged over the 5 years of the study.

Figure 19. Mean change in estimated glomerular filtration rate for radical nephrectomy versus partial nephrectomy

Pooled Mean Difference Between Groups in GFR Change

eGFR = estimated glomerular filtration rate; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Important subgroup information emerged. Similar overall findings were seen in studies that included patients with T1a, T1b, and T2 tumors, with the exception of two studies, which found only a nonsignificant trend toward poorer radical nephrectomy outcomes in tumors 4 to 7 cm (p = 0.12) or greater than 7 cm (p = 0.07 and p=0.16). 114,158

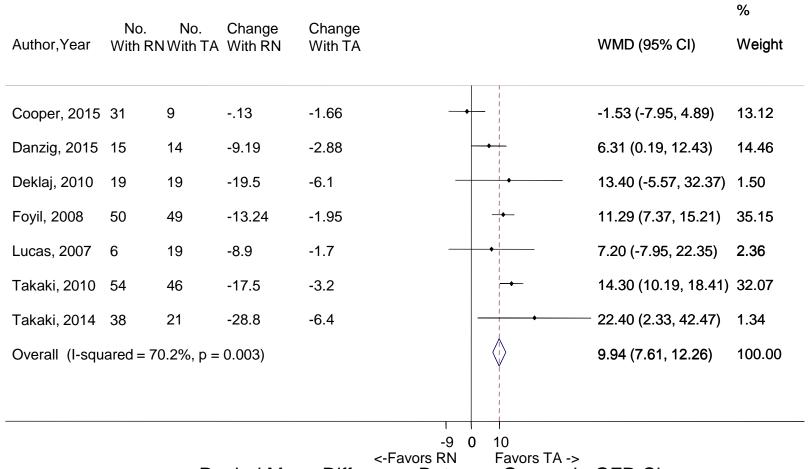
The effects of the radical nephrectomy strategy were also similar between subgroups defined by age, with elderly and young patients receiving radical nephrectomy both experiencing approximately an 8-15 ml/min/1.73 m² lower estimated glomerular filtration rate compared with partial nephrectomy. The interaction of prior chronic kidney disease and estimated glomerular filtration rate change was less clear, with one study showing similar findings for radical nephrectomy versus partial nephrectomy in those with an estimate glomerular filtration rate greater than 60 ml/min/1.73 m² versus an estimated glomerular filtration rate less than 60 ml/min/1.73 m². One study showed that the baseline estimated glomerular filtration rate was predictive of larger changes in estimated glomerular filtration rate. The subgroups of larger changes in estimated glomerular filtration rate.

Two studies showed no differences in estimated glomerular filtration rate change between radical nephrectomy and partial nephrectomy. ^{96,166} These two studies suggested that the greatest benefit on renal function for partial nephrectomy occurred when baseline estimated glomerular filtration rate was greater than 60 ml/min/1.73 m².

Eleven studies reported the long-term trends in creatinine and/or estimated glomerular filtration rate. 83,89,94,101,105,118,139,163,168,171,175 Most of these studies showed an initial drop in creatinine and/or estimated glomerular filtration rate immediately postoperatively, which was followed by improvement in serum creatinine and/or estimated glomerular filtration rate from 1 to 3 days until approximately 3 to 6 months, when levels stabilized for as long as 15 years. 89 Three studies suggested that the lower final estimated glomerular filtration rate in the radical nephrectomy group occurred because an equivalent improvement in estimated glomerular filtration rate in this initial 3 to 6 month time window was not present. 101,118,163

Radical Nephrectomy Versus Thermal Ablation

Seven studies assessed continuous renal functional outcomes for radical nephrectomy versus thermal ablation. ^{96,134,160,162-165} Two studies included patients with T1a tumors ^{96,160} and one had additional stratification by chronic kidney disease. ⁹⁶ One study included elderly patients with T1a tumors. ¹⁶² One study included patients with T1b tumors, ¹³⁴ and one compared laparoscopic management strategies. ¹⁶³ Six studies examined the last estimated glomerular filtration rate as well as the change in estimated glomerular filtration. ^{134,160,162-165} One study only reported change in estimated glomerular filtration rate. ⁹⁶ When comparing the final compiled health outcomes, those receiving radical nephrectomy showed more evidence of kidney dysfunction than those receiving thermal ablation (Table 34b). The strength of evidence was moderate.


Table 34b. Continuous renal functional outcomes for radical nephrectomy versus thermal ablation

	No.	Ra	dical Nephr	ectomy	Thermal Ablation			
Outcome	Studies	No. Patients	Median Measure	Range	No. Patients	Median Measure	Range	
Followup creatinine (mg/dl)	1	31	1.63	1.63	9	1.37	1.37	
Creatinine change	1	31	0.53	0.53	9	0.23	0.23	
Followup eGFR (ml/min/1.73 m²)	6	207	50.8	42.9 to 59.6	158	55.5	49.8 to 85.7	
eGFR change (ml/min/1.73 m ²)	7	213	-13.2	-28.8 to -0.1	177	-2.9	-6.4 to -1.7	

eGFR = estimated glomerular filtration rate

Five of the seven studies reported significant p-values for the association of worse renal outcomes with radical nephrectomy. The exceptions were ¹⁶⁴ which had only 9 patients in the thermal ablation group and ⁹⁶ which reported statistically equivalent outcomes in those with estimated glomerular filtration less than 60 ml/min/1.73 m² or less than 45 ml/min/1.73 m². In meta-analysis, the mean change in estimated glomerular filtration rate was 9.94 ml/min/1.73 m² (95% CI, 7.61 to12.26) more (decreasing by a larger amount) in the radical nephrectomy group than in the thermal ablation group (Figure 20).

Figure 20. Mean change in estimated glomerular filtration for thermal ablation versus radical nephrectomy

<-Favors RN Favors TA ->
Pooled Mean Difference Between Groups in GFR Change

eGFR = estimated glomerular filtration rate; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Partial Nephrectomy Versus Thermal Ablation

Nineteen studies assessed continuous renal functional outcomes for partial nephrectomy versus thermal ablation. $^{96,123,125,126,128,129,131-133,137,138,160,162-165,177-180}$ Three studies reported only continuous creatinine changes, $^{131-133}$ 11 reported exclusively continuous estimated glomerular filtration rate changes, 96,123,126,129,160,162,163,165,177,179,180 and 6 reported both outcome measures (Table 34c). 125,128,137,138,164,178

Important subgroups were included, including 10 studies examining T1a tumors, ${}^{96,123,128,129,131-133,160,162,177}$ 3 examining solitary tumors, 126,138,178 3 examining the role of preexisting chronic kidney disease, 96,131,179 1 reporting on the elderly, 162 and 5 employing multivariable models to predict postoperative estimated glomerular filtration rate. 125,129,138,165,177

When comparing the final compiled health outcomes, those patients undergoing partial nephrectomy had kidney function outcomes similar to those receiving thermal ablation (Table 31c). Four of the 16 studies reported significant p-values for the association of worse renal outcomes for partial nephrectomy. ^{125,137,138,180} In meta-analysis, the mean change in creatinine was 0.07 mg/dl (95% CI, 0.00 to 0.15) higher (increased by a larger amount) in the partial nephrectomy group (see Appendix F), while the mean change in estimated glomerular filtration rate was 1.0 ml/min/1.73 m² (95% CI, -0.2 to 2.1) more (decreased by a larger amount) in the partial nephrectomy group than in the thermal ablation group (Figure 21); however, neither reached statistical significance. Significant heterogeneity in the estimated glomerular filtration rate outcome did exist. The strength of evidence was low.

Table 34c. Continuous renal functional outcomes for partial nephrectomy versus thermal ablation

	No.	Pa	rtial Nephre	ectomy	Thermal Ablation			
Outcome	Studies	No. Patients	Median Measure	Range	No. Patients	Median Measure	Range	
Followup creatinine (mg/dl)	9	683	1.31	0.89 to1.70	673	1.40	0.88 to 1.70	
Creatinine change (mg/dl)	9	683	0.23	0.06 to 0.40	673	0.13	-0.10-0.22	
Followup eGFR (ml/min/1.73 m²)	16	1080	66.1	47.5 to 87.8	1238	58.8	47.5 to 85.7	
eGFR change (ml/min/1.73 m²)	17	1098	-6.2	-18 to 4.1	1257	-4.9	-8.0 to -1.5	

eGFR = estimated glomerular filtration rate

Figure 21. Mean change in estimated glomerular filtration rate for thermal ablation versus partial nephrectomy

Author,Year \	No. With PN	No. With TA	Change With PN	Change With TA		WMD (95% CI)	% Weight
Chang, 2015	29	27	-9.5	-7.2	-	2.3 (-17.9, 22.5)	0.33
Cooper, 2015	9	9	-1.33	-1.66	- 	-0.3 (-5.6, 4.9)	4.91
Danzig, 2015	65	14	-1.92	-2.88	→ <u>'</u>	-1.0 (-4.2, 2.3)	12.68
Deklaj, 2010	28	19	-6	-6.1		-0.1 (-19.6, 19.4)	0.36
Faddegon, 201	13 142	205	-7.97	-8.01	- -	-0.0 (-3.3, 3.2)	12.85
Foyil, 2008	98	49	4.13	-1.95	→	-6.1 (-10.4, -1.8)	7.24
Guillotreau, 20	12 75	226	-11.2	-8.9	- •	2.3 (-3.5, 8.1)	4.08
Kiriluk, 2011	51	51	-4.5	-7.3		-2.8 (-20.9, 15.3)	0.41
Klatte, 2011	82	41	-6.4	-5.3	- 	1.1 (-4.4, 6.6)	4.40
Lucas, 2007	18	19	-5.2	-1.7	 •	3.5 (-4.1, 11.1)	2.34
Mitchell, 2011	62	50	-3.3	-1.5	- -	1.8 (-2.9, 6.5)	6.01
Mues, 2012	100	98	-7	-8		-1.0 (-18.8, 16.8)	0.43
Pascal, 2011	48	30	-14.5	-7.3	<u> </u>	7.2 (0.8, 13.6)	3.34
Takaki, 2010	10	46	-7	-3.2	<u> </u>	3.8 (-5.4, 13.0)	1.60
Takaki, 2014	38	21	-28.8	-6.4		22.4 (2.3, 42.5)	0.34
Tanagho, 2013	3 233	267	-11.1	-5	 	6.1 (0.2, 12.0)	3.90
Turna, 2009	34	65	-18	-4.78		13.2 (6.3, 20.2)	2.82
Youn, 2013	14	41	-4.29	-3.52	+	0.8 (-1.3, 2.8)	31.97
Overall (I-squa	ared = 5	3.4%, p =	0.004)		♦	1.0 (-0.2, 2.1)	100.00
				<-	-9 0 10 Favors PN Favors TA ->		

Pooled Mean Difference Between Groups in GFR Change

eGFR = estimated glomerular filtration rate; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Important subgroup information did emerge. Four studies reported on T1a tumors and showed similar outcomes between groups. ^{126,138,160,178} Two studies ^{126,178} showed that patients with solitary kidneys had similar outcomes between groups, while the other ¹³⁸ found a larger drop in estimated glomerular filtration rate for those with underlying stage 3 chronic kidney disease who also received thermal ablation. In multivariable models, tumor size and hilar location were associated with lower estimated glomerular filtration rate in one study, ¹²⁵ and preoperative estimated glomerular filtration rate was associated with greater decline in estimated glomerular filtration rate in one study. ¹³⁸ In two other studies, other demographic factors were not associated with the change in estimated glomerular filtration rate. ^{129,177}

Six studies addressed long-term trends in creatinine and/or estimated glomerular filtration rate. 123,129,160,163,179,180 Two studies 129,163 described the partial nephrectomy group as having lower kidney function one day after surgery, but then improving to similar levels as thermal ablation at 1 to 6 months. Three studies 160,179,180 described estimated glomerular filtration rate falling for both groups early after surgery and remaining at that level, and one study 123 described both groups' estimated glomerular filtration rate falling until 3 months, but also showed that the patients receiving thermal ablation had their estimated glomerular filtration rate levels rise after that point.

Radical Nephrectomy Versus Active Surveillance

Two studies assessed continuous renal functional outcomes for radical nephrectomy versus active surveillance. One study 135 included patients over the age of 75 years with T1 tumors. The authors found that the followup estimated glomerular filtration rate was 10 ml/min/1.73 m² higher in those assigned active surveillance, and with the estimated glomerular filtration rate decreasing by 23 ml/min/1.73 m² in the radical nephrectomy group compared with a decrease of only 3 ml/min/1.73 m² in the active surveillance group; these differences were statistically significant. The other study 165 compared all four management strategies for patients with small renal masses. Mean final eGFR was higher in the active surveillance group, while mean eGFR change was -9.19 ml/min/1.73 m² in the radical nephrectomy group and -0.55 ml/min/1.73 m² in the active surveillance group; these results were statistically significant (Table 34d). The strength of evidence was low.

Table 34d. Continuous renal functional outcomes for radical nephrectomy versus active surveillance

	No.	Rad	dical Nephro	ectomy	Active Surveillance			
Outcome	Studies	No. Patients	Median Measure	Median of SD Measure	No. Patients	Median Measure	Median of SD Measure	
Followup creatinine (mg/dl)	0	-	-	-	ı	-	-	
Creatinine change	0	-	-	-	-	-	-	
Followup eGFR (ml/min/1.73 m ²)	2	161	52.6	13.6	173	66	18	
eGFR change (ml/min/1.73 m ²)	2	161	-16.1	16.6	173	-1.8	19	

eGFR = estimated glomerular filtration rate

Partial Nephrectomy Versus Active Surveillance

Only two studies compared partial nephrectomy with active surveillance. ^{135,165} One study ¹³⁵ combined both partial nephrectomy and thermal ablation in this arm, without the ability to separate the groups. The other study ¹⁶⁵ compared all four management strategies for patients with small renal masses. Mean final eGFR was statistically lower in the active surveillance group than in the partial nephrectomy group, while mean eGFR change was similar between groups. (Table 34e). The evidence was insufficient.

Table 34e. Continuous renal functional outcomes for partial nephrectomy versus active surveillance

	No.	Pa	rtial Nephre	ectomy	Α	ctive Survei	llance
Outcome	Studies	No. Patients	Median Measure	Median of SD Measure	No. Patients	Median Measure	Median of SD Measure
Followup creatinine (mg/dl)	0	-	-	-	-	-	-
Creatinine change	0	-	-	-	-	-	-
Followup eGFR (ml/min/1.73 m ²)	1	65	87.8	12	68	80.9	13.1
eGFR change (ml/min/1.73 m²)	1	65	-1.9	6.2	68	-0.6	8

eGFR = estimated glomerular filtration rate

Thermal Ablation Versus Active Surveillance

Only two studies compared thermal ablation with active surveillance. One study 135 combined both partial nephrectomy and thermal ablation in one arm, without the ability to separate the groups. The other study 165 compared all four management strategies for patients with small renal masses. Both mean final eGFR and mean eGFR change were similar between groups. (Table 34f). The evidene was insufficient.

Table 34f. Continuous renal functional outcomes for thermal ablation versus active surveillance

	No.	Т	hermal Abl	ation	Active Surveillance			
Outcome	Studies Studies	No. Patients	Median Measure	Median of SD Measure	No. Patients	Median Measure	Median of SD Measure	
Followup creatinine (mg/dl)	0	-	-	-	-	-	-	
Creatinine change	0	-	-	-	-	-	1	
Followup eGFR (ml/min/1.73 m ²)	1	14	85.7	12.8	68	80.9	13.1	
eGFR change (ml/min/1.73 m²)	1	14	-2.9	5.5	68	-0.6	8	

eGFR = estimated glomerular filtration rate

Categorical Renal Functional Outcomes

Definitions for Categorical Functional Outcomes

Studies reported several different definitions for categorical functional outcomes.

- 1. Twenty-eight studies reported the number of patients reaching greater than or equal to mild to moderate chronic kidney disease.
 - a. Incidence of chronic kidney disease stage III or greater was used as our primary outcome. This was noted in each study as estimated glomerular filtration rate less than 60 ml/min/1.73 m² or estimated creatinine clearance less than 60 ml/min (reported in 14 studies). 94,96,104,107,108,123,129,135,139,162,167,168,172,174
 - b. Prevalence of chronic kidney disease greater than or equal to stage III was reported in 12 studies. 89,104,113,114,118,132,135,162,165,168,170,178 In four studies that reported prevalence, 104,135,162,168 incidence was also reported, and thus incidence was used as the primary outcome. For five studies that reported prevalence, 113,118,165,170,178 incidence outcomes could be calculated using baseline chronic kidney disease and followup prevalence data. For three studies, 89,114,132 neither the baseline stage of chronic kidney diseases nor the incidence of chronic kidney disease were available; in those three studies, prevalence was used as the outcome.
 - c. Two studies used administrative and billing codes for chronic kidney disease outcomes. 161,169
 - d. Incidence of creatinine greater than 1.5 mg/dl was used in one study. 173
 - e. Incidence of creatinine greater than 2 mg/dl in those without other renal functional outcomes was used in one study. 121
 - f. Incidence of estimated glomerular filtration rate decrease by more than 20 percent was used in one study. 138
 - g. Incidence of a one-stage increase in chronic kidney disease was used in one study. 137
- 2. Eight studies reported a number of patients with greater than or equal to moderate to severe chronic kidney disease.
 - a. Incidence of chronic kidney disease greater than or equal to stage III was used as the primary outcome. This was noted in five studies as estimated glomerular filtration rate less than 45 ml/min/1.73 m², estimated creatinine clearance less than 45 ml/min, ^{96,105,156,166,174} or estimated glomerular filtration rate less than 40 ml/min/1.73 m² (one study¹⁰⁸).
 - b. Two studies reported the prevalence of chronic kidney disease greater than or equal to stage IIIb. ^{89,165} For one study that reported prevalence, ¹⁶⁵ incidence outcomes could be calculated using baseline chronic kidney disease and followup prevalence data. Neither baseline stage of chronic kidney disease nor incidence of chronic kidney disease were available for one study; ⁸⁹ therefore, prevalence was used as the outcome.
- 3. Seven studies reported number of patients with chronic kidney disease greater than or equal to severe.
 - a. Incidence of chronic kidney disease greater than or equal to stage IV was used as the primary outcome. This was noted in each study as estimated glomerular

- filtration rate less than 30 ml/min/1.73 m² or an estimated creatinine clearance less than 30 ml/min (three studies ^{139,156,166}).
- b. Two studies reported the prevalence of chronic kidney disease greater than or equal to stage IV.^{89,178} For one study that reported prevalence,¹⁷⁸ incidence outcomes could be calculated using baseline chronic kidney disease and followup prevalence data. For one study,⁸⁹ neither baseline stage of chronic kidney disease nor incidence of chronic kidney disease were available; therefore, prevalence was used as the outcome.
- c. One study reported the incidence of creatinine levels greater than 2 mg/dl in those with other milder renal functional outcomes available ¹²¹.
- d. One study reported the incidence of a two-stage increase in chronic kidney disease. 137
- 4. Fourteen studies reported outcomes in terms of the risk of kidney failure.
 - a. In those studies, the incidence of end stage renal disease was used as the primary outcome. This was noted in each study as need for permanent dialysis, chronic kidney disease stage V, estimate glomerular filtration rate less than 15 ml/min/1.73 m² or estimated creatinine clearance less than 15 ml/min (14 studies^{89,96,105,108,118,121,126,129,137,138,156,168,169,174}).
- 5. Only one study examined the presence of proteinuria postoperatively. 98

Radical Nephrectomy Versus Partial Nephrectomy

Twenty-four studies assessed categorical renal functional outcomes for radical nephrectomy versus partial nephrectomy. 89,94,96,104,105,107,108,113,114,118,121,139,156,161,162,165-170,172-174 Twenty-one studies addressed incidence of mild to moderate chronic kidney disease (greater than or equal to stage III). 89,94,96,104,107,108,113,114,118,121,139,161,162,165,167-170,172-174 Eight of these studies reported incidence of moderate to severe kidney disease greater than or equal to stage III b, 89,96,105,108,156,165,166,174 5 reported incidence of severe kidney disease greater than or equal to stage IV, 89,139,156,166,173 and 10 reported the incidence of end stage renal disease (Table 35a). 89,96,105,108,118,121,156,168,169,174

There was one RCT, ⁸⁹ while two of the largest studies used SEER data and administrative codes for outcomes. ^{161,169}. For tumor size, five studies only included T1 tumors, ^{94,104,108,139,167} five included T1a only, ^{96,161,162,169,172} and four included T1b and T2. ^{113,114,118,170} Important subgroups included the elderly ^{104,113,139,162} and those patients with chronic kidney disease. ¹⁶⁶ The strength of evidene was moderate. ^{89,96}

Table 35a. Categorical renal functional outcomes for radical nephrectomy versus partial nephrectomy

	No.	Ra	dical Nephrec	tomy	Partial Nephrectomy			
Outcome	Studies	No.	No.	%.	No.	No.	%.	
	Studies	Patients	Outcomes	Outcomes	Patients	Outcomes	Outcomes	
CKD Stage ≥III	21	3,598	1,168	32	2,901	341	12	
CKD Stage ≥IIIb	8	2,068	451	22	3,232	319	10	
CKD Stage ≥IV	5	1,613	86	5	1,385	50	4	
ESRD	10	2,807	23	1	3,954	16	0.4	

CKD = chronic kidney disease; ESRD = end-stage renal disease

In a meta-analysis comparing partial nephrectomy to radical nephrectomy, the pooled risk ratios of each categorical chronic kidney disease outcome were as follows, indicating lower risk with partial nephrectomy:

- Greater than or equal to stage III, risk ratio 0.39 (95% CI, 0.30 to 0.51) (Figure 22);
- Greater than or equal to stage IIIb, risk ratio 0.37 (95% CI, 0.26 to 0.53) (Appendix F, Figure 3);
- Greater than or equal to stage IV, risk ratio 0.76 (95% CI, 0.54 to 1.07) (Appendix F, Figure 4); and
- End stage renal disease, risk ratio 0.47 (95% CI, 0.25 to 0.86) (Appendix F, Figure 5). Similar relative risk findings were obtained across all tumor sizes and age groups, though the absolute risk in elderly patients was two to four times higher than the risk in younger patients despite similar baseline estimated glomerular filtration rates. While the risks of incident chronic kidney disease at greater than or equal to stage III b and stage IV were higher overall for the radical nephrectomy group, several studies reported that the risk of incident chronic kidney disease greater than or equal to stage III b^{89,166} or stage IV^{89,156,166} across radical nephrectomy and partial nephrectomy groups was similar if only those with underlying chronic kidney disease were examined. However, multivariate adjustment in other studies suggested that baseline estimated glomerular filtration rate was an independent predictor of the development of chronic kidney disease. ^{96,107,114,174}

Figure 22. Meta-analysis of the incidence of stage 3 chronic kidney disease with radical nephrectomy versus partial nephrectomy

Author,Year \	No. Vith RN	No. With PN	Incidence I Of CKD F				RR (95% CI)	% Weight
Brewer, 2012	72	32	27	1	<+	1	0.11 (0.02, 0.	79) 1.48
Chung, 2014	124	122	87	31		1	0.49 (0.35, 0.	70) 7.48
Danzig, 2015	12	65	3	1	\leftarrow	1	0.08 (0.01, 0.0	68) 1.22
Deklaj, 2010	39	27	16	4		1	0.44 (0.16, 1.3	21) 3.80
Deklaj, 2010	11	16	11	4		<u></u>	0.40 (0.15, 1.0	06) 3.94
Huang, 2006	204	287	65	13			0.18 (0.10, 0.3	32) 6.12
Jeon, 2009	129	96	24	4	\leftarrow	+	0.25 (0.09, 0.7)	71) 3.70
Kaowalczyk, 2013	744	365	235	78		1	0.73 (0.58, 0.9	92) 8.12
Kim, 2014	318	210	177	13	\leftarrow	+	0.16 (0.09, 0.2	
Kyung, 2014	50	39	26	9			0.55 (0.28, 1.0	07) 5.54
Lucas, 2007	52	62	26	8		+	<u> </u>	
Mariusdottir, 2013	30	29	20	9		-	• 0.59 (0.30, 1.	15) 5.55
McKiernan, 2002	173	117	7	.5	(1	0.11 (0.01, 1.9	91) 0.76
Medina-Polo, 2011	132	86	75	28			0.68 (0.47, 0.9	
Miyamoto, 2012	114	43	79	9			0.42 (0.23, 0.	
Roos, 2010	94	67	36	8		+	0.39 (0.19, 0.	
Roos, 2012	146	101	62	14				70) 6.36
Scosyrev, 2014	259	255	152	98		1	0.75 (0.61, 0.9	93) 8.21
Sun, 2012	840	840	14	8			0.58 (0.24, 1.	
Yasuda, 2012	103	97	38	2	\leftarrow		0.07 (0.02, 0.	
Zorn, 2007	55	42	24	.5	\leftarrow	1	0.04 (0.00, 0.0	
Overall (I-squared	= 73.6%	6, p = 0.0	000)				0.39 (0.30, 0.	51) 100.00
NOTE: Weights are	from ra	andom ef	fects analy	/sis				
-							1	
					.1	<-Favors PN	1 2 Favors RN->	

Risk Ratio and 95% Confidence Intervals of Incidence of CKD stage 3

CKD = chronic kidney disease; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; RR = risk ratio; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Radical Nephrectomy Versus Thermal Ablation

Four studies assessed continuous renal functional outcomes for radical nephrectomy versus thermal ablation. ^{96,161,162,165} All of these studies examined incidence of chronic kidney disease greater than or equal to stage III; however, only two examined the risk of chronic kidney disease greater than or equal to stage IIIb ^{96,165} and only one examined the risk of end stage renal disease. ⁹⁶ Two of these studies only included patients with T1a tumors, ^{96,161} and one included patients with T1b tumors (Table 35b). ¹⁶²

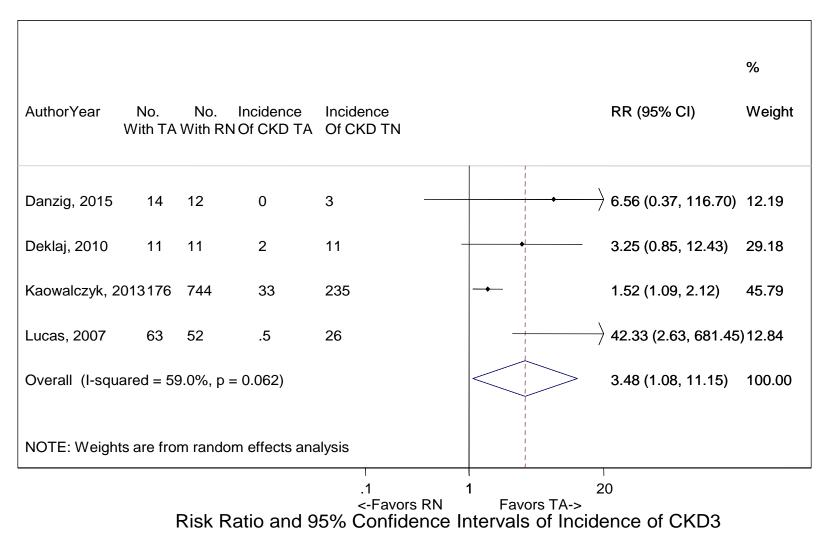

In a meta-analysis comparing radical nephrectomy to thermal ablation, only the pooled risks for chronic kidney disease greater than or equal to stage III were obtained. There was a 3.48 fold higher risk of chronic kidney disease stage 3 in those receiving radical nephrectomy, with significant pooled risk ratio at 0.3.48 (95% CI, 1.08 to 11.15) (Figure 23). In multivariable analysis after accounting for baseline estimated glomerular filtration rate, age, and tumor characteristics, one study found that patients receiving radical nephrectomy were at 34.3 times higher risk of developing stage III chronic kidney disease over thermal ablation and at 7.9 times higher risk of developing stage IIIb chronic kidney disease. The strength of evidene was moderate.

Table 35b. Categorical renal functional outcomes for radical nephrectomy versus thermal ablation

	No.	Ra	Radical Nephrectomy			Thermal Ablation			
Outcome	Studies	No. Patients	No. Outcomes	%. Outcomes	No. Patients	No. Outcomes	%. Outcomes		
CKD Stage ≥III	4	819	275	34	264	35	13		
CKD Stage ≥IIIb	2	82	17	21	92	2	2		
CKD Stage ≥IV	0								
ESRD	1	71	2	3	86	1	1		

CKD = chronic kidney disease; ESRD = end-stage renal disease

Figure 23. Meta-analysis of the incidence of stage 3 chronic kidney disease with radical nephrectomy versus thermal ablation

CKD = chronic kidney disease; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; RR = risk ratio; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

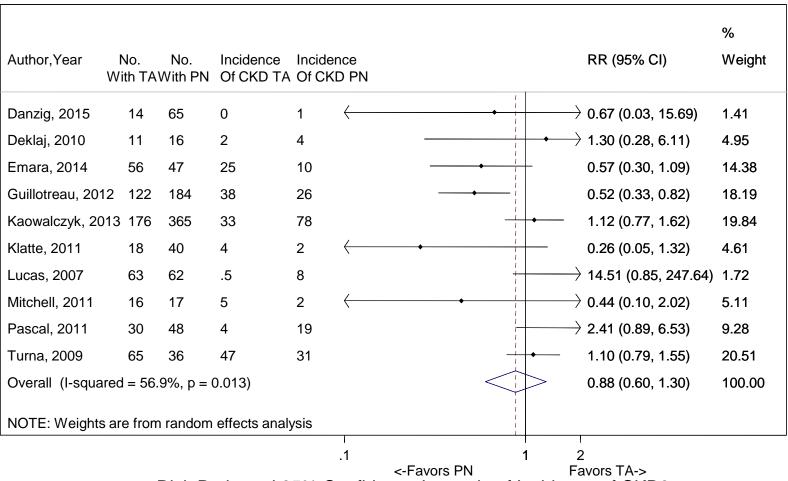
Partial Nephrectomy Versus Thermal Ablation

Eleven studies assessed categorical renal functional outcomes for partial nephrectomy versus thermal ablation. ^{96,123,126,129,132,137,138,161,162,165,178}

Ten of these studies examined the incidence of chronic kidney disease greater than or equal to stage III; ^{96,123,129,132,137,138,161,162,165,178} however, only two reported the risk of chronic kidney disease greater than or equal to stage IIIb, ^{96,165} two examined the risk of chronic kidney disease greater than or equal to stage IV, ^{137,178} and five reported the risk of end stage renal disease. ^{96,126,129,137,138} Important subgroups were examined, including five studies examining T1a tumors, ^{96,123,129,132,161} three examining solitary tumors, ^{126,138,178} one examining the role of preexisting chronic kidney disease, ⁹⁶ one reporting on the elderly, ¹⁶² and one employing multivariable models to predict the risk of chronic kidney disease ⁹⁶ (Table 35c). The strength of evidene was low.

Table 35c. Categorical renal functional outcomes for partial nephrectomy versus thermal ablation

	No.	Partial Nephrectomy			Thermal Ablation			
Outcome	Studies	No.	No.	%.	No.	No.	%.	
	Studies	Patients	Outcomes	Outcomes	Patients	Outcomes	Outcomes	
CKD Stage ≥III	10	880	181	20	571	158	28	
CKD Stage ≥IIIb	2	137	3	2	92	2	2	
CKD Stage ≥IV	2	106	6	6	78	1	1	
ESRD	5	477	6	1	502	9	2	


CKD = chronic kidney disease; ESRD = end-stage renal disease

In a meta-analysis comparing partial nephrectomy with thermal ablation, the pooled risk ratios of each categorical chronic kidney disease outcome were not statistically significant. Risk estimates were the following:

- Greater than or equal to stage III, risk ratio RR 0.88 (0.60 to 1.30) (Figure 24);
- Greater than or equal to stage IV, risk ratio 0.36 (95% CI, 0.06 to 0.13) (see Appendix F, Figure 6); and
- End stage renal disease, risk ratio 0.92 (95% CI, 0.19 to 4.39) (see Appendix F, Figure 7).

In a single study that employed multivariable models including tumor and patient characteristics, there was a 10.9 times higher risk of developing chronic kidney disease greater than or equal to stage III for the partial nephrectomy group (p = 0.024) but a nonsignificant 1.2 times higher risk of developing chronic kidney disease greater than or equal to stage IIIb (p = 0.9).⁹⁶

Figure 24. Meta-analysis of the incidence of stage 3 chronic kidney disease with partial nephrectomy versus thermal ablation

Risk Ratio and 95% Confidence Intervals of Incidence of CKD3

CKD = chronic kidney disease; No. = number; PN = partial nephrectomy; RN = radical nephrectomy; RR = risk ratio; TA = thermal ablation; WMD = weighted mean difference Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Radical Nephrectomy Versus Active Surveillance

Two studies compared categorical renal functional outcomes between radical nephrectomy and active surveillance, and also compared continuous outcomes earlier. In one study, In one stud

Table 35d. Categorical renal functional outcomes for radical nephrectomy versus active surveillance

	No.	Radical Nephrectomy			Active Surveillance			
Outcome	Studies	No. Patients	No. Outcomes	%. Outcomes	No. Patients	No. Outcomes	%. Outcomes	
CKD Stage ≥IIIa	2	101	71	70	119	4	3	
CKD Stage ≥IIIb	1	15	1	7	68	0	0	
CKD Stage ≥IV	0							
ESRD	0							

CKD = chronic kidney disease; ESRD = end-stage renal disease

Partial Nephrectomy Versus Active Surveillance

Two studies compared categorical renal functional outcomes between partial nephrectomy and active surveillance, and also compared continuous outcomes earlier. One study 135 combined both partial nephrectomy and thermal ablation in this arm, without the ability to separate the groups. The other study 165 compared categorical renal functional outcomes between partial nephrectomy and active surveillance, and also compared continuous outcomes earlier. Two percent of patients had prevalent chronic kidney disease at followup in the partial nephrectomy group while 3 percent of patients had chronic kidney disease in the active surveillance group (see Table 35e). The evidence was insufficient (Table 36).

Table 35e. Categorical renal functional outcomes for partial nephrectomy versus active surveillance

	No.	Partial Nephrectomy			Active Surveillance			
Outcome	Studies	No. Patients	No. Outcomes	%. Outcomes	No. Patients	No. Outcomes	%. Outcomes	
CKD Stage ≥III ^a	1	65	1	2	119	4	3	
CKD Stage ≥IIIb	1	65	0	0	68	0	0	
CKD Stage ≥IV	0							
ESRD	0							

CKD = chronic kidney disease; ESRD = end-stage renal disease

^aPatients were free of CKD at baseline.

^aPatients were free of CKD at baseline.

Thermal Ablation Versus Active Surveillance

Two studies compared categorical renal functional outcomes between thermal ablation and active surveillance, and also compared continuous outcomes earlier. One study 135 combined both partial nephrectomy and thermal ablation in this arm, without the ability to separate the groups. The other study 165 compared categorical renal functional outcomes between thermal ablation and active surveillance, and also compared continuous outcomes earlier. No patients had chronic kidney disease at followup in the thermal ablation group while 3 percent of patients had chronic kidney disease in the active surveillance group (see Table 35f). The evidence was insuffient (Table 36).

Table 35f. Categorical renal functional outcomes for thermal ablation versus active surveillance

_	No.		Thermal Ablat	ion	Active Surveillance			
Outcome	Studies	No. Patients	No. Outcomes	%. Outcomes	No. Patients	No. Outcomes	%. Outcomes	
CKD Stage ≥IIIa	1	14	0	0	119	4	3	
CKD Stage ≥IIIb	1	14	0	0	68	0	0	
CKD Stage ≥IV	0							
ESRD	0							

CKD = chronic kidney disease; ESRD = end-stage renal disease

^aPatients were free of CKD at baseline.

Table 36. Strength of evidence for renal outcome

Comparison	Key Outcomes ^a	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Partial Nephrectomy Versus Active Surveillance	Continuous renal functional outcomes	2 (524)	High	Direct	Unknown	Imprecise	Undetected	Insufficient One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in GFR change between groups. The evidence was insufficient to determine effectiveness of partial nephrectomy alone.
	Categorical renal functional outcomes	2 (312)	High	Direct	Unknown	Imprecise	Undetected	Insufficient One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in rates of CKD between groups. The evidence was insufficient to determine effectiveness of partial nephrectomy alone.
Partial Nephrectomy Versus Thermal Ablation	Continuous renal functional outcomes	19 (2,867)	Medium	Direct	Inconsistent	Imprecise	Undetected	Low eGFR fell more with partial nephrectomy than with thermal ablation, by an average of 1.0 ml/min/1.73 m2 (95% CI -0.2- 2.1 ml/min/1.73 m2), but the result was not statistically significant and there was significant heterogeneity.
	Categorical renal functional outcomes	11 (1,893)	Medium	Direct	Inconsistent	Imprecise	Undetected	Low No statistically significant differences were seen in rates of CKD stage ≥3, ≥3b, ≥4, or ESRD.

Table 36. Strength of evidence for renal outcome (continued)

Comparison	Key Outcomes ^a	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Radical Nephrectomy Versus Active Surveillance	Continuous renal functional outcomes	2 (334)	Medium	Direct	Consistent	Imprecise	Undetected	Low While results are limited by having only two studies, decline in eGFR was 14 ml/min/1.73 m² less in those assigned active surveillance.
	Categorical renal functional outcomes	2 (471)	Medium	Direct	Consistent	Imprecise	Undetected	Low While results are limited by having only two studies, rates of new onset CKD Stage ≥3 were 3-6% with active surveillance and 40-76% with radical nephrectomy.
Radical Nephrectomy Versus Partial Nephrectomy	Continuous renal functional outcomes	34 (9,221)	Medium	Direct	Consistent	Precise	Undetected	Moderate eGFR fell more with radical than partial nephrectomy, by an average of 3.6 ml/min/1.73 m2 (95% CI 3.2-4.1 ml/min/1.73 m2, , with significant heterogeneity in the magnitude of the difference.
	Categorical renal functional outcomes	24 (11,236)	Medium	Direct	Consistent	Precise	Undetected	Moderate Incidence of all stages of CKD were lower in those undergoing partial nephrectomy compared to radical nephrectomy, with risk 0.39 times lower for CKD stage 3, 0.37 times lower for CKD stage 3b, 0.76 times lower for CKD stage 4, and 0.47 times lower for ESRD. Heterogeneity did exist in the magnitude of the findings.

Table 36. Strength of evidence for renal outcome (continued)

Comparison	Key Outcomes ^a	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Radical Nephrectomy Versus Thermal Ablation	Continuous renal functional outcomes	7 (390)	Medium	Direct	Consistent	Precise	Undetected	Moderate eGFR fell more with radical nephrectomy than with thermal ablation, by an average of 9.9 ml/min/1.73 m2 (95% CI 7.6- 12.3 ml/min/1.72 m2).
	Categorical renal functional outcomes	4 (1,125)	Medium	Direct	Consistent	Precise	Undetected	Moderate Rate of CKD Stage >3 was 3.5 fold higher (95% CI 1.1-12.7) for those receiving radical nephrectomyt. Rates of CKD stage 3b and ESRD were limited to two studies.
Thermal Ablation Versus Active Surveillance	Continuous renal functional outcomes	2 (473)	High	Direct	Unknown	Imprecise	Undetected	Insufficient One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in eGFR change between groups. The evidence was insufficient to determine effectiveness of thermal ablation alone
	Categorical renal functional outcomes	2 (312)	High	Direct	Unknown	Imprecise	Undetected	Insufficient One study combined both partial nephrectomy and cryoablation without the ability to separate the groups. The other study found no difference in rates of CKD between groups. The evidence was insufficient to determine effectiveness of thermal ablation alone.

CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease

^aContinuous renal functional outcomes included change in serum creatinine and/or change in eGFR; categorical renal functional outcomes included incidence of CKD stage 3, 3b, or 4 or incidence of ESRD.

Quality of Life

Four studies reported comparative health-related quality of life outcomes. 80-83 All four studies evaluated radical nephrectomy against partial nephrectomy. There were no studies evaluating comparative health-related quality of life among thermal ablation or active surveillance.

Each study used different health-related quality of life questionnaires, preventing any direct comparison or pooling of data among studies. Three studies were cross-sectional, evaluating health-related quality of life at a single, variable time point after surgery. 81-83 The study by Parker, et al. evaluated quality of life at predetermined time points in a prospective study. 80

Risk of Bias

We used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI).³⁶ Four studies were included in the risk of bias assessment.⁸⁰⁻⁸³ The overall risk of bias was moderate in 1 (25 percent) study and serious in 3 studies. Bias due to confounding was the primary source of bias (Figure 25).

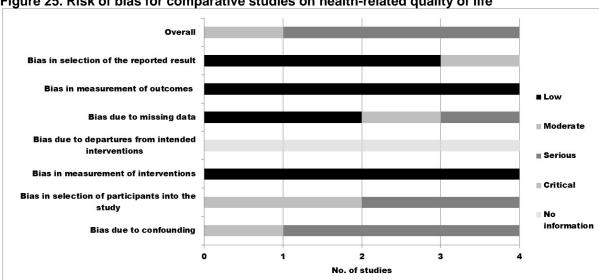


Figure 25. Risk of bias for comparative studies on health-related quality of life

Radical Nephrectomy Versus Partial Nephrectomy

In the study by Parker, et al., prospective health-related quality of life measures were evaluated at baseline and three weeks, as well as at two, three, six, and 12 months following open and laparoscopic radical and partial nephrectomy. ⁸⁰ In this study, validated Medical Outcomes Study Short Form 36 (SF-36) and Cancer Rehabilitation Evaluation System-Short Form (CARES-SF) questionnaires were used.

Better cancer-specific health-related quality of life, as substantiated by lower Cancer Rehabilitation Evaluation System-Short Form scores, was reported in patients undergoing radical nephrectomy. However, in the comparison between radical and partial nephrectomy, no difference was seen in the impact on physical or mental health-related quality of life, intrusive thoughts, avoidance behaviors, or fear of recurrence. Age, type of surgery (i.e., open vs. laparoscopic), and time from surgery were shown to impact health-related quality of life in ways that included physical health, cancer-specific quality of life, intrusive thoughts, avoidance behaviors, and fear of recurrence.

The study by Ficarra, et al.⁸¹ compared the health-related quality of life of 88 patients undergoing radical nephrectomy and 56 undergoing partial nephrectomy at an average 55 months after surgery. This study evaluated general health, hospital anxiety and depression, social problems, and distressing events through validated questionnaires addressing each health-related quality of life domain. The proportion reporting an adverse health-related quality of life outcome and the raw scores are shown in Table 37. The evidence was insufficient (Table 38).

Table 37. Health-related quality of life outcomes reported in the study by Ficara et al.81

		Proportion	Reporting	Questionn			
Outcome	Definition	Radical Nephrectomy	Partial Nephrectomy	Radical Nephrectomy	Partial Nephrectomy	p-Value	
Anxiety	Low	11.4%	1.8%	2.77±2.77	1.79±2.47	0.003	
Depression	Mild	7%	2.3%	2.08±2.32	1.72±2.80	0.01	
General Health	Impaired	12.5%	7%	0.78±1.88	0.50±1.46	0.46	
Social Problems	Present	18%	18%	0.31±0.79	0.46±1.15	0.75	

Note: Definitions of "low," "mild," "impaired," and "present" are arbitrary and defined by the authors.

In the study by Shinohara, et al., 82 51 patients undergoing radical nephrectomy and 15 undergoing partial nephrectomy completed the standardized European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30) questionnaire at a mean 60 and 47 months respectively. Without the evaluation of baseline scores, those undergoing partial nephrectomy demonstrated higher physical functioning scores (p < 0.05) including elements of constipation (p < 0.05), fatigue (p < 0.1), pain (p < 0.1), and sleep (p < 0.1). There were no differences in role, emotional, cognitive or social functioning among groups. Actual scores were not reported in this study.

The study by Gratzke, et al. 83 compared the health-related quality of life of 73 patients undergoing radical nephrectomy and 44 undergoing partial nephrectomy using the standardized, SF36 questionnaire. This study made a distinction between patients undergoing laparoscopic radical nephrectomy (N = 37) and those undergoing open radical nephrectomy (N = 36). Mean SF36 scores did not differ among groups. Mental component scores were 48.3 and 48.0 for patients undergoing radical nephrectomy and 44.5 for patients undergoing partial nephrectomy (p = 0.50). Physical component scores were also similar (48.0, 47.4, and 47.2, respectively, with p =0.97). Overall, health-related quality of life scores were shown to be related to complications regardless of the type of surgery (p < 0.05).

Table 38. Strength of evidence for quality of life

Comparison	Key Outcomes	No. Studies (N)	Study Limitation	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Partial Nephrectomy Versus Active Surveillance	QOL	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Partial Nephrectomy Versus Thermal Ablation	QOL	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Radical Nephrectomy Versus Active Surveillance	QOL	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Radical Nephrectomy Versus Partial Nephrectomy	Comparative Studies	4 (498)	Medium	Direct	Unknown (Each study reports different outcome measures and results are not directly comparable.)	Imprecise	Undetected	Insufficient Conclusions cannot be drawn based on limited number of studies, heterogeneity of outcome measures, and inconsistency of results.
Radical Nephrectomy Versus Thermal Ablation	Comparative Studies	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Thermal Ablation Versus Active Surveillance	Comparative Studies	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies

Perioperative Outcomes

Perioperative outcomes include metrics of the intervention that occur during or immediately following the intervention. These are defined in the PICOTS (Table 1) and include estimated blood loss, blood transfusion rate, conversion to open surgery (if minimally-invasive or percutaneous), conversion to radical nephrectomy (if nephron-sparing approach initially employed), and length of stay.

Thirty-eight studies (with a total of 11,802 patients) addressed perioperative outcomes in comparative studies (see Table 39). Three studies reported perioperative outcomes for all three management strategies (radical nephrectomy, partial nephrectomy, and thermal ablation). No study reported outcomes for active surveillance.

Most of the studies did not detail the perioperative period. Five studies specified a minimal followup and reported outcomes between 30 days and 82 months. 98,102,140,161,180

Perioperative outcomes are summarized in Table 40. Very few studies reported comparative statistics (or p-values) among treatment groups, preventing the reporting of meaningful comparative statistics in this systematic review. Differences were considered clinically meaningful for perioperative outcomes if a reported value or proportion for one treatment modality was 100 percent greater than the contrasting modality, or if a zero value was reported for one of the treatment modalities with a percentage greater than one percent for the other treatment modality.

When compared with radical nephrectomy, partial nephrectomy had a higher blood transfusion rate and conversion to open surgery, while estimated blood loss and length of stay were similar. Only three studies reported comparative perioperative outcomes for radical nephrectomy and thermal ablation, limiting the conclusions that could be drawn from these data. ^{161,162,181} When compared with thermal ablation, partial nephrectomy had higher blood transfusion rates, conversions to open surgery, and conversions to radical nephrectomy, as well as longer length of hospital stay.

Meta-analyses were performed on the blood transfusion data, as a significant number of studies reported this outcome. Data were recorded in a similar fashion and the analysis provided a meaningful outcome. Meta-analyses were not performed for estimated blood loss, conversions to open surgery, conversions to radical nephrectomy, or length of stay. Blood transfusion rate was determined to be a more valuable, clinically relevant outcome measure than estimated blood loss. Conversions to open surgery or radical surgery were a low frequency occurrence, and few studies reported these outcomes reliably. Conversion to open surgery does not necessarily indicate a complication or "failure of treatment" (hence why it is not included in the harms section) and may have been in the best interest of the patient. However, the rate of conversions to open surgery is an important perioperative metric to note for minimally invasive and percutaneous surgeries. Length of hospital stay varied dramatically based on the technique used, whether minimally invasive or open technique, as well as by geographic location – the hospital stays in European centers were much longer than stays in the United States. Due to heterogeneity in the data based on a number of confounding variables, the conclusions to be drawn from a meta-analysis of length of stay were of minimal clinical significance – therefore meta-analysis was not performed.

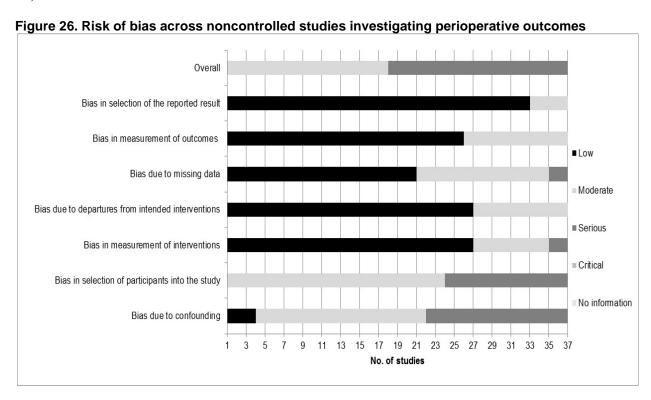

No study evaluated predictors of perioperative outcomes.

Table 39. Number of studies reporting perioperative outcomes by management option

Comparison (Number of Patients)	Number of Studies
Radical Nephrectomy (4,089) versus Partial Nephrectomy (2,887)	24 studies ^{82,83,90,98,101-103,113-116,118-120,140,161,162,167,168,170,} 173,176,181,182
Radical Nephrectomy (11103) versus Thermal Ablation (311)	3 studies ^{161,162,181}
Partial Nephrectomy (2,008) versus Thermal Ablation (1,404)	16 studies ^{123,125,126,128-133,137,138,161,162,179-181}

Risk of Bias

We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies.³⁵ For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI). One RCT examined perioperative outcomes with results reported in two articles ^{89,90} with an overall unclear risk of bias. This study had low risk of bias regarding sources of bias, selective outcome reporting, and incomplete data reporting. However, there was unclear bias regarding the assessing blinding by outcome, blinding of outcome assessors, blinding of personnel, allocation concealment, and random sequence generation. The other studies were observational in design. For those observational studies, the risk of bias was graded as moderate or severe. Bias in selection of participants and bias due to confounding were the primary sources of bias. Overall risk of bias in the included studies for perioperative outcomes was moderate to serious (Figure 26).

Estimated Blood Loss

Radical Nephrectomy Versus Partial Nephrectomy

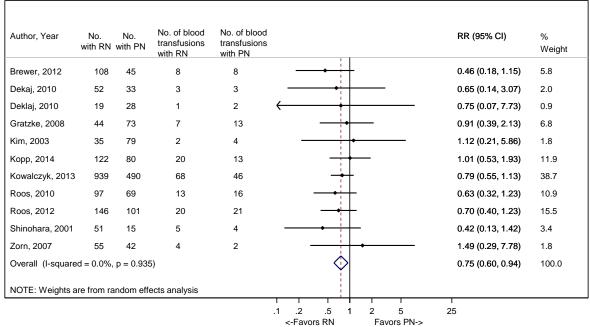
Seventeen studies evaluated estimated blood loss with radical nephrectomy and partial nephrectomy. 82,83,90,101-103,115,118-120,140,167,168,170,173,176,182 While the median estimated blood loss was similar across studies, partial nephrectomy had a higher upper boundary of estimated blood loss in many but not all of the studies. 101-103,115,120,140,176 Three studies demonstrating estimated blood loss of greater than or equal to 1500 cc for partial nephrectomy also demonstrated an estimated blood loss of greater than 1000 cc for radical nephrectomy. 101,115,119

Radical Nephrectomy Versus Thermal Ablation

No study evaluated estimated blood loss for radical nephrectomy compared with thermal ablation.

Partial Nephrectomy Versus Thermal Ablation

In the nine studies comparing partial nephrectomy and thermal ablation, the median estimated blood loss was lower for thermal ablation than for partial nephrectomy. ^{125,126,129,130,132,133,137,138,179} In addition, two of these studies demonstrated excessive blood loss for partial nephrectomy with upper ranges of 3900 cc and 4500 cc, respectively. ^{126,138}


Blood Transfusion Rate

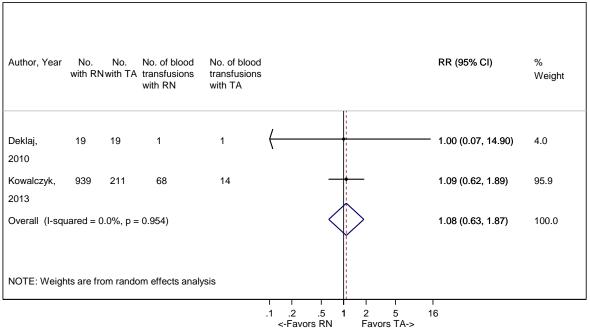
Radical Nephrectomy Versus Partial Nephrectomy

Thirteen studies reported blood transfusion rates. \$2,83,98,102,103,113,114,118,119,161,162,170,173 The average rate of blood transfusion was highest for partial nephrectomy compared with radical nephrectomy (16.3 percent vs. 7.3 percent, respectively). Two studies reported the number of units transfused and not the number/proportion of patients receiving blood transfusions. \$98,102\$ Neither of these studies showed a difference between units transfused for radical nephrectomy versus those transfused for partial nephrectomy (0.8 versus 1.1 units, \$98,0.85\$ (range 0–3) versus 1.7 (range 0–4) units, \$102\$ respectively].

Eleven studies contained data for meta-analysis (Figure 27). Seven of the 11 studies demonstrated a higher blood transfusion rate for partial nephrectomy, although no individual study demonstrated statistical significance. In the meta-analysis, the risk ratio for blood transfusion favored radical nephrectomy (risk ratio: 0.75; 95% CI, 0.60 to 0.94).

Figure 27. Meta-analysis of the blood transfusion rate for radical nephrectomy versus partial nephrectomy

Risk Ratio and 95% Confidence Intervals of Blood Transfusion Events

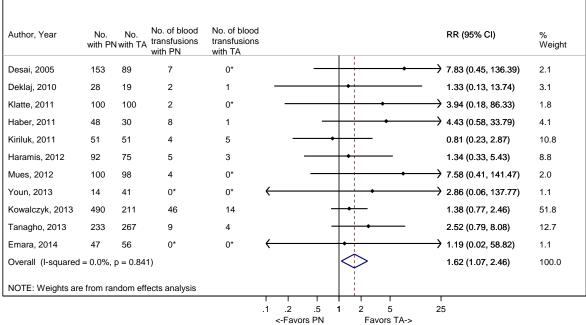

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Five studies comparing radical nephrectomy and partial nephrectomy analyzed patients by clinical stage subgroups. 82,119,161,162,173 Two studies 161,162 evaluated blood transfusion rates in patients with clinical stage T1a tumors (≤ 4 cm) with results that favored radical nephrectomy but did not reach statistical significance [risk ratio:0.79 (95% CI 0.55 to 1.12), see Appendix F]. Three studies 82,119,173 evaluated blood transfusion rates in patients with clinical stage T1 tumors (≤ 7 cm) with results that favored radical nephrectomy but did not reach statistical significance [risk ratio:0.75 (0.33–1.75), figure in appendix F].

Radical Nephrectomy Versus Thermal Ablation

In the two studies comparing radical nephrectomy and thermal ablation, the median blood transfusion rate was 5.8 percent (range: 5.3 percent–9.2 percent; multiple arm study) and 6.0 percent (5.3–6.6 percent), respectively. Meta-analysis failed to demonstrate a difference in blood transfusion rates between radical nephrectomy and thermal ablation [risk ratio: 1.08 (0.63–1.87), see Figure 28].

Figure 28. Meta-analysis of the blood transfusion rate for radical nephrectomy versus thermal ablation


Risk Ratio and 95% Confidence Intervals of Blood Transfusion Events

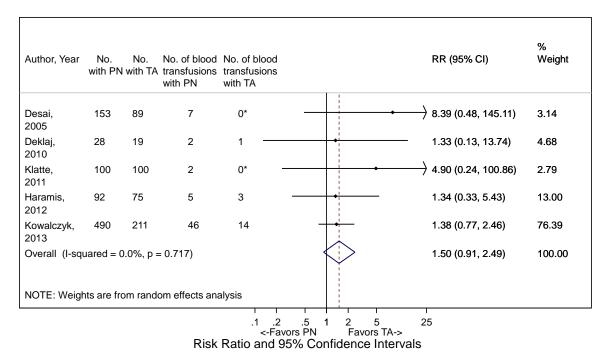
N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Partial Nephrectomy Versus Thermal Ablation

In the 11 studies evaluating blood transfusion between partial nephrectomy and thermal ablation, ^{125,126,128,132,133,161,179} ^{123,131,137,162} the median average transfusion rates were 4.6 percent and. 0.4 percent, respectively – corresponding to data regarding estimated blood loss. All 11 studies were included in the meta-analysis. In 10 of the studies, blood transfusion rates were higher for patients undergoing partial nephrectomy, although no individual study demonstrated a statistically significant difference. In meta-analysis, the relative risk of blood transfusion favored thermal ablation [risk ratio:1.62 (1.07–2.46), see Figure 29)].

Figure 29. Meta-analysis showing blood transfusion rate for Partial Nephrectomy versus thermal ablation

Risk Ratio and 95% Confidence Intervals of Blood Transfusion Events


N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio

Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

*Correction factor of .5 was applied.

Five studies evaluated blood transfusion rates only in patients with clinical stage T1a tumors (≤4 cm). While the meta-analysis failed to reach traditional levels of statistical significance, the blood transfusion rates also favored thermal ablation in this subgroup [risk ratio:1.50 (0.91–2.49), see Figure 30].

Figure 30. Meta-analysis showing blood transfusion rate for partial nephrectomy versus thermal ablation in patients with clinical stage T1a tumors

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio

Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom
of the graph indicates the 95 percent confidence interval.

*Correction factor of .5 was applied.

Conversion to Open Surgery

Very few patients in 15 studies experienced conversions from laparoscopic or percutaneous surgery to open surgery.

Radical Nephrectomy Versus Partial Nephrectomy

Five studies compared radical nephrectomy with partial nephrectomy, and the median average conversion rates were 1.0 percent (range: 0–2.9 percent) and 3.5 percent (0–9.1 percent), respectively. 118,120,162,170,181

Radical Nephrectomy Versus Thermal Ablation

In the two studies that compared thermal ablation with radical nephrectomy, no patients undergoing thermal ablation were converted to open surgery. In these studies, the rate of conversion to open surgery for partial nephrectomy was 3.6 percent, which is consistent with the formal comparative studies of radical nephrectomy with partial nephrectomy.

Partial Nephrectomy Versus Thermal Ablation

In the eight studies that compared thermal ablation with partial nephrectomy, no patients undergoing thermal ablation were converted to open surgery. In these studies, the rate of

conversion to open surgery for radical nephrectomy was 1.5 percent, which is consistent with the formal comparative studies of radical nephrectomy with partial nephrectomy.

Conversion to Radical Nephrectomy

Very few patients in four studies converted from partial nephrectomy or thermal ablation to radical nephrectomy. The median average rate of conversion to radical nephrectomy from partial nephrectomy was 2.9 percent in two studies comparing partial nephrectomy with radical nephrectomy, ^{119,170} and 3.8 percent in two studies comparing partial nephrectomy with thermal ablation. ^{132,133} No study reported a conversion of thermal ablation to radical nephrectomy in the perioperative period.

Length of Stay

Radical Nephrectomy Versus Partial Nephrectomy

Fourteen studies compared length of hospital stay for radical nephrectomy with length of stay for partial nephrectomy. ^{83,98,102,103,113,116,118-120,161,162,173,176,182} The length of stay following surgery was similar in patients in these studies (7.0 days for both).

Radical Nephrectomy Versus Thermal Ablation

Two studies compared length of hospital stay for radical nephrectomy with length of stay for thermal ablation. Length of stay favored thermal ablation over radical nephrectomy (3.8 days versus 5.3 days) and partial nephrectomy (1.7 days versus 3.9 days).

Partial Nephrectomy Versus Thermal Ablation

Twelve studies compared hospital length of stay for partial nephrectomy with length of stay for thermal ablation. ^{126,128-130,132,133,137,138,161,162,179,180} The length of stay favored thermal ablation compared with partial nephrectomy (1.8 days versus 3.9 days).

Table 41 provides strength of evidence domains for perioperative outcomes.

Table 40. Comparative perioperative outcomes for radical nephrectomy, partial nephrectomy, and thermal ablation

Outcome	No. Studies	No. Patients	Median Value	Median Range	Min Range	Max Range	No. Patients	Median Value	Median Range	Min Range	Max Range
			Radi	cal Nephrecto	my			Part	tial Nephrecto	ny	
Estimated blood loss	17	2,236	225cc	20-895cc	0-100cc	390- 1900cc	1,844	257cc	60-600cc	5-150cc	150- 3400cc
Blood transfusion rate	13	1,819	7.3%	0.9-27.0%	NA	NA	1,102	16.3%	0.8-43.8%	NA	NA
Conversion to open surgery	5	801	1.0%	0-2.9%	NA	NA	476	3.5%	0-9.1%	NA	NA
Conversion to radical nephrectomy	2	NA	NA	NA	NA	NA	124	2.9%	1.3-4.4%	NA	NA
Length of stay	14	2,229	7.0 days	1.8-9.2 davs	1-5 days	9-32 days	1,364	7.0 days	1-9.6 days	1-7 days	2-19 days
			Radi	cal Nephrecto	my	Thermal ablation					
Estimated blood loss	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Blood transfusion rate	2	958	5.8%	5.3-9.2%	NA	NA	230	6.0%	5.3-6.6%	NA	NA
Conversion to open surgery	2	568	1.5%	0-2.9%	NA	NA	100	0.0%	0.0%	NA	NA
Conversion to radical nephrectomy	0	NA	NA	NA	NA	NA	NR	NR	NR	NA	NA
Length of stay	2	958	5.3 days	3.9-5.4 days	NR	NR	230	3.8 days	2.3-5.3 days	NR	NR
			Part	ial Nephrector	my		Thermal Ablation				
Estimated blood loss	9	867	200cc	94-408cc	10-50cc	600- 4500cc	906	66cc	24-162cc	0-10cc	300- 800cc
Blood transfusion rate	11	1,338	4.6%	0-16.7%	NA	NA	967	0.4%	0-9.8%	NA	NA
Conversion to open surgery	8	927	3.6%	0.7-8.3%	NA	NA	560	0.0%	0.0%	NA	NA
Conversion to radical nephrectomy	2	139	3.8%	3.3-4.3%	NA	NA	131	0.0%	0.0%	NA	NA
Length of stay	11	1,245	3.9 days	1.3-12.3 days	1-1.3 days	5-21 days	975	1.8 days	0.7-8.3 days	0-1 days	1-12 days

No. = number; Min = minimum; Max = maximum

Note: Differences were considered potentially clinically meaningful (highlighted in bold) if a reported value or proportion for one treatment modality was 100% greater than the other treatment modality, or if a zero value was reported for one of the treatment modalities and a percentage greater than 1% was reported for the other modality.

Table 41. Strength of evidence domains for perioperative outcomes

Comparison	Key Outcomes	No. Studies (N)	Study limitations	Directness	Consistency	Precision	Reporting Bias	Strength of evidence Finding
Partial Nephrectomy Versus Active Surveillance	Perioperative Outcomes	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Partial Nephrectomy Versus Thermal Ablation	Perioperative Outcomes	15 (3,356)	Medium	Direct	Consistent	Precise	Undetected	Moderate Estimated blood loss, transfusion rate, rate of conversions, and length of hospital stay favored thermal ablation consistently.
Radical Nephrectomy Versus Active Surveillance	Perioperative Outcomes	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Radical Nephrectomy Versus Partial Nephrectomy	Perioperative Outcomes	23 (6,587) RCT: 1 Retrospective: 22	Medium RCT: low Retro: medium	Direct	Consistent	Precise	Undetected	Moderate Partial nephrectomy demonstrated consistently higher estimated blood loss and transfusion rate with similar conversion to open rate and length of hospital stay.
Radical Nephrectomy Versus Thermal Ablation	Perioperative Outcomes	3 (11,404)	Medium	Direct	Inconsistent	Precise	Undetected	Low No study evaluated estimated blood loss. Blood transfusion rate was similar, and length of hospital stay favored thermal ablation. However, no more than two studies reported each outcome.
Thermal Ablation Versus Active Surveillance	Perioperative Outcomes	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies

Harms Outcomes

Harms were defined as adverse outcomes directly related to the management strategy and categorized as urological or nonurological in nature (specified in PICOTS, Table 1). While temporality was not strictly defined, harms were considered as short-term "complications" and not long-term sequelae of a given management strategy.

Forty-six cohort studies (with a total of 18,009 patients) and one RCT (reported in 2 articles) addressed harms across the different management strategies (Table 42). Six studies compared three management strategies, ^{160-162,164,180,181} and no study reported adverse events or harms of active surveillance compared with other management strategies.

Harms were evaluated as urologic and nonurologic complications. However, inconsistencies in data collection and reporting across studies prevented the estimation of overall urologic and nonurologic complications. For instance, the same specific complications were not reported among all studies and, as a result, overall complication rates could not be calculated without assuming zero complication rates for a number of studies. In addition, a single patient could experience more than one complication, and studies were inconsistent about reporting rates of multiple complications per patient. Differences were considered clinically meaningful differences for comparative harms if a reported value or proportion for one treatment modality was 100 percent greater than the contrasting modality, or if a zero value was encountered in one of the treatment modalities, and a proportion greater than one percent was present in the other modality. Clinically meaningful differences in specific urologic and nonurologic complications are detailed in the text that follows.

Meta-analyses were performed for major and minor complications between treatment strategies. A meta-analysis was also performed for acute kidney injury, as this specific urologic complication was reported almost uniformly across studies and has implications for renal functional outcomes (see the Renal Functional Outcomes section of this report). Inconsistencies in reporting of specific urologic and nonurologic complications prevented meta-analyses of specific complications, other than acute kidney injury and composite urologic or nonurologic complications.

A number of studies examined management strategy and a number of additional variables as predictors of harms. These findings are summarized in the sections below (see Tables 42 and 43).

Table 42. Number of studies reporting harms outcomes by management comparison

rabio izi itaiiiboi oi otaaloo lopoitiilg ilaiiil	- careerines by management companies.
Comparison (Number of Patients)	Number of Studies
Radical Nephrectomy (8,859) versus Partial Nephrectomy (8,106)	32 studies ^{82,83,90,91,94,98,102-105,111,113-116,118-120,140,160-162,} 164,167,169,170,176,181-185
Radical Nephrectomy (1,581) versus Thermal Ablation (419)	7 studies ^{134,160-162,164,180,181}
Partial Nephrectomy (2,215) versus Thermal Ablation (1,531)	21 studies ^{94,122-126,128-133,137,138,160-162,164,179-181}

Most studies referenced a perioperative time when evaluating harms, but did not reference a specific followup time. However, in the six studies that included a followup period, the length of followup ranged from 30 days to 3 years. 94,102,130,137,161,183

Risk of Bias

We used the Cochrane Collaboration Tool for assessing the risk of bias of controlled studies.³⁵ For nonrandomized studies of treatment interventions, we used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI).³⁶ One RCT examined harms, with reports in two articles^{89,90} with an overall unclear risk of bias. This study had low risk of bias regarding sources of bias, selective outcome reporting, and incomplete data reporting. However, there was unclear bias regarding the assessing blinding by outcome, blinding of outcome assessors, blinding of personnel, allocation concealment and random sequence generation. The remainder of the studies were observational in design. For those observational studies, the risk of bias was graded as moderate or severe. Bias in selection of participants and bias due to confounding were the primary sources of bias. The overall risk of bias in studies on perioperative outcomes are detailed in Figure 31.

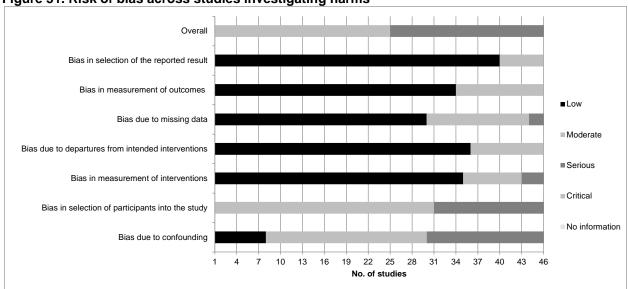
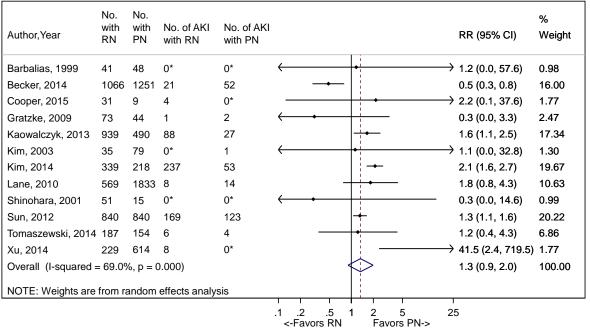


Figure 31. Risk of bias across studies investigating harms

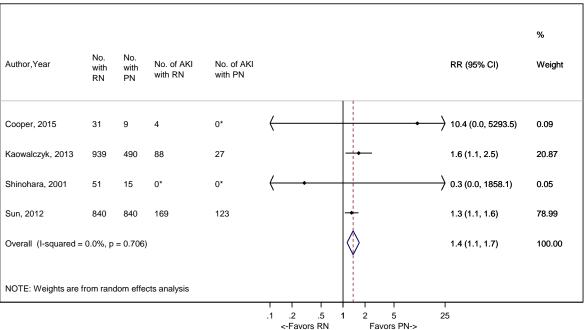

Radical Nephrectomy Versus Partial Nephrectomy

Thirty-two comparative studies (including a total of 16,965 patients) compared the harms of radical nephrectomy with those of partial nephrectomy. The only RCT comparing radical nephrectomy with partial nephrectomy demonstrated a slightly higher rate of severe bleeding in patients undergoing partial nephrectomy (3.1 percent versus 1.2 percent respectively), higher rates of urinary fistula (i.e. urinary leak; 4.4 percent versus 0 percent respectively) and reoperative complications (4.4 percent versus 2.4 percent respectively) for partial nephrectomy. Rates of pleural damage (11.5 percent versus 9.3 percent respectively) and splenic injuries (0.4 percent versus 0.4 percent respectively) were similar among groups. Comparative statistics were not provided in the study reports. 90,91

While overall rates of urologic and nonurologic complications were similar between radical nephrectomy and partial nephrectomy, a number of meaningful differences were observed. Rates of specific urologic complications including renal abscess, subsequent intervention, ureteral injury, urine leak, and other urological complications were higher for partial nephrectomy; rates of respiratory complications and major Clavien complications were higher for partial

nephrectomy. Twelve studies reported rates of acute kidney injury. 82,83,94,98,105,119,161,164,169,182-184 Of note, definitions of acute kidney injury varied by study and no attempt to reconcile differences among studies was undertaken. The meta-analysis in this section reflects the author's definition of acute kidney injury from each study. No differences were observed between studies comparing radical nephrectomy and partial nephrectomy [risk ratio: 1.3 (0.9–2.0) see Figure 32]. The strength of evidence was low.

Figure 32. Meta-analysis of the incidence of acute kidney injury after radical nephrectomy versus partial nephrectomy


Risk Ratio and 95% Confidence Intervals of Acute Kidney Injury

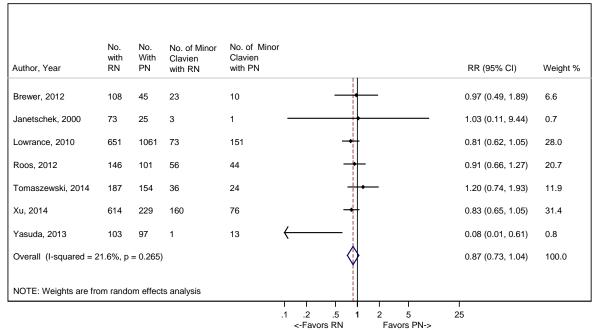
N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

*Correction factor of .5 was applied.

Four studies reported rates of acute kidney injury in patients with clinical stage T1a tumors^{82,161,164,169} and found that rates of acute kidney injury were higher in patients undergoing radical nephrectomy (RR 1.37 with 95% CI 1.13 to 1.66) (see Figure 33). This relationship was not observed in the three studies that only evaluated clinical stage T1 tumors (risk ratio 0.87 with 95% CI 0.29 to 2.63).^{105,119,183} Excluding studies with only cT1a patients, no differences were observed between studies comparing radical nephrectomy and partial nephrectomy (RR: 1.18 with 95% CI 0.29 to 4.83) [see appendix F].

Figure 33. Meta-analysis of the incidence of acute kidney injury after radical nephrectomy versus partial nephrectomy in patients with clinical stage T1a tumors

Risk Ratio and 95% Confidence Intervals of Acute Kidney Injury

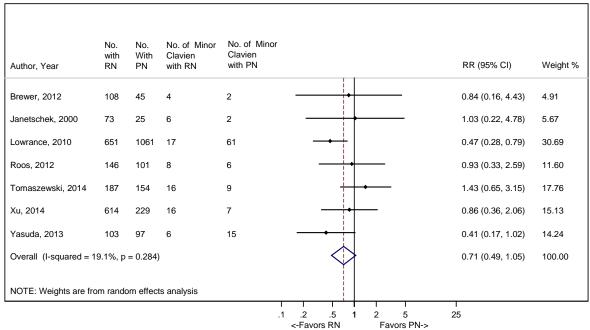

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio
The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

*Correction factor of .1 was applied.

Minor and Major Complications

Seven studies evaluated minor and major operative complications. 114,120,167,170,182,184,185 Rates of minor complications (Clavien I-II) were similar between radical nephrectomy and partial nephrectomy, as confirmed in meta-analysis (Figure 34). Two studies 114,184 evaluated complications in patients with clinical stage T1b or greater tumors (≥ 4 cm), and two studies 120,167 evaluated complications in patients with clinical stage T1 tumors (≤ 7 cm). Neither subgroup analysis demonstrated a difference in rates of minor complications (RR 1.02 with 95% CI 0.76 to 1.31, and RR 0.28 with 95% CI 0.02 to 3.31, respectively) [see Appendix F].

Figure 34. Meta-analysis of the incidence of minor Clavien complications associated with radical nephrectomy versus partial nephrectomy



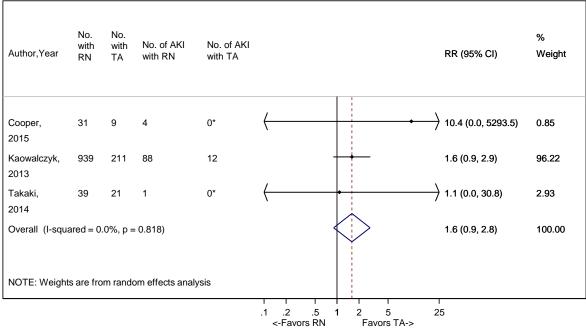
Risk Ratio and 95% Confidence Intervals Minor Clavien Complications

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

In these seven studies, major complications (Clavien III-IV) occurred in a median of 2.8 percent of patients undergoing radical nephrectomy and 5.9 percent of patients undergoing partial nephrectomy (Table 43). In meta-analysis, the rate of major complications favored partial nephrectomy, however it did not reach traditional levels of statistical significance (RR 0.71 with 95% CI 0.49 to 1.05; see Figure 35). Rates of major complications in the two studies of patients with clinical stage T1b tumors^{114,184} were not significantly different between radical and partial nephrectomy (RR 1.22 with 95% CI 0.65 to 2.28; see Appendix F]. While traditional levels of statistical significance were not met, meta-analysis of the two studies of patients with clinical stage 1 tumors, ^{120,167} indicated that rates of major complications may favor radical nephrectomy (RR 0.52 with 95% CI 0.24 to 1.14; see Appendix F).

Figure 35. Meta-analysis of the incidence of major Clavien complications associated with radical nephrectomy versus partial nephrectomy

Risk Ratio and 95% Confidence Intervals Major Clavien Complications


N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval.

Radical Nephrectomy Versus Thermal Ablation

Seven studies (with a total of 2,000 patients) compared the harms of radical nephrectomy with the harms of thermal ablation. ^{134,160-162,164,180,181} When considering urologic complications, the rate of acute kidney injury for radical nephrectomy and thermal ablation were 11.7 percent and 0 percent respectively. In addition, bleeding rates (including hematuria and hemorrhage) for radical nephrectomy and thermal ablation were zero percent and 3.7 percent respectively. In the one study reporting rate of urine leak, no patient undergoing radical nephrectomy and only one patient (3.7 percent) undergoing thermal ablation experienced a urine leak. ¹⁸⁰ Non-urologic complications, including cardiovascular, gastrointestinal, respiratory and wound complications, were lower for thermal ablation. Median rates of respiratory complications were 10.2 percent for radical nephrectomy and 4.0 percent for thermal ablation, while rates of cardiovascular, gastrointestinal, and wound complications were zero for thermal ablation.

Three studies^{134,161,164} reported rates of acute kidney injury, showing that the rates were lower for thermal ablation but did not reach traditional levels of statistical significance (risk ratio 1.6 with 95% CI 0.9 to 2.80; see Figure 36]. The strength of evidence was low.

Figure 36. Meta-analysis of the incidence of acute kidney injury associated with radical nephrectomy versus thermal ablation

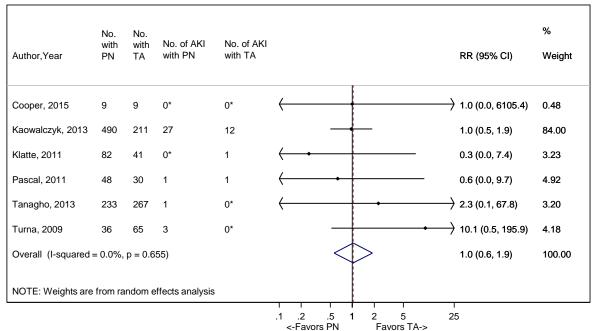
Risk Ratio and 95% Confidence Intervals of Acute Kidney Injury

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio

Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom
of the graph indicates the 95 percent confidence interval.

*Correction factor of .5 was applied.

Only one study addressed minor and major procedural complications;¹³⁴ and therefore a meta-analysis was not performed. While major complication (Clavien III-IV) rates were similar in patients undergoing radical nephrectomy and thermal ablation, rates of minor complications (Clavien I-II) were 16.0 percent for thermal ablation and 2.6 percent for radical nephrectomy. No comparative study reported deaths after radical nephrectomy or thermal ablation (see Table 44).

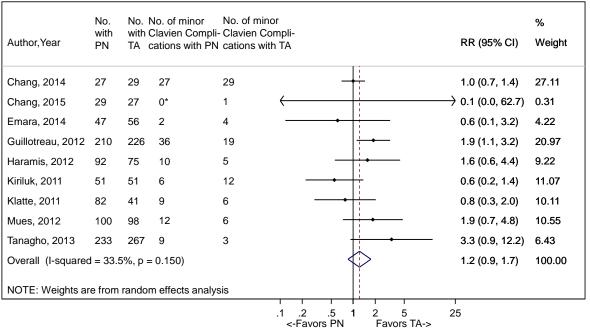

Partial Nephrectomy Versus Thermal Ablation

Twenty-one studies (including a total of 3,746 patients) compared the harms of partial nephrectomy with the harms of thermal ablation. Median rates of harms were similarly low between partial nephrectomy and thermal ablation, with the exception of other urological complications, which in one study¹³⁸ were 25 percent for partial nephrectomy and 5.9 percent for thermal ablation. Rates of acute kidney injury (2.1 versus 0 percent respectively), intraoperative injuries (9.4 versus 3.2 percent respectively), and urine leak (2.6 versus 0 percent respectively) favored thermal ablation in these studies. Rates of ureteral injury were higher in thermal ablation (1.8 versus 0 percent respectively) – albeit a small sample size. In addition, loss of kidney (0 versus 2.6 percent respectively) and urinary tract infection (0 versus 2 percent respectively) favored partial nephrectomy (Table 45).

When considering nonurologic complications, cardiovascular, hematologic, and respiratory complications were higher for patients undergoing partial nephrectomy, while patients undergoing thermal ablation had higher rates of infection and wound complications.

While a crude evaluation of acute kidney injury indicated higher rates for patients undergoing partial nephrectomy (2.1 versus 0 percent respectively), in a meta-analysis of six studies reporting rates of acute kidney injury, ^{123,125,137,138,161,164} no difference was observed (risk ratio 1.0 with 95% CI 0.6 to 1.9; see Figure 37). The strength of evidenc was low (Table 46).

Figure 37. Meta-analysis of the incidence of acute kidney injury associated with partial nephrectomy versus thermal ablation

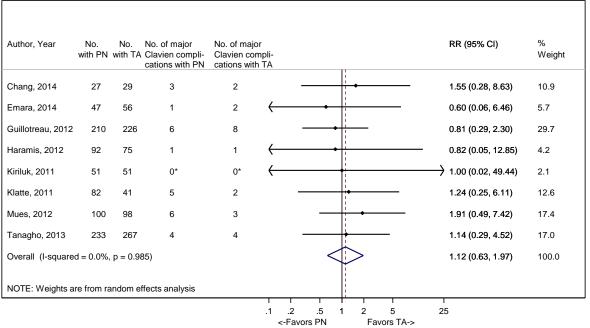


Risk Ratio and 95% Confidence Intervals of Acute Kidney Injury

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio
Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom
of the graph indicates the 95 percent confidence interval.
*Correction factor of .5 was applied.

Rates of minor and major complications were similar in the nine studies comparing partial nephrectomy and thermal ablation (Figures 38 and 39). Four studies ^{123,129,133,164} evaluated minor and major complications only in patients with clinical stage T1a tumors; in meta-analyses, there were no differences in rates of minor (risk ratio 1.48 with 95% CI 0.90 to 2.45; see Appendix) or major complications (risk ratio 0.91 with 95% CI 0.40 to 2.09; see Appendix F). There were no reported deaths in any of the studies comparing partial nephrectomy with thermal ablation.

Figure 38. Meta-analysis of the incidence of minor Clavien complications associated with partial nephrectomy versus thermal ablation



Risk Ratio and 95% Confidence Intervals Minor Clavien Complications

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio

Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom
of the graph indicates the 95 percent confidence interval.

Figure 39. Meta-analysis of the incidence of major Clavien complications associated with partial nephrectomy versus thermal ablation

Risk Ratio and 95% Confidence Intervals of Major Clavien Complications

N = number; RN = radical nephrectomy; PN = partial nephrectomy; TA = thermal ablation; RR = risk ratio Note: The width of the horizontal lines represents the 95 percent confidence intervals for each study. The diamond at the bottom of the graph indicates the 95 percent confidence interval for the random-effects pooled estimate. *Correction factor of .5 was applied.

Table 43. Harms in comparative studies of radical nephrectomy and partial nephrectomy

Commission		Na		Radical N	lephrectomy			Partial N	ephrectomy	
Complication Type	Harm	No. Studies	Patients w/ Event	Total Patients	Median %	% Range	Patients w/ Event	Total Patients	Median %	% Range
Urologic	Renal abscess	1	0	28	0.0%	0%	1	52	1.9%	1.90%
Complications	Acute kidney injury	17	569	5,245	1.6%	0-70.1%	277	5,249	1.4%	0-24.3%
	Bleeding (w or w/out transfusion)	18	110	2,787	1.9%	0-38.7%	128	2,458	3.7%	0-26.7%
	Intraoperative injury	4	8	393	1.9%	0-5.7%	7	382	0%	0-10.7%
	Subsequent intervention	1	0	940	0.0%	0%	12	490	1.9%	0-3.8%
	Ureteral injury	3	8	895	0.0%	0-1.3%	10	291	0.6%	0-16.1%
	Urinary tract infection	1	3	307	0.3%	0-0.6%	1	229	0.3%	0-0.5%
	Urine leak	15	17	1,723	0.0%	0-9.1%	77	2,141	2.8%	0-20.5%
	Other urologic complications	4	6	1,715	0.6%	0-13.0%	2	1,613	1.6%	0-20.0%
Non-urologic	Cardiovascular	16	134	3,506	1.9%	0-42.2%	91	3,162	3.0%	0-11.1%
Complications	Gastrointestinal	12	266	2,489	2.0%	0-23.1%	215	2,615	2.2%	0-14.3
	Hematologic	9	24	2,262	0.2%	0-5.1%	27	2,485	0%	0-4.8%
	Infectious disease	8	177	2,273	1.9%	0-18.0%	194	2,364	1.1	0-15.0%
	Neurologic	8	12	1,986	0.2%	0-5.7%	12	580	0%	0-9.7%
	Respiratory	16	432	3,633	1.1	0-45.5%	361	3,202	2.4%	0-28.8
	Wound complications	11	60	3,020	1.4%	0-4.2%	42	2,214	0.8%	0-4.9%
Complication Severity	Minor (Clavien I-II)	7	329	1,774	18.7%	11-31.5%	308	1,667	24.1%	13.4- 43.6%
-	Major (Clavien III-IV)	7	56	1,774	2.8%	1.0-8.6%	89	1,667	5.9%	0-6.2%
	Death	3	4	1,519	0%	0-0.5%	0	1,436	0.0%	0%

Note: Differences were considered potentially clinically meaningful (highlighted in bold) if a reported value or proportion for one treatment modality was 100 percent greater than the other treatment modality, or if a zero value was reported for one of the treatment modalities and a percentage greater than 1 percent was reported for the other modality.

Table 44. Harms in comparative studies of radical nephrectomy and thermal ablation

Complication	•	No.		Radical N	ephrectomy			Therma	l Ablation	
Туре	Harm	Studies	Patients w/ Event	Total Patients	Median %	% Range	Patients w/ Event	Total Patients	Median %	% Range
Urologic Complications	Acute kidney injury	4	113	1,009	11.7%	2.6- 12.8%	12	241	0%	0-5.8%
	Bleeding (w or w/out transfusion)	4	4	132	0	0-4%	8	135	3.7%	0-28.5%
	Intraoperative injury	1	1	19	5.3%	5.3%	1	19	5.3%	5.3%
	Subsequent intervention	1	0	939	0.0%	0%	0	211	0.0%	0.0%
	Urine leak	1	0	52	0.0%	0%	1	27	3.7%	3.7%
Nonurologic	Cardiovascular	2	13	991	2.5%	1.9-3.0%	0	211	0.0%	0.0%
Complications	Gastrointestinal	1	1	39	2.6%	2.6%	0	21	0.0%	0.0%
	Respiratory	2	210	1,032	10.2%	0-25.1%	28	283	4%	0-12.8%
	Wound complications	1	14	939	1.7%	0-3.4%	0	211	0.0%	0.0%
Complication	Minor (Clavien I-II)	1	1	39	2.6%	2.6%	4	21	16.0%	16.0%
Severity	Major (Clavien III-IV)	1	2	39	5.1%	5.1%	2	21	8.0%	8.0%
	Death	NR	NR	NR	NR	NR	NR	NR	NR	NR

Note: Differences were considered potentially clinically meaningful (highlighted in bold) if a reported value or proportion for one treatment modality was 100% greater than the other treatment modality, or if a zero value was reported for one of the treatment modalities and a percentage greater than 1% was reported for the other modality.

Table 45. Harms in comparative studies of partial nephrectomy and thermal ablation

Complication				Partial Ne	phrectomy			Therma	l Ablation	
Туре	Harm	No. Studies	Patients w/ Event	Total Patients	Median %	% Range	Patients w/ Event	Total Patients	Median %	% Range
Urologic	Renal Abscess	1	1	153	0.7%	0.7%	0	78	0.0%	0.00%
Complications	Acute kidney injury	7	87	1,116	2.1%	0-24.3%	13	623	0.0%	0-5.8%
	Bleeding (w or w/out transfusion)	11	39	865	2.4%	0-14.5%	21	625	2.4%	0-9.8%
	Intraoperative injury	2	11	128	9.4%	8-10.7%	1	117	3.2%	0-5.3%
	Loss of kidney	1	0	50	0.0%	0.0%	1	38	2.6%	2.6%
	Subsequent intervention	3	19	743	3.5%	0-6.0%	4	392	2.5%	0-3.7%
	Ureteral injury	5	3	312	0.7%	0-2.1%	3	243	1.8%	0-2.6%
	Urinary tract infection	1	0	51	0.0%	0.0%	1	51	2.0%	2.0%
	Urine leak	8	12	624	2.6%	0-4.2%	2	508	0.0%	0-3.7%
	Other urologic complications	1	9	36	25.0%	25.0%	4	65	5.9%	3.4-8.3%
Nonurologic	Cardiovascular	5	7	957	2.0%	0.9-3.0%	2	586	0.0%	0-0.7%
Complications	Gastrointestinal	5	7	548	1.3%	0-3.0%	7	460	1.3%	1.1-5.0%
	Hematologic	6	13	543	3.4%	0.9-6.3%	3	480	0.0%	0-3.7%
	Infectious disease	4	0	119	0.0%	0.0%	2	178	0.9%	0-3.3%
	Respiratory	9	137	1,145	3.3%	0-28.8%	33	793	0.2%	0-12.8%
	Wound complications	5	16	778	0.0%	0-3.7%	3	436	1.9%	0-2.5%
Complication	Minor (Clavien I-II)	9	48	663	11.0%	0-12.0%	37	375	6.9%	1.1-23.5%
Severity	Major (Clavien III-IV)	9	19	612	3.9%	1.1-6.9%	15	632	3.0%	1.3-11.1%
	Death	NR	NR	NR	NR	NR	NR	NR	NR	NR

Note: Differences were considered potentially clinically meaningful (highlighted in bold) if a reported value or proportion for one treatment modality was 100% greater than the other treatment modality, or if a zero value was reported for one of the treatment modalities and a percentage greater than 1% was reported for the other modality.

Table 46. Strength of evidence domains for comparative studies of harms

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Partial Nephrectomy Versus Active Surveillance	Harms	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies
Partial Nephrectomy Versus Thermal Ablation	Harms	21 (3,746)	Medium	Direct	Inconsistent	Imprecise	Undetected	Rates of harms (specifically urologic, nonurologic, minor and major) varied significantly among studies. Some urologic and nonurologic complications occurred less often after partial nephrectomy and other urologic and nonurologic complications occurred less often after thermal ablation, but the rate of acute kidney injury and the rate of minor or major Clavien complications did not differ between partial nephrectomy and thermal ablation.
Radical Nephrectomy Versus Active Surveillance	Harms	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies

Table 46. Strength of evidence domains for comparative studies of harms (continued)

Comparison	Key Outcomes	No. Studies (N)	Study Limitations	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Radical Nephrectomy Versus Partial Nephrectomy	Harms	32 (16,965) RCT: 1 Retrospecti ve: 31	Medium RCT: low Retro: medium	Direct	Inconsistent	Imprecise	Undetected	Low The only RCT in this literature demonstrates higher rates of urologic complications in patients undergoing partial nephrectomy. This is corroborated by the retrospective data. However, rates of harms were modest among studies. The rate of acute kidney injury did not differ between radical and partial nephrectomy, but the rate of major Clavien complications was higher with partial nephrectomy. Non-urologic complications did not differ between radical and partial nephrectomy.
Radical Nephrectomy Versus Thermal Ablation	Harms	7 (2,000)	Medium	Direct	Inconsistent	Imprecise	Undetected	Low Harms were inconsistently reported among the four studies, making it difficult to draw conclusions about the differences that were observed in specific urologic or nonurologic complications. The rate of acute kidney injury did not differ significantly between radical nephrectomy and thermal ablation, but the data were insufficient to rule out a clinically important increased risk with radical nephrectomy. Minor and major Clavien complications were only reported in one study.
Thermal Ablation Versus Active Surveillance	Harms	0 (0)	NA	NA	NA	NA	NA	Insufficient No eligible studies

Uncontrolled Studies

Active Surveillance

Two studies evaluated surgical treatment and active surveillance in comparative studies. The first compared radical nephrectomy and active surveillance – the results were discussed previously in the KQ3a "Oncologic Outcomes" section. 135 The second study compared active surveillance to "primary intervention," a composite group of patients undergoing radical nephrectomy, partial nephrectomy and thermal ablation. 85 As the outcomes of each surgical management strategies could not be distinguished, the study was considered uncontrolled. However, two additional reports from this study reported comparative renal functional outcomes for each management strategy. 165,186 This comparative analysis is included in the renal functional outcomes section of KQ3a and not discussed in this section. In addition, three studies evaluated nonsurgical management in a SEER-Medicare cohort (The important distinction between active surveillance and nonsurgical management was previously described in the KQ3a "Oncologic Outcomes" section). 147-149 Therefore, due to a paucity of data regarding active surveillance, uncontrolled studies were included for analysis. To prevent the inclusion of small case series and series with immature oncologic followup, only studies with greater than fifty patients and at least two years of followup were included. In addition, by only including studies with 50 patients and two years of followup, outcomes could be evaluated in comparison to the outcomes of surgical series.

Study Characteristics

Eight studies were analyzed. 84-88,187-189 Three of these studies came from the same institution, Fox Chase Cancer Center (Philadelphia, Pennsylvania), and its institutional database. 66,87,189 Only one study was used to consider study and population characteristics, as well as oncologic outcomes, as it was the most recent and largest iteration of this analysis. However, the data reported were significantly different between studies and warranted inclusion of data from all three studies. Five studies were single-institution, retrospective cohort studies of active surveillance cohorts. 66-88,188,189 One was defined as a multicenter, prospective phase 2 clinical trial and one was a prospective, multicenter registry. One was a retrospective, population-based analysis of the TUCAN (Tayside Urologic Cancers Network) Registry of Scotland. 187 Seven studies were performed in North America; the multicenter, prospective phase 2 study was performed in Canada, and the rest originated in the United States (Table 47).

Table 47. Study characteristics of uncontrolled studies of active surveillance for clinically localized renal masses suspicious of malignancy

Author, Year	Study Design	Location	Start Year	No. Patients	Mean/Median Followup
Leonard, 2013 ¹⁸⁷	Retrospective, population-based registry	Europe (Scotland)	2007	133	28/NR months
Jewett, 201184	Prospective, multicenter phase 2 trial	North America (Canada)	2004	178	12/NR months
Rosales, 2010 ¹⁸⁸	Retrospective, single- institution cohort	North America (US)	1993	212	35/NR months
Crispen, 2009 ⁸⁶	Retrospective, single- institution cohort	North America (US)	2000	173	31/24 months
Crispen, 2008 ^{87 a}	Retrospective, single- institution cohort	North America (US)	2000	109	NR/26 months
Abouassaly, 2008 ¹⁸⁹	Retrospective, single- institution cohort	North America (US)	2000	110	NR/24 months
Kunkle, 2007 ^{88a}	Retrospective, single- institution cohort	North America (US)	NR	89	NR/29 months
Pierorazio, 2015 85	Prospective, multi-	North America (US)	2009	223	NR/25 months

NR=not reported

institution registry

Population Characteristics

The mean or median age ranged from 69 to 81 years, with the median age being 71 years. Of the three studies reporting gender, women made up 28, 45 and 48 percent, respectively. 85,86,188 Comorbidity conditions were rarely reported; one study reported 84 percent of participants as hypertensive, ¹⁸⁸ and one reported a mean baseline creatinine level of 1.2 mg/dl (range 0.5–5.0 mg/dL). 189 The same study 189 reported a Charlson comorbidity index of 0, 1, 2, and 3 and greater than or equal to 3 in 15, 18, 30, 19 and 33 percent, respectively. The prospective DISSRM Registry reported comprehensive demographic and comorbidity data: 75 percent were Caucasian, median body mass index was 28.8 kg/m2, and 91 percent of tumors were incidentally discovered. Common comorbidities included hypertension (67 percent), a history of tobacco smoking (35 percent), diabetes mellitus (27 percent), and history of myocardial infarction (10 percent) or peripheral vascular disease (7 percent). The Charlson comorbidity index was 0, 1-3 and ≥4 in 39, 51 and 10 percent of patients respectively; Eastern Cooperative Oncology Group Performance Status was 0, 1 and 2-4 in 69, 23 and 8 percent respectively; 48 percent of patients had a history of cardiovascular disease, of which 21 percent had congestive heart failure or more than one cardiovascular disease. 85 Patients with solitary kidneys were included in three studies, and ranged from 1 to 14 percent of the cohort (Table 48). 88,189,189

All eight studies included only patients with clinically localized renal tumors. The multicenter, prospective phase 2 clinical trial⁸⁴, DISSRM Registry ⁸⁵ and population-based registry¹⁸⁷ included only patients with clinical stage T1a tumors (less than or equal to 4 cm). The median size of the tumors was 2 cm and ranged from sub-centimeter to 13 cm. Bilateral tumors were reported in two percent of patients in one study¹⁸⁸ and 4.7 percent of patients in DISSRM; 85 multiple tumors were reported between 12 percent and 20 percent of three studies, respectively.85,88,189

While the DISSRM Registry is considered an uncontrolled study in this systematic review, active surveillance patients were enrolled contemporaneously with patients undergoing primary intervention (radical nephrectomy, partial nephrectomy and thermal ablation). Patients electing active surveillance were, in general, older (71 versus 62 years, P<0.001), had more comorbidities

^aEarlier iterations of the same cohort were described in⁸⁶

when considering Eastern Cooperative Oncology Group Performance Status, Charlson Comorbidity Index or individual comorbidities (congestive heart failure, diabetes mellitus, cardiovascular disease); and had smaller tumors (1.9 versus 2.5 cm, P=0.001). Three studies reported pathologic tumor findings at enrollment. ^{84,85,188} The multicenter, prospective phase 2 clinical trial⁸⁴ biopsied 99 of 178 patients (finding101 masses) at enrollment. Malignancy (i.e., renal cell carcinoma) was confirmed in 56 patients (55 percent); 12 masses (12 percent) were benign and 33 (33 percent) were nondiagnostic. In an additional study, ¹⁸⁸ 40 patients (19 percent) underwent biopsies: of those, 32 (80 percent) were determined to be clear-cell renal cell carcinoma, 4 (10 percent) were papillary renal cell carcinoma, and 1 (2.5 percent) was chromophobe renal cell carcinoma; there were benign masses in 2 patients, (5 percent) and 1 mass (2.5 percent) was undetermined. Thirty-one patients in the DISSRM Registry underwent renal biopsy: 4 percent of primary intervention patients and 9 percent of active surveillance patients. ⁸⁵ Of patients undergoing active surveillance, 30 percent of biopsies demonstrated renal cell carcinoma, 43 percent were oncocytoma/oncocytic cells, and 24 percent were nondiagnostic.

Table 48. Population characteristics of uncontrolled studies of active surveillance for clinically

localized renal masses suspicious of malignancy

Author, Year	Women, %	Age Mean/Median	Age Range	Tumor Size Mean/Median	Tumor Size Range
Leonard, 2013 ¹⁸⁷	NR	70.6/NR years	NR	2.36/NR cm	0.6-4
Jewett, 201184	NR	NR/74 years	41-96	2.1/2.1 cm	0.4-4
Rosales, 2010 ¹⁸⁸	45	NR/71 years	50-92	NR/2.8 cm	0.5-13.1
Crispen, 200986	28	69/71 years	35-88	2.45/2 cm	0.4-12
Crispen, 2008 ^{87a}	28	69.8/73 years	35-87	2.61/2 cm	0.4-12
Abouassaly, 2008 ¹⁸⁹	NR	NR/81 years	76-79	NR/2.5 cm	0.9-11.2
Kunkle, 2007 ^{88a}	27	NR/71.5 years	35-87	NR/2 cm	0.0-12
Pierorazio, 2015 85	47.5	NR/70.6 years	34-93	NR/1.9 cm	0.4-7.7

NR = not reported

Intervention Characteristics

The multicenter, prospective phase 2 clinical trial active surveillance protocol included clinical T1a tumor detection by imaging and baseline chest x-ray (to evaluate for pulmonary metastases). ⁸⁴ All patients were offered percutaneous renal biopsies, as well as serial imaging with computed tomography, MRI, or ultrasound at their 3- and 6-month followup, then every six months until three years, and then annually. No study endpoint was specified.

The DISSRM Registry included patients with cT1a tumors detected or confirmed with axial imaging. The surveillance protocol includes serial imaging every 4 to 6 months for two years, followed by annual imaging thereafter. Ultrasound is the preferred surveillance modality in DISSRM. Chest x-ray and laboratory tests (complete blood count, complete metabolic panel) were obtained annually. Percutaneous renal biopsy was offered to all patients, but only 6.4 percent of patients enrolled in the registry elected biopsy (biopsy results discussed above). 85

Three retrospective cohort studies from Fox Chase Cancer Center stated that regular radiographic followup was performed at 3- to 6-month intervals, metastatic surveillance was performed annually (chest x-ray, hepatic function tests, and bone scan in symptomatic patients), and percutaneous renal biopsy was not routinely offered. One study stated only that patients were followed every 6 months with imaging. Two studies did not specify a protocol for active surveillance. Protocol for active surveillance.

^aEarlier iterations of the same cohort described in⁸⁶

Risk of Bias

We used the Cochrane Risk Of Bias Assessment Tool for Non-Randomized Studies of Interventions (ACROBAT-NRSI).³⁶ For uncontrolled studies of active surveillance, the risk of bias was graded as moderate or serious. Bias in selection of participants and bias due to confounding were the primary sources of bias (Figure 40).

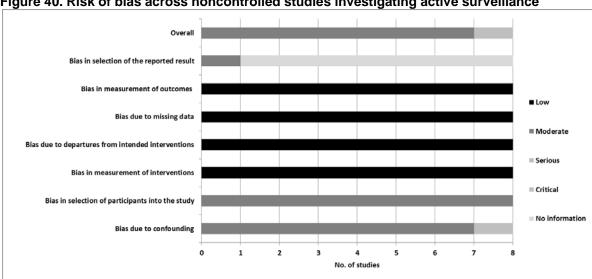


Figure 40. Risk of bias across noncontrolled studies investigating active surveillance

Final Health Outcomes

Oncologic Efficacy

Of the 1,029 patients in the six included studies, $^{84-86,187-189}$ three died of renal cell carcinoma, eight developed metastases, and 72 died of any cause The rate of cancer-specific survival in this population ranged from 98.9 percent to 100 percent, the rate of metastasis-free survival ranged from 98.1 percent to 100 percent, and the rate of overall survival ranged from 69 percent to 94.4 percent at 12 to 35 months (Table 49). The DISSRM Registry was the only study to report actuarial survival rates. The DISSRM Registry were 98 percent and 96 percent at 2 years, and 92 percent and 75 percent at 5 years, respectively (log rank, p = 0.06); cancer-specific survival was 99 percent and 100 percent at 5 years, respectively (p = 0.3). In regression modeling, active surveillance was not associated with an increased risk of all-cause mortality while age and cardiovascular comorbidity were.

Table 49. Oncologic and survival outcomes of uncontrolled studies of active surveillance for clinically localized renal masses suspicious of malignancy

Survival Outcome	Category	Leonard, 2013 ¹⁸⁷	Jewett, 2011 ⁸⁴	Rosales, 2010 ¹⁸⁸	Crispen, 2009 ⁸⁶	Abouassaly, 2008 ¹⁸⁹	Pierorazio, 2015 ⁸⁵
Cancer-Specific Survival	Patients (events)	NR	178 (2)	212 (1)	173 (0)	110 (0)	223 (0)
Survivai	Rate	NR	98.9%	99.5%	100%	100%	100%
	Time	NR	>12 months (mean)	35 months (median)	24 months (median)	24 months (median)	25 months (median) / 60 months (max)
Metastases-Free	Patients (events)	133 (1)	178 (0)	212 (4)	173 (1)	110 (2)	223 (0)
Survival	Rate	99.20%	100%	98.10%	99.40%	98.20%	100%
	Time	27.86 months (mean)	>12 months (mean)	35 months (median)	31 months (mean)	24 months (median)	25 months (median) / 60 months (max)
Overall Survival	Patients (events)	NR	178 (10)	212 (15)	NR	1104)	223 (13)
	Rate	NR	94.40%	93%	NR	69%	96% at 25 months, 75% at 60 months
	Time	NR	>12 months (mean)	35 months (median)	NR	24 months (median)	25 months (median) / 60 months (max)

NR = not reported

Renal Functional Outcomes

Renal functional outcomes were not reported in any of the studies. Comparative renal functional outcomes from the DISSRM Registry are reported in KQ3a. In brief, patients undergoing active surveillance had small but significant decreases in estimated glomerular filtration rate (of approximately -0.55 ml/min/1.73 m²) during active surveillance. Approximately 3 percent of patients who did not have chronic kidney disease at the time of enrollment developed chronic kidney disease during active surveillance (Table 50). 165,186

Quality of Life

One uncontrolled study evaluated HRQOL in an active surveillance cohort. ¹⁹⁰ Technically, the cohort was a "watchful waiting" cohort, which meant that the surveillance protocol was not well-defined (i.e., the use of specific imaging modalities was not specified nor was the timing of serial imaging). However, validated questionnaires (Mishel Uncertainty in Illness Study [MUIS], Medical Outcomes Study 36-item short-form, Cancer Rehabilitation Evaluation System Short-form, and Impact of Events Scale [IES]) were collected in a prospective fashion at enrollment, as well as at 6, 12, and 24 months.

The study found that greater illness uncertainty (mean total MUIS) was associated with poor general HRQOL, especially in physical and medical domains, and it was associated with higher distress. However, the study also found that intrusive thoughts and avoidance behaviors (IES) decreased over the 24-month period. As this study was noncomparative in design, the researchers were not able to demonstrate that active surveillance (watchful waiting) was associated with greater illness uncertainty or adverse HRQOL outcomes. Therefore, the implications of the HRQOL findings in this analysis are uncertain.

Harms and Perioperative Outcomes

Harms and perioperative outcomes were not reported in any of the studies. Twenty-one patients (9.4 percent) initially electing active surveillance in the DISSRM Registry crossed-over to receive delayed intervention. No patient undergoing delayed intervention experience cancer recurrence, progression, or died of renal cancer. 85

Table 50. Strength of evidence domains for uncontrolled studies of active surveillance

Key Outcomes	No. Studies (N)	Study limitation	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Cancer-specific survival	5 896)	Medium	Direct	Consistent	Precise	Undetected	Low While two studies are prospective in nature, all studies are subject to selection bias. All retrospective studies are subject to selection and recall bias. All studies have relatively short oncologic followup (12-35 months); and oncologic outcomes include a combination of benign and malignant lesions as renal mass biopsy is not uniformly utilized.
Metastases-free survival	5 (806)	Medium	Direct	Consistent	Precise	Undetected	Low (see above)
Local recurrence- free survival	Not applicable for active surveillance	NA	NA	NA	NA	NA	Insufficient
Overall survival	4 (723)	Medium	Direct	Consistent	Precise	Undetected	Low (see above)
Renal Functional Outcomes	Not reported	NA	NA	NA	NA	NA	Insufficient
Quality of Life	1 (264)	Medium	Direct	Unknown	Precise	NA	Insufficient Only one study addresses quality of life and this is a watchful waiting cohort, not technically active surveillance with a regimented surveillance protocol.
Perioperative Outcomes and Harms	Not reported	NA	NA	NA	NA	NA	Insufficient

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

KQ 3a evaluated the comparative effectiveness of each management strategy for the major outcomes of interest (oncologic efficacy, renal functional outcomes, overall survival, and quality of life). Key Question 3b was designed to investigate clinical predictors (patient and tumor characteristics, renal mass sampling, or laboratory evaluations) of oncological efficacy, renal functional outcomes, overall survival, and quality of life as they relate to comparative effectiveness. While a number of studies evaluated multivariate predictors of oncological efficacy, renal functional outcomes, overall survival, and quality of life, few studies evaluated comparative efficacy of the given management strategies in relation to these predictors. Therefore, there are limited conclusions that can be drawn from these data. The results are detailed in this section.

Key Points

• The most robust data regarding clinical predictors of outcome were derived from comparative studies of radical nephrectomy and partial nephrectomy. Other comparative studies were included, but the paucity of data prevented generalizable conclusions.

Cancer-Specific Survival

- The strength of evidence was insufficient for the predictors of cancer-specific survival in comparative studies. Increasing age, larger tumor size, and higher tumor grade were the most common predictors of cancer-specific survival in comparative studies of radical nephrectomy and partial nephrectomy.
 - o Increasing age was associated with lower cancer-specific survival.
 - However, large population-based studies showed no difference in cancer-specific survival between partial nephrectomy and radical nephrectomy when stratified by age.
 - O There were no differences in cancer-specific survival among patients undergoing radical and partial nephrectomy based on tumor stage, although most studies examined the relationship in patients with T1, T1a and/or T1b tumors and only little data exists for patients with T2 tumors.
 - Analyses of SEER indicate that radical and partial nephrectomy portend a cancerspecific survival benefit over nonsurgical management that may be attenuated in patients ≥75 years-old or with high cardiovascular risk.

Overall Survival

- The strength of evidence was low on the predictors of overall survival in comparative studies. Increasing age and comorbidity were predictive of lower overall survival.
 - In SEER-Medicare studies, an overall survival benefit exists for patients undergoing radical or partial nephrectomy in comparison to nonsurgical management.

■ The overall survival benefit existed in patients with both low and high cardiovascular risk and among different age groups (65 to 75, 75 to 80, and \geq 80).

Renal Functional Outcomes

- The strength of evidence was low on the predictors of renal functional outcomes in comparative studies. Baseline renal function was associated with long-term renal functional outcomes, regardless of type of surgery.
 - O Evidence suggested that patients with optimal baseline renal function (estimated glomerular filtration rate greater than 90 mL/min/1.73 m²) experience less decline in estimated glomerular filtration rate but no difference in incidence of chronic kidney disease after undergoing partial nephrectomy compared with those undergoing radical nephrectomy.
 - o Evidence suggested that patients with poor baseline renal function (estimated glomerular filtration rate less than 45 mL/min/1.73 m²) may not experience a renal functional outcome benefit after undergoing partial nephrectomy compared with those undergoing radical nephrectomy.

Quality of Life

• The strength of evidence was insufficient on the predictors of health-related quality of life in comparative studies.

Harms and Perioperative Outcome

• The evidence was insufficient to evaluate the predictors of harms and perioperative outcomes in comparative studies.

Oncological Efficacy

Cancer-Specific Survival

Radical Nephrectomy Versus Partial Nephrectomy

Eighteen studies (reported in 19 articles) evaluated predictors of cancer-specific survival for radical nephrectomy versus partial nephrectomy. 148,92,97,99,103,109,110,112,117,142,143,146,147,149,154,155, 159,191 Five of these studies evaluated radical nephrectomy, and nonsurgical management in the Surveillance, Epidemiology, and End Results (SEER) dataset. Variation in study populations, data analysis, and reporting prevented meaningful meta-analyses from being performed. Age, tumor size (or stage), and pathological tumor grade were the most common variables among the studies (Table 51).

Age

Five studies^{97,99,109,146,191} found increasing age to be predictive of cancer-specific mortality after radical or partial nephrectomy. Four studies^{97,109,146,191} demonstrated a hazard ratio of 1.02 to 1.03 for cancer-specific mortality, while the remaining study⁸⁵ demonstrated a hazard ratio of 2.99 for patients greater than 60 years old. When examining age in the context of surgical approach, three SEER studies demonstrated no difference between radical nephrectomy and partial nephrectomy when stratified by age. ^{141,147,149} The study by Patel, et al., ¹⁴⁷ evaluated

cancer-specific survival between radical nephrectomy and partial nephrectomy in three age strata $(65-75, 75-80, \text{ and } \ge 80 \text{ years})$ and found no cancer-specific survival benefit between radical nephrectomy and partial nephrectomy in any age strata. Similarly, the study by Sun, et al. ¹⁴⁹ found no difference in cancer-specific survival between radical nephrectomy and partial nephrectomy in patients older than 75 years. Badalato, et al. ¹⁴¹ found no difference among radical nephrectomy and partial nephrectomy when age was dichotomized at 60 years old. Increasing age in multivariable models was predictive of cancer specific mortality; however when comparing radical nephrectomy with partial nephrectomy, there was no clear benefit to either surgical approach based on age.

Tumor Size, Pathological Stage, and Grade

Tumor size, as well as pathological stage, and pathological tumor grade were predictive of cancer-specific survival after radical or partial nephrectomy in three studies ^{99,146,191} and not predictive in four studies, ^{92,109,110,141} although the studies varied in inclusion criteria and tumor characteristics. Increasing tumor stage was predictive of lower cancer-specific survival after radical or partial nephrectomy in two studies. ^{92,97} Both studies demonstrated a lower cancer-specific survival in clinically localized patients, with T1 and T2 tumors, who were upgraded to pT3a disease at surgery. The study by O'Malley, et al. ¹⁹¹ evaluated patients with "high-risk" clinically localized renal cancers – defined as high-grade and/or upstaged (to pT3a) tumors. They also demonstrated worse cancer-specific survival for upstaged patients with and without a high-grade component in the tumor.

Importantly, no study demonstrated a benefit to radical or partial nephrectomy based on stage or tumor size. Four studies found no difference among radical and partial nephrectomy when evaluating cancer-specific survival in patients with T1 tumors. ¹¹⁰ ⁹⁷ ¹⁴² ¹¹² In sub-group analyses, three studies ^{97,110,112} evaluated patients with T1a tumors and found no benefit to radical or partial nephrectomy. Eight studies ^{109,125, 92,97,110,112,146,159} (three in sub-group analyses ^{97,110,112}) evaluated patients with T1b tumors and found no benefit to radical or partial nephrectomy. One study evaluated patients with T1-2 tumors ⁹⁹ and one study evaluated only patients with T2 tumors ¹⁰³, neither demonstrated a benefit to radical or partial nephrectomy. The study by Weight, et al. ¹¹⁷ demonstrated equivalent or improved cancer-specific survival for patients with cT1 tumors who underwent partial nephrectomy and were upstaged to pT2, pT3a and/or pT3b tumors in comparison to those undergoing radical nephrectomy; however, multivariate regression could not be performed due to infrequency of events.

Pathological tumor grade (Fuhrman grade 3 or 4) was predictive of cancer-specific survival in nine studies. 92,97,99,103,109,110,112,142,146,191 The study by Minervini, et al. 110 evaluated differences in cancer-specific survival based on tumor grade, and found no difference among patients undergoing radical and partial nephrectomy for grade 1 and 2 (log rank p = 0.48), grade 3 (log rank p = 0.89) or grade 4 (log rank p = 0.62) tumors. Similarly, the study by Weight, et al. 117 demonstrated equivalent or improved cancer-specific survival for patients between patients undergoing partial and radical nephrectomy who had grade 4 tumors; however, multivariate regression could not be performed due to infrequency of events. No other study demonstrated a benefit or radical or partial nephrectomy based on tumor grade.

Radical Nephrectomy Versus Thermal Ablation

Two studies assessed cancer-specific survival for radical nephrectomy versus thermal ablation. ^{134,142} Neither study demonstrated a benefit to radical nephrectomy or thermal ablation. The study by Choueiri, et al. ¹⁴² demonstrated an equivalent cancer-specific mortality rate (1.8

percent vs. 1.6 percent at 2 years, p=0.7) which was substantiated in multivariate regression – however the data was not provided. In the study by Takaki, et al. ¹³⁴, one patient undergoing thermal ablation died of renal cancer and no patient undergoing radical nephrectomy died of renal cancer, therefore statistical analyses were not performed. Therefore, predictors of cancerspecific survival and comparative outcomes could not be assessed (Table 51).

Partial Nephrectomy Versus Thermal Ablation

One study evaluated predictors of cancer-specific survival in patients with clinical T1a tumors in the SEER dataset and found that age, sex, marital status, and tumor size were predictive of cancer-specific survival, while year of diagnosis, race or ethnicity, setting (rural or urban), and socioeconomic status were not.¹⁵¹ This study demonstrated a twofold greater risk of cancer-specific mortality in patients with cT1a tumors undergoing thermal ablation (hazard ratio: 1.9 (95% confidence interval: 1.1-3.3), p=0.02) (Table 51).

Surgical Management Versus Active Surveillance

No study evaluated predictors of cancer-specific survival for surgical management versus active surveillance.

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

Two studies (reported in 3 articles) assessed cancer-specific survival for nonsurgical management versus radical nephrectomy and partial nephrectomy in the SEER dataset. ¹⁴⁷⁻¹⁴⁹ In the study by Patel, et al. ¹⁴⁸, a two-fold to four-fold cancer-specific survival benefit was shown in patients with low cardiovascular risk undergoing either radical nephrectomy or partial nephrectomy compared with patients undergoing nonsurgical management. The benefit of surgery on cancer-specific survival was not significant in patients with high cardiovascular risk.

Age

Age was evaluated in the study by Patel, et al., ¹⁴⁷ where a benefit in cancer-specific survival was shown for both radical and partial nephrectomy compared with nonsurgical management for patients 65 to 75 and 75 to 80 years old. The cancer-specific survival benefit for partial nephrectomy remained in patients 80 years of age or older (p = 0.03) but was nonsignificant for patients undergoing radical nephrectomy (p = 0.08).

Tumor Stage

In the study by Sun, et al., 149 an improved cancer-specific survival was noted for patients undergoing partial nephrectomy compared with nonsurgical management for the entire cohort (p = 0.01), in patients with only T1a tumors (p = 0.03), and in patients diagnosed from 2000-2005 (compared to those from 1988-2000) (p < 0.001). A similar benefit was noted for radical nephrectomy in the entire cohort (p = 0.03), in patients with only T1a tumors (p = 0.04), and in patients diagnosed from 2000-2005 (p = 0.01).

The benefit in cancer-specific survival was attenuated for both partial nephrectomy and radical nephrectomy if a patient was older than 75 (i.e., the difference was no longer statistically significant, p=0.1), or if T1a tumor and age was greater than 75 (i.e., the difference was no longer statistically significant, p=0.1). In summary, data from SEER indicated that partial nephrectomy and radical nephrectomy portended a cancer-specific survival advantage over

nonsurgical management. However, the cancer-specific survival benefits of radical nephrectomy or partial nephrectomy may be attenuated in patients older than 75 to 80 or those with high cardiovascular risk.

Metastasis-Free Survival

Radical Nephrectomy Versus Partial Nephrectomy

One study evaluated predictors of metastasis-free survival among patients undergoing radical nephrectomy and partial nephrectomy. ¹¹⁰ This study found Fuhrman grade 3 to 4 predicted metastatic recurrence, while Fuhrman grade 2, tumor size, and incidental presentation were not predictive of metastatic recurrence. There was no demonstrable difference in metastatic progression in patients undergoing radical or partial nephrectomy based on tumor stage or grade in this study.

Radical Nephrectomy Versus Thermal Ablation

No study evaluated predictors of metastasis-free survival for radical nephrectomy versus thermal ablation.

Partial Nephrectomy Versus Thermal Ablation

No study addressed metastasis-free survival for partial nephrectomy versus thermal ablation.

Surgical Management Versus Active Surveillance

No study addressed predictors of metastasis-free survival for partial nephrectomy versus thermal ablation

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

No study evaluated predictors of metastasis-free survival for nonsurgical management versus radical nephrectomy versus partial nephrectomy.

Local Recurrence-Free Survival

Radical Nephrectomy Versus Partial Nephrectomy

No study evaluated predictors of local recurrence-free survival for radical nephrectomy versus partial nephrectomy.

Radical Nephrectomy Versus Thermal Ablation

No study evaluated predictors of local recurrence-free survival for radical nephrectomy versus thermal ablation.

Partial Nephrectomy Versus Thermal Ablation

No study specifically addressed local recurrence-free survival for partial nephrectomy versus thermal ablation. However, three studies ^{122,125,136} evaluated predictors of recurrence-free survival (local and metastatic) among patients undergoing partial nephrectomy or thermal ablation. In a study of cT1b tumors only, Chang, et al. ¹²² demonstrated increasing age, tumor size, surgical approach; histology and nephrometry score were not predictive of recurrence. The study by

Tanagho, et al.¹²⁵ determined that endophytic tumor location and cryoablation predicted recurrence but did not demonstrate a direct benefit to partial nephrectomy in patients with endophytic tumors. In examining age, tumor size, followup, histology, and surgery type, Olweny, et al.¹³⁶ found no predictors of recurrence. No study demonstrated a benefit to partial nephrectomy or thermal ablation based on patient or tumor characteristics.

Surgical Management Versus Active Surveillance

No study specifically addressed predictors of local recurrence -free survival for surgical management versus active surveillance.

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

No study evaluated predictors of local recurrence-free survival for nonsurgical management versus radical nephrectomy versus partial nephrectomy.

Table 51. Summary of predictors of cancer-specific survival and analyses of comparative efficacy among studies of comparative oncologic efficacy

Commenican		N	Ctudy Decim	Multivariate Ar	nalysis Predicting CSS	Analyses of Comparative
Comparison	Author, Year	N	Study Design	Predictive of CSS	Not Predictive of CSS	Efficacy
Radical Nephrectomy	Kopp ,2014 ¹⁰³	202	Retro. Single Institution	Grade, transfusion	Nephrometry score	No difference in T2 tumors
Versus Partial Nephrectomy	Milonas, 2013 ¹⁰⁹	351	Retro. Single Institution	Age, stage, ASA, grade	Tumor size	No difference in T1b tumors
	Meskawi, 2014 ¹⁴⁶	16333	SEER	Age, race, tumor size, grade, year of surgery	Sex, marital status, socioeconomic status, histology, region	No difference in T1b tumors
	Smaldone, 2012 ¹⁵⁴	2496	SEER	Multivariate analysis no	t presented	
	Badalato,	11256	SEER		Age and tumor size	No difference based on age
	2011 ¹⁴¹					No difference in T1b tumors
	Antonelli, 2011 ⁹⁷	3480	Retro. Multi- Institution	In cT1a patients: age, pT3a, grade 4.	In cT1a patients: pT1b, grade 2 or 3.	No difference in patients with T1, T1a, or T1b tumors.
				In cT1b patients: age, pT3a, grade 4, surgical margins	In cT1b patients: sex, incidental, pT1b, grade 2 or 3	
	Minervini, 2012 ¹¹⁰	475	Retro. Single Institution	Grade 3 or 4	Incidental, grade 2, tumor size	No difference in patients with T1, T1a, or T1b tumors
						No difference in patients with Grade 1-2, 3 or 4 tumors
	Weight, 2011 ¹¹⁷	1981	Retro. Single Institution	Grade and pT stage	Age, tumor size	PN CSS equivalent or improved for patients with cT1 disease with grade 4 tumors or those upstaged to pT2, pT3a, and/or pT3b disease.
	Weight, 2010 ¹⁵⁹	510	Retro. Single Institution	Multivariate analysis no	t presented	No difference for cT1b patients when compared by grade and stage.
	Weight, 2009 ⁹²	1004	Retro. Single Institution	Grade 4, pT stage	Tumor size, baseline, or final glomerular filtration rate	
	Crepel, 2010 ¹⁴³	5141	SEER	Multivariate analysis no	t provided	
	Zini , 2009 ¹⁵⁵	9809	SEER	Multivariate analysis no		
	Bedke, 2008 ⁹⁹	464	Retro. Single	Tumor size (7cm),	Sex, Karnofsky performance	No difference in T1-2 tumors
			Institution	grade 3, age	status, histology	

Table 51. Summary of predictors of cancer-specific survival and analyses of comparative efficacy among studies of comparative oncologic efficacy (continued)

Comparison	Author, Year	N	Study Design	Multivariate Ar	nalysis Predicting CSS	Analyses of Comparative
Comparison	Author, rear	IN	Study Design	Predictive of CSS	Not Predictive of CSS	Efficacy
Radical Nephrectomy	Patard, 2004 ¹¹²	1454	Retro. Multi- Institution	Univariate: ECOG, grade 3-4, incidental	Univariate: histology, pTstage	No difference in T1b tumors
Versus Partial Nephrectomy (continued)	O'Malley, 2015 ¹⁹¹	12,757 108	SEER Retro. Single Institution	SEER: age, year of diagnosis <2003, tumor size, grade 3-4 and tumor stage	SEER: sex, marital status, race, clear-cell histology	No difference in patients with high-grade and/or high-stage (pT3) disease
Partial Nephrectomy Versus Thermal Ablation	Whitson, 2011 ¹⁵¹	8818	SEER	Age, sex, marital status, tumor size	Year of diagnosis, race, urban or rural, socioeconomic status	Two-fold increased risk of cancer-specific mortality in cT1a patients undergoing thermal ablation.
Nonsurgical Management Versus Radical	Patel, 2014 ¹⁴⁸	7177	SEER	Cardiovascular risk		Compared to NSM, 2- to 4-fold benefit to RN or PN only in patients with low cardiovascular risk.
Nephrectomy Versus Partial Nephrectomy	Patel, 2014 ¹⁴⁷	7177	SEER	Age	Tumor size, Charlson comorbidity index	Compared to NSM, benefit to PN for age 75 or greater (no benefit age 65-75).
						Compared to NSM, benefit to RN at age 75-80 (no benefit for age 65-75 or >80).
						No difference to RN or PN at any age
	Sun, 2014 ¹⁴⁹	10595	SEER	Multivariate analysis no	ot provided	Compared to NSM, improved CSS for PN and RN in the entire cohort, T1a only, and in patients diagnosed 2000-2005.
						Compared to NSM, no benefit to RN or PN based on age, or if cT1a and age>75.

Table 51. Summary of predictors of cancer-specific survival and analyses of comparative efficacy among studies of comparative oncologic efficacy (continued)

Comparison	Author Voor	N	Ctudy Decian	Multivariate Analys	sis Predicting CSS	Analyses of Comparative
Companison	Author, Year	IN IN	Study Design	Predictive of CSS	Not Predictive of CSS	Efficacy
Radical Nephrectomy Versus Partial Nephrectomy Versus Thermal Ablation	Choueiri, 2011 ¹⁴²	15145	SEER	Multivariate analysis not pro	ovided	No benefit to RN or PN in patients with T1, T1a, or T1b tumors

CSS = cancer-specific survival; SEER = Surveillance, Epidemiology, and End Results; ASA = American Society of Anesthesiologists; ECOG = Eastern Cooperative Oncology Group performance status; NSM = nonsurgical management; PN = partial nephrectomy; pT1 = pathology T1; Retro.= retrospective; RN = radical nephrectomy

Overall Survival

Radical Nephrectomy versus Partial Nephrectomy

Eighteen studies (reported in 19 articles) evaluated predictors of overall survival for radical nephrectomy versus partial nephrectomy. 90,92,101,103,104,109,117,141,145,147-150,153-155,157,159,191 (Table 52). Age and comorbidities were the most commonly used predictors of overall survival in these studies.

Age

Six studies reported increasing age to be associated with overall survival. 90,109,153,154,159,191 The study by Smaldone, et al. 154 demonstrated a one and three-year overall survival benefit to partial nephrectomy for patients ages 68 to 85. The benefit was insignificant in patients younger than 68 and older than 85. Another study by Iizuka, et al. 101 found that overall survival for patients with clinical T1a tumors undergoing partial nephrectomy was superior to patients undergoing radical nephrectomy for clinical T1b tumors. A study by Tan, et al. 150 found an overall survival benefit for patients undergoing partial nephrectomy who were both younger and older than age 75 years. One study by Thompson, et al. 157 determined that radical nephrectomy was predictive of lower overall survival for patients younger than 65 years of age. One study evaluated patients with only T1b tumors and determined that age was not predictive of overall survival. Heterogeneity in study design, selection bias, and variation in conclusions prevent meaningful conclusions from being drawn about the comparative efficacy of radical and partial nephrectomy based on age.

Comorbidity

Eight studies evaluated comorbidity or composite comorbidity indices as predictors of overall survival. 90,104,109,117,148,150,157,159 Five reported on use of the Charlson comorbidity index to predict mortality, 104,117,150,157,159 while other studies evaluated cardiovascular risk, 148 American Society of Anesthesiologists score, 109 and World Health Organization (WHO) performance status. 90 All studies reported lower overall survival with increasing comorbidity. The study by Tan, et al. 150 found no difference in overall survival among patients undergoing radical nephrectomy and partial nephrectomy if the Charlson Comorbidity Index was zero. The study by Thompson, et al. 157 demonstrated an inferior overall survival for patients undergoing radical nephrectomy in comparison to partial nephrectomy, even after adjusting for Charlson Comorbidity Index in multivariate regression.

Radical Nephrectomy Versus Thermal Ablation

Two studies evaluated overall survival for radical nephrectomy versus thermal ablation. ^{134,142} The study by Chouieri, et al. ¹⁴² did not provide details of the multivariate analysis, while the study by Takaki, et al. ¹³⁴ did not investigate predictors of overall survival.

Partial Nephrectomy Versus Thermal Ablation

One study evaluated the effect of tumor size and stage as a predictor of overall survival. ¹²⁷ This study found a statistically significant overall survival advantage for partial nephrectomy over cryoablation for both T1a and T1b tumors after adjustment. The overall survival advantage was not evident for patients with T1a tumors undergoing radiofrequency ablation.

Surgical Intervention Versus Active Surveillance

One study evaluated radical nephrectomy, partial nephrectomy, and active surveillance among patients older than 75 years. Multivariate regression modeling indicated that the Charlson Comorbidity Index and age were the strongest predictors of all-cause mortality, but not surgical intervention or active surveillance.

Nonsurgical Management Versus Radical Nephrectomy Versus Partial Nephrectomy

Two studies (reported in 3 articles) evaluated overall survival for nonsurgical management versus radical nephrectomy and partial nephrectomy. $^{147-149}$ The study by Patel, et al. 148 evaluated overall survival in relation to cardiovascular risk. There was a significant benefit to both partial nephrectomy and radical nephrectomy compared with patients undergoing nonsurgical management in both low-cardiovascular and high-cardiovascular risk patients. The study by Patel, et al. 147 evaluated overall survival in relation to age and found an overall survival benefit to both partial nephrectomy and radical nephrectomy over nonsurgical management among patients ages 65 to 75, 75 to 80, and older than 80 years. An overall survival benefit did not exist for partial nephrectomy over radical nephrectomy in patients 65 to 75 years old (p = 0.09) and 75 to 80 years old (p = 0.8); however the benefit was significant for patients 80 or older (p = 0.02).

Table 52. Summary of predictors and analyses of comparative efficacy of overall survival among studies of comparative oncologic efficacy

Author,	N	Study Design	Multivariate Analysis Pre	Analyses of Comparative	
Year			Predictive	Not Predictive	Efficacy
Kyung, 2014 ¹⁰⁴	135	Retro. Single Institution	Charlson comorbidity index	Surgery, tumor size, preoperative CKD, postoperative eGFR	
Kopp, 2014 ¹⁰³	202	Retro. Single Institution	Nephrometry score, grade, transfusion	Partial nephrectomy	
Milonas, 2013 ¹⁰⁹	351	Retro. Single Institution	Age, stage, American Society of Anesthesiologists score, grade	Tumor size, Radical nephrectomy	
Smaldone, 2012 ¹⁵⁴	2,496	SEER	Age at diagnosis		Benefit to PN in patients ages 68-85, no benefit if younger than 68 or greater than 85.
lizuka, 2012 ¹⁰¹	586	Retro. Single Institution	Multivariate analysis not provi	Benefit to PN in cT1a vs RN for cT1b (p<0.01), no difference for PN cT1b vs. RN cT1b, or PN cT1b vs. PN cT1a.	
Tan, 2012 ¹⁵⁰	7,138	SEER	Age, Charlson comorbidity index, residence setting, year of surgery		Benefit to PN in entire cohort, age <75, Charlson index score ≥1, urban residence or year of surgery 2000-2007. No benefit if age≥75, Charlson comorbidity index =0, rural residence, year of surgery 1992-1999
Badalato, 2011 ¹⁴¹	11,256	SEER		Age and tumor size	No benefit based on age or tumor size.
Kates, 2011 ¹⁵³	4,216	SEER	Age, sex, marital status, black race	Race other than black, US region	
Weight, 2011 ¹¹⁷	2,511	Retro. Single Institution	Charlson comorbidity index, age, grade 4	Pathological T-stage (cohort includes only those patients upstaged from cT1 to pT2 or pT3)	PN equivalent or improved outcome in high-grade tumors and cT1 tumors upstaged to pT2, pT3a and pT3b.
VanPoppel, 2010 ⁹⁰	541	RCT	associated chronic diseases "		
	Year Kyung, 2014 ¹⁰⁴ Kopp, 2014 ¹⁰³ Milonas, 2013 ¹⁰⁹ Smaldone, 2012 ¹⁵⁴ lizuka, 2012 ¹⁰¹ Tan, 2012 ¹⁵⁰ Badalato, 2011 ¹⁴¹ Kates, 2011 ¹⁵³ Weight, 2011 ¹¹⁷ VanPoppel,	Year N Kyung, 2014 ¹⁰⁴ 135 Kopp, 2014 ¹⁰³ 202 Milonas, 2013 ¹⁰⁹ 351 Smaldone, 2012 ¹⁵⁴ 2,496 lizuka, 2012 ¹⁵⁰ 586 Tan, 2012 ¹⁵⁰ 7,138 Badalato, 2011 ¹⁴¹ 4,216 Kates, 2011 ¹⁵³ 4,216 2011 ¹¹⁷ 2,511 VanPoppel, 541	Year N Study Design Kyung, 2014 ¹⁰⁴ 135 Retro. Single Institution Kopp, 2014 ¹⁰³ 202 Retro. Single Institution Milonas, 2013 ¹⁰⁹ 351 Retro. Single Institution Smaldone, 2012 ¹⁵⁴ 2,496 SEER lizuka, 2012 ¹⁵⁴ 586 Retro. Single Institution Tan, 2012 ¹⁵⁰ 7,138 SEER Badalato, 2011 ¹⁴¹ 11,256 SEER Kates, 2011 ¹⁵³ 4,216 SEER Weight, 2011 ¹¹⁷ 2,511 Retro. Single Institution VanPoppel, 541 RCT	Year N Study Design Predictive Kyung, 2014 ¹⁰⁴ 135 Retro. Single Institution Charlson comorbidity index Kopp, 2014 ¹⁰³ 202 Retro. Single Institution Nephrometry score, grade, transfusion Milonas, 2013 ¹⁰⁹ 351 Retro. Single Institution Age, stage, American Society of Anesthesiologists score, grade Smaldone, 2012 ¹⁵⁴ 2,496 SEER Age at diagnosis lizuka, 2012 ¹⁵⁰ 586 Retro. Single Institution Multivariate analysis not proving index, residence setting, year of surgery Tan, 2012 ¹⁵⁰ 7,138 SEER Age, Charlson comorbidity index, residence setting, year of surgery Badalato, 2011 ¹⁴¹ 11,256 SEER Age, sex, marital status, black race Weight, 2011 ¹¹⁷³ 2,511 Retro. Single Institution Charlson comorbidity index, age, grade 4 VanPoppel, 2010 ⁹⁰ 541 RCT Age, World Health Organization associated chronic diseases "overall survival, but none were overall survival.	Year N Study besign Predictive Not Predictive Kyung, 2014 ¹⁰⁴ 135 Retro. Single Institution Charlson comorbidity index preoperative CKD, postoperative eGFR Kopp, 2014 ¹⁰³ 202 Retro. Single Institution Nephrometry score, grade, transfusion Partial nephrectomy Milonas, 2013 ¹⁰⁹ 351 Retro. Single Institution Age, stage, American Society of Anesthesiologists score, grade Tumor size, Radical nephrectomy Smaldone, 2012 ¹⁵⁴ 2,496 SEER Age at diagnosis Iizuka, 2012 ¹⁵⁰ 586 Retro. Single Institution Multivariate analysis not provided Tan, 2012 ¹⁵⁰ 7,138 SEER Age, Charlson comorbidity index, residence setting, year of surgery Badalato, 2011 ¹⁴¹ 11,256 SEER Age, sex, marital status, black race Race other than black, US region Weight, 2011 ¹⁵³ 4,216 SEER Age, sex, marital status, black race Pathological T-stage (cohor includes only those patients upstaged from cT1 to pT2 or pT3) VanPoppel, 2010 ⁹⁰ 541 RCT Age, World Health Organization performance status, associated chronic diseases "were prognostic factors of overall survival, but none were predictive factors."

Table 52. Summary of predictors and analyses of comparative efficacy of overall survival among studies of comparative oncologic efficacy (continued)

Comparison	Author,	N	Study Design	Multivariate Analysis Pre	Multivariate Analysis Predicting Overall Survival		
Companison	Year	IN	Study Design	Predictive	Not Predictive	Efficacy	
Radical Nephrectomy Versus Partial Nephrectomy	Weight, 2010	510	Retro. Single Institution	Age-adjusted Charlson comorbidity index, postoperative eGFR, pathological T-stage		Benefit to PN when controlling for other variables (left).	
(continued)	Weight, 2009 ⁹²	1,004	Retro. Single Institution	Postoperative eGFR, pathological T-stage			
	Zini, 2009 ¹⁵⁵	9,809	SEER	Multivariate analysis not provi	ded		
	Huang, 2009 ¹⁴⁵	2,991	SEER	Multivariate analysis not provi	ded		
	Thompson, 2008 ¹⁵⁷	648	Retro. Single Institution	Radical nephrectomy predictive of overall survival in patients <65, including year of surgery, baseline eGFR, Charlson comorbidity index, sex, incidental presentation, diabetes, histology			
	O'Malley, 2015 ¹⁹¹	12,757 108	SEER Retro. Single Institution	SEER: age, male sex, marital status, black race, year of diagnosis <2003, tumor size, tumor grade and stage Institutional data: new postoperative CKD stage 3 or greater	SEER: clear-cell histology, race other than white or black Institutional data: sex, smoking status, body mass index, tumor size, RENAL score, nonclear cell histology, positive margins, preoperative eGFR, preoperative CKD stage 3 or greater, postoperative eGFR, decrease in eGFR, any complication	SEER: RN associated with increased risk of all-cause mortality. Institutional data: RN associated with worse all-cause mortality controlling for ageadjusted Charlson comorbidity index.	

Table 52. Summary of predictors and analyses of comparative efficacy of overall survival among studies of comparative oncologic efficacy (continued)

Comparison	Author,	N	N Study Design	Multivariate Analysis Pro	Analyses of Comparative	
Comparison	Year	IN	Study Design	Predictive	Not Predictive	Efficacy
Nonsurgical Management Versus Radical	Patel, 2014 ¹⁴⁸	7,177	SEER	Cardiovascular risk (low and high)		Compared to NSM, benefit to PN and RN in patients with low and high cardiovascular risk
Nephrectomy Versus Partial Nephrectomy	Patel, 2014 ¹⁴⁷	7,177	SEER	Age, Charlson comorbidity index		Compared to NSM, PN and RN associated with improved survival among all ages. In comparison to RN only, PN has improved survival in patients ≥80 years old, no benefit if age 65-80.
	Sun, 2014 ¹⁴⁹	10,595	SEER	Multivariate analysis not provided		Compared to NSM, benefit to PN and RN in the entire cohort, T1a only, >75 years old, cT1a and >75 years old, and year of diagnosis 2000-2005.
Partial Nephrectomy Versus Thermal	Nephrectomy 2014 ¹²⁷		Retro. Single Institution	For cT1a: age, Charlson comorbidity index, and cryoablation	For cT1a: Radiofrequency ablation	Benefit to PN vs. cryoablation in cT1a and cT1b tumors, no benefit to PN vs.
Ablation				For cT1b: age, Charlson comorbidity index and cryoablation	For cT1b: none	radiofrequency ablation for cT1a tumors.
Radical Nephrectomy Versus Thermal Ablation	Choueiri, 2011 ¹⁴²	15,145	SEER	Multivariate analysis not prov	rided	
Surgical Intervention Versus Active Surveillance	Lane, 2010 ¹³⁵	537	Retro. Single Institution	Age, Charlson comorbidity index	Tumor size, preoperative eGFR, sex, race, solitary kidney	

ASA = American Society of Anesthesiologists; CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; NSM = nonsurgical management; PN = partial nephrectomy; RN = radical nephrectomy; SEER = Surveillance, Epidemiology, and End Results; TA = thermal ablation; RCT = randomized controlled trial

Renal Functional Outcomes

Radical Nephrectomy Versus Partial Nephrectomy

Seventeen studies evaluated clinical patient and tumor characteristics predictive of differential renal functional outcomes. 89,96,101,105,107,108,113,114,121,156,159,166,168,169,172,174,176,191 Factors evaluated in these studies included baseline renal function (estimated glomerular filtration rate, serum creatinine, or chronic kidney disease stage, age, sex, tumor size (or stage), composite comorbidity scores (American Society of Anesthesiologists score or Charlson comorbidity index), individual comorbidities (hypertension, diabetes mellitus, heart disease, and smoking), body mass index, and pathologic features (renal cell carcinoma histology) (Table 53).

The study by Lucas, et al. ⁹⁶ evaluated thermal ablation, radical nephrectomy, and partial nephrectomy; all other studies directly compared radical nephrectomy with partial nephrectomy. In addition, inconsistencies in data gathering and reporting among studies prevented a meaningful meta-analysis to be performed for any given variable. Specifically, some studies reported serum creatinine while others reported estimated glomerular filtration rate. Some studies reported continuous outcomes (e.g., change in estimated glomerular filtration rate), while others reported categorical outcomes (e.g., new onset chronic kidney disease). The reporting of the complete multivariate analysis, odds ratios, confidence intervals, and/or p-values varied among studies (Table 54).

Baseline Renal Function

Baseline renal function was the most consistently reported outcome. Nine studies with an association between baseline and postoperative renal function demonstrated that poor baseline renal function was associated with lower postoperative renal function. 89,96,101,105,107,108,113,114, 156,159,166,168,172,174,176,191

Woldu, et al. ¹⁶⁶ found that partial nephrectomy was only beneficial in patients with stage II chronic kidney disease (i.e. partial nephrectomy was associated with greater preservation of glomerular filtration rate) and not predictive in patients with stage I or stage III at the extremes of baseline renal function. Similarly, Scosyrev, et al. ⁸⁹ found that partial nephrectomy was associated with an improved postoperative estimated glomerular filtration rate only in those patients with a baseline creatinine less than or equal to 1.25 but not greater than 1.25. Takagi, et al. ¹⁵⁶ demonstrated that partial nephrectomy was associated with improved renal function after surgery (relative to patients receiving radical nephrectomy) only in those patients with a preoperative estimated glomerular filtration rate of 45 to 90 mL/min/1.73 m² and not among patients with estimated glomerular filtration rate of 30 to 45 mL/min/1.73 m² before surgery. To the contrary, the study by McKiernan, et al. ¹²¹ examined baseline serum creatinine only in patients undergoing radical nephrectomy and found this to be a nonsignificant predictor of postoperative serum creatinine.

Baseline renal function is associated with long-term renal functional outcomes regardless of type of surgery. While the evidence was not overwhelming, the evidence indicated that patients with optimal baseline renal function (estimated glomerular filtration rate >90 mL/min/1.73 m²) experienced less decline in estimated glomerular filtration rate but no difference in incidence of chronic kidney disease, while patients with poor baseline renal function (estimated glomerular filtration rate < 45 mL/min/1.73 m²) may not experience a renal functional outcome benefit after undergoing partial nephrectomy compared with those undergoing radical nephrectomy.

Age

Twelve studies reported renal functional outcomes in relation to age. 90,105,108,113,114,121,159,168,169,172,174,191 Seven of those studies reported increasing age associated with lower postoperative renal function. 108,114,159,168,172,174,191 Two studies demonstrated no effect of age on postoperative renal function. 113,121

The study by Roos, et al.¹¹³ found an approximate 8 mL/min/1.73 m² lower estimated glomerular filtration rate among elderly (≥65 years old) and young (<55 years old) patients undergoing radical nephrectomy compared with partial nephrectomy.

Three studies reported age as a controlling variable in multivariate regression, but did not provide the multivariate analysis. 90,105,169

Tumor Size

Seven studies evaluated tumor size as predictive of postoperative renal function. 96,101,105,114,168,169,191 The study by Roos, et al. 114 found a nonsignificant, lower estimated glomerular filtration rate for patients undergoing radical nephrectomy in comparison to patients undergoing partial nephrectomy for tumors 4 to 7 cm (p = 0.12) or larger than 7 cm (p = 0.07). The study by Iizuka, et al. 101 found that radical nephrectomy was associated with worse renal functional outcomes compared to partial nephrectomy, specifically in the cohort of patients with T1b tumors. The remainder of studies found similar renal functional outcomes when stratified by tumor size.

Radical Nephrectomy Versus Thermal Ablation

Two studies evaluated predictors of renal function comparative outcomes. ^{96,134} In the study by Takaki, et al., ¹³⁴ even when controlling for baseline estimated glomerular filtration rate, patients undergoing thermal ablation had a better estimated glomerular filtration rate than patients undergoing radical nephrectomy at one month following surgery and at last followup (multivariate analysis was not provided). In the study by Lucas, et al., ⁹⁶ in both patients with a baseline estimated glomerular filtration rate less than 60 mL/min/1.73 m² and estimated glomerular filtration rate less than 45 mL/min/1.73 m², thermal ablation showed superior renal functional outcomes than for patients undergoing radical nephrectomy.

Partial Nephrectomy Versus Thermal Ablation

Eight studies evaluated predictions of renal functional comparative outcomes. 96,125,126,131,138, 177-179 Renal outcomes were inconsistently reported across these studies and thus the predictive abilities of different factors could not be meaningfully compared. Some studies reported renal functional outcomes as a continuous variable (estimated glomerular filtration rate) while others reported categorical outcomes (chronic kidney disease). In five studies, tumor size and characteristics had no impact on renal functional outcomes. 96,126,138,177,178 However, the study by Tanagho, et al. 125 demonstrated that decreasing tumor size and thermal ablation were predictive of renal function, while hilar tumor location was associated with lower renal function.

Surgical Intervention Versus Active SurveillanceOne study¹³⁵ evaluated radical nephrectomy, partial nephrectomy, and active surveillance among patients older than 75 years. Analyses of patients younger than 75 years or other variables predictive of renal functional outcomes were not performed.

Table 53. Studies evaluating predictors of comparative postoperative renal function

Comparison	Author, Year	N	Study	Summary
<u> </u>	·		Design	•
Radical Nephrectomy Versus Partial Nephrectomy	Woldu, 2014 ¹⁶⁶	1,306	Retro Single Institution	Partial nephrectomy associated with lower rate of eGFR decline in CKD I and CKD II, not CKD III. No difference in the probability of developing CKD IIIb in CKD I or CKD IIIa patients, partial nephrectomy had favorable outcomes in CKD II only. In multivariate analysis of patients with CKD I, no variables were predictive of renal function. In multivariate analysis of patients with CKD II and CKD III, age, sex, and radical nephrectomy were predictive of postoperative renal function.
	Scosyrev, 2013 ⁸⁹	259	RCT	Partial nephrectomy associated with improved eGFR outcome in patients with baseline creatinine <1.25 and those patients with and without chronic illnesses. Multivariate analysis not provided.
	Mariusdottir, 2013 ¹⁰⁷	88	Retro Single Institution	Radical nephrectomy and baseline chronic kidney disease predict new onset chronic kidney disease.
	Miyamoto, 2012 ¹⁶⁸	253	Retro Single Inst.	In multivariate analysis, age, sex, radical nephrectomy predict new onset eGFR<60 in multivariate analysis, tumor size, and hypertension were not predictive.
	lizuka, 2012 ¹⁰¹	586	Retro Single Institution	Radical nephrectomy associated with new onset chronic kidney disease in patients with T1b tumors. Rate of new onset chronic kidney disease similar for T1a and T1b undergoing partial nephrectomy. Multivariate analysis not provided.
	Sun, 2012 ¹⁶⁹	4,633	SEER	Propensity scores analysis demonstrates superior renal functional outcomes for PN, age, sex, race, preexisting illness, Charlson, year of surgery, marital status, socioeconomic status, population density, hypercalcemia, hyperlipidemia, anemia, tumor size are controlled for but details are not provided.
	Roos, 2012 ¹¹⁴	247	Retro Single Institution	In multivariate analysis, age, ASA score, baseline eGFR, radical nephrectomy predict new onset chronic kidney disease; hypertension, Charlson, diabetes, histology, tumor size are not predictive.
	Takagi, 2011 ¹⁵⁶	95	Retro Single Institution	In patients with preexisting chronic kidney disease, partial nephrectomy was associated with improved renal function in patients with preoperative eGFR 45-59, but not patients with eGFR 30-44.
	Medina-Polo, 2011 ¹⁰⁸	290	Retro Single Inst.	In univariate analysis only, age, hypertension, diabetes mellitus predictive of new onset chronic kidney disease; heart disease, smoking, body mass index, and radical nephrectomy were not predictive.

Table 53. Studies evaluating predictors of comparative postoperative renal function (continued)

Comparison	Author, Year	N	Study Design	Summary
Radical Nephrectomy Versus Partial Nephrectomy	Lane, 2010 ¹⁰⁵	2,402	Retro Single Institution	Radical nephrectomy predicts a postoperative eGFR<45 mL/min/1.73 m² controlling for age, comorbidity, baseline eGFR, and tumor size. Multivariate analysis not provided.
(continued)	Roos, 2010 ¹¹³	829	Retro Single Institution	Higher rates of new onset chronic kidney disease after radical nephrectomy in both elderly and young patients. Multivariate analysis not provided.
	Weight, 2010	510	Retro. Single Institution	Age, male sex, and preoperative eGFR predict new-onset CKD (Charlson Comorbidity Index not predictive). When controlling for age, sex, Charlson Comorbidity Index, and preoperative renal function, radical nephrectomy increased the odds of CKD by 3.4-fold.
	Jeon, 2009 ¹⁷²	225	Retro Single Institution	Age, radical nephrectomy, and diabetes predict new onset chronic kidney disease. Multivariate analysis not provided.
	Huang, 2006 ¹⁷⁴	662	Retro Single Institution	In multivariate analysis, radical nephrectomy, age, and preoperative eGFR predicted eGFR<60 and eGFR<45 mL/min/1.73 m ² after surgery.
	Matin, 2002 ¹⁷⁶	117	Retro Single Institution	Radical nephrectomy associated with lower postoperative creatinine controlling for age and sex. Multivariate analysis not provided.
	McKiernan, 2002 ¹²¹	173	Retro Single Institution	Age, serum creatinine, and smoking not associated with postop creatinine in radical nephrectomy cohort. Multivariate analysis not provided.
	O'Malley, 2015	12,757 108	SEER Retro. Single Institution	Institutional data: In univariate analysis only, age, RENAL score, tumor size, preoperative eGFR, and radical nephrectomy are associated with decreasing postoperative eGFR. Propensity score analysis demonstrates increased risk of CKD stage 3 with radical nephrectomy.
Partial Nephrectomy Versus Thermal Ablation	Tanagho, 2013 ¹²⁵	267	Retro Single Institution	In multivariate analysis, tumor size, hilar location, and thermal ablation are predictive of preservation of eGFR; age, sex, BMI, Charlson, preoperative creatinine, nephrometry score, operative time, blood loss are not predictive.
	Faddegon, 2013 ¹⁷⁷	347	Retro Single Institution	In multivariate analysis, followup time is the only predictor of GFR at last followup, thermal ablation, hypertension, diabetes, age, and tumor size are not predictive.
	Mues, 2012 ¹²⁶	198	Retro Single Institution	No difference in eGFR based on tumor size, congenital or acquired solitary kidney. Multivariate analysis not provided.
	Mitchell, 2011 ¹⁷⁸	112	Retro Single Institution	No difference among partial nephrectomy or thermal ablation when controlling for age, nephrometry score, and tumor size.

Table 53. Studies evaluating predictors of comparative postoperative renal function (continued)

Comparison	Author, Year	N	Study Design	Summary
Partial Nephrectomy Versus Thermal	Kiriluk, 2011 ¹⁷⁹	112	Retro Single Institution	Significant differences in eGFR in patients with baseline eGFR>90, no difference in percentage decrease in eGFR.
Ablation (continued)	Turna, 2009 ¹³⁸	101	Retro Single Institution	Baseline eGFR and partial nephrectomy predict eGFR decrease; tumor location and size are not predictive.
	Desai, 2005 ¹³¹	131	Retro Single Institution	In patients with preexisting chronic kidney disease (eGFR>123 mL/min/1.73 m²), no difference in postoperative eGFR/creatinine.
Radical Nephrectomy Versus Thermal Ablation	Takaki, 2014 ¹³⁴	60	Retro Single Institution	One month and last eGFR lower for radical nephrectomy compared with thermal ablation when controlling for baseline eGFR. Multivariate analysis not provided.
Surgical Intervention Versus Active Surveillance	Lane ,2010 ¹³⁵	537	Retro Single Institution	In patients >75 years of age, a greater reduction in eGFR occurred in radical nephrectomy relative to partial nephrectomy or active surveillance
Radical Nephrectomy Versus Partial Nephrectomy Versus Thermal Ablation	Lucas ,2007 ⁹⁶	242	Retro Single Institution	In multivariate analysis, compared with thermal ablation: partial nephrectomy, radical nephrectomy, and age predict eGFR<60 mL/min/1.73 m²; radical nephrectomy, baseline eGFR predict eGFR<45 mL/min/1.73 m². Charlson and tumor size were not predictive.

SEER = Surveillance, Epidemiology, and End Results; ASA = American Society of Anesthesiologists; eGFR = estimated glomerular filtration rate; CKD = chronic kidney disease; pT3 = pathologic stage T3; PN = partial nephrectomy; RCT = randomized controlled trial; RN = radical nephrectomy; TA = thermal ablation

Quality of Life

Two studies evaluated predictors of health-related quality of life among surgical management strategies. Ro,83 The study by Parker, et al. Of found that age, the use of open versus laparoscopic surgery, and time from surgery all influenced health-related quality of life. The study by Gratzke, et al. Of found that complications following surgery predicted health-related quality of life, regardless of type of surgery (i.e., partial nephrectomy or radical nephrectomy). Interestingly, the noncomparative study by Becker, et al. Of life in patients undergoing partial nephrectomy. The noncomparative study evaluating thermal ablation by Beemster, et al. Of life in patients undergoing partial nephrectomy. The noncomparative study evaluating thermal ablation by Beemster, et al. Of life in patients undergoing partial nephrectomy. The noncomparative study evaluating thermal ablation by Beemster, et al. Of life in patients undergoing partial nephrectomy. The noncomparative study evaluating thermal ablation by Beemster, et al. Of life in patients of life. Due to a paucity of data, no meaningful conclusions could be drawn regarding clinical patient or tumor characteristics as they affect health-related quality of life (Table 54).

Harms

Only three studies evaluated additional patient and tumor factors predictive of harms. These included age 113 and tumor size 114,184 – these were not found to be predictive of harms.

Table 54. Strength of evidence domains for clinical predictors of the comparative benefits and harms of the available management

strategies

Key Outcomes	No. Studies (N)	Study limitation	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Cancer-specific survival	19 (114,752)	Medium	Indirect	Inconsistent	Precise	Undetected	Low Most data was derived from studies of radical nephrectomy in comparison to partial nephrectomy. In addition, inclusion criteria varied among studies and the relationship of age, tumor size, stage and grade to oncological outcomes were inconsistent among studies. However, the data indicates that differences in cancer-specific survival among modalities is likely unrelated to age or tumor stage.
Metastases-free survival	1 (475)	Medium	Indirect	Unknown	Precise	NA	Insufficient
Local recurrence-free survival	3 (360) (local and metastatic recurrence combined in these studies)	Medium	Indirect	Inconsistent	Imprecise	NA	Insufficient Variations in data collection and presentation prevent meaningful conclusions from these studies.
Overall survival	22 (99,314)	Medium	Indirect	Consistent	Precise	Undetected	Low Based mostly on studies of radical nephrectomy compared to partial nephrectomy, age and comorbidities consistently predicted overall survival.

Table 54. Strength of evidence domains for clinical predictors of the comparative benefits and harms of the available management strategies

Key Outcomes	No. Studies (N)	Study limitation	Directness	Consistency	Precision	Reporting Bias	Strength of Evidence Finding
Renal Functional Outcomes	27 (27,647)	Medium	Direct	Consistent	Imprecise	Undetected	Low Most data was derived from studies of radical and partial nephrectomy. The effects of baseline renal function and age were consistent among studies, but inconsistencies in other evaluable parameters limit the strength of evidence.
Quality of Life	2 (247)	Medium	Indirect	Inconsistent	Imprecise	Undetected	Insufficient Both studies demonstrated surgical approach (laparoscopic versus open) to predict outcome, but sparse data and inconsistencies among studies prevented determination of whether any factors were predictive of differences in the effects on health-related quality of life.
Perioperative Outcomes and Harms	3 (2,168)	Medium	Indirect	Inconsistent	Imprecise	NA	Insufficient One study evaluated age ¹¹³ and two evaluated tumor size. ^{114,184} All studies were inconclusive preventing meaningful conclusions from being drawn.

Discussion

Key Findings and the Strength of Evidence

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The evidence showed that composite models have a predictive utility in differentiating benign and malignant pathology. Imaging characteristics, which included mass size and anatomic location, were the most heavily used variables in the models, but no single variable was predictive of benign or malignant pathology across all composite models.

In general, increased tumor size and male sex were best correlated with malignant pathology, supporting historical predictors of malignancy in prior guidelines and retrospective studies. In several studies, the RENAL nephrometry score was predictive of malignant pathology. However, heterogeneity of data among studies limited the strength of evidence about the predictive utility of the components of the RENAL nephrometry score. The evidence was insufficient to identify other strong predictors of malignant versus benign pathology in this sample population. Without further prospective studies examining these variables, it is not possible to conclude that any particular composite model variables can be successfully applied as a predictive tool. However, these data can inform clinicians about general variables that are useful to predict benign or malignant pathology, and should be used to guide further well-designed clinical trials. Although male sex and increased tumor size were consistently associated with an increased risk of malignancy, the strength of evidence was low to support use of any particular composite model for diagnosis of renal masses suspicious for localized RCC.

The strength of evidence was moderate for increased tumor size and male sex being associated with increased risk of malignancy, and for incidental presentation not being associated with the risk of malignancy, based largely on the consistency of findings among studies. Strength of evidence was low for other tumor characteristics and age not being associated with the risk of malignancy; and low for composite profiles as a whole, based on inconsistencies among studies involving inclusion criteria, controlling variables in composite profiles, and study design.

KQ 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The evidence showed that renal mass sampling is associated with a low risk of complications (≤ 5 percent for each evaluated complication) and excellent positive predictive value (97-100 percent). However, the notable nondiagnostic rate (14 percent), low negative predictive value (68 percent), and bias that surgical pathology is not routinely pursued for benign biopsy samples, prevents strong conclusions from being drawn regarding the exact role of renal mass sampling in the clinical practice. The evidence supported the preference of core biopsy over fine needle aspiration, both of which are well-tolerated by patients and have a low risk of associated harms. Biopsies had a low complication rate, with hematoma being the most common at 5 percent.

The evidence suggested that renal mass sampling is useful primarily if the biopsy reveals a cancer diagnosis. For patients undergoing renal mass sampling, strong evidence supports its high sensitivity (97.5 percent) and low false positive rate (4.0 percent) in the diagnosis of malignancy. However, the current clinical assumption is that the renal masses in question in this report are

most likely indolent malignancies and true clinical utility of biopsy will be achieved when aggressive cancers can definitively be ruled out. Contemporary evidence suggests a 14 percent nondiagnostic rate, with 90.4 percent of these patients ultimately found to have malignant disease. Repeat biopsy can improve the diagnostic rate, as 80 percent of repeat biopsies are diagnostic. However, it should be noted that this requires a significant number of patients undergo an additional procedure. The 80 percent diagnostic rate reflects only those patients well-selected for a repeat biopsy. Furthermore, the negative predictive value of renal mass core biopsies is 68.5 percent. This certainly reflects a bias, in that only patients with the *most clinically suspicious* masses proceeded to surgical extirpation and, therefore, likely underestimates the true negative predictive value. While renal mass core biopsies provide adequate samples, tumor grade on biopsy was only weakly correlated with final pathology, with a 16 percent rate of upgrading from low to high grade.

Based on the available evidence, it is not possible to conclude that renal mass sampling is a universal prerequisite to surgical intervention or active surveillance. However, the research gaps and strength of evidence regarding renal mass sampling can direct future clinical research efforts to better elucidate its utility. The strength of evidence for diagnostic accuracy of renal mass sampling was graded as moderate for diagnostic accuracy. The strength of evidence for harms was graded as low.

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The evidence regarding management strategies of renal masses suspicious for localized renal cell carcinoma is based almost entirely on retrospective studies and is susceptible to the inherent limitations of this study design. We found a reasonable number of comparative studies regarding radical nephrectomy, partial nephrectomy, and thermal ablation. We included uncontrolled studies on active surveillance because of the dearth of comparative studies investigating this treatment modality.

Overall Survival and Oncological Outcomes

The available literature suggested that overall and oncological outcomes are similar between management strategies. In fact, cancer-specific survival was excellent among all modalities and median 5-year survival approached 95 percent for clinical T1a tumors. We did not find any studies comparing cancer-specific survival between partial nephrectomy and active surveillance.

Overall survival was highly dependent on patient comorbidity and competing risks of mortality. In the retrospective comparative studies, where selection bias exists, patients undergoing partial nephrectomy showed superior overall survival to thermal ablation and active surveillance – likely related to their excellent general health. Nonsurgical management patients in the SEER dataset (i.e., those patients who did not receive treatment or surveillance) had decreased overall survival compared with those who received surgical intervention. However, when confounding factors were considered, active surveillance and radical nephrectomy demonstrated comparable overall survival, based on the single comparative study, although there was a wide associated CI (HR 0.75 (95% CI, 0.45 to 1.26).

In general, radical nephrectomy and partial nephrectomy had similar overall survival, however the evidence directly comparing partial nephrectomy and radical nephrectomy was

conflicted. Multiple, large retrospective studies favored partial nephrectomy for overall survival. However, the single randomized study demonstrated increased overall survival in patients who underwent radical nephrectomy, but equivalent outcomes in the subset of patients with RCC.²⁷ When subdivided by tumor size, partial nephrectomy and radical nephrectomy showed similar survival outcomes for pathologic T1b and T2 tumors. For pathologic T1a tumors, partial nephrectomy was favored.

The evidence suggested that thermal ablation has inferior recurrence-free survival to radical nephrectomy and partial nephrectomy. However, cancer-specific and metastasis-free survival were similar among modalities, and when consideration of multiple treatments were allowed, thermal ablation cancer-specific survival approached that of radical nephrectomy or partial nephrectomy. Importantly, recurrence-free survival was considered only after a single, curative-intent initial treatment. Patients should therefore be counseled that if electing thermal ablation, they may require more than one treatment to achieve the same oncologic efficacy as other treatment modalities.

In summary, current evidence was insufficient to demonstrate superiority of a single treatment modality. Consideration of competing comorbidity is of paramount importance as differences in overall survival are largely driven by patient selection, and oncologic measures (cancer-specific and metastatic-free survival) are generally equivalent. The remaining caveat is that thermal ablation may require multiple treatments to achieve the same local control. The generally equivalent survival outcomes should encourage prospective clinical research efforts.

The strength of evidence was low among studies examining overall survival. Strength of evidence was moderate for cancer-specific survival for radical versus partial nephrectomy based on data from 1 RCT, 23 institutional studies, and 10 SEER analyses. All other outcomes demonstrated a low to moderate strength of evidence based on the existence of fewer studies for some comparisons (specifically of thermal ablation) and inherent study limitations (selection bias in the majority of cases).

Renal Functional Outcomes

All interventions experienced decreased renal function postoperatively, followed by renal functional improvements within 1 to 6 months. The improvement within this window was most notable with thermal ablation, although partial nephrectomy and thermal ablation appeared to have similar renal functional outcomes. The evidence demonstrated worse renal functional outcomes with radical nephrectomy compared with other management strategies when considering changes in eGFR and progression of chronic kidney disease.

The benefits in renal function in comparison to radical nephrectomy need to be posited with oncologic and harms data during choice of management. Importantly, a randomized trial of partial nephrectomy and radical nephrectomy, of which 85 percent of the patients had a World Health Organization performance status of zero (fully active), demonstrated a greater short-term decrease in eGFR with radical nephrectomy than with partial nephrectomy, but similar long-term renal function outcomes –indicating that healthy patients may not benefit from nephron-sparing interventions. ⁹⁰ Our synthesis of studies suggests that patients at the lowest (preoperative eGFR <45 ml/min/1.73 m²) and highest levels (preoperative eGFR >90 ml/min/1.73 m²) of kidney function may not experience renal functional benefits from nephron sparing procedures compared with radical nephrectomy. However, this is likely due to decreased numbers of studies reporting these subgroups and outcomes, and the few studies reporting followup beyond one year. Further research should strive to identify the patients most likely to benefit from nephron-

sparing approaches from a renal functional standpoint, and in particular long-term development of chronic kidney disease and/or end-stage renal disease. Importantly, the incidence of new-onset end-stage renal disease was uncommon (0.4 to 3 percent) across all interventions.

In summary, radical nephrectomy was associated with worse renal functional outcomes, compared with thermal ablation and partial nephrectomy, which have comparable outcomes. Further research is needed to evaluate the clinical relevance of the decline in renal function. Strength of evidence was moderate for the continuous and categorical comparisons of radical and partial nephrectomy, as well as the continuous renal functional outcomes of radical nephrectomy and thermal ablation based on consistent estimated glomerular filtration rate findings among all studies. Strength of evidence was insufficient to low in the remainder of comparisons based on a low number of studies and inconsistencies in reporting of renal functional outcomes.

Quality of Life Outcomes

Evaluable evidence was only available for comparing quality of life outcomes between partial nephrectomy and radical nephrectomy. These studies demonstrated that radical nephrectomy may provide better *perceived* quality of life regarding cancer control. Partial nephrectomy, however, showed decreased anxiety and depression. Quality of life nevertheless hinged upon complications, regardless of management strategy. It was not possible to evaluate the efficacy or comparative efficacy of thermal ablation or active surveillance in terms of quality of life. This limitation should be addressed in future clinical research.

In summary, there is a paucity of evidence on quality of life following management of clinical stage T1 or T2 renal masses, which appears to be influenced by multiple factors including cancer control and complications. The strength of evidence was insufficient for all comparisons.

Perioperative Outcomes and Harms

Perioperative harms or complications were generally modest and equivalent across all interventional management strategies. Between the three interventional management strategies, thermal ablation offered the most favorable perioperative outcomes (including estimated blood loss, length of hospital stay, and conversion to open or radical surgery). Partial nephrectomy had higher rates of perioperative blood transfusions than radical nephrectomy or thermal ablation.

In meta-analyses, total rates of minor and major complications were similar among surgical interventions. Patients undergoing partial nephrectomy had higher rates of urologic complications while patients undergoing radical nephrectomy had higher rates of acute kidney injury and nonurologic complications. Patients undergoing thermal ablation had lower rates of acute kidney injury and specific nonurologic harms including cardiovascular, hematologic, and respiratory harms in comparison to radical and partial nephrectomy. Thermal ablation did have higher rates of bleeding and urine leak in comparison to radical nephrectomy; and infectious and wound harms in comparison to partial nephrectomy. Based on the current evidence, it is not possible to evaluate the comparative harms associated with active surveillance.

In summary, all interventional management strategies showed associated harms, and some of these harms were comparatively different between interventions and should be considered when selecting a treatment modality. However, the overall rates of harms were similar across all interventions. Strength of evidence was moderate for the perioperative outcomes of radical and partial nephrectomy, and partial nephrectomy and thermal ablation based on consistent findings

among studies. Strength of evidence was insufficient to low for all other comparisons based on inconsistencies in the reporting of harms among studies.

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

The evidence was limited regarding the comparative benefits and harms of management strategies based on patient or tumor characteristics. Specifically, data on the comparative benefits and harms associated with thermal ablation and active surveillance were lacking. Limited evidence suggested that age, tumor size, and tumor grade were inversely associated with survival for radical nephrectomy and partial nephrectomy. Understanding the current limitations of the data, nephron-sparing surgery was not demonstrated to offer improved renal functional outcomes compared with radical nephrectomy in patients with poor (estimated glomerular filtration rate < 45ml/min) or normal (estimated glomerular filtration rate > 60ml/min) preoperative renal function. Compared with nonsurgical management, radical nephrectomy and partial nephrectomy offered a survival benefit, although this benefit was inversely related to patient age and comorbidity. Based on the available evidence, it was not possible to identify clinical scenarios in which patient or tumor characteristics would alter the a priori treatment decision. Both retrospective and prospective data are needed to further identify the influence of patient and tumor characteristics on treatment outcomes.

Strength of evidence was low for cancer-specific and overall survival and insufficient for metastases-free and local recurrence-free survival. Baseline renal function was associated with long-term renal functional outcomes, regardless of type of surgery. The strength of evidence was low on the predictors of renal functional outcomes in comparative studies. The strength of evidence was insufficient for quality of life and perioperative outcomes and harms.

Findings in Relationship to What Is Already Known

Prominent guidelines on this topic include those from the American Urological Association (AUA), European Association of Urology (EAU), and the National Comprehensive Cancer Network (NCCN). The AUA guidelines, published in 2009, were determined following systematic review of the medical literature from 1996 to 2007. Inclusion and exclusion criteria were similar to those used in our review. The guidelines from EAU, published in 2015, were established via a multidisciplinary expert panel discussion. The literature that formed the base of these recommendations were graded on a strength of evidence scale, which included high (grade A), moderate (grade B), or low (grade C) strength of evidence. The majority of the recommendations from these organizations cited grade B and C evidence. The NCCN guidelines, also published in 2015, were established via consensus of an expert panel.

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Guidelines from the AUA identified tobacco and obesity as risk factors for renal cell carcinoma. The AUA also suggested that hypertension may increase the risk of renal cell carcinoma, and certain diets may protect against renal cell carcinoma. While the discussion of risk factors was based on large, population-based, epidemiologic studies, there was little

evidence regarding hypertension, smoking status or dietary habits in preoperative composite models analyzed in this report. Therefore, while these patient characteristics may demonstrate a relationship to renal cell carcinoma in epidemiological studies, they do not demonstrate an increased risk of malignant histology in patients with a localized renal mass based on this systematic review. Regarding differentiating between benign and malignant pathology, the AUA identified increased tumor size and male sex as correlated with increased likelihood of malignant pathology. The EAU guidelines noted a male predominance in renal cell carcinoma prevalence, but did not comment on factors that are predictive of malignant pathology. In addition, the EAU guidelines cited evidence that larger tumor size and solid pattern on imaging correlate with increased diagnostic accuracy of core biopsy. The NCCN guidelines suggest smoking and obesity as increased risk factors for renal cell carcinoma but do not identify factors that are predictive of malignant versus benign pathology.

Our review provides support for the current (2009) AUA guidelines regarding the use of tumor size and sex to estimate the risk of malignancy. The findings of this systematic review provide further evidence of the strength of the correlation with tumor size and sex. In addition, tumor characteristics, including the RENAL nephrometry score, demonstrate promise and should be considered as new updates and iterations of composite models are created. It is also noteworthy that proposed risk factors from prior research and guidelines, specifically age and BMI, did not have levels of evidence supporting their routine use to predict benign or malignant pathology. It is also important to note that our analysis did not identify a single composite model nor any components of a composite model that could be used to definitively distinguish benign from malignant pathology.

KQ 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Renal mass sampling (either by fine needle aspiration or by core biopsy) was identified in our analysis as being associated with both a high nondiagnostic rate (14 percent) and high negative predictive value (68.5 percent). The AUA guidelines identify renal mass sampling as a standard intervention "in all patients undergoing thermal ablation and in patients for whom it might impact management, particularly patients with clinical or radiographic findings suggestive of lymphoma, abscess or metastasis." Renal mass biopsy is also not recommended in patients who would be unable to handle the uncertainty associated with the results. The EAU guidelines recommend biopsy in patients who are to be placed on active surveillance and also recommend the biopsy be completed prior to thermal ablation. Core biopsy is recommended, with tumor size and solid pattern related to increased diagnostic accuracy.

The high rate (up to 22.6 percent) of nondiagnostic biopsies and weak ability to identify tumor grade are mentioned in the EAU guidelines. Peripheral biopsies are suggested, to avoid central necrosis and improve accuracy. Neither the AUA nor the EAU guidelines make recommendations on the number of biopsies needed. Our analysis is consistent with the AUA and EAU guidelines, which recommend using renal mass sampling judiciously, and preferably to use core biopsy over fine needle aspiration in the decision-making algorithm. Our systematic review also demonstrates real limitations to renal mass sampling that should be considered in any recommendation regarding the standard use of renal mass sampling. Given its performance characteristics, renal mass biopsy could be offered in situations where its results could influence management choice. For example, renal mass biopsy could be performed prior to thermal ablation when its results could help determine appropriate followup and treatment efficacy. A

young patient determined to have a partial nephrectomy for a small tumor would likely not benefit from biopsy. In contrast, a patient with a solitary kidney in whom surgery will likely lead to an anephric state may benefit from the added information yielded by a biopsy. This decision-making process should include a thorough discussion of expected outcomes, risks and benefits between physician and patient. The implications of the complication profile on special patient populations such as those on anticoagulant therapy was limited in the studies reviewed.

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

The AUA guidelines identify surgery as the standard of care for management of clinical T1 tumors. Where possible, renal masses considered clinical T1a should be treated with partial nephrectomy, it is generally recommended that clinical T1b tumors be treated with radical nephrectomy. The EAU guidelines state that partial nephrectomy should be attempted when feasible for clinical T1 renal masses, with laparoscopic radical nephrectomy used as an alternate treatment if the mass is not amenable to partial nephrectomy. Due to the paucity of data, the EAU did not make recommendations on the role of thermal ablation, although these should be discussed with patients as treatment alternatives. The NCCN guidelines recommend partial nephrectomy, radical nephrectomy, active surveillance, and thermal ablation for the management of clinical T1a masses, depending on the clinical situation. The NCCN recommends partial nephrectomy with conversion to radical nephrectomy if partial nephrectomy is not technically feasible. Active surveillance should be considered in appropriate candidates, such as older patients with comorbid conditions. Thermal ablation is recommended in patients who are not surgical candidates. Active surveillance and thermal ablation are not recommended for clinical T1b masses, with partial nephrectomy and radical nephrectomy as recommended options. Finally, the NCCN recommends that clinical T2 tumors should be treated with radical nephrectomy.

This systematic review supports the recommendations of the organizations stated above. However, analysis of comparative efficacy and consideration of oncologic efficacy as well as renal functional outcomes, quality of life, perioperative outcomes and harms provides data for the following recommendations when updating guideline statements.

First, this systematic review demonstrates comparable cancer-specific survival among all management strategies. This supports the prior statement from the AUA Guidelines, in which cancer-specific survival outcomes are described as uniformly excellent. Also in support of prior guideline statements, we found thermal ablation to have a higher local recurrence rate, which may indicate the need for multiple procedures to achieve equal efficacy or biological failure of the treatment. Finally, overall survival rates parallel the competing health risks and highlights the selection bias inherent to each management strategy. Data from this systematic review supports the previous statements from the AUA and other organizations that patients who can tolerate partial nephrectomy are often the healthiest and therefore have the most favorable overall survival in comparison to other management strategies. In contrast, patients undergoing thermal ablation and active surveillance often have the highest competing health risks and subsequently have the lowest rates of overall survival. In concordance with the AUA Guidelines, we find it difficult to draw meaningful conclusions regarding the comparative overall survival among all management strategies due to the presence of confounding variables and low levels of evidence.

Given the largely equivalent oncologic outcomes, consideration of secondary endpoints including renal functional outcomes, quality of life, perioperative outcomes, and harms are essential in choosing a management strategy for a given patient. Each management strategy has a risk/benefit profile that varies in terms of renal functional outcomes, quality of life, perioperative outcomes and harms. Radical nephrectomy has the greatest adverse effect on renal function, but favorable perioperative outcomes and low risk of urologic harms. Partial nephrectomy may preserve renal function but has the highest rates of bleeding requiring transfusion and urologic complications. Thermal ablation has favorable renal functional, perioperative and harms outcomes, however may require multiple treatments to achieve a similar oncologic outcome. Active surveillance offers excellent oncologic outcomes in well-selected patients and avoids the harms of a surgical intervention, however remains limited by the paucity of prospective studies reporting detailed selection criteria, surveillance protocol, and long-term outcomes.

When considering patient profiles, the healthy patient with a mass suspicious for malignancy usually will consider surgical extirpation (radical or partial nephrectomy). Compared to partial nephrectomy, radical nephrectomy showed a higher median incidence of chronic kidney disease greater than or equal to stage III (30 percent vs. 12 percent), chronic kidney disease stage greater than or equal to stage IV (7.5 percent vs. 5.4 percent), and end stage renal disease (0.8 percent vs. 0.4 percent). Such evidence provides support for nephron sparing surgery. However, partial nephrectomy carries the highest risk of blood transfusions and harms. In addition, data from our systematic review, including a RCT, indicates that patients without chronic kidney disease (and in the best of health) may not experience a clinically meaningful benefit in renal functional outcomes from nephron-sparing approaches (partial nephrectomy and thermal ablation). Therefore, radical nephrectomy remains a safe and reliable option with a limited risk of harms for patients seeking treatment of a clinically localized renal mass.

For patients with high competing health risks, thermal ablation offers the best perioperative and harm profile, indicating a low risk of complications for patients who may be frail but seeking active treatment of a clinically localized renal mass. As stated above, these benefits are contrasted by worse local recurrence rates and an increased risk of needing for retreatment. While active surveillance demonstrates efficacy in well-selected patients and should be considered as an option for the management of clinically localized small renal masses (data regarding active surveillance is limited to patients with clinical stage 1 tumors), there is insufficient data in comparative studies to draw meaningful conclusions regarding the comparative efficacy of active surveillance. Our results do provide a summary of the available evidence on outcomes that would be expected to occur with active surveillance.

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

The AUA, EAU, and NCCN guidelines do not address how the comparative benefits and harms of management strategies may depend on patient characteristics other than to recommend nonsurgical intervention in patients with increased comorbidity. While a number of studies evaluated multivariate predictors of comparative efficacy, few studies evaluated each predictor in the context of comparative efficacy – limiting the conclusions that could be drawn from these data. However, there were a number of important findings from systematic review of this literature. First, radical, and partial nephrectomy demonstrated equivalent cancer-specific

survival when stratified by age or tumor stage. Radical and partial nephrectomy demonstrate a cancer-specific and overall survival benefit to patients undergoing nonsurgical management that may be attenuated in patients more than 75 years of age or with high cardiovascular risk profile. Finally, baseline renal function (estimated glomerular filtration rate) was the best predictor of postoperative renal function regardless of management strategy.

Applicability

KQ 1 and 2: Diagnosis of Renal Mass Suspicious for Localized Renal Cell Carcinoma

The target population included patients with newly diagnosed, localized renal masses concerning for stage I or II renal cell carcinoma, who were older than age 18, with no family or personal history of renal cell carcinoma.

We evaluated the accuracy of published composite models (e.g., combination of demographics, clinical characteristics, blood/urine tests, and tumor imaging characteristics) for predicting malignancy. We also reviewed the efficacy and safety of percutaneous renal mass sampling, either by fine needle aspiration or core biopsy, in the diagnosis of malignancy. We recorded study information about sex, smoking history, and race, but did not exclude studies based on these variables. We also looked at body mass index, cardiovascular disease, and chronic kidney disease and we did not exclude any studies based on those characteristics of patients. For each composite model and renal sampling technique, we evaluated the false positive and false negative rates. For renal mass sampling, we further evaluated risks of pain, hemorrhage, and tumor seeding. We have detailed our assessment more specifically in Table 55, according to each PICOTS element.

Table 55. Applicability for KQ 1 and KQ 2

Table 55. Applicability for KQ 1 and KQ 2						
PICOTS	Inclusion Criteria	Conditions That Might Limit Applicability				
Population(s)	 18 years or older Solid renal masses (or cystic renal masses with a solid component) suspicious for stage I and II renal cell carcinoma 	 Most patients were more than 60 years old. Results may not apply to younger patients or very old patients. Studies were predominantly in solid renal masses. Partially cystic masses were poorly represented. 				
Interventions	Composite modelsPercutaneous renal mass sampling	Biopsy protocols not standardized				
Comparators	Between biopsy results, composite models, and pathologic diagnosis after surgical intervention	 Benign or nondiagnostic biopsies do not have associated surgical pathology. Location and size of renal masses not described. 				
Outcomes	 Diagnostic Outcomes False positives False negatives Radiation exposure Adverse effects Pain Hemorrhage Tumor seeding 	 Limited data on false negative rate since these patients do not progress to treatment. No data on harms associated with radiation exposure. Effects of hemorrhage on delaying surgery or increasing surgical complexity are not known. 				
Type of study	Any study design except case reports	No limitations on applicability				
Timing and Setting	Any time point and setting	Earlier studies do not use current imaging technology, which may improve its diagnostic abilities and improve renal mass sampling.				

KQs 3a and 3b: Management of Renal Mass Suspicious for Localized Renal Cell Carcinoma

The target population for KQs 3a and 3b included patients with a newly diagnosed, localized renal mass concerning for clinical stage I or II renal cell carcinoma, who were older than age 18, with no family or personal history of renal cell carcinoma. We evaluated the following management strategies: radical nephrectomy (both open and minimally invasive), partial nephrectomy (both open and minimally invasive), thermal ablation (including radiofrequency ablation, cryoablation and surgical vs. image-guided), and active surveillance. For each of these management strategies, we examined final health outcomes, perioperative outcomes, and harms.

Survival outcomes included local recurrence-free survival, metastasis-free survival, cancer-specific survival, and overall survival. Renal functional outcomes included decline in renal function, incidence of chronic kidney disease, and incidence of end-stage renal disease. We further evaluated studies regarding quality of life associated with these strategies.

Perioperative outcomes included estimated blood loss, need for transfusion of blood products, conversion to radical nephrectomy for nephron-sparing approaches, and conversion to open surgery for minimally invasive approaches.

Harms data were subdivided based on organ system, as well as by severity grading (e.g., Clavien classification). Urologic complications included acute kidney injury, renal hemorrhage, urine leak, hematuria, loss of the affected kidney, ureteral injury, and urinary tract infection. Non-urologic subtypes included hematologic/thromboembolic, gastrointestinal, cardiovascular, respiratory, neurologic, infectious diseases, and wound complications

For studies regarding management strategies, both comparative and uncontrolled studies were included. Uncontrolled studies were only used when comparative data were not available. We have detailed our assessment of applicability of the evidence more specifically in Table 56, according to each PICOTS element.

Table 56: Applicability for KQs 3a and 3b

PICOTS	Inclusion Criteria	Conditions That Might Limit Applicability
Population(s)	 18 years or older Solid renal masses (or cystic renal masses with a solid component) suspicious for stage I and II renal cell carcinoma 	 Most patients were more than 60 years old. Pathology and outcomes associated with younger patients may be different.
Interventions	 Radical Nephrectomy Partial Nephrectomy Thermal Ablation Active Surveillance 	 The interventional management strategies varied a lot. Older studies may not reflect current techniques. Surveillance data was not robust enough to determine long-term outcomes. Conversion from partial to radical nephrectomy was poorly captured. Minimally invasive conversion to open surgery was poorly captured. Thermal ablations sometimes were aborted due to technical difficulties (e.g., ability to visualize tumor) but were poorly captured.
Comparators	All of the management options listed above	 Limited prospective or randomized trials. Limited comparative studies between ablative and surgical interventions.
Outcomes	Perioperative harms Adverse Outcomes Survival Outcomes Local-recurrence free survival Metastasis-free survival Cancer-specific survival Overall survival Functional Outcomes Renal functional outcomes Quality of life outcomes	 Non-standardized treatment interventions may result in different rates and types of harms. Data may be confounded by the learning curve and maturation associated with interventional techniques. Results may vary because of nonstandardized and changing definitions of survival and renal functional outcomes.
Type of study	Comparative and uncontrolled studies	Predominance of uncontrolled studies
Timing and Setting	Any time point and setting	Interventional techniques are constantly improving and changing, making it unclear as to when an intervention is mature enough to be included for analysis.

Implications for Clinical and Policy Decision Making

KQs 1 and 2: Diagnostic Implications

The results of this analysis may improve the judicious and appropriate utilization of medical resources for the diagnosis of renal masses suspicious for localized renal cell carcinoma. The current evidence suggested that there were no criteria universally predictive of benign or malignant pathology.

Tumor size (as detected by standard axial imaging) and sex were the most widely reported predictors of malignant pathology. While data indicates that incidental versus symptomatic presentation has little role in predicting benign or malignant pathology, the role of age and BMI are not well understood and future research may expand our understanding of these characteristics in relation to malignant pathology. Tumor characteristics, most often described by the RENAL nephrometry score, are emerging as predictors of malignancy, however heterogeneity of the current literature prevents characterization of objective criteria on which to

judge the risk of malignancy. We did not identify any other new markers, clinical factors, or imaging studies that improved diagnostic abilities.

Our analysis may assist in decision making regarding the judicious use of renal mass sampling. The current data indicates excellent diagnostic performance characteristics for renal mass biopsy when a malignancy is encountered (high specificity, high sensitivity, and low false negative rate). Based on the current clinical paradigm, renal masses are assumed malignant (and of unknown metastatic potential) and therefore treated. Given the uncertain performance of renal mass biopsy when a "negative" biopsy is encountered (14 percent nondiagnostic rate, 68.5 percent negative predictive value), it is difficult to identify the patients and tumors most likely to benefit from biopsy. However, data synthesized in this report may help identify populations enriched for these disease characteristics. For instance, based on tumor size and patient sex, a population may be identified that is more likely to have benign tumors and therefore benefit from having a renal mass biopsy without having further surgical intervention. More importantly, clinical decision and policy makers should strive to identify the patients most likely to benefit from renal mass biopsy.

KQs 3a and 3b: Management Implications

Our findings should help to support informed decision making about appropriate selection of intervention for the management of renal masses suspicious for localized renal cell carcinoma, including discussion of expected outcomes and harms associated with each management option. Given similar survival outcomes, secondary outcomes (renal function, health-related quality of life, perioperative outcomes and harms, etc.) are important discussion points for any consultation regarding the management of a renal mass suspicious for malignancy. Such discussions should include information about the outcome profile associated with each management option. While the data regarding the influence of patient and tumor characteristics is not strong, consideration of mitigating effects of these characteristics should be considered until stronger evidence is acquired. Both the AUA and the EAU guidelines recommend management strategies that include treatment of "poor surgical candidates." While this recommendation may have been left intentionally vague to allow autonomy for the practicing physician or urologist, the results of our analysis may allow for better discussion of the pros and cons of different management options for individual patients. Moreover, outcomes for these management strategies reflect the relevant postoperative concerns. For example, patients who undergo thermal ablation versus partial nephrectomy may require different postoperative imaging and renal functional assessments due to the reported differences in outcomes.

Limitations of the Comparative Effectiveness Review Process

Our systematic evaluation of the diagnosis and management of renal masses suspicious for localized renal cell carcinoma is not without limitations. These limitations include:

1. Clinical stage T1 or T2: Localized renal masses were assumed to be clinical stage T1 or T2 in articles evaluating thermal ablation or partial nephrectomy when no clinical stage was stated. Studies addressing radical nephrectomy for tumors of unspecified renal stage were excluded. The assumption that nephron-sparing interventions would be performed only on T1 and T2 renal masses is based on the standard of care in which patients with known renal vein involvement are treated

- with radical nephrectomy. Radical nephrectomy studies that did not state the clinical stage had to be excluded for this reason. As a result, relevant data regarding radical nephrectomy may have been excluded because of a failure to specify clinical stage.
- 2. **Multiple studies may have used the same data set:** Retrospective studies were reported as data were accumulated. As a result, there was the risk that data from the same cohort of patients were reported in multiple articles, thereby biasing the final analysis. To address this, we manually reviewed the data to gauge similarity and possible subsequent exclusion of repeated studies.
- 3. **Accuracy of biopsy:** We did not evaluate factors related to accuracy of biopsy (e.g., peripheral biopsies, number of biopsies, etc.). Renal mass sampling has a notable nondiagnostic rate, which may be altered based on the location, quantity, and imaging technique used. This was outside of the scope of this review. As a result, we collapsed almost all variables, but we allowed for the comparison of fine needle aspiration with core biopsy.
- 4. **Surgical pathology:** We excluded renal mass sampling data that were not correlated with surgical pathology. To determine the accuracy of renal mass sampling, we looked for biopsy data having corresponding surgical pathology data as the reference. Biopsies that were benign or nondiagnostic did not necessarily result in an intervention. Thus, the true accuracy of renal mass sampling is not known
- 5. **Standard treatment technique:** We excluded variations in management strategies that were not deemed a standard treatment technique. Experimental techniques such as single-port laparoscopy, gasless laparoscopy, selective segmental artery clamping, and zero ischemia techniques, threatened to bias the outcomes data. As a result, we excluded all of these studies, deeming them experimental and acknowledging the absence of these data on these emerging technologies.
- 6. **Solitary kidneys:** Data regarding solitary kidneys was limited. Solitary kidney data provides a unique method for evaluating the management strategies with regards to renal function. However, the reason for a patient having a solitary kidney (e.g., previous nephrectomy for renal cell carcinoma, or congenital absence of a kidney) was not always reported. Likewise, other studies contained a minority of patients with solitary kidneys within a cohort of patients with bilateral kidneys, which may have affected treatment decision making and renal functional outcomes. To address this, we included studies deemed as evaluating solitary kidneys if at least 50 percent of the patients had solitary kidneys.
- 7. **Negative markers:** Negative predictive markers in composite models were not routinely reported. The development and reporting of composite models focused on markers that were predictive of benign or malignant pathology. Clinical, demographic, laboratory, or imaging characteristics that were not predictive may not have been reported.
- 8. Studies that used a single biomarker or clinical variable for predicting benign versus malignant pathology were excluded. Multiple biomarkers and laboratory tests were reported in the literature as univariable studies, but these were excluded from our review, as they were not part of a composite model. This was deemed necessary to

focus the review on high-quality predictors and avoid the overwhelming number of poor quality studies.

Limitations of the Evidence Base

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

- 1. The literature has a paucity of studies on biomarkers in composite models. While many composite models used clinical and imaging characteristics, few studies evaluated the utility of laboratory values as a biomarker of benign or malignant pathology.
- 2. Composite models were not validated. Given the lack of a reference or widely accepted composite model, we found no studies aimed at validating established models predicting benign or malignant disease.

KQ 2: Accuracy and Efficacy of Renal Mass Sampling in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

- 1. Location and character of tumors was not described in detail. Presumably, renal mass sampling was performed for posteriorly located masses. However, the reported literature did not routinely delineate the anatomic location of the renal mass. As such, sampling of hilar or anteriorly located tumors may not have the same accuracy and safety as posterior tumors, and the results from the reported literature may not be generalizable.
- 2. Risks and harms from holding anticoagulation are not reported. Bleeding complications are a reported risk for renal mass sampling, and anticoagulation is often held perioperatively. The risks of holding anticoagulation were not addressed in the studies we reviewed.
- 3. *Biopsy protocols were not described in detail*. Studies evaluating renal mass sampling did not follow a common protocol, and there was limited published detail on how each biopsy was performed.
- 4. *Management of partially cystic tumors was not well described.* Renal masses exist on a spectrum of cystic versus solid components. While the majority of tumors are solid and can be sampled, tumors that are partially cystic and partially solid may have been biopsied and are not well described in the studies.
- 5. Peri-renal hematoma may complicate subsequent interventions. Renal mass sampling may result in a hematoma. This may delay surgical intervention, complicate nephron-sparing surgery, or complicate conversion of nephron-sparing surgery to radical nephrectomy. The delay in curative-intent treatment as a result of the biopsy is not well known.
- 6. The effect of renal mass sampling on clinical management is not well understood. While studies report the performance characteristics of renal mass sampling, it is unclear how this practice affects further management.

- 7. Cost-effectiveness of renal mass sampling was not evaluated. This issue was beyond the scope of this systematic review; however an evaluation of this type may provide additional insight into the utility of renal mass sampling.
- 8. There is limited data comparing renal mass sampling to cross sectional imaging alone or in composite models (*KQ1*). While the scope of this review is limited by the paucity of comparative diagnostic studies in the literature, the lack of comparative analyses remains a limitation of this report.

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

- 1. *Prospective trials with limited biases were lacking*. Differences seen in survival data may be a result of selection bias across treatment modalities. Retrospective data, while robust, are at high risk of bias.
- 2. The true tumor grade of thermally ablated tumors is not known. Biopsy is a standard procedure prior to thermal ablation, yet the reported analysis of biopsy data demonstrates its poor ability to determine tumor grade. Since renal tumors exhibit intra-tumor heterogeneity, it is not possible to assess the true tumor pathology of thermally ablated tumors.
- 3. Comparative data was weighted toward clinical T1 data, with a limited data on clinical T2 tumors. Of 89 comparative studies, 14 identified patients with clinical T2 tumors and an additional 4 studies included nephron-sparing interventions on localized tumors, which may have been either clinical T1 or T2 tumors. Comparative outcomes by stage and stage sub-groups were available for radical and partial nephrectomy only. A lack of granularity in reported outcomes prevented these comparisons for other modalities.
- 4. Active surveillance protocols were not standardized. Neither imaging modality nor timing of serial imaging were standardized among studies. These studies had limited numbers of patients and did not universally include renal mass sampling in their protocols. Additionally, there were no standardized criteria for delayed intervention in these patients.
- 5. Post-treatment followup was not standardized. Patients did not experience the same followup. Patients undergoing nephron-sparing procedures or those with higher-grade tumor pathology may receive closer followup and for a longer duration, improving the outcomes associated with these treatments. Additionally, postoperative surveillance strategies and subsequent risks (i.e. radiation exposure, cost) were not considered in this report.
- 6. Timing and definitions of survival were not standardized. Most notable, the urologic literature uniformly reports cancer-specific survival (where individuals who die of other causes or are alive at the end of followup are censored at that time) as the primary outcome in most studies. Cancer-specific survival most certainly overestimates the true survival from this disease. Cancer-free survival (the proportion of patients alive and without cancer at last followup) or alternative measures were not uniformly reported and therefore were not included in this systematic review. In addition, while the Kaplan-Meier method is employed to provide estimated

- measures of survival in the majority of studies, the time interval for reporting survival was not uniform. Finally, definitions of recurrence-free survival were not standardized across studies.
- 7. Improvements in medical treatments for recurrent or metastatic disease may confound cancer-specific and overall survival data.
- 8. Surveillance may include patients with benign disease. Active surveillance assumes that the renal mass is a malignant tumor. However, biopsy was not required to enter active surveillance programs, and benign tumors may be present that would confound metastatic, cancer-specific, and overall survival data.
- 9. Different definitions of success with thermal ablation. Definition of success following thermal ablation is not easily comparable to surgical interventions. Within surgical interventions, final pathological analysis can confirm the absence of a tumor at the surgical margin, indicating success. Thermal ablation relies on imaging for followup, which is not an accurate comparison since positive margins following surgery are not routinely visible on postoperative imaging.
- 10. Renal functional data come primarily from patients with two functioning renal units that functioned preoperatively. While our target population generally falls within this category, there are limited data on patients with solitary kidneys and limited literature on the compensatory changes associated with treatment of the affected kidneys.
- 11. Timing and definitions of renal function were not standardized and changes with time. Studies that reported renal function included serum creatinine, estimated glomerular filtration rate, or both. Measurements were collected at preoperative and postoperative times that were not standardized across studies. As a result, our comparisons of data may have been confounded by time in relation to the treatment or intervention.
- 12. Surgeon/operator level of expertise was unknown or not routinely reported. It is widely accepted that complications and outcomes related to interventions are related to the level of expertise of the physician performing the intervention. These data were not routinely reported, nor was there a standardized definition of surgical proficiency.
- 13. *Cost-effectiveness of any management strategy was not evaluated.* This issue is beyond the scope of this systematic review.
- 14. The studies provided little information about long-term sequelae (i.e. cardiovascular and metabolic risks) of the management strategies and subsequent chronic kidney disease. The comparative harms examined in this report focused on the short-term risks directly related to the interventions. The long-term risks of cardiovascular disease and metabolic sequelae are believed to be secondary effects of chronic kidney disease, which may be mitigated by various management strategies (i.e. nephron-sparing versus radical treatment). The data regarding such long-term sequelae are limited and conflicting. With improved data, future reports may be able to better address this limitation of the review.
- 15. *High quality, comparative health-related quality-of-life data is lacking.* The strength of evidence for the health-related quality-of-life effects is low or insufficient. The existing data cannot be compared among studies due to differences in methodology, questionnaires, and timing of the quality of life assessments.

Importantly, quality of life assessments reflect patient perception (i.e. patients may perceive radical nephrectomy to impart an improved cancer-specific survival, which is not supported by the data). Improved education, using information from this report, may help inform patient perceptions of outcome.

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

Studies did not universally report patient demographics, clinical characteristics, or disease severity. All studies have the ability to report these data, as they are associated with each patient regardless of management strategy. However, these were not routinely reported, adding bias to the results.

Research Gaps

KQ 1: Efficacy of Composite Models in the Diagnosis of a Renal Mass Suspicious for Renal Cell Carcinoma

We note two primary gaps in research regarding composite models: the lack of validation of composite models and the limited use of laboratory biomarkers in composite models. The lack of published studies of composite models using biomarkers may be a result of failure to test potential biomarkers within a composite model or tested biomarkers that are nonpredictive. A comprehensive review of potential biomarkers was beyond the defined scope of this report.

Emerging biomarkers, such as urine aquaporin-1 and perilipin-2, should be incorporated into composite models and validated prospectively in well-controlled studies.¹⁹⁴ Additionally, serum biomarkers, such as C-reactive protein, and platelet count, should be prospectively studied. Finally, future composite models should consider new imaging methods, such as carbonic anhydrase-9 or 99m technetium-sestamibi single photon emission computed tomography, to better differentiate between malignant and benign pathology.¹⁹⁵

KQ 2: Accuracy and Efficacy of Renal Mass Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Our findings demonstrated a high positive predictive value of renal mass sampling but also a notable nondiagnostic rate and a relatively poor negative predictive value. The findings have a high associated risk of bias, as there often was surgical pathology associated with negative or nondiagnostic biopsies. Further gaps include the lack of a standardized biopsy protocol, lack of correlation with patient characteristics or tumor characteristics (i.e. size, cystic components, anatomic location within kidney, etc.), and the inability to determine the effect of biopsy on definitive treatment. In addition to gathering improved data on the performance characteristics of renal biopsies, more data are needed to determine the patient population in which renal biopsy is most likely to improve outcomes.

To improve analysis of renal mass sampling, we have several recommendations. First, future studies should consider standardization and detailed publication of biopsy protocols, including the number of biopsy attempts, the number of successful biopsies, and the number of patients whose procedures were aborted secondary to technical difficulties. Second, all pathology results

should be reported, including negative and inconclusive results. Ideally, details on the tumor and its anatomic location should be reported in relationship to the renal mass sampling outcomes. Prospective studies are needed in which all patients undergo biopsy prior to surgery for true assessment of renal mass sampling accuracy. Finally, thorough investigation of renal mass sampling, as it affects management strategies and ultimately, oncological outcomes, will be critical to determine its true utility. In addition, evaluation of health-related quality-of-life as related to renal mass sampling should be evaluated. Studies should give attention to uncertainty, anxiety, and psychological stresses of an additional procedure, a nondiagnostic biopsy or the diagnosis of an indolent cancer.

KQ 3a: Efficacy and Comparative Efficacy of Different Interventions for the Management of a Renal Mass Suspicious for Localized Renal Cell Carcinoma

Conclusions about the efficacy and comparative efficacy of management strategies are limited by weak study designs, poor reporting of clinical staging, and inconsistent reporting of treatment outcomes. Unreported levels of surgeon/operator expertise allows for confounding of the results.

To address these limitations, we have several recommendations.

- 1. Greater standardization of treatment data is required. We recommend that all studies report the clinical stage of patients, as not having this information results in exclusion of potentially valuable data when only pathologic staging is provided.
- 2. Definitions of survival need to be defined precisely, and methods of calculating survival need to be defined. For example, the definition of cancer-specific survival may be confused with recurrence-free survival, disease-specific survival, or cancer-specific mortality. Misclassifying these data has broad implications. In addition to defining the terminology, methods sections should include how survival data were calculated, including when patients were censored from analyses.
- 3. A standardized definition of surgical competency or expertise is needed. While surgical or procedural case volume may serve as a surrogate measure of experience, careful review of perioperative metrics and long-term outcomes may provide a more rational definition of expertise. Defining surgical or technical proficiency will be an ongoing challenge and standardizing how this is defined is paramount to comparative studies.
- 4. Renal functional and survival outcomes need to be standardized in the routine reporting of outcomes. Immediate postoperative renal functional data is insufficient and inaccurate for reporting the renal effects of the interventions. We recommend reporting baseline renal function within 1 month of intervention, short-term (1-6 months) and long-term (1 year and longer) outcomes in an attempt to better compare management strategies. Measuring estimated glomerular filtration rate is preferable to measuring serum creatinine, with precise reporting of the data instead of grouping into levels of chronic kidney disease, which are subject to change. At a minimum, survival outcomes (i.e., local recurrence, metastasis, cancer-specific, and overall) should be reported at 1, 3, and 5 years. Finally, the implications of chronic kidney disease on cardiovascular disease and metabolic sequelae are not reported and subsequently not well understood. Rates of long-term cardiovascular and

- metabolic disease should be documented as an integral component of renal functional outcomes.
- 5. Prospective studies should be performed when possible. Retrospective studies may not accurately capture minimally invasive procedures that were converted to open procedures, and may not capture partial nephrectomies that were converted into radical nephrectomies. We recognize that a prospective, randomized trial between thermal ablation and partial nephrectomy would be challenging to conduct, perhaps prohibitively so. We propose that accurate and complete collection of preoperative patient data be routinely collected, which will allow for retrospective analysis of outcomes for patients who were eligible for either treatment modality. Finally, we recognize that more quality of life studies are required, which is an area ripe for discovery.
- 6. A standardized active surveillance protocol is needed to allow direct comparisons of institutional experiences, and has the potential to improve outcomes of patients undergoing active surveillance.

KQ 3b: Comparative Benefits and Harms of Management Strategies Based on Patient Demographics, Clinical Characteristics, or Disease Severity

Patient demographics, clinical characteristics, and disease severity are important in the evaluation of interventions, but were dramatically underreported. To improve understanding of the comparative benefits and harms of the management strategies, studies should be more consistent about reporting clinical stage, tumor characteristics including anatomic location within the kidney, and pre- and postintervention assessments of disease severity and comorbidity.

Conclusions

Diagnosis of Renal Mass Suspicious for Localized Renal Cell Carcinoma

A limited set of studies exists regarding the diagnosis of renal cell carcinoma in our target population. Current composite models do not reliably predict malignancy; however, tumor size and male sex are most highly associated with malignancy. Renal mass sampling has a high positive-predictive value, but also notable nondiagnostic and negative predictive value. The evidence is biased by the failure of nonmalignant biopsies to proceed to intervention. Additional research is needed to better define the clinical utility of renal mass sampling.

Management of Renal Mass Suspicious for Localized Renal Cell Carcinoma

As a result of the paucity of prospective, comparative studies on the management of renal masses suspicious for localized renal cell carcinoma, the current literature has a moderate risk of bias. Despite the limitations, the available evidence indicates that all management strategies have excellent cancer-specific survival in properly selected patients. The findings in this report can be used to create an outcome profile incorporating oncologic, renal functional, quality-of-life, perioperative outcomes and harms for all management strategies, which can be incorporated into any consultation regarding the management of a renal mass. Partial nephrectomy and thermal ablation offer improved short-term renal functional outcomes, but the incidence of end-stage renal disease is low, and generally equivalent, across management strategies. Partial nephrectomy demonstrates the highest rates of blood transfusion and urologic complications, despite similar rates of overall harms among all management strategies. Patients should be counseled that thermal ablation has the most favorable profile of perioperative outcomes and harms, however a significantly higher local recurrence rate compared with other surgical approaches. Active surveillance may have reasonable survival outcomes in selected populations, but comparative data are lacking. The data are sparse on the quality of life effects of the management options. The evidence also is very limited on how the comparative benefits and harms of management strategies depend on patient characteristics.

References

- 1. Kutikov A, Fossett LK, Ramchandani P, et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology 2006; 68(4):737-40. PMID: 17070344
- 2. Thompson RH, Hill JR, Babayev Y, et al. Metastatic renal cell carcinoma risk according to tumor size. J Urol 2009; 182(1):41-5. PMID: 19450840
- 3. Lane BR, Babineau D, Kattan MW, et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol 2007; 178(2):429-34. PMID: 17561141
- 4. American Cancer Society . Cancer Facts & Figures 2014. 2014.
- Mathew A, Devesa SS, Fraumeni JF Jr, Chow WH. Global increases in kidney cancer incidence, 1973-1992. Eur J Cancer Prev 2002; 11(2):171-8. PMID: 11984136
- 6. Nguyen MM, Gill IS, Ellison LM. The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program. J Urol 2006; 176(6 Pt 1):2397-400; discussion 2400. PMID: 17085111
- 7. Kane CJ, Mallin K, Ritchey J, Cooperberg MR, Carroll PR. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 2008; 113(1):78-83. PMID: 18491376
- 8. Frank I, Blute ML, Leibovich BC, Cheville JC, Lohse CM, Zincke H. Independent validation of the 2002 American Joint Committee on cancer primary tumor classification for renal cell carcinoma using a large, single institution cohort. J Urol 2005; 173(6):1889-92. PMID: 15879769
- 9. Ficarra V, Schips L, Guille F et al.
 Multiinstitutional European validation of the
 2002 TNM staging system in conventional
 and papillary localized renal cell carcinoma.
 Cancer 2005; 104(5):968-74. PMID:
 16007683

- Rothman J, Egleston B, Wong YN, et al. Histopathological characteristics of localized renal cell carcinoma correlate with tumor size: a SEER analysis. J Urol. 2009; 181(1):29-33. PMID: PMID: 19012902
- 11. Campbell SC, Novick AC, Belldegrun A, et al. Guideline for management of the clinical T1 renal mass. J Urol 2009; 182(4):1271-9. PMID: 19683266
- 12. Pierorazio PM, Hyams ES, Lin BM, Mullins JK, Allaf ME. Laparoscopic radical nephrectomy for large renal masses: critical assessment of perioperative and oncologic outcomes of stage T2a and T2b tumors. Urology 2012; 79(3):570-5. PMID: 22386399
- 13. Long JA, Arnoux V, Fiard G, et al. External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 2013; 111(2):233-9. PMID: 22788546
- 14. Kanao K, Mizuno R, Kikuchi E, et al.
 Preoperative prognostic nomogram
 (probability table) for renal cell carcinoma
 based on TNM classification. J Urol 2009;
 181(2):480-5; discussion 485. PMID:
 19100568
- Haggstrom C, Rapp K, Stocks T, et al. Metabolic factors associated with risk of renal cell carcinoma. PLoS One 2013; 8(2):e57475. PMID: 23468995
- 16. Yaycioglu O, Eskicorapci S, Karabulut E, et al. A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer. Jpn J Clin Oncol 2013; 43(1):63-8. PMID: 23159766
- 17. Karakiewicz PI, Suardi N, Capitanio U, et al. A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Eur Urol 2009; 55(2):287-95. PMID: 18715700
- 18. Kutikov A, Smaldone MC, Egleston BL, et al. Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL Nephrometry score. Eur Urol 2011; 60(2):241-8. PMID: 21458155

- 19. Cindolo L, de la Taille A, Messina G, et al. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int 2003; 92 (9):901-5. PMID: 14632843
- 20. Pierorazio PM, Hyams ES, Tsai S, et al. Multiphasic enhancement patterns of small renal masses (</=4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology 2013; 81(6):1265-71. PMID: 23601445
- 21. Snyder ME, Bach A, Kattan MW, Raj GV, Reuter VE, Russo P. Incidence of benign lesions for clinically localized renal masses smaller than 7 cm in radiological diameter: influence of sex. J Urol 2006; 176(6 Pt 1):2391-5; discussion 2395-6. PMID: 17085108
- 22. Young JR, Margolis D, Sauk S, Pantuck AJ, Sayre J, Raman SS. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 2013; 267(2):444-53. PMID: 23382290
- 23. Mullins JK, Kaouk JH, Bhayani S, et al. Tumor complexity predicts malignant disease for small renal masses . J Urol 2012; 188(6):2072-6. PMID: 23083863
- 24. Leveridge MJ, Finelli A, Kachura JR, et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 2011; 60(3):578-84. PMID: 21704449
- 25. Ljungberg B, Cowan NC, Hanbury DC, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 2010; 58(3):398-406. PMID: 20633979
- 26. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) [Web Page]. Available at http://www.nccn.org/professionals/physician_gls/f_guidelines_nojava.asp. (Accessed September 2014).
- 27. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephronsparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011; 59(4):543-52. PMID: 21186077

- 28. Aziz A, May M, Zigeuner R, et al. Do young patients with renal cell carcinoma feature a distinct outcome after surgery? A comparative analysis of patient age based on the multinational CORONA database. J Urol 2014; 191(2):310-5. PMID: 23973516
- 29. Kim EH, Tanagho YS, Saad NE, Bhayani SB, Figenshau RS. Comparison of laparoscopic and percutaneous cryoablation for treatment of renal masses. Urology 2014; 83(5):1081-7. PMID: 24560975
- 30. Huang WC, Levey AS, Serio AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7(9):735-40. PMID: 16945768
- 31. Kim EH, Tanagho YS, Bhayani SB, Saad NE, Benway BM, Figenshau RS. Percutaneous cryoablation of renal masses: Washington University experience of treating 129 tumours. BJU Int 2013; 111(6):872-9. PMID: 23145500
- 32. National Guidline Clearinghouse. ACR Appropriateness Criteria® indeterminate renal mass [Web Page]. Available at http://www.guideline.gov/content.aspx?f=rs s&id=48291&osrc=12. (Accessed September 2014).
- 33. Demirjian S, Lane BR, Derweesh IH, Takagi T, Fergany A, Campbell SC. Chronic Kidney Disease Due to Surgical Removal of Nephrons: Relative Rates of Progression and Survival. J Urol 2014. PMID: 24747655
- 34. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality. January 2014. Chapters available at: www.effectivehealthcare.ahrq.gov.
- 35. Higgins JPT, Green S (eds).. Cochrane handbook for systemic reviews of interventions Version 5.1.0. The Cochrane Collaboration. 2011;Oxford, England. [cited 2013 11/4]; Available from: http://handbook.cochrane.org.
- 36. Sterne JAC HJRBobotdgfA. A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBATNRSI), Version 1.0.0, 24 September 2014. Available from http://www.riskofbias.info.

- 37. Whiting PF et.al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8):529-36.
- 38. E. Marubini and M. G. Valsecchi. Analysing Survival Data from Clinical Trials and Observational Studies. 1995.
- 39. Dindo D. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 244:931-7.
- 40. Fujita T, Iwamura M, Wakatabe Y, et al. Predictors of benign histology in clinical T1a renal cell carcinoma tumors undergoing partial nephrectomy. Int J Urol 2014; 21(1):100-2. PMID: 23635425
- 41. Kava BR, Eldefrawy A, Ayyathurai R, et al. Impact of body mass index and tumor location on the incidence of benign histology at the time of nephron-sparing surgery. Int Urol Nephrol 2012; 44(5):1319-24. PMID: 22678516
- 42. Mullins JK, Kaouk JH, Bhayani S, et al. Tumor complexity predicts malignant disease for small renal masses . J Urol 2012; 188(6):2072-6. PMID: 23083863
- 43. Ball MW, Gorin M.A., Bhayani SB, et al. Preoperative predictors of malignancy and unfavorable pathology for clinical T1a tumors treated with partial nephrectomy: A multi-institutional analysis. Urol. Oncol. Semin. Orig. Invest. 2015; 33(3):112.e9-112.e14.
- 44. Nishikawa M, Miyake H, Kitajima K, Takahashi S, Sugimura K, Fujisawa M. Preoperative differentiation between benign and malignant renal masses smaller than 4 cm treated with partial nephrectomy. Int J Clin Oncol 2014. PMID: 24526391
- 45. Koo KC, Yoo H, Shin TY, et al. External validation of the RENAL nephrometry score nomogram for predicting high-grade renal cell carcinoma in solid, enhancing, and small renal masses. World J Urol 2014; 32(1):249-55. PMID: 24013182
- 46. Soga N, Nishikawa K, Takaki H, et al. Low incidence of benign lesions in resected suspicious renal masses greater than 2 cm: Single-center experience from Japan. Int J Urol 2012; 19(8):729-34. PMID: 22515572

- 47. Park SY, Jeon SS, Lee SY, et al. Incidence and predictive factors of benign renal lesions in Korean patients with preoperative imaging diagnoses of renal cell carcinoma. J Korean Med Sci 2011; 26(3):360-4. PMID: 21394303
- 48. Xiong YH, Zhang ZL, Li YH, et al. Benign pathological findings in 303 Chinese patients undergoing surgery for presumed localized renal cell carcinoma. Int J Urol 2010; 17(6):517-21. PMID: 20370841
- 49. Jeon HG, Lee SR, Kim KH, et al. Benign lesions after partial nephrectomy for presumed renal cell carcinoma in masses 4 cm or less: prevalence and predictors in Korean patients. Urology 2010; 76(3):574-9. PMID: 20303148
- 50. Chung MS, Choi HJ, Kim MH, Cho KS.
 Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J
 Roentgenol 2014; 202(4):765-71. PMID: 24660704
- 51. Park SY, Park BK, Kim CK, Kwon GY. Ultrasound-guided core biopsy of small renal masses: diagnostic rate and limitations. J Vasc Interv Radiol 2013; 24(1):90-6. PMID: 23206333
- 52. Shin TY, Kim J, Koo KC, et al. Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: Results using the PADUA classification system. BJU Int. 2014; 113(5):754-61.
- 53. Keehn A, Srivastava A, Maiman R, et al. The Relationship Between Visceral Obesity and the Clinicopathologic Features of Patients with Small Renal Masses. J Endourol 2014. PMID: 25203393
- 54. Bazzi WM, Dejbakhsh SZ, Bernstein M, Russo P. The association of baseline health and gender with small renal mass pathology. Can J Urol 2014; 21(3):7271-6. PMID: 24978356

- 55. Antonelli A, Furlan M, Sandri M, et al. The R.e.N.a.L. Nephrometric nomogram cannot accurately predict malignancy or aggressiveness of small renal masses amenable to partial nephrectomy. Clin Genitourin Cancer 2014; 12(5):366-72. PMID: 24637340
- 56. Murphy AM, Buck AM, Benson MC, McKiernan JM. Increasing detection rate of benign renal tumors: evaluation of factors predicting for benign tumor histologic features during past two decades. Urology 2009; 73(6):1293-7. PMID: 19371933
- 57. Lane BR, Babineau D, Kattan MW, et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol 2007; 178(2):429-34. PMID: 17561141
- 58. Rosenkrantz A.B., Wehrli N.E., Melamed J., Taneja S.S., Shaikh M.B. Renal masses measuring under 2 cm: Pathologic outcomes and associations with MRI features. Eur. J. Radiol. 2014; 83(8):1311-6.
- 59. Akdogan B, Gudeloglu A, Inci K, Gunay LM, Koni A, Ozen H. Prevalence and predictors of benign lesions in renal masses smaller than 7 cm presumed to be renal cell carcinoma. Clin Genitourin Cancer 2012; 10(2):121-5. PMID: 22401753
- 60. Choi SK, Jeon SH, Chang SG.
 Characterization of small renal masses less than 4 cm with quadriphasic multidetector helical computed tomography:
 differentiation of benign and malignant lesions. Korean J Urol 2012; 53(3):159-64.
 PMID: 22468210
- 61. Campbell SC, Novick AC, Herts B, et al. Prospective evaluation of fine needle aspiration of small, solid renal masses: accuracy and morbidity. Urology 1997; 50(1):25-9. PMID: 9218014
- 62. Chyhrai A, Sanjmyatav J, Gajda M, et al. Multi-colour FISH on preoperative renal tumour biopsies to confirm the diagnosis of uncertain renal masses. World J Urol 2010; 28(3):269-74. PMID: 20390284
- 63. Halverson SJ, Kunju LP, Bhalla R, et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J Urol 2013; 189(2):441-6. PMID: 23253955

- 64. Harisinghani MG, Maher MM, Gervais DA, et al. Incidence of malignancy in complex cystic renal masses (Bosniak category III): should imaging-guided biopsy precede surgery? AJR Am J Roentgenol 2003; 180(3):755-8. PMID: 12591691
- 65. Leveridge MJ, Finelli A, Kachura JR, et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 2011; 60(3):578-84. PMID: 21704449
- 66. Londono DC, Wuerstle MC, Thomas AA, et al. Accuracy and implications of percutaneous renal biopsy in the management of renal masses. Perm J 2013; 17 (3):4-7. PMID: 24355883
- 67. Menogue SR, O'Brien BA, Brown AL, Cohen RJ. Percutaneous core biopsy of small renal mass lesions: a diagnostic tool to better stratify patients for surgical intervention. BJU Int 2013; 111(4 Pt B):E146-51. PMID: 22805186
- 68. Millet I, Curros F, Serre I, Taourel P, Thuret R. Can renal biopsy accurately predict histological subtype and Fuhrman grade of renal cell carcinoma? J Urol 2012; 188(5):1690-4. PMID: 22998910
- 69. Neuzillet Y, Lechevallier E, Andre M,
 Daniel L, Coulange C. Accuracy and clinical
 role of fine needle percutaneous biopsy with
 computerized tomography guidance of small
 (less than 4.0 cm) renal masses. J Urol 2004;
 171(5):1802-5. PMID: 15076280
- 70. Salem S, Ponsky LE, Abouassaly R, et al. Image-guided biopsy of small renal masses in the era of ablative therapies. Int J Urol 2013; 20(6):580-4. PMID: 23190309
- 71. Shannon B.A., Cohen R.J., de Bruto H.,
 Davies R.J. The Value of Preoperative
 Needle Core Biopsy for Diagnosing Benign
 Lesions Among Small, Incidentally
 Detected Renal Masses. J. Urol. 2008;
 180(4):1257-61.
- 72. Sofikerim M, Tatlisen A, Canoz O, Tokat F, Demirtas A, Mavili E. What is the role of percutaneous needle core biopsy in diagnosis of renal masses? Urology 2010; 76(3):614-8. PMID: 20110106

- 73. Vasudevan A, Davies RJ, Shannon BA, Cohen RJ. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int 2006; 97(5):946-9. PMID: 16643475
- 74. Volpe A, Mattar K, Finelli A, et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J Urol 2008; 180(6):2333-7. PMID: 18930274
- 75. Wang R, Wolf JS Jr, Wood DP Jr, Higgins EJ, Hafez KS. Accuracy of percutaneous core biopsy in management of small renal masses. Urology 2009; 73(3):586-90; discussion 590-1. PMID: 19118884
- Reichelt O, Gajda M, Chyhrai A,
 Wunderlich H, Junker K, Schubert J.
 Ultrasound-guided biopsy of homogenous solid renal masses. Eur Urol 2007;
 52(5):1421-6. PMID: 17306920
- 77. Schmidbauer J, Remzi M, Memarsadeghi M, et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol 2008; 53(5):1003-11. PMID: 18061339
- 78. Richard PO, Jewett MA, Bhatt JR, et al. Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Eur Urol 2015. PMID: 25900781
- 79. Prince J, Bultman E, Hinshaw L, et al. Patient and Tumor Characteristics can Predict Nondiagnostic Renal Mass Biopsy Findings. J Urol 2014. PMID: 25498574
- 80. Parker PA, Swartz R, Fellman B, et al. Comprehensive assessment of quality of life and psychosocial adjustment in patients with renal tumors undergoing open, laparoscopic and nephron sparing surgery. J Urol 2012; 187(3):822-6. PMID: 22245327
- 81. Ficarra V, Novella G, Sarti A, et al. Psychosocial well-being and general health status after surgical treatment for localized renal cell carcinoma. Int Urol Nephrol 2002-2003; 34(4):441-6. PMID: 14577481
- 82. Shinohara N, Harabayashi T, Sato S, Hioka T, Tsuchiya K, Koyanagi T. Impact of nephron-sparing surgery on quality of life in patients with localized renal cell carcinoma. Eur Urol 2001; 39 (1):114-9. PMID: 11173949

- 83. Gratzke C, Seitz M, Bayrle F, et al. Quality of life and perioperative outcomes after retroperitoneoscopic radical nephrectomy (RN), open RN and nephron-sparing surgery in patients with renal cell carcinoma. BJU Int 2009; 104(4):470-5. PMID: 19239445
- 84. Jewett MA, Mattar K, Basiuk J, et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol 2011; 60 (1):39-44. PMID: 21477920
- 85. Pierorazio PM, Johnson MH, Ball MW, et al. Five-year Analysis of a Multi-institutional Prospective Clinical Trial of Delayed Intervention and Surveillance for Small Renal Masses: The DISSRM Registry. Eur. Urol. 2015.
- 86. Crispen PL, Viterbo R, Boorjian SA, Greenberg RE, Chen DY, Uzzo RG. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer 2009; 115(13):2844-52. PMID: 19402168
- 87. Crispen PL, Wong YN, Greenberg RE, Chen DY, Uzzo RG. Predicting growth of solid renal masses under active surveillance. Urol Oncol 2008; 26(5):555-9. PMID: 18774473
- 88. Kunkle DA, Crispen PL, Chen DY, Greenberg RE, Uzzo RG. Enhancing renal masses with zero net growth during active surveillance. J Urol 2007; 177(3):849-53; discussion 853-4. PMID: 17296355
- 89. Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014; 65(2):372-7. PMID: 23850254
- 90. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephronsparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011; 59(4):543-52. PMID: 21186077

- 91. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2007; 51(6):1606-15. PMID: 17140723
- 92. Weight CJ, Larson BT, Fergany AF, et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol 2010; 183(4):1317-23. PMID: 20171688
- 93. Snow DC, Bhayani SB. Rapid communication: chronic renal insufficiency after laparoscopic partial nephrectomy and radical nephrectomy for pathologic t1a lesions. J Endourol 2008; 22 (2):337-41. PMID: 18257672
- 94. Kim CS, Bae EH, Ma SK, Kweon SS, Kim SW. Impact of partial nephrectomy on kidney function in patients with renal cell carcinoma. BMC Nephrol 2014; 15:181. PMID: 25410757
- 95. Shuch B, Hanley J, Lai J, et al. Overall survival advantage with partial nephrectomy: a bias of observational data? Cancer 2013; 119(16):2981-9. PMID: 23674264
- 96. Lucas SM, Stern JM, Adibi M, Zeltser IS, Cadeddu JA, Raj GV. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J Urol 2008; 179(1):75-9; discussion 79-80. PMID: 17997440
- 97. Antonelli A, Ficarra V, Bertini R, et al. Elective partial nephrectomy is equivalent to radical nephrectomy in patients with clinical T1 renal cell carcinoma: results of a retrospective, comparative, multi-institutional study. BJU Int 2012; 109(7):1013-8. PMID: 21883829
- 98. Barbalias GA, Liatsikos EN, Tsintavis A, Nikiforidis G. Adenocarcinoma of the kidney: nephron-sparing surgical approach vs. radical nephrectomy. J Surg Oncol 1999; 72(3):156-61. PMID: 10562362

- 99. Bedke J, Pritsch M, Buse S, et al. Prognostic stratification of localized renal cell carcinoma by tumor size. J Urol 2008; 180(1):62-7. PMID: 18485376
- 100. Thompson RH, Siddiqui S, Lohse CM, Leibovich BC, Russo P, Blute ML. Partial versus radical nephrectomy for 4 to 7 cm renal cortical tumors. J Urol 2009; 182(6):2601-6. PMID: 19836797
- 101. Iizuka J, Kondo T, Hashimoto Y, et al. Similar functional outcomes after partial nephrectomy for clinical T1b and T1a renal cell carcinoma. Int J Urol 2012; 19(11):980-6. PMID: 22735049
- 102. Indudhara R, Bueschen AJ, Urban DA, Burns JR, Lloyd LK. Nephron-sparing surgery compared with radical nephrectomy for renal tumors: current indications and results. South Med J 1997; 90 (10):982-5. PMID: 9347807
- 103. Kopp RP, Mehrazin R, Palazzi KL, et al. Survival outcomes after radical and partial nephrectomy for clinical T2 renal tumours categorised by R.E.N.A.L. nephrometry score. BJU Int 2013. PMID: 24274650
- 104. Kyung YS, You D, Kwon T, et al. The type of nephrectomy has little effect on overall survival or cardiac events in patients of 70 years and older with localized clinical t1 stage renal masses. Korean J Urol 2014; 55(7):446-52. PMID: 25045442
- 105. Lane BR, Fergany AF, Weight CJ, Campbell SC. Renal functional outcomes after partial nephrectomy with extended ischemic intervals are better than after radical nephrectomy. J Urol 2010; 184(4):1286-90. PMID: 20723936
- 106. Li JR, Yang CR, Cheng CL, et al. Partial nephrectomy in the treatment of localized renal cell carcinoma: experience of Taichung Veterans General Hospital. J Chin Med Assoc 2007; 70(7):281-5. PMID: 17631464
- 107. Mariusdottir E, Jonsson E, Marteinsson VT, Sigurdsson MI, Gudbjartsson T. Kidney function following partial or radical nephrectomy for renal cell carcinoma: a population-based study. Scand J Urol 2013; 47(6):476-82. PMID: 23597159

- 108. Medina-Polo J, Romero-Otero J, Rodriguez-Antolin A, et al. Can partial nephrectomy preserve renal function and modify survival in comparison with radical nephrectomy? Scand J Urol Nephrol 2011; 45(2):143-50. PMID: 21247272
- 109. Milonas D, Skulcius G, Baltrimavicius R, et al. Comparison of long-term results after nephron-sparing surgery and radical nephrectomy in treating 4- to 7-cm renal cell carcinoma. Medicina (Kaunas) 2013; 49(5):223-8. PMID: 24247918
- 110. Minervini A, Serni S, Tuccio A, et al. Simple enucleation versus radical nephrectomy in the treatment of pT1a and pT1b renal cell carcinoma. Ann Surg Oncol 2012; 19(2):694-700. PMID: 21861225
- 111. Mitchell RE, Gilbert SM, Murphy AM, Olsson CA, Benson MC, McKiernan JM. Partial nephrectomy and radical nephrectomy offer similar cancer outcomes in renal cortical tumors 4 cm or larger. Urology 2006; 67(2):260-4. PMID: 16461075
- 112. Patard JJ, Shvarts O, Lam JS, et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol 2004; 171(6 Pt 1):2181-5, quiz 2435. PMID: 15126781
- 113. Roos FC, Brenner W, Jager W, et al.
 Perioperative morbidity and renal function
 in young and elderly patients undergoing
 elective nephron-sparing surgery or radical
 nephrectomy for renal tumours larger than 4
 cm. BJU Int 2011; 107(4):554-61. PMID:
 20707798
- 114. Roos FC, Brenner W, Thomas C, et al. Functional analysis of elective nephronsparing surgery vs radical nephrectomy for renal tumors larger than 4 cm. Urology 2012; 79(3):607-13. PMID: 22386408
- 115. Uchida K, Takahashi A, Masumori N, Yanase M, Itoh N, Tsukamoto T. Partial nephrectomy for small localized renal cell carcinoma. Hinyokika Kiyo 2004; 50(6):389-95. PMID: 15293735

- 116. Uzzo RG, Wei JT, Hafez K, Kay R, Novick AC. Comparison of direct hospital costs and length of stay for radical nephrectomy versus nephron-sparing surgery in the management of localized renal cell carcinoma. Urology 1999; 54(6):994-8. PMID: 10604696
- 117. Weight CJ, Lythgoe C, Unnikrishnan R, Lane BR, Campbell SC, Fergany AF. Partial nephrectomy does not compromise survival in patients with pathologic upstaging to pT2/pT3 or high-grade renal tumors compared with radical nephrectomy. Urology 2011; 77(5):1142-6. PMID: 21420154
- 118. Deklaj T, Lifshitz DA, Shikanov SA, Katz MH, Zorn KC, Shalhav AL. Laparoscopic radical versus laparoscopic partial nephrectomy for clinical T1bN0M0 renal tumors: comparison of perioperative, pathological, and functional outcomes. J Endourol 2010; 24(10):1603-7. PMID: 20932215
- 119. Kim FJ, Rha KH, Hernandez F, Jarrett TW, Pinto PA, Kavoussi LR. Laparoscopic radical versus partial nephrectomy: assessment of complications. J Urol 2003; 170(2 Pt 1):408-11. PMID: 12853787
- 120. Janetschek G, Jeschke K, Peschel R, Strohmeyer D, Henning K, Bartsch G. Laparoscopic surgery for stage T1 renal cell carcinoma: radical nephrectomy and wedge resection. Eur Urol 2000; 38 (2):131-8. PMID: 10895002
- 121. McKiernan J, Simmons R, Katz J, Russo P. Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 2002; 59(6):816-20. PMID: 12031359
- 122. Chang X, Zhang F, Liu T, et al.
 Radiofrequency ablation versus partial
 nephrectomy for clinical T1b renal cell
 carcinoma: long-term clinical and oncologic
 outcomes. J Urol 2014. PMID: 25106899
- 123. Klatte T, Mauermann J, Heinz-Peer G, et al. Perioperative, oncologic, and functional outcomes of laparoscopic renal cryoablation and open partial nephrectomy: a matched pair analysis. J Endourol 2011; 25(6):991-7. PMID: 21568698

- 124. Stern JM, Svatek R, Park S, et al.
 Intermediate comparison of partial
 nephrectomy and radiofrequency ablation
 for clinical T1a renal tumours. BJU Int
 2007; 100(2):287-90. PMID: 17617136
- 125. Tanagho YS, Bhayani S, Kim EH, Figenshau RS. Renal Cryoablation versus Robot-Assisted Partial Nephrectomy: Washington University Long-Term Experience. J Endourol 2013. PMID: 24175692
- 126. Mues AC, Korets R, Graversen JA, et al. Clinical, pathologic, and functional outcomes after nephron-sparing surgery in patients with a solitary kidney: a multicenter experience. J Endourol 2012; 26(10):1361-6. PMID: 22667344
- 127. Thompson RH, Atwell T, Schmit G, et al.
 Comparison of Partial Nephrectomy and
 Percutaneous Ablation for cT1 Renal
 Masses. Eur Urol 2014. PMID: 25108580
- 128. Youn CS, Park JM, Lee JY, et al.
 Comparison of laparoscopic radiofrequency ablation and open partial nephrectomy in patients with a small renal mass. Korean J Urol 2013; 54(9):603-8. PMID: 24044094
- 129. Guillotreau J, Haber GP, Autorino R, et al. Robotic partial nephrectomy versus laparoscopic cryoablation for the small renal mass. Eur Urol 2012; 61(5):899-904. PMID: 22264680
- 130. Bensalah K, Zeltser I, Tuncel A, Cadeddu J, Lotan Y. Evaluation of costs and morbidity associated with laparoscopic radiofrequency ablation and laparoscopic partial nephrectomy for treating small renal tumours. BJU Int 2008; 101(4):467-71. PMID: 17922853
- 131. Desai MM, Aron M, Gill IS. Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology 2005; 66(5 Suppl):23-8. PMID: 16194703
- 132. Emara AM, Kommu SS, Hindley RG, Barber NJ. Robot-assisted partial nephrectomy vs laparoscopic cryoablation for the small renal mass: redefining the minimally invasive 'gold standard'. BJU Int 2014; 113(1):92-9. PMID: 24053473

- 133. Haramis G, Graversen JA, Mues AC, et al. Retrospective comparison of laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small (<3.5 cm) cortical renal masses. J Laparoendosc Adv Surg Tech A 2012; 22 (2):152-7. PMID: 22145574
- 134. Takaki H, Soga N, Kanda H, et al.
 Radiofrequency ablation versus radical
 nephrectomy: clinical outcomes for stage
 T1b renal cell carcinoma. Radiology 2014;
 270(1):292-9. PMID: 23925272
- 135. Lane BR, Abouassaly R, Gao T, et al.
 Active treatment of localized renal tumors
 may not impact overall survival in patients
 aged 75 years or older. Cancer 2010;
 116(13):3119-26. PMID: 20564627
- 136. Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol 2012; 61(6):1156-61. PMID: 22257424
- 137. Haber GP, Lee MC, Crouzet S, Kamoi K, Gill IS. Tumour in solitary kidney: laparoscopic partial nephrectomy vs laparoscopic cryoablation. BJU Int 2012; 109(1):118-24. PMID: 21895929
- 138. Turna B, Kaouk JH, Frota R, et al.
 Minimally invasive nephron sparing
 management for renal tumors in solitary
 kidneys. J Urol 2009; 182(5):2150-7. PMID:
 19758655
- 139. Chung JS, Son NH, Lee SE, et al. Overall survival and renal function after partial and radical nephrectomy among older patients with localised renal cell carcinoma: A propensity-matched multicentre study. Eur. J. Cancer 2015; 51(4):489-97.
- 140. Li Q, Guan H, Qin J, Jiang T. Mini-Margin nephron sparing surgery for renal cell carcinoma 4 cm or less. Adv Urol 2010. PMID: 20862196
- 141. Badalato GM, Kates M, Wisnivesky JP, Choudhury AR, McKiernan JM. Survival after partial and radical nephrectomy for the treatment of stage T1bN0M0 renal cell carcinoma (RCC) in the USA: a propensity scoring approach. BJU Int 2012; 109(10):1457-62. PMID: 21933334

- 142. Choueiri TK, Schutz FA, Hevelone ND, et al. Thermal ablation vs surgery for localized kidney cancer: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Urology 2011; 78(1):93-8. PMID: 21550636
- 143. Crepel M, Jeldres C, Perrotte P, et al.
 Nephron-sparing surgery is equally effective
 to radical nephrectomy for T1BN0M0 renal
 cell carcinoma: a population-based
 assessment. Urology 2010; 75(2):271-5.
 PMID: 19962740
- 144. Daugherty M, Bratslavsky G. Compared with radical nephrectomy, nephron-sparing surgery offers a long-term survival advantage in patients between the ages of 20 and 44 years with renal cell carcinomas (</=4 cm): an analysis of the SEER database. Urol Oncol 2014; 32 (5):549-54. PMID: 24495447
- 145. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J Urol 2009; 181(1):55-61; discussion 61-2. PMID: 19012918
- 146. Meskawi M, Becker A, Bianchi M, et al. Partial and radical nephrectomy provide comparable long-term cancer control for T1b renal cell carcinoma. Int J Urol 2014; 21(2):122-8. PMID: 23819700
- 147. Patel HD, Kates M, Pierorazio PM, et al. Survival after diagnosis of localized T1a kidney cancer: current population-based practice of surgery and nonsurgical management. Urology 2014; 83(1):126-32. PMID: 24246317
- 148. Patel HD, Kates M, Pierorazio PM, Allaf ME. Balancing cardiovascular (CV) and cancer death among patients with small renal masses: modification by CV risk. BJU Int 2014. PMID: 24589376
- 149. Sun M, Becker A, Tian Z, et al.

 Management of localized kidney cancer:
 calculating cancer-specific mortality and
 competing risks of death for surgery and
 nonsurgical management. Eur Urol 2014;
 65(1):235-41. PMID: 23567066

- 150. Tan HJ, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 2012; 307(15):1629-35. PMID: 22511691
- 151. Whitson JM, Harris CR, Meng MV.
 Population-based comparative effectiveness of nephron-sparing surgery vs ablation for small renal masses. BJU Int 2012; 110(10):1438-43; discussion 1443. PMID: 22639860
- 152. Crepel M, Jeldres C, Sun M, et al. A population-based comparison of cancer-control rates between radical and partial nephrectomy for T1A renal cell carcinoma. Urology 2010; 76(4):883-8. PMID: 20932408
- 153. Kates M, Badalato GM, Pitman M, McKiernan JM. Increased risk of overall and cardiovascular mortality after radical nephrectomy for renal cell carcinoma 2 cm or less. J Urol 2011; 186(4):1247-53. PMID: 21849201
- 154. Smaldone MC, Egleston B, Uzzo RG, Kutikov A. Does partial nephrectomy result in a durable overall survival benefit in the Medicare population? J Urol 2012; 188(6):2089-94. PMID: 23083877
- 155. Zini L, Perrotte P, Capitanio U, et al. Radical versus partial nephrectomy: effect on overall and noncancer mortality. Cancer 2009; 115(7):1465-71. PMID: 19195042
- 156. Takagi T, Kondo T, Iizuka J, et al.
 Postoperative renal function after partial
 nephrectomy for renal cell carcinoma in
 patients with pre-existing chronic kidney
 disease: a comparison with radical
 nephrectomy. Int J Urol 2011; 18(6):472-6.
 PMID: 21481013
- 157. Thompson RH, Boorjian SA, Lohse CM, et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol 2008; 179(2):468-71; discussion 472-3. PMID: 18076931
- 158. Kim JM, Song PH, Kim HT, Park TC. Comparison of Partial and Radical Nephrectomy for pT1b Renal Cell Carcinoma. Korean J Urol 2010; 51(9):596-600. PMID: 20856643

- 159. Weight CJ, Larson BT, Gao T, et al.
 Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology 2010; 76(3):631-7. PMID: 20451967
- 160. Takaki H, Yamakado K, Soga N, et al.
 Midterm results of radiofrequency ablation
 versus nephrectomy for T1a renal cell
 carcinoma. Jpn J Radiol 2010; 28(6):460-8.
 PMID: 20661697
- 161. Kowalczyk KJ, Choueiri TK, Hevelone ND, et al. Comparative effectiveness, costs and trends in treatment of small renal masses from 2005 to 2007. BJU Int 2013; 112(4):E273-80. PMID: 23452093
- 162. Deklaj T, Lifshitz DA, Shikanov SA, et al. Localized T1a renal lesions in the elderly: outcomes of laparoscopic renal surgery. J Endourol 2010; 24(3):397-401. PMID: 20334557
- 163. Foyil KV, Ames CD, Ferguson GG, et al. Longterm changes in creatinine clearance after laparoscopic renal surgery. J Am Coll Surg 2008; 206(3):511-5. PMID: 18308223
- 164. Cooper CJ, Teleb M, Dwivedi A, et al.
 Comparative Outcome of Computed
 Tomography-guided Percutaneous
 Radiofrequency Ablation, Partial
 Nephrectomy or Radical Nephrectomy in
 the Treatment of Stage T1 Renal Cell
 Carcinoma. Rare Tumors 2015; 7(1):5583.
 PMID: 25918603
- 165. Danzig MR, Chang P, Wagner AA, Pierorazio PM, Allaf ME, McKiernan JM. Active Surveillance is Superior to Radical Nephrectomy and Equivalent to Partial Nephrectomy in Preserving Renal Function Among Patients with Small Renal Masses; Results from the DISSRM Registry. J Urol 2015. PMID: 25813449
- 166. Woldu SL, Weinberg AC, Korets R, et al. Who Really Benefits From Nephron-sparing Surgery? Urology 2014; 84(4):860-8. PMID: 25260447
- 167. Yasuda Y, Yuasa T, Yamamoto S, et al. Evaluation of the RENAL nephrometry scoring system in adopting nephron-sparing surgery for cT1 renal cancer. Urol Int 2013; 90(2):179-83. PMID: 23146865

- 168. Miyamoto K, Inoue S, Kajiwara M,
 Teishima J, Matsubara A. Comparison of
 renal function after partial nephrectomy and
 radical nephrectomy for renal cell
 carcinoma. Urol Int 2012; 89 (2):227-32.
 PMID: 22846207
- 169. Sun M, Bianchi M, Hansen J, et al. Chronic kidney disease after nephrectomy in patients with small renal masses: a retrospective observational analysis. Eur Urol 2012; 62(4):696-703. PMID: 22483407
- 170. Brewer K, O'Malley RL, Hayn M, et al. Perioperative and renal function outcomes of minimally invasive partial nephrectomy for T1b and T2a kidney tumors. J Endourol 2012; 26(3):244-8. PMID: 22192099
- 171. Antoniewicz AA, Poletajew S, Borowka A, Pasierski T, Rostek M, Pikto-Pietkiewicz W. Renal function and adaptive changes in patients after radical or partial nephrectomy. Int Urol Nephrol 2012; 44(3):745-51. PMID: 21947980
- 172. Jeon HG, Jeong IG, Lee JW, Lee SE, Lee E. Prognostic factors for chronic kidney disease after curative surgery in patients with small renal tumors. Urology 2009; 74(5):1064-8. PMID: 19758688
- 173. Zorn KC, Gong EM, Orvieto MA, et al. Comparison of laparoscopic radical and partial nephrectomy: effects on long-term serum creatinine. Urology 2007; 69(6):1035-40. PMID: 17572181
- 174. Huang WC, Levey AS, Serio AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7(9):735-40. PMID: 16945768
- 175. Dash A, Vickers AJ, Schachter LR, Bach AM, Snyder ME, Russo P. Comparison of outcomes in elective partial vs radical nephrectomy for clear cell renal cell carcinoma of 4-7 cm. BJU Int 2006; 97(5):939-45. PMID: 16643474
- 176. Matin SF, Gill IS, Worley S, Novick AC.
 Outcome of laparoscopic radical and open
 partial nephrectomy for the sporadic 4 cm.
 or less renal tumor with a normal
 contralateral kidney. J Urol 2002; 168(4 Pt
 1):1356-9; discussion 1359-60. PMID:
 12352392

- 177. Faddegon S, Ju T, Olweny EO, et al. A comparison of long term renal functional outcomes following partial nephrectomy and radiofrequency ablation. Can J Urol 2013; 20(3):6785-9. PMID: 23783048
- 178. Mitchell CR, Atwell TD, Weisbrod AJ, et al. Renal function outcomes in patients treated with partial nephrectomy versus percutaneous ablation for renal tumors in a solitary kidney. J Urol 2011; 186(5):1786-90. PMID: 21944103
- 179. Kiriluk KJ, Shikanov SA, Steinberg GD, Shalhav AL, Lifshitz DA. Laparoscopic partial nephrectomy versus laparoscopic ablative therapy: a comparison of surgical and functional outcomes in a matched control study. J Endourol 2011; 25(12):1867-72. PMID: 21902540
- 180. Chang X, Zhang F, Liu T, et al. Radio frequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: Long-term clinical and oncologic outcomes. J. Urol. 2015; 193(2):430-5.
- 181. Permpongkosol S, Link RE, Su LM, et al. Complications of 2,775 urological laparoscopic procedures: 1993 to 2005. J Urol 2007; 177(2):580-5. PMID: 17222637
- 182. Xu H., Ding Q., Jiang H.-W. Fewer complications after laparoscopic nephrectomy as compared to the open procedure with the modified Clavien classification system a retrospective analysis from Southern China. World J. Surg. Oncol. 2014; 12(1).
- 183. Becker A, Ravi P, Roghmann F,et al.
 Laparoscopic radical nephrectomy vs
 laparoscopic or open partial nephrectomy
 for T1 renal cell carcinoma: comparison of
 complication rates in elderly patients during
 the initial phase of adoption. Urology 2014;
 83(6):1285-91. PMID: 24862392
- 184. Tomaszewski JJ, Uzzo RG, Kutikov A, et al. Assessing the burden of complications after surgery for clinically localized kidney cancer by age and comorbidity status. Urology 2014; 83(4):843-9. PMID: 24680455
- 185. Lowrance WT, Yee DS, Savage C, et al. Complications after radical and partial nephrectomy as a function of age. J Urol 2010; 183(5):1725-30. PMID: 20299040

- 186. Castaneda CV, Danzig MR, Finkelstein JB, et al. The natural history of renal functional decline in patients undergoing surveillance in the DISSRM registry. Urol. Oncol. Semin. Orig. Invest. 2015.
- 187. Leonard M, Tait CD, Gillan AS, Rai BP, Byrne DJ, Nabi G. Impact of multiple deprivations on detection, progression and interventions in small renal masses (less than 4 cm) in a population based study. Eur J Surg Oncol 2013; 39(10):1157-63. PMID: 23886896
- 188. Rosales JC, Haramis G, Moreno J, et al. Active surveillance for renal cortical neoplasms. J Urol 2010; 183(5):1698-702. PMID: 20299038
- 189. Abouassaly R, Lane BR, Novick AC. Active surveillance of renal masses in elderly patients. J Urol 2008; 180(2):505-8; discussion 508-9. PMID: 18550113
- 190. Parker PA, Alba F, Fellman B, et al. Illness uncertainty and quality of life of patients with small renal tumors undergoing watchful waiting: a 2-year prospective study. Eur Urol 2013; 63(6):1122-7. PMID: 23419322
- 191. O'Malley RL, Hayn MH, Brewer KA, et al. Cancer control of partial nephrectomy for high-risk localized renal cell carcinoma: population-based and single-institutional analysis. World J Urol 2015. PMID: 25805189
- 192. Becker A, Pradel L, Kluth L, et al.
 Laparoscopic versus open partial
 nephrectomy for clinical T1 renal masses:
 no impact of surgical approach on
 perioperative complications and long-term
 postoperative quality of life. World J Urol
 2014. PMID: 24879404
- 193. Beemster PW, Wijkstra H, de la Rosette JJ, Zwinderman AH, Pes MP. Quality of life and perceived pain after laparoscopic-assisted renal cryoablation . J Endourol 2010; 24(5):713-9. PMID: 20443715
- 194. Rowe SP, Gorin MA, Gordetsky J, et al. Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. (1536-0229 (Electronic). 0363-9762 (Linking)).

195. Morrissey JJ, Mobley J, Figenshau RS, et al. Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer: Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Mayo Clinic Proc. 2015 Jan;90(1):35-42. PMID: 25572193.

Appendix A. Detailed Electronic Database Search Strategies

Diagnostic Key Questions (KQ1 and 2)

PubMed Strategy

AND (Biopsy, Fine-Needle [mh] OR ((percutaneous[tiab] OR needle[tiab] OR aspiration[tiab] OR core [tiab] OR tru-cut[tiab]) AND (biopsy [tiab] OR sampling[tiab])) OR "FNA"[tiab] OR nomograms[mh] OR nomograms[tiab] OR nomogram[tiab] OR Urinalysis [mh] OR Urinalyses [tiab] OR urine[tiab] OR Blood Cell Count [mh] OR "Blood Cell Count" [tiab] OR WBC [tiab] OR leukocyte[tiab] OR leukocytes[tiab] OR RBC[tiab] OR erythrocyte[tiab] OR thrombocyte[tiab] OR platelet[tiab] OR Blood Coagulation Tests [mh] OR blood coagulation [tiab] OR Thromboplastin Time [tiab] OR Coagulation Time [tiab] OR Prothrombin Time [tiab] OR Thrombotest [tiab] OR quick test [tiab] OR Russell Viper Venom Time [tiab] OR Blood Sedimentation [mh] OR blood Sedimentation[tiab] OR "Sedimentation rate*"[tiab] OR "Diagnostic Imaging" [Mh] OR "Computerized tomography" [tiab] OR "Computed tomography"[tiab] OR "CT"[tiab] OR Ultrasonography[tiab] OR Sonography[tiab] OR ultrasound [tiab] OR "magnetic resonance" [tiab])) AND (Accura*[tiab] OR diagnosis [ti] OR Sensitivity and specificity[mh] OR Sensitivity[tiab] OR Specificity[tiab] OR False positive reactions[mh] OR false positive*[tiab] OR False negative reactions[mh] OR False negative*[tiab] OR Predict*[tiab] OR predictive value of tests[mh] OR score[tiab] OR scores[tiab]))) NOT (((animals[mh] NOT humans[mh]))

Management Key Questions (KQ3a and 3b)

PubMed Strategy

kidney neoplasms [mh] OR ((Kidney [tiab] or renal[tiab]) AND (cancer [tiab] or carcinoma [tiab] or neoplasm [tiab] or tumor [tiab] or malignancy [tiab] or adenocarcinoma [tiab])) OR "RCC" [tiab] OR "renal mass" [tiab] OR "renal masses" [tiab] OR "Hypernephromas" [tiab] OR "grawitz tumor" [tiab] OR ((Carcinoma[tiab]) AND (Renal Collecting Duct[tiab] OR Hypernephroid[tiab])) AND

Nephrectomy [mh] OR Nephrectomy [tiab] OR "Nephron sparing surgery" [tiab] OR Peritoneoscopy [tiab] OR Celioscopy [tiab] OR ((cryoablation [tiab] OR radiofrequency [tiab]) AND (renal [tiab] OR kidney [tiab])) OR Cryosurgery [mh] OR Cryosurgery [tiab] OR cryotherapy [tiab] OR "thermal ablation" [tiab] OR surveillance [tiab] OR Watchful Waiting [mh]

NOT

(animals[mh] NOT humans[mh])

Appendix B. Screening and Data Abstraction Forms

Figure B1: Abstract Review Form

Submit Form and go to This Form - Next Reference Does this article POTENTIALLY apply to ANY of the key questions? Yes-Include article for full text screening O Unclear-No abstract or cannot tell from abstract alone --- get it for full-text screen

Key Questions

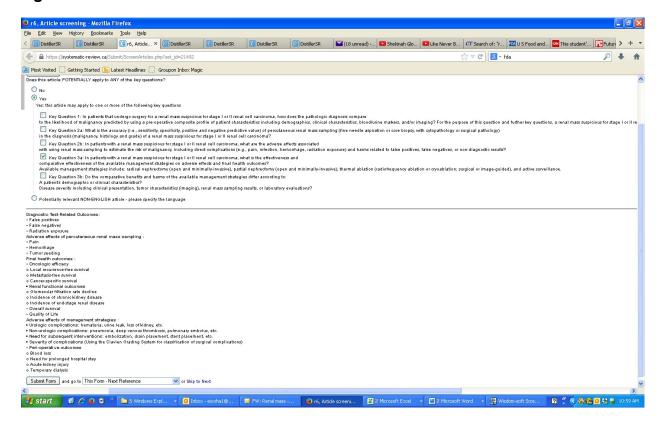
Key Question 1: In patients that undergo surgery for a renal mass suspicious for stage I or II renal cell carcinoma, how does the pathologic diagnosis compare to the likelihood of malignancy predicted by using a pre-operative composite profile of patient characteristics including demographics, clinical characteristics, blood/urine markers, and/or imaging?

For the purpose of this question and further key questions, a renal mass suspicious for stage I or II renal cell carcinoma includes all solid renal masses and cystic renal masses with a solid

Key Question 2: In patients with a renal mass suspicious for stage I or II renal cell carcinoma who are selected for active surveillance, what is the ultimate risk of malignancy as defined by subsequent (greater than six months from diagnosis) biopsy, surgery, metastases or death and how does this compare to a pre-operative composite profile of patient characteristics including demographics, clinical characteristics, blood/urine markers, and/or imaging?

Key Question 3: What is the accuracy (i.e., sensitivity, specificity, positive and negative predictive value) of percutaneous renal mass sampling (fine needle aspiration or core biopsy, with cytopathology or surgical pathology) in the diagnosis of a renal mass suspicious for stage I or II renal cell carcinoma?

Key Question 4: In patients with a renal mass suspicious for stage I or II renal cell carcinoma, what are the adverse effects associated with using renal mass sampling (see KQ2) to estimate the risk of malignancy, including direct complications (e.g., pain, infection, hemorrhage, radiation exposure) and harms related to false positives, false negatives, or non-diagnostic results? Key Question 5a: in patients with a renal mass suspicious for stage or II renal cell carcinoma, what is the effectiveness and comparative effectiveness of the available management strategies on adverse effects and final health outcomes?


Available management strategies include: radical nephrectomy (open and minimally-invasive), partial nephrectomy (open and minimally-invasive), thermal ablation (radiofrequency ablation or cryoablation; surgical or image-guided), and active surveillance. The adverse effects and health outcomes of interest include all of the potential benefits and harms listed under outcomes in the

Key Question 5b: Do the comparative benefits and harms of the available management strategies differ according to:

- A patient's demographic or clinical characteristics?
 Disease severity including clinical presentation, tumor characteristics (imaging), renal mass sampling results, or laboratory evaluations?

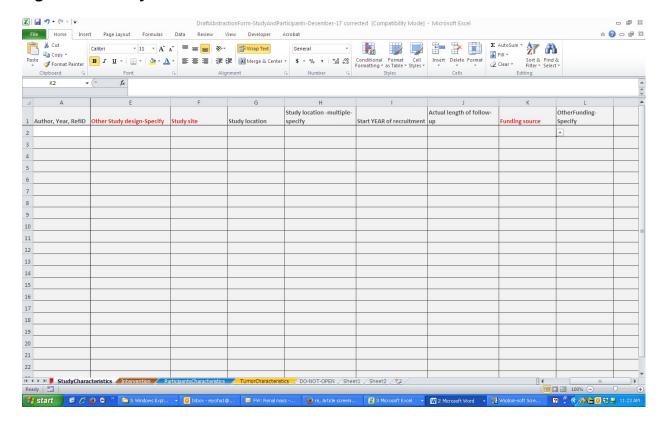

Submit Form and go to This Form - Next Reference

Figure B2: Article Review Form

Data Abstraction Forms

Figure B3: Study characteristics

Figure B4: Intervention

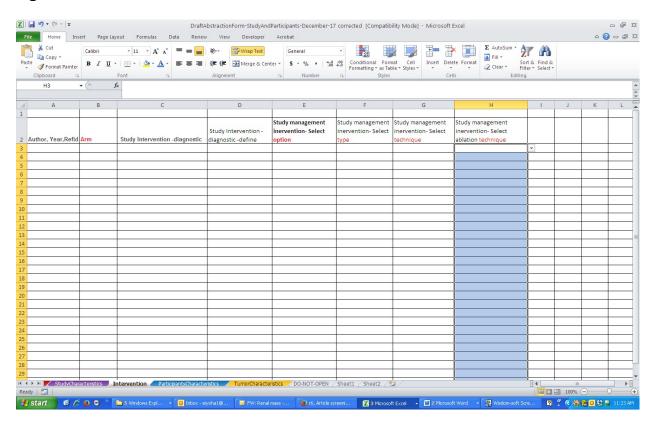


Figure B5: Participants characteristics

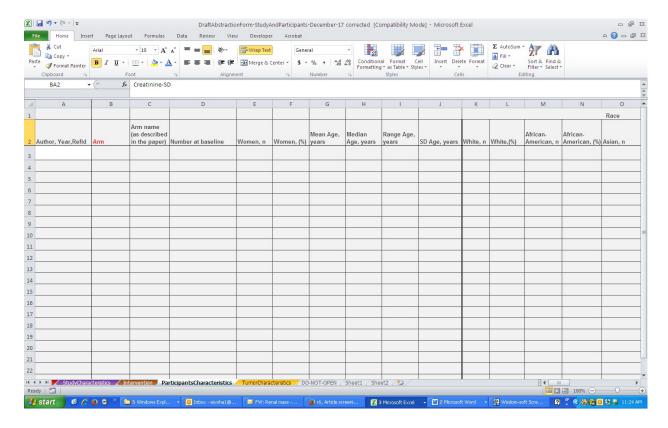


Figure B5: Participants characteristics continued

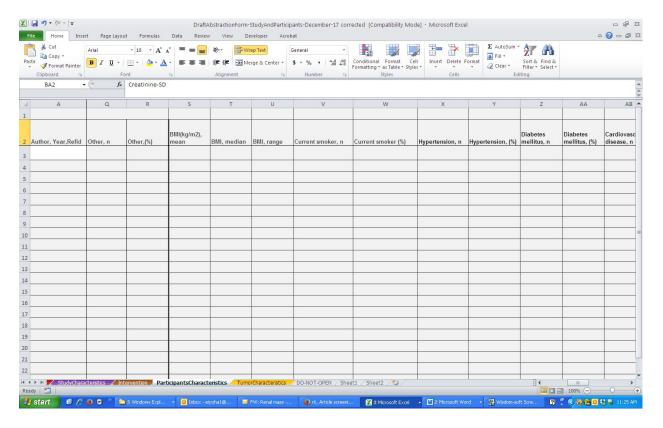
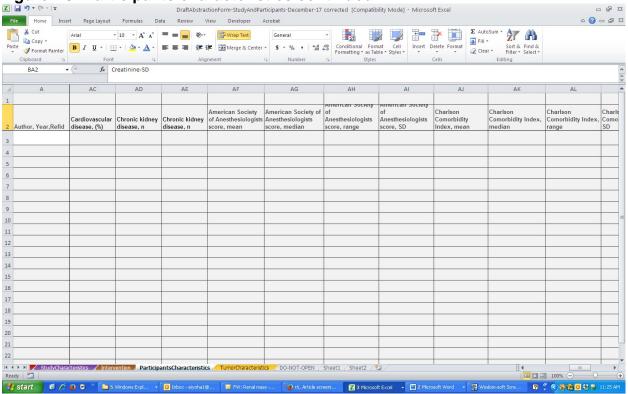
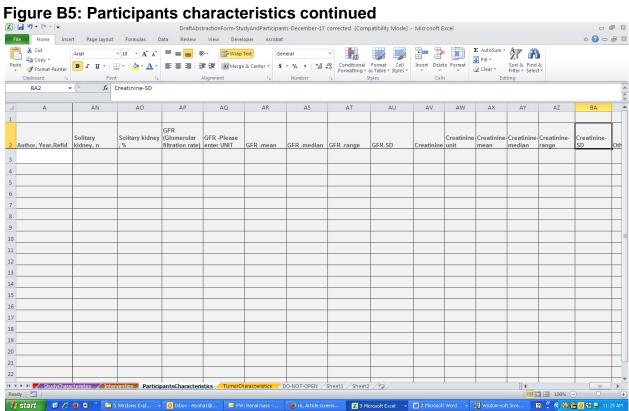
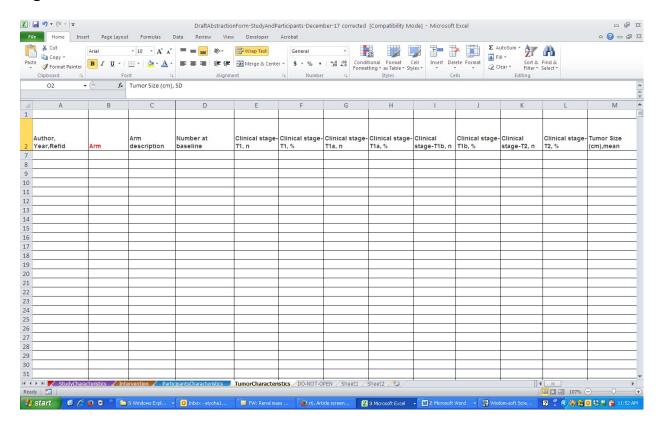
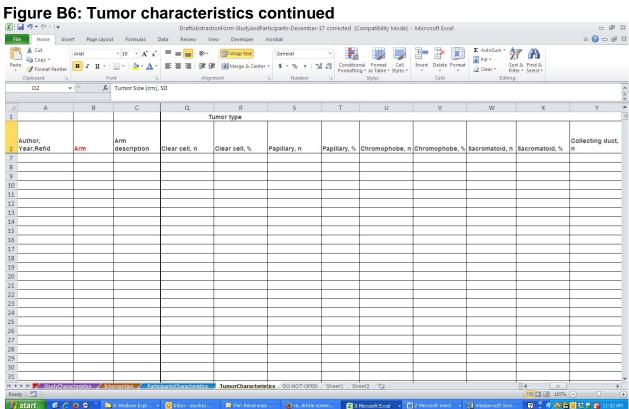
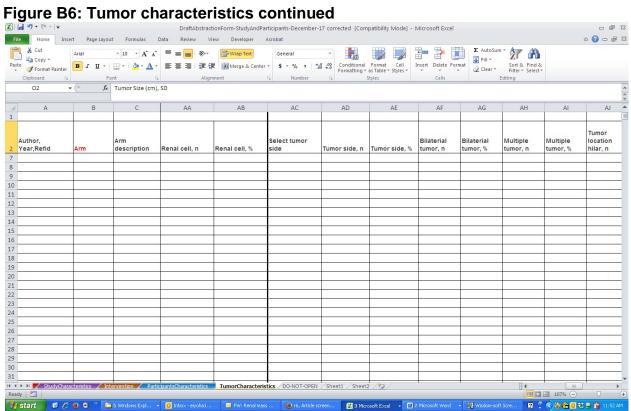
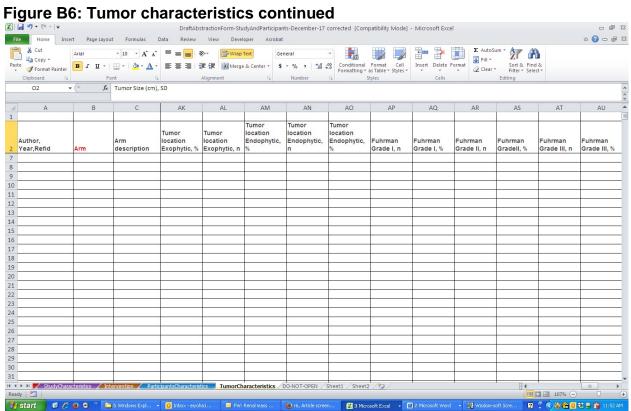



Figure B5: Participants characteristics continued

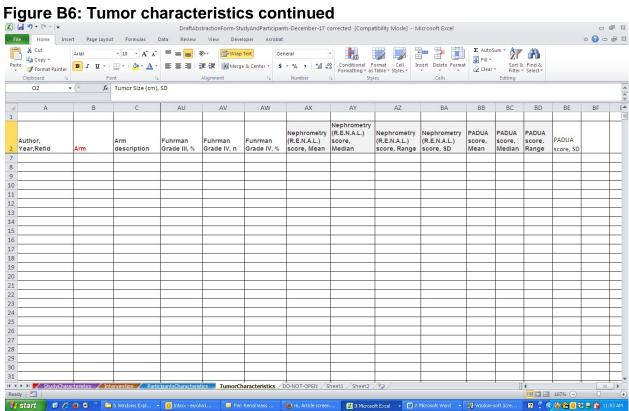

Figure B6: Tumor characteristics

Figure B7: Oncologic Outcomes

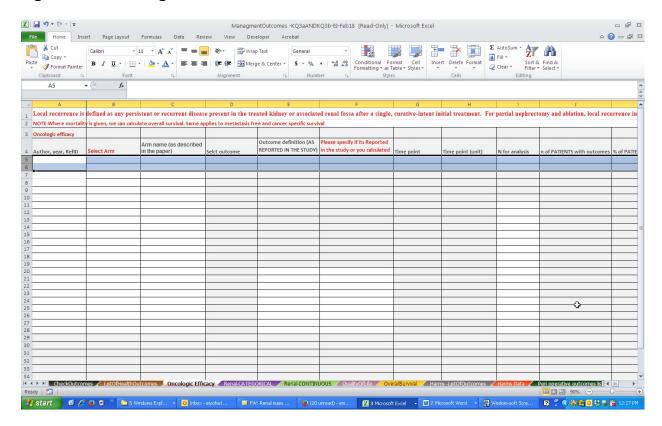
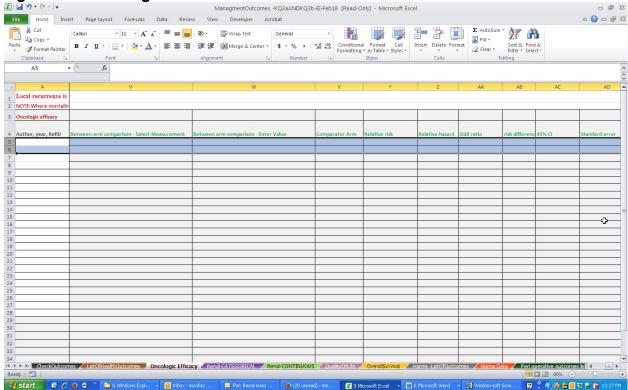
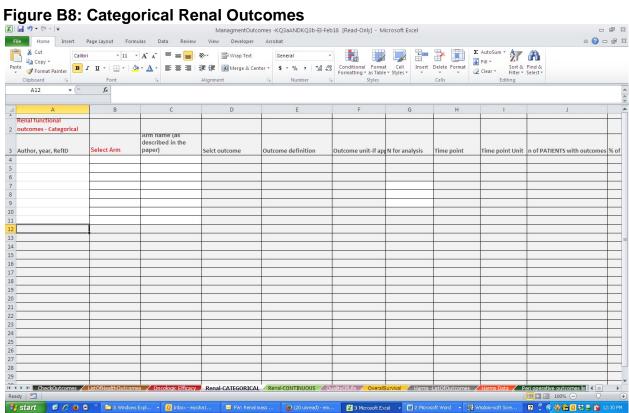


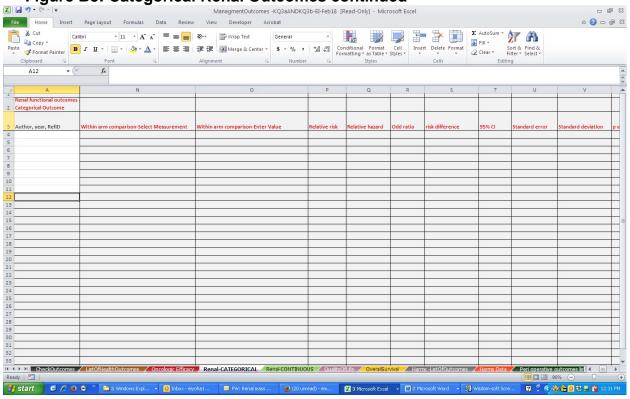
Figure B7: Oncologic Outcomes continued ManagmentOutcomes -KQ3aANDKQ3b-EI-Feb18 [Read-Only] - Microsoft Excel o ₽ X File Home Insert Page Layout Formulas Data Review View Developer Acrobat ۵ 🕜 🕳 🖾 S Cut Calibri 11 A A A S S Wap Text General Conditional Format Cell Formatting as Table Styles

As v fr A L M N O P Q R 5


Local recurrence is anhancement of any treated mass, any new or visually enlarging neoplasm, new nodularity, failure of regression in size of the treated lesion(s), or new satellite or port site lesions.


NOTE:Where mortalit 3 Oncologic efficacy 51
52
53
54
64
FREND CheckOutcomes ListOfHealthOutcomes Oncologic Efficacy Renal-CATEGORICAL Renal-CONTINUOUS OR Ready State Of the Sta

🔞 🖁 🔇 🖐 😭 🖸 😂 📮 🙀 12:27 PM


Figure B7: Oncologic Outcomes continued

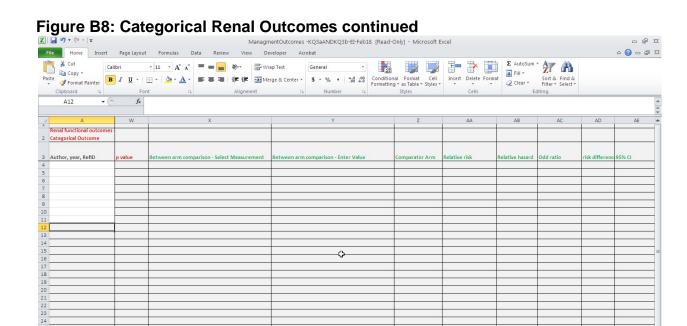

ManagmentOutcomes - KQ3aANDKQ3b-El-Feb

Figure B8: Categorical Renal Outcomes continued

90% — U +

X 3 Microsoft Excel → W 2 Microsoft Word → W Wisdom-soft Scre.

omes / Oncologic Efficacy Renal-CATEGORICAL Renal-CONTINUOUS / QualityOfLife

🛂 start 🥝 🔗 🧿 🤊 💝 🛅 5 Windows Expl... 💌 🚺 Inbox - eiyoha1... 💆 FW: Renal mass ...

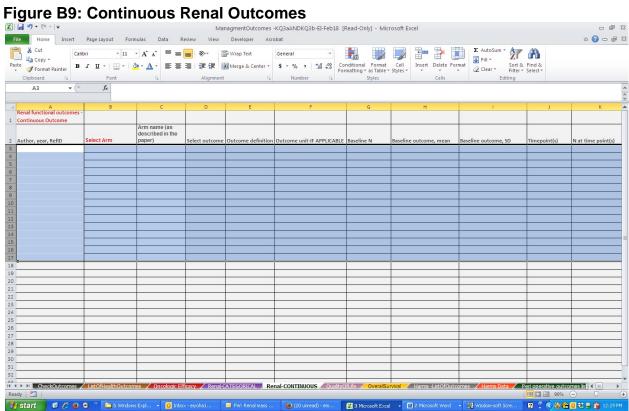


Figure B9: Continuous Renal Outcomes continued

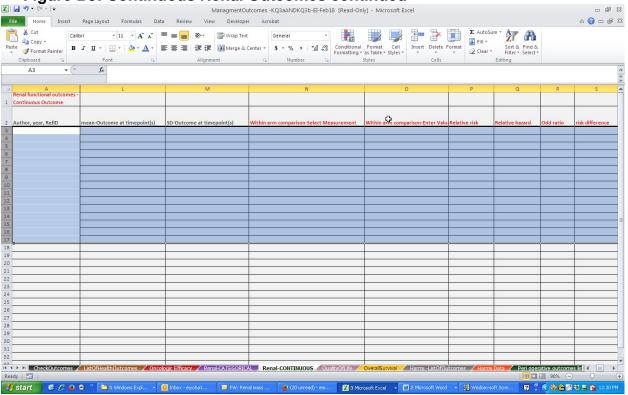
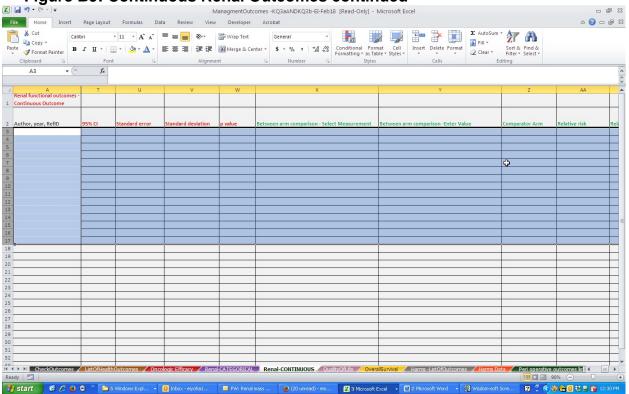



Figure B9: Continuous Renal Outcomes continued

Figure B9: Continuous Renal Outcomes continued

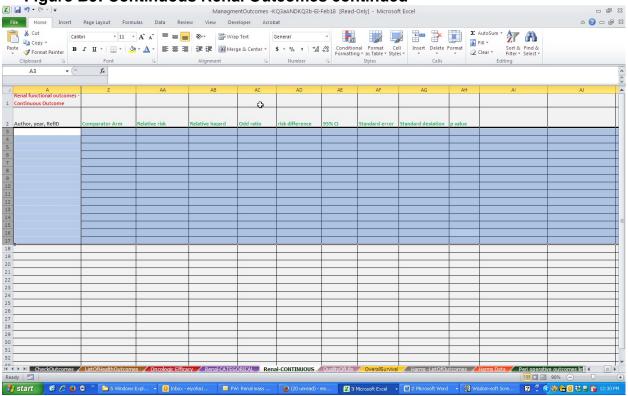


Figure B10: Quality of Life Outcome

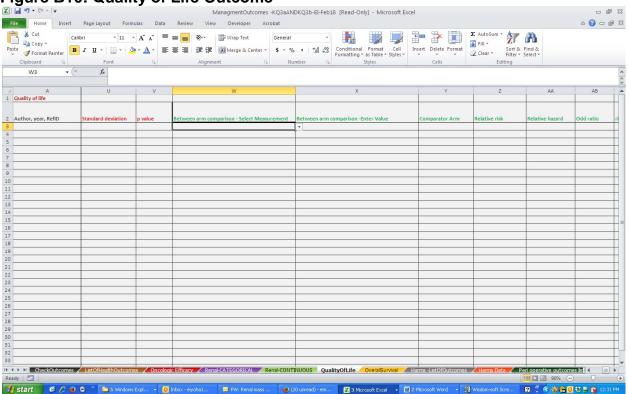
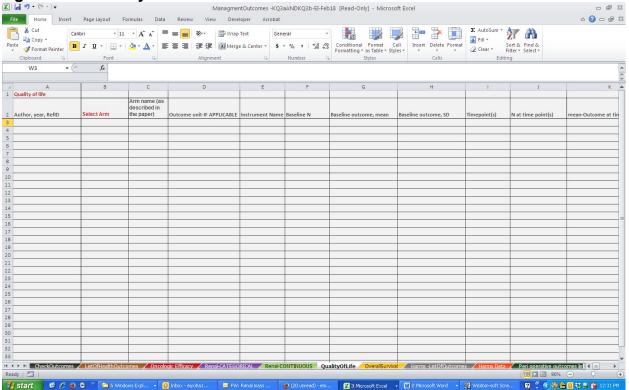
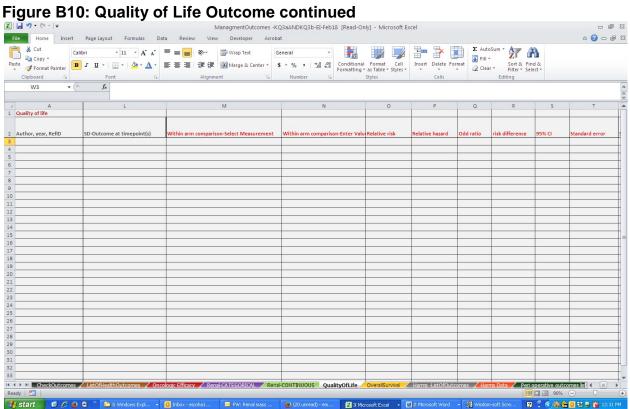




Figure B10: Quality of Life Outcome continued

ManagmentOutcomes -KQ3aANDKQ3b-EI-Feb18 [Read-Only] - Microsoft Excel

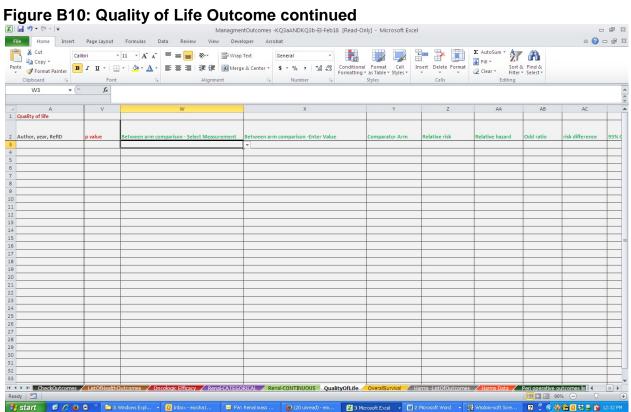


Figure B11: Overall Survival Outcome

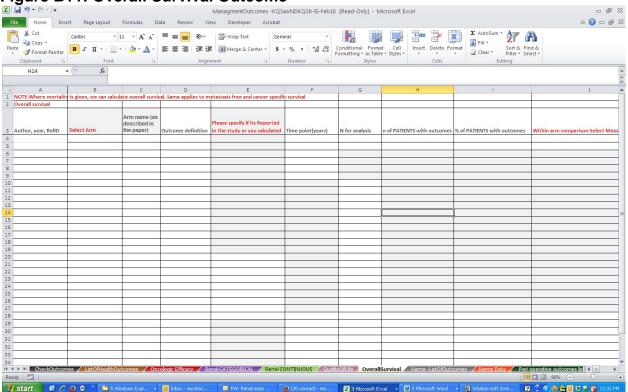
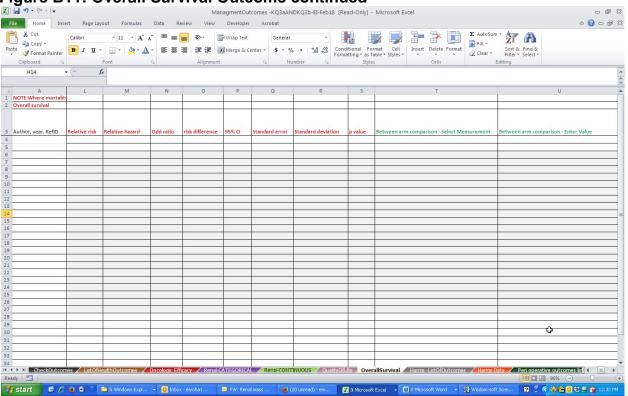
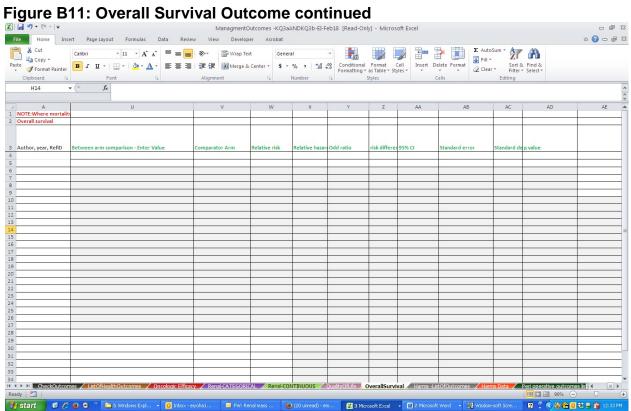
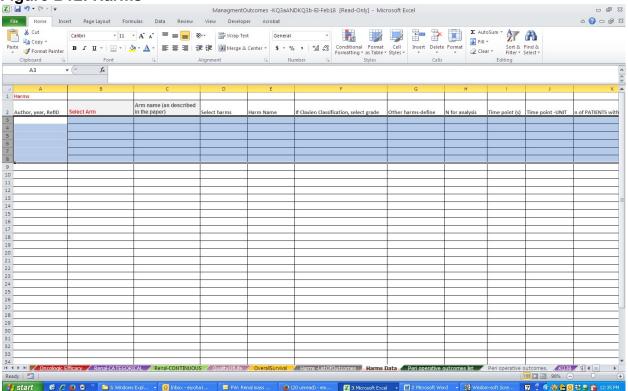
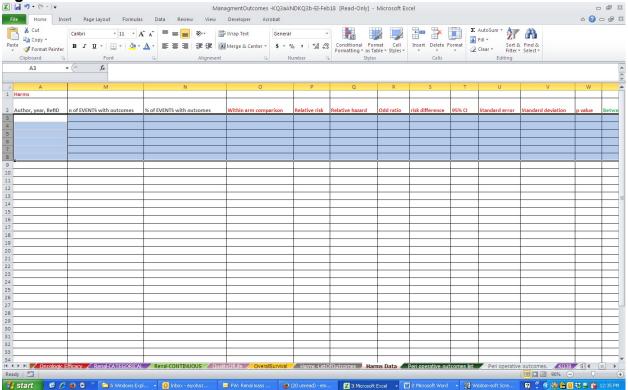





Figure B11: Overall Survival Outcome continued



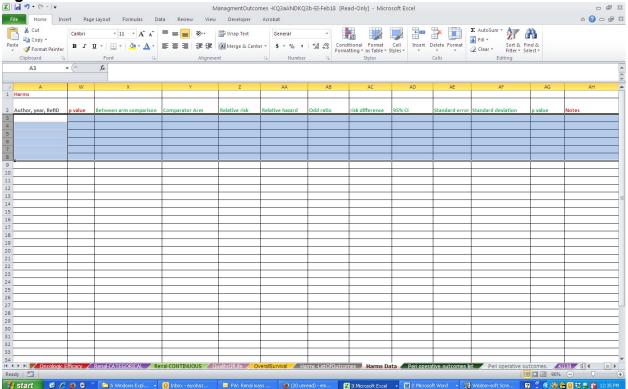

Figure B12: Harms

Figure B12: Harms continued

Figure B12: Harms continued

Figure B13: Perioperative Outcomes

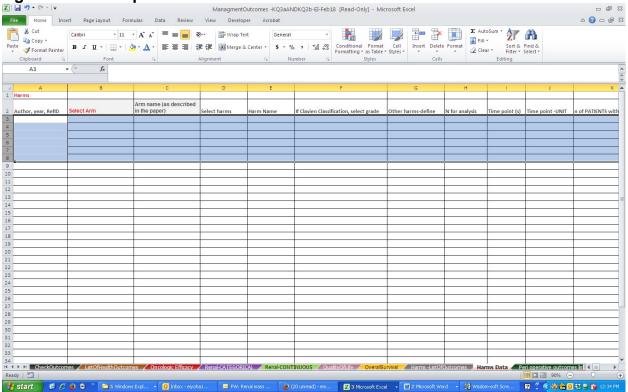
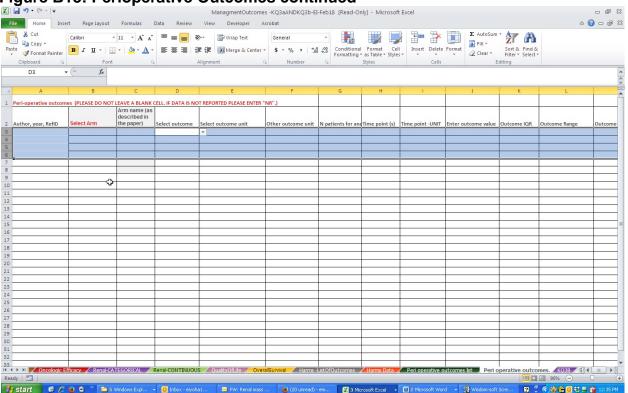



Figure B13: Perioperative Outcomes continued

Figure 14: Key Question 3B

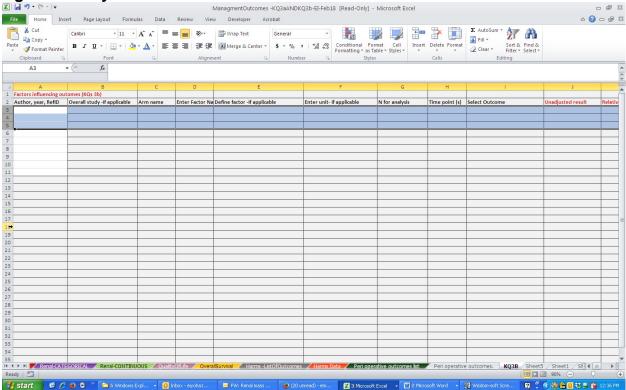
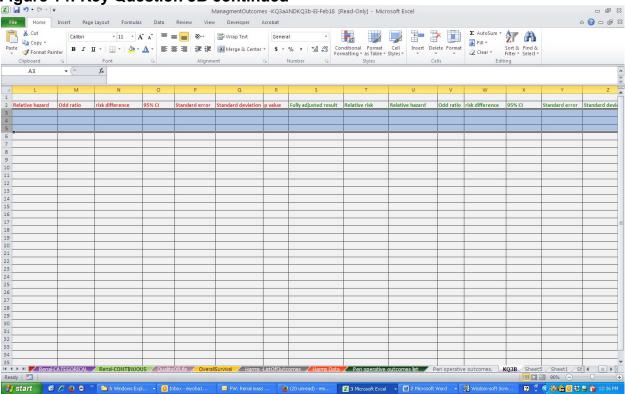



Figure 14: Key Question 3B continued

ManagmentOutcomes - KQ3AAN

Appendix C. List of Excluded Studies

Does not evaluate renal masses

Is the follow-up of small renal angiomyolipomas a necessary precaution?. Maclean, D. F., Sultana, R., Radwan, R., McKnight, L., and Khastgir, J.. Clin Radiol 2014:822-6

Clinical consequences of nephrectomy performed on medical grounds. Glazar, W., Dobrowolska-Glazar, B., Urbanowicz, W., and Sulowicz, W., Przegl Lek 2014:1-4

Follow-up study of unilateral renal function after nephrectomy assessed by glomerular filtration rate per functional renal volume. Hosokawa, Y., Tanaka, N., Mibu, H., Anai, S., Torimoto, K., Yoneda, T., Hirayama, A., Yoshida, K., Hayashi, Y., Hirao, Y., and Fujimoto, K.. World J Surg Oncol 2014:59

Trends of adult primary malignant renal tumors over 6 years. Khalil Ibrahim, A.. Pak J Med Sci 2013:1385-8

Overall survival and development of stage IV chronic kidney disease in patients undergoing partial and radical nephrectomy for benign renal tumors. Kaushik, D., Kim, S. P., Childs, M. A., Lohse, C. M., Costello, B. A., Cheville, J. C., Boorjian, S. A., Leibovich, B. C., and Thompson, R. H.. Eur Urol 2013:600-6

Value of metastin receptor immunohistochemistry in predicting metastasis after radical nephrectomy for pT1 clear cell renal cell carcinoma. Shoji, S., Nakano, M., Tomonaga, T., Kim, H., Hanai, K., Usui, Y., Nagata, Y., Miyazawa, M., Sato, H., Tang, X. Y., Osamura, Y. R., Uchida, T., Terachi, T., and Takeya, K.. Clin Exp Metastasis 2013:607-14

The effect of gender on nephrectomy perioperative outcomes: a national survey. Sammon, J., Trinh, Q. D., Sun, M., Bianchi, M., Schmitges, J., Shariat, S. F., Ghani, K. R., Sukumar, S., Jeldres, C., Briganti, A., Perrotte, P., Rogers, C. G., Peabody, J. O., Montorsi, F., Menon, M., and Karakiewicz, P. I.. Can J Urol 2012:6337-44

Incidence and long-term prognosis of papillary compared to clear cell renal cell carcinoma--a multicentre study. Steffens, S., Janssen, M., Roos, F. C., Becker, F., Schumacher, S., Seidel, C., Wegener, G., Thuroff, J. W., Hofmann, R., Stockle, M., Siemer, S., Schrader, M., Hartmann, A., Kuczyk, M. A., Junker, K., and Schrader, A. J.. Eur J Cancer 2012:2347-52

Volume-outcome relationships in the treatment of renal tumors. Abouassaly, R., Finelli, A., Tomlinson, G. A., Urbach, D. R., and Alibhai, S. M.. J Urol 2012:1984-8

[Urothelial carcinoma of the upper urinary tract: clinical and pathological criteria and their predictive implications after radical nephroureterectomy]. Seitz, C. and Schramek, P.. Wien Med Wochenschr 2011:366-70

Iatrogenic splenectomy during left nephrectomy: a single-institution experience of eight years. Tan, K., Lewis, G. R.,

Chahal, R., Browning, A. J., Sundaram, S. K., Weston, P. M., Harrison, S. C., and Biyani, C. S.. Urol Int 2011:59-63

The effect of hypertension and diabetes on the degree of renal function deterioration after unilateral nephrectomy. Satasivam, P., Rao, K., Guggenheimer, K., Stanton, R., Sowter, S., Sengupta, S., and Bolton, D. BJU Int 2011:1508-12

Radical renal surgery (laparoscopic and open) in octogenarians. Vasdev, N., Hussein, H. K., Davidson, A., Wood, H., O'Riordan, A., and Soomro, N. A.. Surgeon 2011:135-41

Laparoendoscopic single-site surgeries: a single-center experience of 171 consecutive cases. Choi, K. H., Ham, W. S., Rha, K. H., Lee, J. W., Jeon, H. G., Arkoncel, F. R., Yang, S. C., and Han, W. K.. Korean J Urol 2011:31-8

Renal impairment after laparoscopic radical nephrectomy affects hypoglycaemic therapy. Mizuno, T., Ito, K., Miyagawa, Y., Kimura, K., Suzuki, Y., Mizuno, M., Ito, Y., Funahashi, Y., Hattori, R., Gotoh, M., Noda, Y., and Yamada, K.. J Clin Pharm Ther 2012:49-52

Risk factors for conversion to hand assisted laparoscopy or open surgery during laparoscopic renal surgery. Rowley, M. W. and Wolf, J. S. Jr. J Urol 2011:940-4

Benefit of laparoscopic radical nephrectomy in patients with a high BMI. Hagiwara, M., Miyajima, A., Matsumoto, K., Kikuchi, E., Nakagawa, K., and Oya, M.. Jpn J Clin Oncol 2011:400-4

Kidney function following nephrectomy: similitude and discrepancies between kidney cancer and living donation. Timsit, M. O., Nguyen, K. N., Rouach, Y., Elie, C., Loupy, A., Fournier, C., Legendre, C., and Mejean, A.. Urol Oncol 2012:482-6

Retroperitoneoscopic nephrectomy with a modified hand-assisted approach. Capolicchio, J. P., Saemi, A., Trotter, S., and Plante, M. K.. Urology 2011:607-11

Laparoscopic nephrectomy: initial experience with 120 cases. Cheema, I. A., Manecksha, R. P., Murphy, M., and Flynn, R.. Ir Med J 2010:49-51

A collaborative approach reduces the learning curve and improves outcomes in laparoscopic nephrectomy. Schneider, C. L., Cobb, W. S., Carbonell, A. M., Hill, L. K., and Flanagan, W. F.. Surg Endosc 2011:182-5

Radical nephrectomy and nephroureterectomy in patients over 80 years old. Labanaris, A. P., Zugor, V., Labanaris, A. P., Elias, P., and Kuhn, R.. Int Braz J Urol 2010:141-8; discussion 149-50

Minimum incision endoscopic surgery (MIES) in Japanese urology: results of adrenalectomy, radical nephrectomy and radical prostatectomy. Kihara, K., Kobayashi, T., Kawakami, S., Fujii, Y., Kageyama, Y., and Masuda, H.. Aktuelle Urol 2010:S15-9

Incidental angiomyolipoma resected during renal surgery for an enhancing renal mass. Berglund, R. K., Bernstein, M., Manion, M. T., Touijer, K. A., and Russo, P. BJU Int 2009:1650-4

Angiomyolipomata: challenges, solutions, and future prospects based on over 100 cases treated. Sooriakumaran, P., Gibbs, P., Coughlin, G., Attard, V., Elmslie, F., Kingswood, C., Taylor, J., Corbishley, C., Patel, U., and Anderson, C.. BJU Int 2010:101-6

Oncological efficacy and safety of nephron-sparing surgery for selected patients with locally advanced renal cell carcinoma. Margulis, V., Tamboli, P., Jacobsohn, K. M., Swanson, D. A., and Wood, C. G.. BJU Int 2007:1235-9

[Transabdominal radical nephrectomy for renal cell carcinoma: an experience on 155 patients]. Chen, X. F., Zhou, F. J., Han, H., Qin, Z. K., Liu, Z. W., Yu, S. L., Li, Y. H., Wang, H., and Hou, G. L.. Ai Zheng 2007:528-32

Obesity as a risk factor for complications during laparoscopic surgery for renal cancer: multivariate analysis. Kurzer, E., Leveillee, R., and Bird, V.. J Endourol 2006:794-9

Follow-up of renal oncocytoma diagnosed by percutaneous tumor biopsy. Neuzillet, Y., Lechevallier, E., Andre, M., Daniel, L., Nahon, O., and Coulange, C.. Urology 2005:1181-5

Prior abdominal surgery and radiation do not complicate the retroperitoneoscopic approach to the kidney or adrenal gland. Viterbo, R., Greenberg, R. E., Al-Saleem, T., and Uzzo, R. G.. J Urol 2005:446-50

A description of radical nephrectomy practice and outcomes in England: 1995-2002. Nuttall, M., Cathcart, P., van der Meulen, J., Gillatt, D., McIntosh, G., and Emberton, M.. BJU Int 2005:58-61

Laparoscopic nephrectomy: an early experience at Queen Mary Hospital. Cheung, M. C., Lee, F. C., Chu, S. M., Leung, Y. L., Wong, B. B., Ho, K. L., and Tam, P. C.. Hong Kong Med J 2005:7-11

Learning curve of hand-assisted retroperitoneoscopic nephrectomy in less-experienced laparoscopic surgeons. Kawauchi, A., Fujito, A., Soh, J., Yoneda, K., Ukimura, O., Mizutani, Y., and Miki, T.. Int J Urol 2005:1-6

A renal mass in the setting of a nonrenal malignancy: When is a renal tumor biopsy appropriate? Sanchez-Ortiz, R. F., Madsen, L. T., Bermejo, C. E., Wen, S., Shen, Y., Swanson, D. A., and Wood, C. G.. Cancer 2004:2195-201

The British Association of Urological Surgeons Section of Endourology audit of laparoscopic nephrectomy. Keoghane, S. R., Keeley, F. X., Timoney, A. G., Tolley, D. A., Joyce, A., and Downey, P.. BJU Int 2004:577-81

Laparoscopic radical nephrectomy in the elderly. Varkarakis, I., Neururer, R., Harabayashi, T., Bartsch, G., and Peschel, R.. BJU Int 2004:517-20

Hand-assisted retroperitoneoscopic radical nephrectomy and nephroureterectomy. Kawauchi, A., Fujito, A., Soh, J.,

Ukimura, O., Mizutani, Y., and Miki, T.. J Endourol 2004:365-9

Advanced age is not a prohibitive factor in laparoscopic nephrectomy for renal pathology. Cobb, W. S., Heniford, B. T., Matthews, B. D., Carbonell, A. M., and Kercher, K. W.. Am Surg 2004:537-42

Laparoscopic versus open nephrectomy in 210 consecutive patients: outcomes, cost, and changes in practice patterns. Kercher, K. W., Heniford, B. T., Matthews, B. D., Smith, T. I., Lincourt, A. E., Hayes, D. H., Eskind, L. B., Irby, P. B., and Teigland, C. M.. Surg Endosc 2003:1889-95

Coloepiploic mobilization during left radical nephrectomy for renal cell carcinoma is indicated to reduce the risk of iatrogenic splenectomy. Mejean, A., Chretien, Y., Vogt, B., Cazin, S., Balian, C., Thiounn, N., and Dufour, B.. Urology 2002:358-61

Sonographically guided renal mass biopsy: indications and efficacy. Johnson, P. T., Nazarian, L. N., Feld, R. I., Needleman, L., Lev-Toaff, A. S., Segal, S. R., and Halpern, E. J.. J Ultrasound Med 2001:749-53; quiz 755

Carcinological risks and retroperitoneal laparoscopy. Cicco, A., Salomon, L., Hoznek, H., Alame, W., Saint, F., Bralet, M. P., Antiphon, P., Chopin, D. K., and Abbou, C. C.. Eur Urol 2000:606-12

[Transperitoneal laparoscopic nephrectomy]. Rozenberg, H., Bruyere, F., Abdelkader, T., Husset, A., and Hamoura, H.. Prog Urol 99:1034-8

Fine-needle aspiration of renal masses in adults: analysis of results and diagnostic problems in 108 cases. Truong, L. D., Todd, T. D., Dhurandhar, B., and Ramzy, I.. Diagn Cytopathol 99:339-49

Laparoscopic nephrectomy: the experience of the laparoscopy working group of the German Urologic Association. Rassweiler, J., Fornara, P., Weber, M., Janetschek, G., Fahlenkamp, D., Henkel, T., Beer, M., Stackl, W., Boeckmann, W., Recker, F., Lampel, A., Fischer, C., Humke, U., and Miller, K.. J Urol 98:18-21

[Splenectomy--a complication of left-sided nephrectomy]. Mincik, I. and Petricko, L.. Rozhl Chir 98:69-72

Incisional hernia after laparoscopic nephrectomy with intact specimen removal: caveat emptor. Elashry, O. M., Giusti, G., Nadler, R. B., McDougall, E. M., and Clayman, R. V.. J Urol 97:363-9

Utility of renal mass biopsy in a UK tertiary referral centre. Walton T.J., Amery C., Moore D., Mayer N.J., Rajesh A., and Kockelbergh R.C.. Br. J. Med. Surg. Urol. 2012 :216-223

Laparoendoscopic single-site surgery in urology: Worldwide multi-institutional analysis of 1076 cases. Kaouk J.H., Autorino R., Kim F.J., Han D.H., Lee S.W., Yinghao S., Cadeddu J.A., Derweesh I.H., Richstone L., Cindolo L., Branco A., Greco F., Allaf M., Sotelo R., Liatsikos E., Stolzenburg J.-U., Rane A., White W.M., Han W.K., Haber G.-P., White M.A., Molina W.R., Jeong B.C., Lee J.Y., Linhui W., Best S., Stroup S.P., Rais-Bahrami S.,

Schips L., Fornara P., Pierorazio P., Giedelman C., Lee J.W., Stein R.J., and Rha K.H.. Eur. Urol. 2011:998-1005

Young Age Is Independent Prognostic Factor for Cancer-Specific Survival of Low-Stage Clear Cell Renal Cell Carcinoma. Jung E.-J., Lee H.J., Kwak C., Ku J.H., and Moon K.C.. Urology 2009:137-141

The relationship between the preoperative systemic inflammatory response and cancer-specific survival in patients undergoing potentially curative resection for renal clear cell cancer. Lamb G.W.A., McMillan D.C., Ramsey S., and Aitchison M.. Br. J. Cancer 2006:781-784

Laparoscopic operations in urology - Results and complications in 150 patients: Laparoskopicke vykony v urologii - Vysledky a komplikacie u 150 pacientov. L'uptak J., Svihra J., Javorka K., Vrany M., Elias B., Sopilko I., and Kliment Jr. J.. Endoskopie 2005:66-72

A review of our first 100 cases of laparoscopic nephrectomy: Defining risk factors for complications. Keeley F.X. and Tolley D.A.. Br. J. Urol. 98:615-618

MDCT-based scoring system for differentiating angiomyolipoma with minimal fat from renal cell carcinoma. Kim, M. H., Lee, J., Cho, G., Cho, K. S., Kim, J., and Kim, J. K.. Acta Radiol 2013:1201-9

Percutaneous US-guided needle biopsies of solid renal masses. Aribas, B. K., Arda, K., Aktas, E., Ciledag, N., Yakut, F., Sahin, G., Cosar, Y., Dogan, K., and Kaya, G.. Neoplasma 2011:146-52

Contrast enhanced ultrasonography prediction of cystic renal mass in comparison to histopathology. Xu, Y., Zhang, S., Wei, X., Pan, Y., and Hao, J.. Clin Hemorheol Microcirc 2013:

Radiologically guided percutaneous fine-needle aspiration biopsy of pelvic and retroperitoneal masses: a retrospective study of 68 cases. Guo, Z., Kurtycz, D. F., De Las Casas, L. E., and Hoerl, H. D.. Diagn Cytopathol 2001:43-9

Fine-needle aspiration of cystic lesions of the kidney. Morphologic spectrum and diagnostic problems in 41 cases. Todd, T. D., Dhurandhar, B., Mody, D., Ramzy, I., and Truong, L. D.. Am J Clin Pathol 99:317-28

Multi-quadrant biopsy technique improves diagnostic ability in large heterogeneous renal masses. Abel, E. J., Heckman, J. E., Hinshaw, L., Best, S., Lubner, M., Jarrard, D. F., Downs, T. M., Nakada, S. Y., Lee, F. T. Jr, Huang, W., and Ziemlewicz, T.. J Urol 2015:

Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Schmid, M., Abd-El-Barr, A. E., Gandaglia, G., Sood, A., Olugbade, K. Jr, Ruhotina, N., Sammon, J. D., Varda, B., Chang, S. L., Kibel, A. S., Chun, F. K., Menon, M., Fisch, M., and Trinh, Q. D.. Urol Oncol 2014:1259-66

Risk evaluation of selective renal arterial embolization in the treatment of delayed hemorrhage from renal artery pseudoaneurysm after partial nephrectomy. Zhu, Y., Liu, Y., Zhang, J., and Lin, Z.. Cell Biochem Biophys 2014:1833-9

Management, pathology and outcomes of Bosniak category IIF and III cystic renal lesions. Weibl, P., Hora, M., Kollarik, B., Shariat, S. F., and Klatte, T.. World J Urol 2015:295-300

Unenhanced CT for the diagnosis of minimal-fat renal angiomyolipoma. Schieda, N., Hodgdon, T., El-Khodary, M., Flood, T. A., and McInnes, M. D.. AJR Am J Roentgenol 2014:1236-41

Contrast enhanced ultrasonography prediction of cystic renal mass in comparison to histopathology. Xu Y., Zhang S., Wei X., Pan Y., and Hao J.. Clin. Hemorheol. Microcirc. 2014:429-438

The 1-year decline in estimated glomerular filtration rate (eGFR) after radical nephrectomy in patients with renal masses and matched living kidney donors is the same. Hew M.N., Opondo D., Cordeiro E.R., Van Donselaar-Van Der Pant K.A.M.I., Bemelman F.J., Idu M.M., De La Rosette J.J.M.C.H., and Laguna M.P.. BJU Int. 2014:E49-E55

Pathological characteristics and radiographic correlates of complex renal cysts. Reese A.C., Johnson P.T., Gorin M.A., Pierorazio P.M., Allaf M.E., Fishman E.K., Netto G.J., and Pavlovich C.P.. Urol. Oncol. Semin. Orig. Invest. 2014:1010-1016

Robotic partial nephrectomy for cystic renal masses: A comparative analysis of a matched-paired cohort. Akca O., Zargar H., Autorino R., Brandao L.F., Laydner H., Krishnan J., Samarasekera D., Li J., Haber G.-P., Stein R., and Kaouk J.H.. Urology 2014:93-98

Fine needle aspiration biopsy of complex renal cystic tumors in the era of modern imaging modalities where shall we go?. Li G., Forest F., Feng G., Cuilleron M., Peoc'h M., Cottier M., and Mottet N. Nicolas. Anal. Quant. Cytol. Histol. 2014:235-240

Different presentations of renal cell cancer on ultrasound and computerized tomography. Markic, D., Krpina, K., Ahel, J., Spanjol, J., Grskovic, A., Stifter, S., Ethordevic, G., Stemberger, C., Pavlovic, I., and Maricic, A.. Urologia 2014:0

Overall mortality after radical nephrectomy in patients aged over 80 years with renal cancer: a retrospective study on preoperative prognostic factors. Brassart, E., Lebdai, S., Berger, J., Traore, S., Bernhard, J. C., Fardoun, T., Muller, G., Patard, J. J., Azzouzi, A. R., and Bigot, P.. Int J Urol 2012:626-32

Renal cell carcinoma stage migration in a single European centre over 25 years: effects on 5- and 10-year metastasisfree survival. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Pummer, K., and Zigeuner, R.. Int Urol Nephrol 2012:997-1004

Partial nephrectomy is associated with improved overall survival compared to radical nephrectomy in patients with unanticipated benign renal tumours. Weight, C. J., Lieser, G., Larson, B. T., Gao, T., Lane, B. R., Campbell, S. C., Gill, I. S., Novick, A. C., and Fergany, A. F.. Eur Urol 2010:293-8

Laparoscopic radical nephrectomy for renal cell carcinoma: oncological outcomes at 10 years or more. Berger, A., Brandina, R., Atalla, M. A., Herati, A. S., Kamoi, K., Aron, M., Haber, G. P., Stein, R. J., Desai, M. M., Kavoussi, L. R., and Gill, I. S.. J Urol 2009:2172-6

Benign lesions underwent radical nephrectomy for renal cancer: Bobrek tumoru on tanisi ile radikal nefrektomi yapilan benin lezyonlar. Sahin M.O., Canda A.E., Mungan M.U., Kirkali Z., and Sade M.. Turk Urol. Derg. 2004:405-409

Patients with recurrent renal cell carcinoma

Feasibility and outcomes of laparoscopic renal intervention after prior open ipsilateral retroperitoneal surgery. Boris, R. S., Gupta, G. N., Benson, J. S., Linehan, W. M., Pinto, P. A., and Bratslavsky, G.. J Endourol 2013:196-201

Influence of visceral obesity on oncologic outcome in patients with renal cell carcinoma. Naya, Y., Zenbutsu, S., Araki, K., Nakamura, K., Kobayashi, M., Kamijima, S., Imamoto, T., Nihei, N., Suzuki, H., Ichikawa, T., and Igarashi, T.. Urol Int 2010:30-6

Feasibility of laparoscopic partial nephrectomy after previous ipsilateral renal procedures. Turna, B., Aron, M., Frota, R., Desai, M. M., Kaouk, J., and Gill, I. S.. Urology 2008:584-8

Open partial nephrectomy for tumor in a solitary kidney: experience with 400 cases. Fergany, A. F., Saad, I. R., Woo, L., and Novick, A. C.. J Urol 2006:1630-3; discussion 1633

Percutaneous radiofrequency ablation of renal tumors: technique, complications, and outcomes. Ahrar, K., Matin, S., Wood, C. G., Wallace, M. J., Gupta, S., Madoff, D. C., Rao, S., Tannir, N. M., Jonasch, E., Pisters, L. L., Rozner, M. A., Kennamer, D. L., and Hicks, M. E.. J Vasc Interv Radiol 2005:679-88

Percutaneous renal cryoablation: prospective experience treating 120 consecutive tumors. Buy, X., Lang, H., Garnon, J., Sauleau, E., Roy, C., and Gangi, A.. AJR Am J Roentgenol 2013:1353-61

CT-guided percutaneous cryoablation of renal masses in selected patients. Spreafico, C., Nicolai, N., Lanocita, R., Morosi, C., Catanzaro, M., Civelli, E., Torelli, T., Stagni, S., Piva, L., Frigerio, L. F., Marchiano, A., and Salvioni, R.. Radiol Med 2012:593-605

Percutaneous cryoablation of masses in a solitary kidney. Weisbrod, A. J., Atwell, T. D., Frank, I., Callstrom, M. R., Farrell, M. A., Mandrekar, J. N., and Charboneau, J. W.. AJR Am J Roentgenol 2010:1620-5

Imaging guided biopsy of renal masses: indications, accuracy and impact on clinical management. Wood, B. J., Khan, M. A., McGovern, F., Harisinghani, M., Hahn, P. F., and Mueller, P. R.. J Urol 99:1470-4

Changes in renal function after laparoscopic partial nephrectomy: Comparison with laparoscopic radical nephrectomy. Kang S.H., Rhew H.Y., and Kim T.S.. Korean J. Urol. 2013:22-25

Clinically nonlocalized patients

Increased expression of Chitinase 3-like 1 and microvessel density predicts metastasis and poor prognosis in clear cell renal cell carcinoma. Zhang, J. P., Yuan, H. X., Kong, W. T., Liu, Y., Lin, Z. M., Wangs, W. P., and Guo, J. M.. Tumour Biol 2014:

Results of a comparative study analyzing octogenarians with renal cell carcinoma in a competing risk analysis with patients in the seventh decade of life. May, M., Cindolo, L., Zigeuner, R., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Wolff, I., Feciche, B., Fenske, F., Pichler, M., Schips, L., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Santiago Martin, M. D., Salzano, L., Lotrecchiano, G., Waidelich, R., Stief, C., Sountoulides, P., and Brookman-May, S.. Urol Oncol 2014:

Pretherapeutic gamma-glutamyltransferase is an independent prognostic factor for patients with renal cell carcinoma. Hofbauer, S. L., Stangl, K. I., de Martino, M., Lucca, I., Haitel, A., Shariat, S. F., and Klatte, T.. Br J Cancer 2014:

Oncologic outcomes after partial versus radical nephrectomy in renal cell carcinomas smaller than 7 cm with presumed renal sinus fat invasion on preoperative imaging. Koo, K. C., Kim, J. C., Cho, K. S., Choi, Y. D., Hong, S. J., Yang, S. C., and Ham, W. S.. BJU Int 2014:

Serum level and immunohistochemical expression of vascular endothelial growth factor for the prediction of postoperative recurrence in renal cell carcinoma. Fujita, N., Okegawa, T., Terado, Y., Tambo, M., Higashihara, E., and Nutahara, K.. BMC Res Notes 2014:369

Extent of lymph node dissection at nephrectomy affects cancer-specific survival and metastatic progression in specific sub-categories of patients with renal cell carcinoma (RCC). Capitanio, U., Suardi, N., Matloob, R., Roscigno, M., Abdollah, F., Di Trapani, E., Moschini, M., Gallina, A., Salonia, A., Briganti, A., Montorsi, F., and Bertini, R.. BJU Int 2014:210-5

Clinical features and treatment of collecting duct carcinoma of the kidney from the korean cancer study group genitourinary and gynecology cancer committee. Kwon, K. A., Oh, S. Y., Kim, H. Y., Kim, H. S., Lee, H. Y., Kim, T. M., Lim, H. Y., Lee, N. R., Lee, H. J., Hong, S. H., and Rha, S. Y.. Cancer Res Treat 2014:141-7

Prognostic value of clinical and pathological factors for surgically treated localized clear cell renal cell carcinoma. Teng, J., Gao, Y., Chen, M., Wang, K., Cui, X., Liu, Y., and Xu, D.. Chin Med J (Engl) 2014:1640-4

Does robotic assistance confer an economic benefit during laparoscopic radical nephrectomy? Yang, D. Y., Monn, M. F., Bahler, C. D., and Sundaram, C. P., J Urol 2014:671-6

Preoperative butyrylcholinesterase level as an independent predictor of overall survival in clear cell renal cell carcinoma patients treated with nephrectomy. Koie, T., Ohyama, C., Mikami, J., Iwamura, H., Fujita, N., Sato, T., Kojima, Y., Fukushi, K., Yamamoto, H., Imai, A., Hatakeyama, S., Yoneyama, T., Hashimoto, Y., Kitayama, M., and Hirota, K.. ScientificWorldJournal 2014:948305

Lymph node dissection during cytoreductive nephrectomy: a retrospective analysis. Feuerstein, M. A., Kent, M., Bernstein, M., and Russo, P.. Int J Urol 2014:874-9

Cytoreductive nephrectomy for metastatic renal cell carcinoma: a population-based analysis of perioperative outcomes according to clinical stage. Takagi, T., Sugihara, T., Yasunaga, H., Horiguchi, H., Fushimi, K., Kondo, T., Homma, Y., and Tanabe, K.. Int J Urol 2014:770-5

Diagnostic and prognostic role of preoperative circulating CA 15-3, CA 125, and beta-2 microglobulin in renal cell carcinoma. Lucarelli, G., Ditonno, P., Bettocchi, C., Vavallo, A., Rutigliano, M., Galleggiante, V., Larocca, A. M., Castellano, G., Gesualdo, L., Grandaliano, G., Selvaggi, F. P., and Battaglia, M.. Dis Markers 2014 :689795

Tumour characteristics and surgical treatment of renal cell carcinoma in Sweden 2005-2010: a population-based study from the National Swedish Kidney Cancer Register. Thorstenson, A., Bergman, M., Scherman-Plogell, A. H., Hosseinnia, S., Ljungberg, B., Adolfsson, J., and Lundstam, S.. Scand J Urol 2014:231-8

Comparison of the Complications and the Cost of Open and Laparoscopic Radical Nephrectomy in Renal Tumors Larger than 7 centimeters. Bayrak, O., Seckiner, I., Erturhan, S., Cil, G., Erbagci, A., and Yagci, F.. Urol J 2014:1222-7

External validation of the modified Glasgow prognostic score for renal cancer. Tai, C. G., Johnson, T. V., Abbasi, A., Herrell, L., Harris, W. B., Kucuk, O., Canter, D. J., Ogan, K., Pattaras, J. G., Nieh, P. T., and Master, V. A.. Indian J Urol 2014:33-7

Evolving epidemiologic trends in nonclear cell renal cell cancer: an analysis of the California Cancer Registry. Pai, A., Brunson, A., Brown, M., Pan, C. X., and Lara, P. N. Jr. Urology 2013:840-5

Do young patients with renal cell carcinoma feature a distinct outcome after surgery? A comparative analysis of patient age based on the multinational CORONA database. Aziz, A., May, M., Zigeuner, R., Pichler, M., Chromecki, T., Cindolo, L., Schips, L., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Hoschke, B., Gilfrich, C., Feciche, B., Fenske, F., Sountoulides, P., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Del Carmen Santiago Martin, M., Wieland, W. F., Salzano, L., Lotrecchiano, G., Waidelich, R., Stief, C., and Brookman-May, S.. J Urol 2014:310-5

An analysis of patients with T2 renal cell carcinoma (RCC) according to tumour size: a population-based analysis. Bianchi, M., Becker, A., Trinh, Q. D., Abdollah, F., Tian, Z., Shariat, S. F., Montorsi, F., Perrotte, P., Graefen, M., Karakiewicz, P. I., and Sun, M.. BJU Int 2013:1184-90

Renal lymph nodes for tumor staging: appraisal of 871 nephrectomies with examination of hilar fat. Mehta, V., Mudaliar, K., Ghai, R., Quek, M. L., Milner, J., Flanigan, R. C., and Picken, M. M.. Arch Pathol Lab Med 2013:1584-90

A generation of laparoscopic nephrectomy: stage-specific surgical and oncologic outcomes for laparoscopic nephrectomy in a single center. Laird, A., Stewart, G. D., Zhong, J., Ang, W. J., Cutress, M. L., Riddick, A. C., McNeill, S. A., and Tolley, D. A.. J Endourol 2013:1008-14

Operative safety and oncologic outcome of laparoscopic radical nephrectomy for renal cell carcinoma >7 cm: a multicenter study of 222 patients. Luciani, L. G., Porpiglia, F., Cai, T., D'Elia, C., Vattovani, V., Giusti, G., Tiscione, D., Chiodini, S., Peschechera, R., Fiori, C., Spina, R., Parma, P., Celia, A., and Malossini, G.. Urology 2013:1239-44

Gender differences in clinicopathological features and survival in surgically treated patients with renal cell carcinoma: an analysis of the multicenter CORONA database. May, M., Aziz, A., Zigeuner, R., Chromecki, T., Cindolo, L., Schips, L., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Hoschke, B., Gilfrich, C., Feciche, B., Stoltze, A., Fenske, F., Fritsche, H. M., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Martin Mdel, C., Salzano, L., Lotrecchiano, G., Joniau, S., Waidelich, R., Stief, C., and Brookman-May, S.. World J Urol 2013:1073-80

Validation of serum C-reactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC). de Martino, M., Klatte, T., Seemann, C., Waldert, M., Haitel, A., Schatzl, G., Remzi, M., and Weibl, P.. BJU Int 2013:E348-53

Assessing the accuracy and generalizability of the preoperative and postoperative Karakiewicz nomograms for renal cell carcinoma: results from a multicentre European and US study. Cindolo, L., Chiodini, P., Brookman-May, S., De Cobelli, O., May, M., Squillacciotti, S., De Nunzio, C., Tubaro, A., Coman, I., Feciche, B., Truss, M., Wirth, M. P., Dalpiaz, O., Chromecki, T. F., Shariat, S. F., Sanchez-Chapado, M., Santiago Martin Mdel, C., Rocco, B., Salzano, L., Lotrecchiano, G., Berardinelli, F., and Schips, L.. BJU Int 2013:578-84

Predictive factors of chronic kidney disease stage V after partial nephrectomy in a solitary kidney: a multi-institutional study. Verhoest, G., Patard, J. J., Oger, E., Rioux-Leclercq, N., Peyronnet, B., Bessede, T., Laguna, P., Barwari, K., Rigaud, J., Roupret, M., Coffin, G., Bernhard, J. C., Long, J. A., Zisman, A., Berger, J., Paparel, P., Maurin, C., Lechevallier, E., Bertini, R., Ouzaid, I.,

Salomon, L., Bex, A., Farfara, R., Ljungberg, B., Rodriguez, A. R., and Bensalah, K.. Urol Oncol 2014:28.e21-6

The effect of gender and age on kidney cancer survival: younger age is an independent prognostic factor in women with renal cell carcinoma. Rampersaud, E. N., Klatte, T., Bass, G., Patard, J. J., Bensaleh, K., Bohm, M., Allhoff, E. P., Cindolo, L., De La Taille, A., Mejean, A., Soulie, M., Bellec, L., Christophe Bernhard, J., Pfister, C., Colombel, M., Belldegrun, A. S., Pantuck, A. J., and George, D.. Urol Oncol 2014:30.e9-13

Evaluation of long-term outcome for patients with renal cell carcinoma after surgery: analysis of cancer deaths occurring more than 10 years after initial treatment. Kyoda, Y., Kobayashi, K., Hirobe, M., Shindo, T., Fukuta, F., Hashimoto, K., Tanaka, T., Tonooka, A., Kitamura, H., Takahashi, S., Masumori, N., Hasegawa, T., and Tsukamoto, T.. Int J Clin Oncol 2014:146-51

Association of microvascular and capillary-lymphatic invasion with outcome in patients with renal cell carcinoma. Eisenberg, M. S., Cheville, J. C., Thompson, R. H., Kaushik, D., Lohse, C. M., Boorjian, S. A., Costello, B. A., and Leibovich, B. C.. J Urol 2013:37-43

[Perioperative outcomes and mid-term results of radiofrequency ablation and partial nephrectomy in indications of renal tumor treatment and imperative nephron-sparing procedure]. Arnoux, V., Descotes, J. L., Sengel, C., Terrier, N., Rambeaud, J. J., and Long, J. A.. Prog Urol 2013:99-104

Erythrocyte sedimentation rate and anaemia are independent predictors of survival in patients with clear cell renal cell carcinoma. Choi, Y., Park, B., Kim, K., Jeong, B. C., Seo, S. I., Jeon, S. S., Choi, H. Y., Lee, J. E., and Lee, H. M.. Br J Cancer 2013:387-94

Complications of radical nephrectomy for renal cell carcinoma: a retrospective study comparing transperitoneal and retroperitoneal approaches using a standardized reporting methodology in two Chinese centers. Zhang, Z. L., Li, Y. H., Luo, J. H., Liu, Z. W., Yao, K., Dong, P., Han, H., Qin, Z. K., Chen, W., and Zhou, F. J.. Chin J Cancer 2013:461-8

Does mechanical bowel preparation improve quality of laparoscopic nephrectomy? Propensity score-matched analysis in Japanese series. Sugihara, T., Yasunaga, H., Horiguchi, H., Fujimura, T., Nishimatsu, H., Ohe, K., Matsuda, S., Fushimi, K., Kattan, M. W., and Homma, Y.. Urology 2013:74-9

Prognostic factors of overall survival in renal cancer patients - single oncological center study. Drewniak, T., Sandheim, M., Jakubowski, J., Juszczak, K., and Stelmach, A. W.. Cent European J Urol 2013 :283-91

Down-regulation of human leukocyte antigen class I (HLA-I) is associated with poor prognosis in patients with clear cell renal cell carcinoma. Yuan, J., Liu, S., Yu, Q., Lin, Y., Bi, Y., Wang, Y., and An, R.. Acta Histochem 2013:470-

Wide range and variation in minimally invasive surgery for renal malignancy in Japan: a population-based analysis. Sugihara, T., Yasunaga, H., Horiguchi, H., Tsuru, N., Fujimura, T., Nishimatsu, H., Kume, H., Ohe, K., Matsuda, S., Fushimi, K., and Homma, Y.. Int J Clin Oncol 2013:1070-7

Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. Schmit, G. D., Thompson, R. H., Kurup, A. N., Weisbrod, A. J., Boorjian, S. A., Carter, R. E., Geske, J. R., Callstrom, M. R., and Atwell, T. D.. J Urol 2013:30-5

A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer. Yaycioglu, O., Eskicorapci, S., Karabulut, E., Soyupak, B., Gogus, C., Divrik, T., Turkeri, L., Yazici, S., and Ozen, H.. Jpn J Clin Oncol 2013:63-8

Uric acid levels correlate with baseline renal function and high levels are a potent risk factor for postoperative chronic kidney disease in patients with renal cell carcinoma. Jeon, H. G., Choo, S. H., Jeong, B. C., Seo, S. I., Jeon, S. S., Choi, H. Y., and Lee, H. M.. J Urol 2013:1249-54

Radical nephrectomy with transperitoneal subcostal incision for large and locally advanced tumors of the right kidney. Anastasiou, J., Karatzas, T., Felekouras, E., Tokas, T., Koutalellis, G., Mitropoulos, D., and Constantinides, C.. Anticancer Res 2012:5023-9

Racial disparity in renal cell carcinoma patient survival according to demographic and clinical characteristics. Chow, W. H., Shuch, B., Linehan, W. M., and Devesa, S. S.. Cancer 2013:388-94

Can we predict which patients will evolve to chronic kidney disease after nephrectomy for cortical renal tumors? Torricelli, F. C., Danilovic, A., Marchini, G. S., Sant'Anna, A. C., Dall'Oglio, M. F., and Srougi, M.. Int Braz J Urol 2012:637-43: discussion 644

Cyclooxygenase-2 expression and its prognostic significance in clear cell renal cell carcinoma. Lee, J. W., Park, J. H., Suh, J. H., Nam, K. H., Choe, J. Y., Jung, H. Y., Chae, J. Y., and Moon, K. C.. Korean J Pathol 2012:237-45

Predictive ability of the 2002 and 2010 versions of the Tumour-Node-Metastasis classification system regarding metastasis-free, cancer-specific and overall survival in a European renal cell carcinoma single-centre series. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Groselj-Strele, A., Pummer, K., and Zigeuner, R.. BJU Int 2013:E191-5

Short-term functional and oncological outcomes of partial nephrectomy for renal cell carcinoma in patients with an anatomically or functionally solitary kidney: single-center experience. Maehana, T., Tanaka, T., Kitamura, H., Masumori, N., and Tsukamoto, T.. Int J Clin Oncol 2013:1049-53

Nodal involvement at nephrectomy is associated with worse survival: a stage-for-stage and grade-for-grade analysis. Sun, M., Bianchi, M., Hansen, J., Abdollah, F., Trinh, Q. D., Lughezzani, G., Shariat, S. F., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. Int J Urol 2013:372-80

Comparison of the 2002 and 2010 TNM classification systems regarding outcome prediction in clear cell and papillary renal cell carcinoma. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Groselj-Strele, A., Hoefler, G., Pummer, K., and Zigeuner, R.. Histopathology 2013:237-46

ABO blood group is a predictor of survival in patients undergoing surgery for renal cell carcinoma. Kaffenberger, S. D., Morgan, T. M., Stratton, K. L., Boachie, A. M., Barocas, D. A., Chang, S. S., Cookson, M. S., Herrell, S. D., Smith, J. A., and Clark, P. E.. BJU Int 2012:E641-6

Validation of CRP as prognostic marker for renal cell carcinoma in a large series of patients. Steffens, S., Kohler, A., Rudolph, R., Eggers, H., Seidel, C., Janssen, M., Wegener, G., Schrader, M., Kuczyk, M. A., and Schrader, A. J.. BMC Cancer 2012:399

Factors affecting renal function after open partial nephrectomy-a comparison of clampless and clamped warm ischemic technique. Kopp, R. P., Mehrazin, R., Palazzi, K., Bazzi, W. M., Patterson, A. L., and Derweesh, I. H.. Urology 2012:865-70

External validation of the preoperative Karakiewicz nomogram in a large multicentre series of patients with renal cell carcinoma. Gontero, P., Sun, M., Antonelli, A., Bertini, R., Carini, M., Carmignani, G., Longo, N., Martorana, G., Minervini, A., Mirone, V., Morgia, G., Novara, G., Oderda, M., Simeone, C., Simonato, A., Siracusano, S., Tizzani, A., Volpe, A., Karakiewicz, P., and Ficarra, V.. World J Urol 2013:1285-90

Port site metastasis after laparoscopic radical nephrectomy: a single-center experience. Kumar, V., Mandhani, A., Srivastava, A., Ansari, M. S., Singh, U. P., and Kapoor, R.. Indian J Cancer 2012:102-6

Detailed analysis of morbidity following nephrectomy for renal cell carcinoma in octogenarians. Berger, J., Fardoun, T., Brassart, E., Capon, G., Bigot, P., Bernhard, J. C., Rigaud, J., Patard, J. J., and Descazeaud, A.. J Urol 2012:736-40

Features associated with recurrence beyond 5 years after nephrectomy and nephron-sparing surgery for renal cell carcinoma: development and internal validation of a risk model (PRELANE score) to predict late recurrence based on a large multicenter database (CORONA/SATURN Project). Brookman-May, S., May, M., Shariat, S. F., Xylinas, E., Stief, C., Zigeuner, R., Chromecki, T., Burger, M., Wieland, W. F., Cindolo, L., Schips, L., De Cobelli, O., Rocco, B., De Nunzio, C., Feciche, B., Truss, M., Gilfrich, C., Pahernik, S., Hohenfellner, M., Zastrow, S., Wirth, M. P., Novara, G., Carini, M., Minervini, A., Simeone, C., Antonelli, A., Mirone, V., Longo, N., Simonato, A., Carmignani, G., and Ficarra, V.. Eur Urol 2013:472-7

Prognostic factors in renal cell carcinoma: analysis of 227 patients treated at the Brazilian National Cancer Institute.

Ornellas, A. A., Andrade, D. M., Ornellas, P., Wisnescky, A., and Schwindt, A. B.. Int Braz J Urol 2012:185-94

The impact of delaying radical nephrectomy for stage II or higher renal cell carcinoma. Kim, K. H., You, D., Jeong, I. G., Song, C., Hong, J. H., Ahn, H., and Kim, C. S.. J Cancer Res Clin Oncol 2012:1561-7

Obesity is associated with an improved cancer-specific survival, but an increased rate of postoperative complications after surgery for renal cell carcinoma. Rogde, A. J., Gudbrandsdottir, G., Hjelle, K. M., Sand, K. E., Bostad, L., and Beisland, C.. Scand J Urol Nephrol 2012:348-57

Renal function outcomes after nephrectomy for kidney cancer in elderly patients. Markic, D., Valencic, M., Spanjol, J., Materljan, M., and Fuckar, D.. Coll Antropol 2011:121-4

Chromophobe renal cell carcinoma: analysis of 53 cases. Zhao, P. J., Chen, X. P., Li, X. S., Yao, L., Zhang, C. J., Yu, W., He, Q., He, Z. S., and Zhou, L. Q.. J Cancer Res Clin Oncol 2012:451-4

Hospital volume is a determinant of postoperative complications, blood transfusion and length of stay after radical or partial nephrectomy. Sun, M., Bianchi, M., Trinh, Q. D., Abdollah, F., Schmitges, J., Jeldres, C., Shariat, S. F., Graefen, M., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. J Urol 2012:405-10

Postoperative complications and long-term survival among patients treated surgically for renal cell carcinoma. Tan, H. J., Hafez, K. S., Ye, Z., Wei, J. T., and Miller, D. C.. J Urol 2012:60-6

Gender-specific clinicopathological features and survival in patients with renal cell carcinoma (RCC). Lee, S., Jeon, H. G., Kwak, C., Kim, H. H., Byun, S. S., Lee, S. E., and Lee, E.. BJU Int 2012 :E28-33

Randomized controlled study of natural interferon alpha as adjuvant treatment for stage II or III renal cell carcinoma. Hinotsu, S., Kawai, K., Ozono, S., Tsushima, T., Tokuda, N., Nomata, K., Naito, S., and Akaza, H.. Int J Clin Oncol 2013:68-74

Difference between clinical and pathologic renal tumor size, correlation with survival, and implications for patient counseling regarding nephron-sparing surgery. Brookman-May, S., Johannsen, M., May, M., Hoschke, B., Gunschera, J., Wieland, W. F., and Burger, M.. AJR Am J Roentgenol 2011:1137-45

Small renal cell carcinoma: oncological outcome with tumour size. Pahernik, S., Huber, J., Pfitzenmaier, J., Haferkamp, A., and Hohenfellner, M.. Scand J Urol Nephrol 2011:432-5

External validation of the Leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single European center applying routine pathology. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Rehak, P., Pummer, K., and Zigeuner, R.. J Urol 2011:1773-7

Prognostic significance of CD45RO+ memory T cells in renal cell carcinoma. Hotta, K., Sho, M., Fujimoto, K., Shimada, K., Yamato, I., Anai, S., Konishi, N., Hirao, Y., Nonomura, K., and Nakajima, Y.. Br J Cancer 2011:1191-6

Comparison of rates and risk factors for development of anaemia and erythropoiesis-stimulating agent utilization after radical or partial nephrectomy. Woldrich, J., Mehrazin, R., Bazzi, W. M., Bagrodia, A., Kopp, R. P., Malcolm, J. B., Kane, C. J., Patterson, A. L., Wan, J. Y., and Derweesh, I. H.. BJU Int 2012:1019-25

Validation of the 2009 TNM Classification for Renal Cell Carcinoma: Comparison with the 2002 TNM Classification by Concordance Index. Lee, C., You, D., Park, J., Jeong, I. G., Song, C., Hong, J. H., Ahn, H., and Kim, C. S.. Korean J Urol 2011:524-30

Outcomes and clinicopathologic variables associated with late recurrence after nephrectomy for localized renal cell carcinoma. Kim, S. P., Weight, C. J., Leibovich, B. C., Thompson, R. H., Costello, B. A., Cheville, J. C., Lohse, C. M., and Boorjian, S. A.. Urology 2011:1101-6

[Adult renal cancer in Senegal: Current epidemiological, clinical features, profile's evolution over the two past decades]. Fall, B., Diao, B., Sow, Y., Sarr, A., Thiam, A., Fall, P. A., Ndoye, A. K., Sylla, C., Ba, M., Mendes, V., and Diagne, B. A.. Prog Urol 2011:521-6

A multidisciplinary evaluation of inter-reviewer agreement of the nephrometry score and the prediction of long-term outcomes. Weight, C. J., Atwell, T. D., Fazzio, R. T., Kim, S. P., Kenny, M., Lohse, C. M., Boorjian, S. A., Leibovich, B. C., and Thompson, R. H.. J Urol 2011:1223-8

The Karakiewicz nomogram is the most useful clinical predictor for survival outcomes in patients with localized renal cell carcinoma. Tan, M. H., Li, H., Choong, C. V., Chia, K. S., Toh, C. K., Tang, T., Tan, P. H., Wong, C. F., Lau, W., and Cheng, C.. Cancer 2011:5314-24

Chronic pulmonary diseases are independent risk factors for complications after radical nephrectomy. Tokgoz, H., Akduman, B., Unal, I., Erol, B., Akyurek, E., and Mungan, N. A.. Int Urol Nephrol 2011:1025-31

Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. Kim, S. P., Alt, A. L., Weight, C. J., Costello, B. A., Cheville, J. C., Lohse, C., Allmer, C., and Leibovich, B. C.. J Urol 2011:2035-9

Lymphadenectomy improves survival of patients with renal cell carcinoma and nodal metastases. Whitson, J. M., Harris, C. R., Reese, A. C., and Meng, M. V.. J Urol 2011:1615-20

Renal impairment after laparoscopic radical nephrectomy affects hypoglycaemic therapy. Mizuno, T., Ito, K., Miyagawa, Y., Kimura, K., Suzuki, Y., Mizuno, M., Ito, Y., Funahashi, Y., Hattori, R., Gotoh, M., Noda, Y., and Yamada, K... J Clin Pharm Ther 2012:49-52

Oncological outcome of surgical treatment in 336 patients with renal cell carcinoma. Zhang, Z. L., Li, Y. H., Xiong, Y. H., Hou, G. L., Yao, K., Dong, P., Liu, Z. W., Han, H., Oin, Z. K., and Zhou, F. J.. Chin J Cancer 2010:995-9

Adverse renal outcomes in subjects undergoing nephrectomy for renal tumors: a population-based analysis. Klarenbach, S., Moore, R. B., Chapman, D. W., Dong, J., and Braam, B.. Eur Urol 2011:333-9

Contemporary experience with laparoscopic radical nephrectomy. Mues, A. C., Haramis, G., Rothberg, M. B., Okhunov, Z., Casazza, C., and Landman, J.. J Laparoendosc Adv Surg Tech A 2011:15-8

Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Sun, M., Thuret, R., Abdollah, F., Lughezzani, G., Schmitges, J., Tian, Z., Shariat, S. F., Montorsi, F., Patard, J. J., Perrotte, P., and Karakiewicz, P. I.. Eur Urol 2011:135-41

Comparison of laparoscopic versus open radical nephrectomy for large renal tumors: a retrospective analysis of multi-center results. Jeon, S. H., Kwon, T. G., Rha, K. H., Sung, G. T., Lee, W., Lim, J. S., Jeong, Y. B., Hong, S. H., Kim, H. H., and Byun, S. S.. BJU Int 2011:817-21

Late recurrence of renal cell carcinoma: retrospective and collaborative study of the Japanese Society of Renal Cancer. Miyao, N., Naito, S., Ozono, S., Shinohara, N., Masumori, N., Igarashi, T., Nakao, M., Tsushima, T., Senga, Y., Horie, S., Kanayama, H. O., Tokuda, N., and Kobayashi, M.. Urology 2011:379-84

Comparison of radical and partial nephrectomy in terms of renal function: a retrospective cohort study. Suer, E., Burgu, B., Gokce, M. I., Turkolmez, K., Beduk, Y., and Baltaci, S.. Scand J Urol Nephrol 2011:24-9

Histopathological predictors of renal function decrease after laparoscopic radical nephrectomy. Gautam, G., Lifshitz, D., Shikanov, S., Moore, J. M., Eggener, S. E., Shalhay, A. L., and Chang, A.. J Urol 2010:1872-6

Clinico-radio-pathologic features of a solitary solid renal mass at MDCT examination. Kim, E. Y., Park, B. K., Kim, C. K., and Lee, H. M.. Acta Radiol 2010:1143-8

Impact of body mass index and weight loss on cancerspecific and overall survival in patients with surgically resected renal cell carcinoma. Brookman-May, S., Kendel, F., Hoschke, B., Wieland, W. F., Burger, M., Rossler, W., and May, M.. Scand J Urol Nephrol 2011:5-14

Influence of visceral obesity on oncologic outcome in patients with renal cell carcinoma. Naya, Y., Zenbutsu, S., Araki, K., Nakamura, K., Kobayashi, M., Kamijima, S., Imamoto, T., Nihei, N., Suzuki, H., Ichikawa, T., and Igarashi, T.. Urol Int 2010:30-6

Validation of the 2009 TNM version in a large multiinstitutional cohort of patients treated for renal cell carcinoma: are further improvements needed?. Novara, G., Ficarra, V., Antonelli, A., Artibani, W., Bertini, R., Carini, M., Cosciani Cunico, S., Imbimbo, C., Longo, N., Martignoni, G., Martorana, G., Minervini, A., Mirone, V., Montorsi, F., Schiavina, R., Simeone, C., Serni, S., Simonato, A., Siracusano, S., Volpe, A., and Carmignani, G.. Eur Urol 2010:588-95

Obesity is associated with improved survival in patients with organ-confined clear-cell kidney cancer. Waalkes, S., Merseburger, A. S., Kramer, M. W., Herrmann, T. R., Wegener, G., Rustemeier, J., Hofmann, R., Schrader, M., Kuczyk, M. A., and Schrader, A. J.. Cancer Causes Control 2010:1905-10

[Experiences of open transperitoneal radical nephrectomy for large renal masses]. Yao, X. D., Ye, D. W., Zhang, S. L., Dai, B., Zhang, H. L., Shen, Y. J., Zhu, Y., Zhu, Y. P., Shi, G. H., Ma, C. G., Xiao, W. J., Qin, X. J., and Lin, G. W.. Zhonghua Yi Xue Za Zhi 2010:1117-9

Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Vieira, J., Henrique, R., Ribeiro, F. R., Barros-Silva, J. D., Peixoto, A., Santos, C., Pinheiro, M., Costa, V. L., Soares, M. J., Oliveira, J., Jeronimo, C., and Teixeira, M. R.. Genes Chromosomes Cancer 2010:935-47

Impact of body mass index on perioperative outcomes of laparoscopic radical nephrectomy in Japanese patients with clinically localized renal cell carcinoma. Miyake, H., Muramaki, M., Tanaka, K., Takenaka, A., and Fujisawa, M.. Int J Urol 2010:522-6

The prognostic value of erythrocyte polyamines in the preoperative evaluation of patients with renal cell carcinoma. Lughezzani, G., Karakiewicz, P. I., Bigot, P., Perrotte, P., Crepel, M., Rioux-Leclercq, N., Catros-Quemener, V., Moulinoux, J. P., Bouet, F., Cipolla, B., and Patard, J. J.. Eur J Cancer 2010:1927-35

[Pathological prognostic indicators in renal cell carcinoma]. Rey Rey, J., Leon Ramirez, D., Lopez Garcia, S., Fernandez Vazquez, P., Benavente Delgado, J., and Ojea Calvo, A.. Actas Urol Esp 2010:71-7

The use of the American Society of Anesthesiology Classification as a prognostic factor in patients with renal cell carcinoma. de Cassio Zequi, S., de Campos, E. C., Guimaraes, G. C., Bachega, W. Jr, da Fonseca, F. P., and Lopes, A.. Urol Int 2010:67-72

Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. Leibovich, B. C., Lohse, C. M., Crispen, P. L., Boorjian, S. A., Thompson, R. H., Blute, M. L., and Cheville, J. C.. J Urol 2010:1309-15

The prognostic value of erythrocyte polyamine in the postnephrectomy stratification of renal cell carcinoma specific mortality. Bigot, P., Lughezzani, G., Karakiewicz, P., Perrotte, P., Rioux-Leclercq, N., Catros-Quemener, V., Bouet, F., Moulinoux, J. P., Cipolla, B., and Patard, J. J. J Urol 2010:486-91

Preoperative erythrocyte sedimentation rate is an independent prognostic factor in Japanese patients with localized clear cell renal cell carcinoma. Kawai, Y.,

Matsuyama, H., Korenaga, Y., Misumi, T., Eguchi, S., Hara, T., Nagao, K., Ohmi, C., Sakano, S., and Naito, K.. Urol Int 2009:306-10

Limited prognostic value of tumor necrosis in patients with renal cell carcinoma. Isbarn, H., Patard, J. J., Lughezzani, G., Rioux-Leclercq, N., Crepel, M., Cindolo, L., de la Taille, A., Zini, L., Villers, A., Shariat, S. F., Bertini, R., and Karakiewicz, P. I.. Urology 2010:1378-84

Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., and von der Maase, H.. J Clin Oncol 2009:4709-17

Impact of Charlson's comorbidity index on overall survival following tumor nephrectomy for renal cell carcinoma. Ather, M. H. and Nazim, S. M.. Int Urol Nephrol 2010 :299-303

Laparoscopic radical nephrectomy for patients with T2 and T3 renal-cell carcinoma: evaluation of perioperative outcomes. Bird, V. G., Shields, J. M., Aziz, M., Ayyathurai, R., De Los Santos, R., and Roeter, D. H.. J Endourol 2009:1527-33

Transperitoneal laparoscopic radical nephrectomy is an effective procedure for large (more than 7 cm) renal masses. Chertin, B., Benjamin, S., Reissman, P., Kheifets, A., Prat, O., Shenfeld, O. Z., Sidi, A. A., and Tsivian, A.. Surg Laparosc Endosc Percutan Tech 2009:353-5

Urinary collecting system invasion is an independent prognostic factor of organ confined renal cell carcinoma. Verhoest, G., Avakian, R., Bensalah, K., Thuret, R., Ficarra, V., Artibani, W., Tostain, J., Guille, F., Cindolo, L., De La Taille, A., Abbou, C. C., Salomon, L., Rioux-Leclercq, N., and Patard, J. J.. J Urol 2009:854-9

Validation of a postoperative prognostic model consisting of tumor microvascular invasion, size, and grade to predict disease-free and cancer-specific survival of patients with surgically resected renal cell carcinoma. May, M., Brookman-Amissah, S., Kendel, F., Knoll, N., Roigas, J., Hoschke, B., Miller, K., Gilfrich, C., Pflanz, S., and Gralla, O.. Int J Urol 2009:616-21

Metastatic renal cell carcinoma risk according to tumor size. Thompson, R. H., Hill, J. R., Babayev, Y., Cronin, A., Kaag, M., Kundu, S., Bernstein, M., Coleman, J., Dalbagni, G., Touijer, K., and Russo, P.. J Urol 2009:41-5

Factors predicting health-related quality of life recovery in patients undergoing surgical treatment for renal tumors: prospective evaluation using the RAND SF-36 Health Survey. Novara, G., Secco, S., Botteri, M., De Marco, V., Artibani, W., and Ficarra, V.. Eur Urol 2010:112-20

Postoperative surveillance for renal cell carcinoma: a multifactorial histological subtype specific protocol. Siddiqui, S. A., Frank, I., Cheville, J. C., Lohse, C. M., Leibovich, B. C., and Blute, M. L.. BJU Int 2009:778-85

Radical nephrectomy surgical outcomes in the University HealthSystem Consortium Data Base: Impact of hospital case volume, hospital size, and geographic location on 40,000 patients. Mitchell, R. E., Lee, B. T., Cookson, M. S., Barocas, D. A., Duke Herrell, S., Clark, P. E., Smith, J. A., and Chang, S. S.. Cancer 2009:2447-52

Preoperative prognostic nomogram (probability table) for renal cell carcinoma based on TNM classification. Kanao, K., Mizuno, R., Kikuchi, E., Miyajima, A., Nakagawa, K., Ohigashi, T., Nakashima, J., and Oya, M.. J Urol 2009:480-5; discussion 485

The prognostic relevance of interactions between venous invasion, lymph node involvement and distant metastases in renal cell carcinoma after radical nephrectomy. Zubac, D. P., Bostad, L., Seidal, T., Wentzel-Larsen, T., and Haukaas, S. A.. BMC Urol 2008:19

Transperitoneal versus retroperitoneal laparoscopic radical nephrectomy: a comparative study. Taue, R., Izaki, H., Koizumi, T., Kishimoto, T., Oka, N., Fukumori, T., Takahashi, M., and Kanayama, H. O.. Int J Urol 2009:263-7

Thirty-day mortality after nephrectomy: clinical implications for informed consent. Cloutier, V., Capitanio, U., Zini, L., Perrotte, P., Jeldres, C., Shariat, S. F., Arjane, P., Patard, J. J., Montorsi, F., and Karakiewicz, P. I.. Eur Urol 2009:998-1003

Race affects access to nephrectomy but not survival in renal cell carcinoma. Zini, L., Perrotte, P., Capitanio, U., Jeldres, C., Duclos, A., Arjane, P., Villers, A., Montorsi, F., Patard, J. J., and Karakiewicz, P. I.. BJU Int 2009:889-93

Stage-specific effect of nodal metastases on survival in patients with non-metastatic renal cell carcinoma. Capitanio, U., Jeldres, C., Patard, J. J., Perrotte, P., Zini, L., de La Taille, A., Ficarra, V., Cindolo, L., Bensalah, K., Artibani, W., Tostain, J., Valeri, A., Zigeuner, R., Mejean, A., Descotes, J. L., Lechevallier, E., Mulders, P. F., Lang, H., Jacqmin, D., and Karakiewicz, P. I.. BJU Int 2009:33-7

Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Blom, J. H., van Poppel, H., Marechal, J. M., Jacqmin, D., Schroder, F. H., de Prijck, L., and Sylvester, R.. Eur Urol 2009:28-34

A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Karakiewicz, P. I., Suardi, N., Capitanio, U., Jeldres, C., Ficarra, V., Cindolo, L., de la Taille, A., Tostain, J., Mulders, P. F., Bensalah, K., Artibani, W., Salomon, L., Zigeuner, R., Valeri, A., Descotes, J. L., Rambeaud, J. J., Mejean, A., Montorsi, F., Bertini, R., and Patard, J. J.. Eur Urol 2009:287-95

Renal cell carcinoma in young and old patients--is there a difference?. Thompson, R. H., Ordonez, M. A., Iasonos, A., Secin, F. P., Guillonneau, B., Russo, P., and Touijer, K.. J Urol 2008:1262-6; discussion 1266

External validation of the Mayo Clinic cancer specific survival score in a Japanese series of clear cell renal cell carcinoma. Fujii, Y., Saito, K., Iimura, Y., Sakai, Y., Koga, F., Kawakami, S., Kumagai, J., and Kihara, K.. J Urol 2008:1290-5: discussion 1295-6

Radiofrequency ablation of renal tumors in the solitary kidney. Krambeck, A. E., Farrell, M. A., Callstrom, M. R., Atwell, T. D., Charboneau, J. W., Chow, G. K., Dimarco, D. S., and Patterson, D. E.. Can J Urol 2008:4163-8; discussion 4168

Robotic nephrectomy for the treatment of benign and malignant disease. Rogers, C., Laungani, R., Krane, L. S., Bhandari, A., Bhandari, M., and Menon, M.. BJU Int 2008:1660-5

Retroperitoneal laparoscopic radical nephrectomy: intermediate oncological results. Larre, S., Kanso, C., De La Taille, A., Hoznek, A., Vordos, D., Yiou, R., Abbou, C. C., and Salomon, L.. World J Urol 2008:611-5

Nephron-sparing surgery: a call for greater application of established techniques. Young, J. G., Luscombe, C. J., Lynch, C., and Wallace, D. M.. BJU Int 2008:1389-93

Renal surgery in the elderly: morbidity in patients aged >75 years in a contemporary series. Staehler, M., Haseke, N., Stadler, T., Bader, M., Karl, A., Becker, A., and Stief, C. G. BJU Int 2008:684-7

Comparison of open and laparoscopic nephrectomy in obese and nonobese patients: outcomes stratified by body mass index. Feder, M. T., Patel, M. B., Melman, A., Ghavamian, R., and Hoenig, D. M.. J Urol 2008:79-83

The efficacy of laparoscopic radical nephrectomy for renal cell cancer in the elderly: an oncological outcome analysis. Harano, M., Eto, M., Yokomizo, A., Tatsugami, K., Hamaguchi, M., and Naito, S.. Int J Urol 2008:577-81

Percutaneous renal cryoablation: experience treating 115 tumors. Atwell, T. D., Farrell, M. A., Leibovich, B. C., Callstrom, M. R., Chow, G. K., Blute, M. L., and Charboneau, J. W.. J Urol 2008:2136-40; discussion 2140-1

Renal tumour surgery in elderly patients. Roos, F. C., Pahernik, S., Melchior, S. W., and Thuroff, J. W.. BJU Int 2008:680-3

How long is too long? The effect of the duration of anaesthesia on the incidence of non-urological complications after surgery. Routh, J. C., Bacon, D. R., Leibovich, B. C., Zincke, H., Blute, M. L., and Frank, I.. BJU Int 2008:301-4

Evaluation of the association of current cigarette smoking and outcome for patients with clear cell renal cell carcinoma. Parker, A., Lohse, C., Cheville, J., Leibovich, B., Igel, T., and Blute, M.. Int J Urol 2008:304-8

Incidence of local and port site recurrence of urologic cancer after laparoscopic surgery. Tanaka, K., Hara, I., Takenaka, A., Kawabata, G., and Fujisawa, M.. Urology 2008:728-34

Analysis of clinicopathologic predictors of oncologic outcome provides insight into the natural history of surgically managed papillary renal cell carcinoma.

Margulis, V., Tamboli, P., Matin, S. F., Swanson, D. A., and Wood, C. G.. Cancer 2008:1480-8

Renal and cardiovascular morbidity after partial or radical nephrectomy. Miller, D. C., Schonlau, M., Litwin, M. S., Lai, J., and Saigal, C. S.. Cancer 2008:511-20

En bloc stapler ligation of the renal vascular pedicle during laparoscopic nephrectomy. Buse, S., Gilfrich, C., Pfitzenmaier, J., Bedke, J., Haferkamp, A., and Hohenfellner, M.. BJU Int 2008 :878-82

Nephron-sparing surgery versus radical nephrectomy in the treatment of intracapsular renal cell carcinoma up to 7cm. Antonelli, A., Cozzoli, A., Nicolai, M., Zani, D., Zanotelli, T., Perucchini, L., Cunico, S. C., and Simeone, C.. Eur Urol 2008:803-9

Oncological efficacy and safety of nephron-sparing surgery for selected patients with locally advanced renal cell carcinoma. Margulis, V., Tamboli, P., Jacobsohn, K. M., Swanson, D. A., and Wood, C. G.. BJU Int 2007:1235-9

Disparities in treatment and outcome for renal cell cancer among older black and white patients. Berndt, S. I., Carter, H. B., Schoenberg, M. P., and Newschaffer, C. J.. J Clin Oncol 2007:3589-95

Microvascular tumor invasion, tumor size and Fuhrman grade: a pathological triad for prognostic evaluation of renal cell carcinoma. Dall'Oglio, M. F., Ribeiro-Filho, L. A., Antunes, A. A., Crippa, A., Nesrallah, L., Goncalves, P. D., Leite, K. R., and Srougi, M.. J Urol 2007:425-8; discussion 428

Multi-institutional validation of a new renal cancer-specific survival nomogram. Karakiewicz, P. I., Briganti, A., Chun, F. K., Trinh, Q. D., Perrotte, P., Ficarra, V., Cindolo, L., De la Taille, A., Tostain, J., Mulders, P. F., Salomon, L., Zigeuner, R., Prayer-Galetti, T., Chautard, D., Valeri, A., Lechevallier, E., Descotes, J. L., Lang, H., Mejean, A., and Patard, J. J.. J Clin Oncol 2007:1316-22

Does tumor size or microvascular invasion affect prognosis in patients with renal cell carcinoma? Miyagawa, T., Shimazui, T., Hinotsu, S., Oikawa, T., Sekido, N., Miyanaga, N., Kawai, K., and Akaza, H.. Jpn J Clin Oncol 2007:197-200

The follow-up management of non-metastatic renal cell carcinoma: definition of a surveillance protocol. Antonelli, A., Cozzoli, A., Zani, D., Zanotelli, T., Nicolai, M., Cunico, S. C., and Simeone, C.. BJU Int 2007:296-300

Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Pignot, G., Elie, C., Conquy, S., Vieillefond, A., Flam, T., Zerbib, M., Debre, B., and Amsellem-Ouazana, D.. Urology 2007:230-5

Nephron sparing surgery: A single institution experience. Agrawal, S., Jha, M. S., Khurana, N., Ansari, M. S., Dubey, D., Srivastava, A., Kapoor, R., Kumar, A., Jain, M., and Mandhani, A.. Indian J Urol 2007:23-7

Laparoscopic radical nephrectomy: comparison of clinical Stage T1 and T2 renal tumors. Gong, E. M., Lyon, M. B.,

Orvieto, M. A., Lucioni, A., Gerber, G. S., and Shalhav, A. L.. Urology 2006:1183-7

Laparoscopic partial nephrectomy for incidental stage pT2 or worse tumors. Ukimura, O., Haber, G. P., Remer, E. M., and Gill, I. S.. Urology 2006:976-82

Gender discrepancies in the diagnosis of renal cortical tumors. Pierorazio, P. M., Murphy, A. M., Benson, M. C., and McKiernan, J. M.. World J Urol 2007:81-5

Prognostic significance of common preoperative laboratory variables in clear cell renal cell carcinoma. Lee, S. E., Byun, S. S., Han, J. H., Han, B. K., and Hong, S. K.. BJU Int 2006:1228-32

The influence of clinical and pathological stage discrepancy on cancer specific survival in patients treated for renal cell carcinoma. Svatek, R. S., Lotan, Y., Herman, M. P., Duchene, D. A., Sagalowsky, A. I., and Cadeddu, J. A., J Urol 2006:1321-5: discussion 125

Intraoperative conversion of laparoscopic partial nephrectomy. Rais-Bahrami, S., Lima, G. C., Varkarakis, I. M., Romero, F. R., Trock, B., Jarrett, T. W., and Kavoussi, L. R.. J Endourol 2006:205-8

Treating renal cell cancer in the elderly. Berdjis, N., Hakenberg, O. W., Novotny, V., Froehner, M., and Wirth, M. P.. BJU Int 2006:703-5

Intermediate results of laparoscopic cryoablation in 59 patients at the Medical College of Wisconsin. Lawatsch, E. J., Langenstroer, P., Byrd, G. F., See, W. A., Quiroz, F. A., and Begun, F. P.. J Urol 2006:1225-9; discussion 1229

Impact of body mass index on survival of patients with surgically treated renal cell carcinoma. Donat, S. M., Salzhauer, E. W., Mitra, N., Yanke, B. V., Snyder, M. E., and Russo, P.. J Urol 2006:46-52

Reassessing the current TNM lymph node staging for renal cell carcinoma. Terrone, C., Cracco, C., Porpiglia, F., Bollito, E., Scoffone, C., Poggio, M., Berruti, A., Ragni, F., Cossu, M., Scarpa, R. M., and Rossetti, S. R.. Eur Urol 2006:324-31

Retroperitoneoscopic versus open surgical radical nephrectomy for large renal cell carcinoma in clinical stage cT2 or cT3a: quality of life, pain and reconvalescence. Dillenburg, W., Poulakis, V., Skriapas, K., de Vries, R., Ferakis, N., Witzsch, U., Melekos, M., and Becht, E.. Eur Urol 2006:314-22; discussion 322-3

Elective nephron sparing surgery should become standard treatment for small unilateral renal cell carcinoma: Long-term survival data of 216 patients. Becker, F., Siemer, S., Humke, U., Hack, M., Ziegler, M., and Stockle, M.. Eur Urol 2006:308-13

Mini-flank supra-11th rib incision for open partial or radical nephrectomy. Diblasio, C. J., Snyder, M. E., and Russo, P.. BJU Int 2006:149-56

Laparoscopic nephrectomy: new standard of care?. Sim, H. G., Yip, S. K., Ng, C. Y., Teo, Y. S., Tan, Y. H., Siow, W. Y., and Cheng, W. S.. Asian J Surg 2005:277-81

Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cindolo, L., Patard, J. J., Chiodini, P., Schips, L., Ficarra, V., Tostain, J., de La Taille, A., Altieri, V., Lobel, B., Zigeuner, R. E., Artibani, W., Guille, F., Abbou, C. C., Salzano, L., and Gallo, C.. Cancer 2005:1362-71

Partial nephrectomy with perfusion cooling for imperative indications: a 24-year experience. Steffens, J., Humke, U., Ziegler, M., and Siemer, S.. BJU Int 2005:608-11

[Miniinvasive laparoscopic or retroperitoneoscopic radical nephrectomy for the parenchymal tumor]. Hora, M., Klecka, J. Jr, Hes, O., Ferda, J., and Urge, T.. Rozhl Chir 2005:246-52

Incisional hernia following hand-assisted laparoscopic surgery for renal cell cancer. Troxel, S. A. and Das, S. JSLS 2005:196-8

[Survival prognostic factors valuation on a series of 202 patients with surgical treatment of renal cell carcinoma]. Ortiz Gorraiz, M., Vicente Prados, F. J., Rosales Leal, J. L., Honrubia Vilchez, B., Martinez Morcillo, A., Cozar Olmo, J. M., Espejo Maldonado, E., and Tallada Bunuel, M.. Actas Urol Esp 2005:179-89

Independent validation of the 2002 American Joint Committee on cancer primary tumor classification for renal cell carcinoma using a large, single institution cohort. Frank, I., Blute, M. L., Leibovich, B. C., Cheville, J. C., Lohse, C. M., and Zincke, H.. J Urol 2005:1889-92

[Results of open radical nephrectomy in a series of 230 patients]. Peyromaure, M., Barry Delongchamps, N., Roffi, F., Debre, B., and Zerbib, M.. Prog Urol 2005:18-22

[Retrospective study of laparoscopic retroperitoneal radical nephrectomy]. Hetet, J. F., Rigaud, J., Renaudin, K., Battisti, S., Braud, G., Bouchot, O., and Karam, G.. Prog Urol 2005:10-7; discussion 16

Impact of tumor size on the long-term survival of patients with early stage renal cell cancer. Kuczyk, M., Wegener, G., Merseburger, A. S., Anastasiadis, A., Machtens, S., Zumbragel, A., Hartmann, J. T., Bokemeyer, C., Jonas, U., and Stenzl, A.. World J Urol 2005:50-4

Prospective randomized trial comparing high lumbotomic with laparotomic access in renal cell carcinoma surgery. Battaglia, M., Ditonno, P., Martino, P., Palazzo, S., Annunziata, G., and Selvaggi, F. P.. Scand J Urol Nephrol 2004:306-14

Associations with contralateral recurrence following nephrectomy for renal cell carcinoma using a cohort of 2,352 patients. Bani-Hani, A. H., Leibovich, B. C., Lohse, C. M., Cheville, J. C., Zincke, H., and Blute, M. L.. J Urol 2005:391-4

Re-evaluation of the Tumour-Node-Metastasis staging of locally advanced renal cortical tumours: absolute size (T2) is more significant than renal capsular invasion (T3a). Murphy, A. M., Gilbert, S. M., Katz, A. E., Goluboff, E. T., Sawczuk, I. S., Olsson, C. A., Benson, M. C., and McKiernan, J. M.. BJU Int 2005:27-30

Partial nephrectomy for patients with a solitary kidney: the Memorial Sloan-Kettering experience. Saranchuk, J. W., Touijer, A. K., Hakimian, P., Snyder, M. E., and Russo, P.. BJU Int 2004:1323-8

Prospective randomized comparison of transperitoneal versus retroperitoneal laparoscopic radical nephrectomy. Desai, M. M., Strzempkowski, B., Matin, S. F., Steinberg, A. P., Ng, C., Meraney, A. M., Kaouk, J. H., and Gill, I. S.. J Urol 2005:38-41

Clinicopathological features of recurrence after radical surgery for nonmetastatic renal cell carcinoma. Ishimura, T., Sakai, I., Harada, K., Hara, I., Eto, H., and Miyake, H.. Int J Clin Oncol 2004:369-72

Laparoscopic radical nephrectomy for large (greater than 7 cm, T2) renal tumors. Steinberg, A. P., Finelli, A., Desai, M. M., Abreu, S. C., Ramani, A. P., Spaliviero, M., Rybicki, L., Kaouk, J., Novick, A. C., and Gill, I. S.. J Urol 2004:2172-6

Management of renal masses in patients medically unsuitable for nephrectomy--natural history, complications, and outcome. Lamb, G. W., Bromwich, E. J., Vasey, P., and Aitchison, M.. Urology 2004:909-13

Prediction of postoperative renal function by preoperative serum creatinine level and three-dimensional diagnostic image reconstruction in patients with renal cell carcinoma. Tanaka, N., Fujimoto, K., Tani, M., Yoshii, M., Yoshida, K., Hirao, Y., and Ozono, S.. Urology 2004:904-8

Prognostic factors in patients with renal cell carcinoma: is TNM (1997) staging relevant in Indian subpopulation?. Srivastava, A., Mandhani, A., Kapoor, R., Jain, M., Dubey, D., Srivastava, A., Raghavendra, M., and Kumar, A.. Indian J Cancer 2004:99-103

Portless endoscopic radical nephrectomy via a single minimum incision in 80 patients. Kihara, K., Kageyama, Y., Yano, M., Kobayashi, T., Kawakami, S., Fujii, Y., Masuda, H., and Hyochi, N.. Int J Urol 2004:714-20

Long-term consequence of renal function following nephrectomy for renal cell cancer. Shirasaki, Y., Tsushima, T., Nasu, Y., and Kumon, H.. Int J Urol 2004:704-8

Prognostic value of the involvement of the urinary collecting system in renal cell carcinoma. Terrone, C., Cracco, C., Guercio, S., Bollito, E., Poggio, M., Scoffone, C., Tarabuzzi, R., Porpiglia, F., Scarpa, R. M., Fontana, D., and Rocca Rossetti, S.. Eur Urol 2004:472-6

Prognostic value of microscopic venous invasion in renal cell carcinoma: long-term follow-up. Lang, H., Lindner, V., Letourneux, H., Martin, M., Saussine, C., and Jacqmin, D.. Eur Urol 2004:331-5

Prognostic significance of tumour size in patients after tumour nephrectomy for localised renal cell carcinoma. Steiner, T., Knels, R., and Schubert, J.. Eur Urol 2004:327-30

Role of nephron sparing surgery in the treatment of centrally located renal tumors. Martorana, G., Lupo, S.,

Brunocilla, E., Concetti, S., Malizia, M., and Vece, E.. Arch Ital Urol Androl 2004:51-5

[Incidental and symptomatic kidney cancer: pathological features and survival]. Dall'Oglio, M., Srougi, M., Ortiz, V., Nesrallah, L., Goncalves, P. D., Leite, K. M., and Hering, F.. Rev Assoc Med Bras 2004:27-31

Kidney function after nephrectomy for renal cell carcinoma. Shirasaki, Y., Tsushima, T., Saika, T., Nasu, Y., and Kumon, H.. Urology 2004:43-7; discussion 48

Microscopic venous invasion in renal cell carcinoma as a predictor of recurrence after radical surgery. Ishimura, T., Sakai, I., Hara, I., Eto, H., and Miyake, H.. Int J Urol 2004:264-8

Impact of surgical volume on mortality and length of stay after nephrectomy. Taub, D. A., Miller, D. C., Cowan, J. A., Dimick, J. B., Montie, J. E., and Wei, J. T.. Urology 2004:862-7

Use of American Society of Anesthesiologists physical status classification to assess perioperative risk in patients undergoing radical nephrectomy for renal cell carcinoma. Han, K. R., Kim, H. L., Pantuck, A. J., Dorey, F. J., Figlin, R. A., and Belldegrun, A. S.. Urology 2004:841-6; discussion 846-7

Laparoscopic radical nephrectomy: techniques, results and oncological outcome in 125 consecutive cases. Wille, A. H., Roigas, J., Deger, S., Tullmann, M., Turk, I., and Loening, S. A.. Eur Urol 2004:483-8; discussion 488-9

Permanent flank bulge is a consequence of flank incision for radical nephrectomy in one half of patients. Chatterjee, S., Nam, R., Fleshner, N., and Klotz, L.. Urol Oncol 2004:36-9

Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Beck, S. D., Patel, M. I., Snyder, M. E., Kattan, M. W., Motzer, R. J., Reuter, V. E., and Russo, P.. Ann Surg Oncol 2004:71-7

Operative mortality after nephrectomy for renal cell carcinoma. Thoroddsen, A., Gudbjartsson, T., Jonsson, E., Gislason, T., and Einarsson, G. V.. Scand J Urol Nephrol 2003:507-11

The prediction of renal function 6 years after unilateral nephrectomy using preoperative risk factors. Ito, K., Nakashima, J., Hanawa, Y., Oya, M., Ohigashi, T., Marumo, K., and Murai, M.. J Urol 2004:120-5

Renal tumors in young adults. Eggener, S. E., Rubenstein, J. N., Smith, N. D., Nadler, R. B., Kontak, J., Flanigan, R. C., Waters, W. B., Picken, M., and Campbell, S. C.. J Urol 2004:106-10

Racial disparity in incidence patterns and outcome of kidney cancer. Vaishampayan, U. N., Do, H., Hussain, M., and Schwartz, K.. Urology 2003:1012-7

[Extended total nephrectomy with laparoscopy in localized renal carcinoma. Report of 25 cases compared with 32 conventional surgical cases]. Lang, H., Gimel, P., Martin,

M., Nguyen Ngoc, T., Saussine, C., and Jacqmin, D.. Prog Urol 2003:569-76

A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. Cindolo, L., de la Taille, A., Messina, G., Romis, L., Abbou, C. C., Altieri, V., Rodriguez, A., and Patard, J. J.. BJU Int 2003:901-5

Hand assisted laparoscopic radical nephrectomy: comparison with open radical nephrectomy. Lee, S. E., Ku, J. H., Kwak, C., Kim, H. H., and Paick, S. H.. J Urol 2003:756-9

Renal cell carcinoma as a cause of end-stage renal disease in the United States: patient characteristics and survival. Stiles, K. P., Moffatt, M. J., Agodoa, L. Y., Swanson, S. J., and Abbott, K. C.. Kidney Int 2003:247-53

Loss of expression of transforming growth factor-beta receptor as a prognostic factor in patients with renal cell carcinoma. Miyajima, A., Asano, T., Seta, K., Asano, T., Kakoi, N., and Hayakawa, M.. Urology 2003:1072-7

Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Cheville, J. C., Lohse, C. M., Zincke, H., Weaver, A. L., and Blute, M. L.. Am J Surg Pathol 2003:612-24

Benefits of laparoscopic renal surgery are more pronounced in patients with a high body mass index. Klingler, H. C., Remzi, M., Janetschek, G., and Marberger, M.. Eur Urol 2003:522-7

[Correlation between the mode of presentation of renal tumors and patient survival]. Patard, J. J., Bensalah, K., Vincendeau, S., Rioux-Leclerq, N., Guille, F., and Lobel, B.. Prog Urol 2003:23-8

Outcome and survival with nonsurgical management of renal cell carcinoma. Baird, A. D., Woolfenden, K. A., Desmond, A. D., Fordham, M. V., and Parsons, K. F.. BJU Int 2003:600-2

Clinicopathological study of renal cell carcinoma. Nakatani, T., Yoshida, N., Iwata, H., Kuratsukuri, K., Uchida, J., Kawashima, H., Ikemoto, S., and Sugimura, K.. Oncol Rep 2003:679-85

Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Leibovich, B. C., Blute, M. L., Cheville, J. C., Lohse, C. M., Frank, I., Kwon, E. D., Weaver, A. L., Parker, A. S., and Zincke, H.. Cancer 2003:1663-71

Renal cell carcinoma: gender difference in incidental detection and cancer-specific survival. Beisland, C., Medby, P. C., and Beisland, H. O.. Scand J Urol Nephrol 2002:414-8

[Laparoscopic radical nephrectomy: indications, techniques, and oncological outcome]. Wille, A. H., Roigas, J., Deger, S., Turk, I., Tullmann, M., Dubbke, A., and Schnorr, D.. Urologe A 2003:205-10

Hand-assisted laparoscopic vs the open (flank incision) approach to radical nephrectomy. Busby, E., Das, S., Rao Tunuguntla, H. S., and Evans, C. P.. BJU Int 2003:341-4

Influence of age on the prognosis of patients with renal cell carcinoma (RCC). Yusim, I., Mermershtain, W., Neulander, E., Eidelberg, I., Gusakova, I., and Kaneti, J.. Onkologie 2002:548-50

Incidental and symptomatic renal tumors: impact on patient survival. Dall'Oglio, M. F., Srougi, M., Goncalves, P. D., Leite, K., Nesrallah, L., and Hering, F.. Sao Paulo Med J 2002:165-9

Hand-assisted laparoscopy for large renal specimens: a multi-institutional study. Stifelman, M. D., Handler, T., Nieder, A. M., Del Pizzo, J., Taneja, S., Sosa, R. E., and Shichman, S. J.. Urology 2003:78-82

Partial nephrectomy safely preserves renal function in patients with a solitary kidney. Adkins, K. L., Chang, S. S., Cookson, M. S., and Smith, J. A. Jr. J Urol 2003:79-81

Mode of presentation of renal cell carcinoma provides prognostic information. Lee, C. T., Katz, J., Fearn, P. A., and Russo, P.. Urol Oncol 2002:135-40

An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. Frank, I., Blute, M. L., Cheville, J. C., Lohse, C. M., Weaver, A. L., and Zincke, H.. J Urol 2002:2395-400

Sporadic renal cell carcinoma in young adults: presentation, treatment, and outcome. Abou El Fettouh, H. I., Cherullo, E. E., El-Jack, M., Al Maslamani, Y., and Novick, A. C.. Urology 2002:806-10

Thrombocytosis is associated with a significant increase in the cancer specific death rate after radical nephrectomy. O'Keefe, S. C., Marshall, F. F., Issa, M. M., Harmon, M. P., and Petros, J. A.. J Urol 2002:1378-80

Prognostic significance of primary-tumor extension, stage and grade of nuclear differentiation in patients with renal cell carcinoma. Fiori, E., De Cesare, A., Galati, G., Bononi, M., D'Andrea, N., Barbarosos, A., Izzo, L., and Bolognese, A.. J Exp Clin Cancer Res 2002:229-32

Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. Ficarra, V., Righetti, R., Pilloni, S., D'amico, A., Maffei, N., Novella, G., Zanolla, L., Malossini, G., and Mobilio, G.. Eur Urol 2002:190-8

Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Uchida, K., Miyao, N., Masumori, N., Takahashi, A., Oda, T., Yanase, M., Kitamura, H., Itoh, N., Sato, M., and Tsukamoto, T.. Int J Urol 2002:19-23

Comparison of costs and complications of radical and partial nephrectomy for treatment of localized renal cell carcinoma. Shekarriz, B., Upadhyay, J., Shekarriz, H., de Assis Mendes Goes, F. Jr, Bianco, F. J., Tiguert, R., Gheiler, E., and Wood, D. P. Jr. Urology 2002:211-5

Laparoscopic radical nephrectomy in 100 patients: a single center experience from the United States. Gill, I. S., Meraney, A. M., Schweizer, D. K., Savage, S. S., Hobart, M. G., Sung, G. T., Nelson, D., and Novick, A. C.. Cancer 2001:1843-55

[Renal cancer: descriptive analysis of a series of 267 intervened cases]. Medina Lopez, R. A., Congregado Ruiz, C. B., Campoy Martinez, P., Morales Lopez, A., Sanchez Gomez, E., and pascual del Pobil Moreno, J. L.. Arch Esp Urol 2001:423-8

Results of retroperitoneal laparoscopic radical nephrectomy. Cicco, A., Salomon, L., Hoznek, A., Saint, F., Alame, W., Gasman, D., Antiphon, P., Chopin, D. K., and Abbou, C. C.. J Endourol 2001:355-9; discussion 375-6

Laparoscopic versus open radical nephrectomy: a 9-year experience. Dunn, M. D., Portis, A. J., Shalhav, A. L., Elbahnasy, A. M., Heidorn, C., McDougall, E. M., and Clayman, R. V.. J Urol 2000:1153-9

Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. Tsui, K. H., Shvarts, O., Smith, R. B., Figlin, R. A., deKernion, J. B., and Belldegrun, A.. J Urol 2000:1090-5; quiz 1295

Laparoscopic radical nephrectomy: a single-center experience of 51 cases. Jeschke, K., Wakonig, J., Pitzler, C., and Henning, K.. Tech Urol 2000:9-11

Surgical management of renal tumors 4 cm. or less in a contemporary cohort. Lee, C. T., Katz, J., Shi, W., Thaler, H. T., Reuter, V. E., and Russo, P.. J Urol 2000:730-6

Comparison of preoperative embolization followed by radical nephrectomy with radical nephrectomy alone for renal cell carcinoma. Zielinski, H., Szmigielski, S., and Petrovich, Z.. Am J Clin Oncol 2000:6-12

Renal cell carcinoma: prognostic significance of incidentally detected tumors. Tsui, K. H., Shvarts, O., Smith, R. B., Figlin, R., de Kernion, J. B., and Belldegrun, A.. J Urol 2000:426-30

Nephron-sparing surgery for renal cell carcinoma--is tumor size a suitable parameter for indication? Miller, J., Fischer, C., Freese, R., Altmannsberger, M., and Weidner, W.. Urology 99:988-93

Mortality and morbidity after nephrectomy for renal cell carcinoma using a transperitoneal anterior subcostal incision. Mejean, A., Vogt, B., Quazza, J. E., Chretien, Y., and Dufour, B.. Eur Urol 99:298-302

[The surgical therapy of renal carcinomas. The prognostic factors and long-term results]. Scilletta, B., Di Carlo, I., Lombardo, R., Aronica, G., Di Stefano, F., Racalbuto, A., and Puleo, S.. Minerva Chir 99:157-62

Significant prognostic factors for 5-year survival after curative resection of renal cell carcinoma. Masuda, H., Kurita, Y., Fukuta, K., Mugiya, S., Suzuki, K., and Fujita, K.. Int J Urol 98:418-22

[Outcome of renal function in 114 patients who underwent uninephrectomy for renal cancer]. el Khader, K., Ziade, J., Bansard, J. Y., Mhidia, A., Patard, J. J., Guille, F., and Lobel, B.. Prog Urol 98:341-6

Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. Levy, D. A.,

Slaton, J. W., Swanson, D. A., and Dinney, C. P.. J Urol 98:1163-7

[Complications of radical nephrectomy in the treatment of kidney adenocarcinoma]. Herranz Amo, F., Verdu Tartajo, F., Diez Cordero, J. M., Rodriguez Fernandez, E., Lledo Garcia, E., Moncada Iribarren, I., Jara Rascon, J., Gonzalez Chamorro, F., and de Palacio Espana, A.. Actas Urol Esp 97:15-21

Evaluation of patients who underwent radical nephrectomy due to renal tumor. Gunes M., Gecit I., Princci N., Taken K., Ceylan K., and Resit Oncu M.. East. J. Med. 2013:108-112

Prognostic Impact of Histological Subtype on Surgically Treated Localized Renal Cell Carcinoma. Teloken P.E., Thompson R.H., Tickoo S.K., Cronin A., Savage C., Reuter V.E., and Russo P.. J. Urol. 2009:2132-2136

Is computerized tomography reliable for detecting tumor number and adrenal gland involvement in patients with renal cell cancer? A multicenter study: Bobrek Hucreli Kanser Hastalarinda Tumor Sayisi ve Adrenal Bez Tutulumunu Belirlemede Bilgisayarli Tomografi Guvenilir Midir? Cok Merkezli Bir Calisma. Atan A., Tuncel A., Aslan Y., Caskurlu T., Eroglu M., Albayrak S., Karaman I., and Ergenekon E.. Turk Urol. Derg. 2005:329-334

Laparoscopic radical nephrectomy for renal cell carcinoma: Oncologically safe?: Laparoscopische behandeling van niercelcarcinoom: Oncologisch verantwoord?. Schatteman P., Tuytten T., Carpentier P., Fonteyne E., and Mottrie A.. Tijdschr. Geneeskd. 2005:179-184

The symptoms of renal cell carcinoma related to patients' survival. Ou Y.-C., Yang C.-R., Ho H.-C., Cheng C.-L., Kao Y.-L., Su C.-K., Chiu K.-Y., and Chen W.-M.. J. Chin. Med. Assoc. 2003:537-543

Renal cell carcinoma: Clinical experience and technical success with radio-frequency ablation of 42 tumors. Gervais D.A., McGovern F.J., Arellano R.S., Scott McDougal W., and Mueller P.R.. Radiology 2003:417-424

A retrospective analysis of serum CA 15-3 concentrations in patients with localised or metastatic renal cancer and its impact on prognosis and follow-up. A single-centre experience. Briasoulis E., Pentheroudakis G., Letsa I., and Paylidis N.. UroOncology 2002:179-184

Renal cancer in adults. Report of a series of 60 cases: Le cancer du rein de l'adulte. A propos de 60 cas. Benchekroun A., Lachkar A., Bensliman L., Soumana A., Farih M.H., Belahnech Z., Marzouk M., and Faik M.. Ann. Urol. 98:119-127

Laparoscopic radical nephrectomy with morcellation for renal cell carcinoma: The Saskatoon experience. Barrett P.H., Fentie D.D., and Taranger L.A.. Urology 98:23-28

Prognosis in the cases with renal cell carcinoma according to clinical parameters. Fukuda M., Satomi Y., Asakura T., Hosaka M., Noguchi S., Kishida T., Kondou I., Ida T., Hirokawa M., Kumagai H., Shiozaki H., Ishizuka E., Miyai K., Fukuoka H., Sasaki K., Oogo Y., Koudaira T., Ogawa

K., Nakahashi M., Matsuura K., Moriyama M., Udagawa K., Senga Y., Ishibashi Y., and Shimura H.. Jpn. J. Urol. 98:647-656

Prognostic factors of renal cell carcinoma: A multivariate analysis. Yasunaga Y., Shin M., Miki T., Okuyama A., and Aozasa K.. J. Surg. Oncol. 98:11-18

Is there a role of the enhancement degree of the lesion on computerized tomography for the characterization of renal tumors?. Kutman, K., Suer, E., Beduk, Y., Ozturk, E., Gulpinar, O., Gokce, I., and Baltaci, S.. J Urol 2013:436-40

Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values. Erbay, G., Koc, Z., Karadeli, E., Kuzgunbay, B., Goren, M. R., and Bal, N.. Acta Radiol 2012 :359-65

Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. Tamai, H., Takiguchi, Y., Oka, M., Shingaki, N., Enomoto, S., Shiraki, T., Furuta, M., Inoue, I., Iguchi, M., Yanaoka, K., Arii, K., Shimizu, Y., Nakata, H., Shinka, T., Sanke, T., and Ichinose, M.. J Ultrasound Med 2005:1635-40

Evaluation of imaging-guided fine-needle percutaneous biopsy of renal masses. Jaff, A., Molinie, V., Mellot, F., Guth, A., Lebret, T., and Scherrer, A.. Eur Radiol 2005:1721-6

Evaluation of sonographically guided percutaneous core biopsy of renal masses. Caoili, E. M., Bude, R. O., Higgins, E. J., Hoff, D. L., and Nghiem, H. V.. AJR Am J Roentgenol 2002:373-8

Color Duplex sonography vs. computed tomography: accuracy in the preoperative evaluation of renal cell carcinoma. Spahn, M., Portillo, F. J., Michel, M. S., Siegsmund, M., Gaa, J., Alken, P., and Junemann, K. P.. Eur Urol 2001:337-42

Visceral obesity is associated with better recurrence-free survival after curative surgery for Japanese patients with localized clear cell renal cell carcinoma. Kaneko, G., Miyajima, A., Yuge, K., Yazawa, S., Mizuno, R., Kikuchi, E., Jinzaki, M., and Oya, M.. Jpn J Clin Oncol 2014:

Imaging of renal lesions: evaluation of fast MRI and helical CT. Walter, C., Kruessell, M., Gindele, A., Brochhagen, H. G., Gossmann, A., and Landwehr, P.. Br J Radiol 2003:696-703

Renal masses--evaluation by amplitude coded colour Doppler sonography and multiphasic contrast-enhanced CT. Riccabona, M., Szolar, D., Preidler, K., Uggowitzer, M., Kugler, C., Dorfler, O., and Schreyer, H. H.. Acta Radiol 99:457-61

[Characterization and staging of renal tumors: significance of MRI diagnostics]. Kalinka, A., Gerlach, A., Arlart, I. P., Gunes, N., Hauser, T. K., Wurstlin, S., and Bosse, A.. Rofo 2006:298-305

Dynamic computed tomography and color Doppler ultrasound of renal parenchymal neoplasms: correlations with histopathological findings. Kitamura, H., Fujimoto,

H., Tobisu, K., Mizuguchi, Y., Maeda, T., Matsuoka, N., Komiyama, M., Nakagawa, T., and Kakizoe, T.. Jpn J Clin Oncol 2004:78-81

[Renal cancer]. Fernandez Mena, F. J. and Moreno Torres, C.. Arch Esp Urol 2001:541-54

Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Gervais, D. A., McGovern, F. J., Arellano, R. S., McDougal, W. S., and Mueller, P. R.. Radiology 2003:417-24

[Small incidental renal tumors. Evaluation and biological parameters]. Remzi, M. and Memarsadeghi, M.. Urologe A 2007:478, 480-4

Renal cell carcinoma: incidental detection and pathological staging. Siow, W. Y., Yip, S. K., Ng, L. G., Tan, P. H., Cheng, W. S., and Foo, K. T.. J R Coll Surg Edinb 2000:291-5

Characterization and staging of renal tumors: Significance of MRI diagnostics: Charakterisierung und staging von nierentumoren: Bedeutung der MRT-diagnostik. Kalinka A., Gerlach A., Arlart I.P., Gunes N., Hauser T.-K., Wurstlin S., and Bosse A.. RoFo Fortschr. Geb. Rontgenstr. Bildgebenden Verfahren 2006:298-305

Incidental detection of preclinical renal tumors with electron beam computed tomography: Report of 26 consecutive operated patients. Mitchell T.L., Pippin J.J., Devers S.M., Kimball T.E., Gibbons L.W., Cooper L.L., Gonzalez-Dunn V., and Cooper K.H.. J. Comput. Assisted Tomogr. 2000:843-845

Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Liao S.-Y., Aurelio O.N., Jan K., Zavada J., and Stanbridge E.J.. CANCER RES. 97:2827-2831

Surgical treatment of kidney cancer in elderly. Maricic, A., Sotosek, S., Markic, D., Spanjol, J., Krpina, K., Rahelic, D., and Materljan, M.. Coll Antropol 2014:1225-7

Multi-quadrant biopsy technique improves diagnostic ability in large heterogeneous renal masses. Abel, E. J., Heckman, J. E., Hinshaw, L., Best, S., Lubner, M., Jarrard, D. F., Downs, T. M., Nakada, S. Y., Lee, F. T. Jr, Huang, W., and Ziemlewicz, T.. J Urol 2015:

A propensity-matched comparison of perioperative complications and of chronic kidney disease between robot-assisted laparoscopic partial nephrectomy and radiofrequency ablative therapy. Kim, S. H., Lee, E. S., Kim, H. H., Kwak, C., Ku, J. H., Lee, S. E., Hong, S. K., Jeong, C. W., Kim, S. H., Cho, J. Y., Hwang, S. I., Lee, H. J., and Byun, S. S.. Asian J Surg 2014:

Quality of life survey following laparoscopic and open radical nephrectomy. Acar, C., Bilen, C., Bayazit, Y., Aslan, G., Koni, A., Basok, E., and Kaplan, M.. Urol J 2014:1944-50

The diagnostic accuracy of percutaneous renal needle core biopsy and its potential impact on the clinical management of renal cortical neoplasms. Gellert, L. L., Mehra, R., Chen, Y. B., Gopalan, A., Fine, S. W., Al-Ahmadie, H., Reuter, V. E., and Tickoo, S. K.. Arch Pathol Lab Med 2014:1673-9

Improved outcome with combined US/CT guidance as compared to US guidance in percutaneous radiofrequency ablation of small renal masses. Andersson, M., Hashimi, F., Lyrdal, D., Lundstam, S., and Hellstrom, M.. Acta Radiol 2014:

Perioperative outcomes for laparoscopic radical nephrectomies performed on >/= 10 cm tumors. Ouellet, S., Carmel, M., Martel, A., and Sabbagh, R.. Can J Urol 2014:7487-95

Cell-free RNA content in urine as a possible molecular diagnostic tool for clear cell renal cell carcinoma. Zhao, A., Peoc'h, M., Cottier, M., Genin, C., Mottet, N., and Li, G.. Int J Cancer 2015:2610-5

Qualitative and quantitative MDCT features for differentiating clear cell renal cell carcinoma from other solid renal cortical masses. Lee-Felker, S. A., Felker, E. R., Tan, N., Margolis, D. J., Young, J. R., Sayre, J., and Raman, S. S.. AJR Am J Roentgenol 2014:W516-24

Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. Frantzi M., Metzger J., Banks R.E., Husi H., Klein J., Dakna M., Mullen W., Cartledge J.J., Schanstra J.P., Brand K., Kuczyk M.A., Mischak H., Vlahou A., Theodorescu D., and Merseburger A.S.. J. Proteomics 2014:44-58

Visceral fat accumulation is associated with different pathological subtypes of renal cell carcinoma (RCC): A multicentre study in China. Wang H.-K., Song X.-S., Cheng Y., Qu Y.-Y., Zhang S.-L., Dai B., Zhang H.-L., Shen Y.-J., Zhu Y.-P., Shi G.-H., Qin X.-J., Ma C.-G., Lin G.-W., Xiao W.-J., Zhu Y., and Ye D.-W.. BJU Int. 2014:496-502

Utility of fine-needle aspiration and core biopsy with touch preparation in the diagnosis of renal lesions. Scanga L.R. and Maygarden S.J.. Cancer Cytho. 2014:182-190

Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population. Hashimoto Y., Takagi T., Kondo T., Iizuka J., Kobayashi H., Omae K., Yoshida K., and Tanabe K.. Int. J. Clin. Oncol. 2015:

Expression pattern of autophagy-related markers in non-metastatic clear cell renal cell carcinoma: association with disease recurrence following radical nephrectomy. Nishikawa M., Miyake H., Liu B., and Fujisawa M.. J. Cancer Res. Clin. Oncol. 2015:

Preoperative serum cholesterol is an independent prognostic factor for patients with renal cell carcinoma (RCC). De Martino M., Leitner C.V., Seemann C., Hofbauer S.L., Lucca I., Haitel A., Shariat S.F., and Klatte T.. BJU Int. 2015:397-404

Notch1 predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. An H., Zhu Y., Xu L., Chen L., Lin Z., and Xu J.. Urology 2015:483.e9-483.e14

Snail predicts recurrence and survival of patients with localized clear cell renal cell carcinoma after surgical resection. Liu W., Liu Y., Liu H., Zhang W., An H., and Xu J. Urol. Oncol. Semin. Orig. Invest. 2015:69e1-69e10

Nomograms incorporating serum C-reactive protein effectively predict mortality before and after surgical treatment of renal cell carcinoma. Hsiao W., Herrel L.A., Yu C., Kattan M.W., Canter D.J., Carthon B.C., Ogan K., and Master V.A.. Int. J. Urol. 2015:264-270

Survival in patients with clear cell renal cell carcinoma is predicted by HIF-1(alpha) expression. Minardi D., Lucarini G., Santoni M., Mazzucchelli R., Burattini L., Conti A., Principi E., Bianconi M., Scartozzi M., Milanese G., Di Primio R., Montironi R., Cascinu S., and Muzzonigro G.. Anticancer Res. 2015:433-438

Partial and Radical Nephrectomy for Unilateral Synchronous Multifocal Renal Cortical Tumors. Mano R., Kent M., Larish Y., Winer A.G., Chevinsky M.S., Hakimi A.A., Sternberg I.A., Sjoberg D.D., and Russo P.. Urology 2015:

Survival advantage of partial over radical nephrectomy in patients presenting with localized renal cell carcinoma. Roos F.C., Steffens S., Junker K., Janssen M., Becker F., Wegener G., Brenner W., Steinestel J., Schnoeller T.J., Schrader M., Hofmann R., Thuroff J.W., Kuczyk M.A., Wunderlich H., Siemer S., Hartmann A., Stockle M., and Schrader A.J.. BMC Cancer 2014:

Predictive factors for the development of chronic renal insufficiency after renal surgery: A multicenter study. Choi Y.S., Park Y.H., Kim Y.-J., Kang S.H., Byun S.-S., and Hong S.-H.. Int. Urol. Nephrol. 2014 :681-686

Small tumour size is associated with new-onset chronic kidney disease after radical nephrectomy in patients with renal cell carcinoma. Jeon H.G., Choo S.H., Sung H.H., Jeong B.C., Seo S.I., Jeon S.S., Choi H.-Y., and Lee H.M.. Eur. J. Cancer 2014:64-69

Predictive factors for postoperative complications in radical nephrectomy for renal cell carcinoma. Wongvittavas N., Panumatrassamee K., Opanuraks J., Usawachintachit M., Ratchanon S., Tantiwongse K., Bunyaratavej C., Santingamkun A., and Prasopsanti K.. Asian Biomed. 2014:763-769

Outcome of nephrectomies in Malta since 2000. Busuttil G., Bugeja S., Zammit P., Mattocks S., and German K.. Malta Med. J. 2014:9-14

Clinicopathological characteristics and outcomes of surgically excised renal masses in African Americans. Qi P., Tsivian M., Abern M.R., Passoni N.M., McGinley K.F., and Polascik T.J.. Urol. Oncol. Semin. Orig. Invest. 2014:555-560

Pre-existing type 2 diabetes mellitus is an independent risk factor for mortality and progression in patients with renal cell carcinoma. Vavallo A., Simone S., Lucarelli G., Rutigliano M., Galleggiante V., Grandaliano G., Gesualdo L., Campagna M., Cariello M., Ranieri E., Pertosa G.,

Lastilla G., Selvaggi F.P., Ditonno P., and Battaglia M.. Medicine 2014:

A population-based competing-risks analysis of survival after nephrectomy for renal cell carcinoma. Bianchi M., Gandaglia G., Trinh Q.-D., Hansen J., Becker A., Abdollah F., Tian Z., Lughezzani G., Roghmann F., Briganti A., Montorsi F., Karakiewicz P.I., and Sun M.. Urol. Oncol. Semin. Orig. Invest. 2014:46.e1-46.e7

The effect of gender and age on kidney cancer survival: Younger age is an independent prognostic factor in women with renal cell carcinoma. Rampersaud E.N., Klatte T., Bass G., Patard J.-J., Bensaleh K., Bohm M., Allhoff E.P., Cindolo L., De La Taille A., Mejean A., Soulie M., Bellec L., Christophe Bernhard J., Pfister C., Colombel M., Belldegrun A.S., Pantuck A.J., and George D.. Urol. Oncol. Semin. Orig. Invest. 2014 :30.e9-30.e13

Nephron-sparing surgery is superior to radical nephrectomy in preserving renal function benefit even when expanding indications beyond the traditional 4-cm cutoff. Pignot G., Bigot P., Bernhard J.-C., Bouliere F., Bessede T., Bensalah K., Salomon L., Mottet N., Bellec L., Soulie M., Ferriere J.-M., Pfister C., Drai J., Colombel M., Villers A., Rigaud J., Bouchot O., Montorsi F., Bertini R., Belldegrun A.S., Pantuck A.J., and Patard J.-J.. Urol. Oncol. Semin. Orig. Invest. 2014:1024-1030

Renal surgery for kidney cancer in Germany 2005-2006: length of stay, risk of postoperative complications and inhospital death. Stang, A. and Buchel, C.. BMC Urol 2014 ·74

CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Mazzei, F. G., Mazzei, M. A., Cioffi Squitieri, N., Pozzessere, C., Righi, L., Cirigliano, A., Guerrini, S., D'Elia, D., Ambrosio, M. R., Barone, A., del Vecchio, M. T., and Volterrani, L.. Biomed Res Int 2014:135013

Cancer-free survival and local tumor control after impendence-based radiofrequency ablation of biopsy-proven renal cell carcinomas with a minimum of 1-year follow-up. Forauer, A. R., Dewey, B. J., and Seigne, J. D.. Urol Oncol 2014:869-76

Does gender influence morbidity or mortality in the surgical treatment of renal masses?. Minnillo, B. J., Horowitz, A., Finelli, A., Alibhai, S. M., Ponsky, L. E., and Abouassaly, R.. Can Urol Assoc J 2014:E311-6

Predictive factors for benign lesions in partially or radically resected kidneys in a single independent cancer center. Soga, N., Ogura, Y., and Hayashi, N.. Curr Urol 2013:70-4

The 1-year decline in estimated glomerular filtration rate (eGFR) after radical nephrectomy in patients with renal masses and matched living kidney donors is the same. Hew, M. N., Opondo, D., Cordeiro, E. R., van Donselaarvan der Pant, K. A., Bemelman, F. J., Idu, M. M., de la Rosette, J. J., and Laguna, M. P.. BJU Int 2014:E49-55

Trends in renal function after radical nephrectomy: a multicentre analysis. Chung, J. S., Son, N. H., Byun, S. S.,

Lee, S. E., Hong, S. K., Jeong, C. W., Lee, S. C., Chae, D. W., Choi, W. S., Park, Y. H., Hong, S. H., Kim, Y. J., and Kang, S. H.. BJU Int 2014:408-15

Perioperative mortality and associated factors in patients undergoing radical nephrectomy. Diaz-Hung, A. M., Garcia-Perdomo, H. A., Carbonell-Gonzalez, J., Castillo-Cobaleda, D. F., and Garcia-Angel, A. F.. Actas Urol Esp 2013:608-12

Iatrogenic splenectomy during nephrectomy for renal tumors. Wang, J. K., Tollefson, M. K., Kim, S. P., Boorjian, S. A., Leibovich, B. C., Lohse, C. M., Cheville, J. C., and Thompson, R. H.. Int J Urol 2013:896-902

MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Karlo, C. A., Donati, O. F., Burger, I. A., Zheng, J., Moskowitz, C. S., Hricak, H., and Akin, O.. Eur Radiol 2013:1738-44

Overall mortality after radical nephrectomy in patients aged over 80 years with renal cancer: a retrospective study on preoperative prognostic factors. Brassart, E., Lebdai, S., Berger, J., Traore, S., Bernhard, J. C., Fardoun, T., Muller, G., Patard, J. J., Azzouzi, A. R., and Bigot, P.. Int J Urol 2012:626-32

Partial nephrectomy for renal masses >/= 7 cm: technical, oncological and functional outcomes. Long, C. J., Canter, D. J., Kutikov, A., Li, T., Simhan, J., Smaldone, M., Teper, E., Viterbo, R., Boorjian, S. A., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. BJU Int 2012:1450-6

Prospective study comparing two techniques of renal clamping in laparoscopic partial nephrectomy: impact on perioperative parameters. Imbeault, A., Pouliot, F., Finley, D. S., Shuch, B., and Dujardin, T.. J Endourol 2012:509-14

Comparison of rates and risk factors for development of osteoporosis and fractures after radical or partial nephrectomy. Bagrodia, A., Mehrazin, R., Bazzi, W. M., Silberstein, J., Malcolm, J. B., Stroup, S. P., Raheem, O., Wake, R. W., Kane, C. J., Patterson, A. L., Wan, J. Y., and Derweesh, I. H.. Urology 2011:614-9

Oncologic long-term outcome of elective nephron-sparing surgery versus radical nephrectomy in patients with renal cell carcinoma stage pT1b or greater in a matched-pair cohort. Roos, F. C., Brenner, W., Muller, M., Schubert, C., Jager, W. J., Thuroff, J. W., and Hampel, C.. Urology 2011:803-8

Renal function and oncologic outcomes in nephron sparing surgery for renal masses in solitary kidneys. Lee, D. J., Hruby, G., Benson, M. C., and McKiernan, J. M.. World J Urol 2011:343-8

The role of percutaneous needle biopsy in differentiation of renal tumors. Izumi, K., Narimoto, K., Sugimoto, K., Kobori, Y., Maeda, Y., Mizokami, A., Koh, E., Yamada, T., Yano, S., and Namiki, M.. Jpn J Clin Oncol 2010 :1081-6

Predictive factors for ipsilateral recurrence after nephronsparing surgery in renal cell carcinoma. Bernhard, J. C., Pantuck, A. J., Wallerand, H., Crepel, M., Ferriere, J. M., Bellec, L., Maurice-Tison, S., Robert, G., Albouy, B., Pasticier, G., Soulie, M., Lopes, D., Lacroix, B., Bensalah, K., Pfister, C., Thuret, R., Tostain, J., De La Taille, A., Salomon, L., Abbou, C., Colombel, M., Belldegrun, A. S., and Patard, J. J.. Eur Urol 2010:1080-6

Laparoscopic radical nephrectomy for renal cell carcinoma: oncological outcomes at 10 years or more. Berger, A., Brandina, R., Atalla, M. A., Herati, A. S., Kamoi, K., Aron, M., Haber, G. P., Stein, R. J., Desai, M. M., Kavoussi, L. R., and Gill, I. S.. J Urol 2009:2172-6

Partial versus radical nephrectomy in patients with adverse clinical or pathologic characteristics. Jeldres, C., Patard, J. J., Capitanio, U., Perrotte, P., Suardi, N., Crepel, M., Ficarra, V., Cindolo, L., de La Taille, A., Tostain, J., Pfister, C., Albouy, B., Colombel, M., Mejean, A., Lang, H., Jacqmin, D., Bernhard, J. C., Ferriere, J. M., Bensalah, K., and Karakiewicz, P. I.. Urology 2009:1300-5

Preservation of renal function following partial or radical nephrectomy using 24-hour creatinine clearance. Clark, A. T., Breau, R. H., Morash, C., Fergusson, D., Doucette, S., and Cagiannos, I.. Eur Urol 2008:143-49

[Nephron-sparing surgery versus radical nephrectomy in the treatment of renal cell carcinoma up to 7 cm.]. Antonelli, A., Zani, D., Cozzoli, A., Nicolai, M., Zanotelli, T., Perucchini, L., Cosciano Cunico, S., and Simeone, C.. Urologia 2007:173-179

Management of renal tumors by image-guided radiofrequency ablation: experience in 105 tumors. Breen, D. J., Rutherford, E. E., Stedman, B., Roy-Choudhury, S. H., Cast, J. E., Hayes, M. C., and Smart, C. J.. Cardiovasc Intervent Radiol 2007:936-42

Renal cell carcinoma of 4 cm or less: an appraisal of its clinical presentation and contemporary surgical management. Lee, V. T., Yip, S. K., Tan, P. H., Siow, W. Y., Lau, W. K., and Cheng, C. W.. Asian J Surg 2006:40-3

Prognostic significance of morphologic parameters in renal cell carcinoma. Erdogan, F., Demirel, A., and Polat, O.. Int J Clin Pract 2004:333-6

Clinicopathological factors predicting recurrence of N0M0 renal cell carcinoma: a case series analysis of one facility. Masuda, A., Aoki, M., Tokunaga, M., Usui, Y., Abe, T., Miyakita, H., Kinoshita, H., Kawamura, N., and Terachi, T.. Int J Urol 2003:511-7

Renal cell carcinoma in the solitary kidney: an analysis of complications and outcome after nephron sparing surgery. Ghavamian, R., Cheville, J. C., Lohse, C. M., Weaver, A. L., Zincke, H., and Blute, M. L., J Urol 2002:454-9

Nephron sparing surgery for localized renal cell carcinoma: impact of tumor size on patient survival, tumor recurrence and TNM staging. Hafez, K. S., Fergany, A. F., and Novick, A. C.. J Urol 99:1930-3

CT-guided bipolar and multipolar radiofrequency ablation (RF Ablation) of renal cell carcinoma: Specific technical aspects and clinical results. Sommer C.M., Lemm G., Hohenstein E., Bellemann N., Stampfl U., Goezen A.S.,

Rassweiler J., Kauczor H.U., Radeleff B.A., and Pereira P.L.. Cardiovasc. Intervent. Radiol. 2013:731-737

Changes in renal function after laparoscopic partial nephrectomy: Comparison with laparoscopic radical nephrectomy. Kang S.H., Rhew H.Y., and Kim T.S.. Korean J. Urol. 2013:22-25

Partial nephrectomy for selected renal cortical tumours of (greater-than or equal to)7 cm. Karellas M.E., Obrien M.F., Jang T.L., Bernstein M., and Russo P.. BJU Int. 2010:1484-1487

The significance of serum ferritin level in renal cell carcinoma: Bobrek Hucrelikanserde serum ferritin duzeyinin onemi. Erdemir F., Parlaktas B.S., Uluocak N., Ozcan F., Celik M., and Gokce O.. Turk Urol. Derg. 2005:479-484

Our initial experiences with laparoscopic nephrectomy: Laparoskopik nefrektomide baslangic deneyimlerimiz. Kural A.R., Demirkesen O., Akpinar H., Tufek I., Yalcin V., and Ozkan B.. Turk Urol. Derg. 2004:414-421

Carcinoma of the kidney: About 47 cases: Cancer du rein: A propos de 47 cas. Janane A., Hachi H., Tijami F., Jalil A., Othmani M., Boughtab A., Benjelloun S., Ahyoud F., and Souadka A.. Ann. Urol. 2003:57-60

Renal cell carcinoma - A retrospective study of 368 patients: Nyrekreft - En retrospektiv undersokelse av 368 pasienter. Beisland C., Medby P.C., and Beisland H.O.. Tidsskr. Nor. Laegeforen. 2002:2431-2435

Renal cell carcinoma. Experience in the treatment and follow-up in 118 patients: Experiencia en el tr tratamiento y seguimiento de 118 pacientes con diagnostico de adenocarcinoma de celulas claras de rinon. Meza B.O., Castillo G.D.O., and Ochoa J.M.. Med. Interna Mex. 2002:214-219

The cancer of kidney. A report of 170 cases: Le cancer du rein. A propos de 170 cas. Fekak H., Bennani S., Taha A., Rabii R., Joual A., Sarf S., Hafiani M., El Mrini M., and Benjelloun S.. Ann. Urol. 2001:249-256

Retrospective epidemiological study of renal cancer: Cancer renal: Estudio epidemiologico retrospectivo. Ale R., Sivori F., Corbetta J.P., Attar J., Petrone J., Casal J.M., Grippo L., Deparci A., Gonzalez G., Garcik A., Krenz R., and Verdinelli J.. Prensa Med. Argent. 2000:806-813

Lumbar radical nephrectomy: Lumbale radikale nephrektomie: Eine retrospektive analyse von 186 fallen. Wiedemann A., Holtmann G., Diekmann W.-P., and Zumbe J.. Urologe Ausg. A 2000:154-159

Renal cancer in adults based on a series of 68 cases: Cancer du rein de l'adulte. A propos de 68 cas. Moudouni S.M., Tazi Mokha K., Nouri M., Lrhorfi M.H., Koutani A., Iben Attya Andaloussi A., Hachimi M., and Lakrissa A.. Ann. Urol. 99:395-401

Trends in renal function after radical nephrectomy: A multicentre analysis. Chung J.S., Son N.H., Byun S.-S., Lee S.E., Hong S.K., Jeong C.W., Lee S.C., Chae D.-W., Choi

W.S., Park Y.H., Hong S.H., Kim Y.J., and Kang S.H.. BJU Int. 2014:408-415

Local recurrence after radical nephrectomy for kidney cancer: Management and prediction of outcomes. A multi-institutional study. Paparel P., Bigot P., Matillon X., Bensalah K., Salomon L., Baumert H., Bastide C., Thuret R., Karsenty G., Long J.A., Ammi M., Bessede T., Bin S., Roux A., Escudier B., Rioux Leclercq N., Pignot G., Soulie M., and Patard J.-J.. J. Surg. Oncol. 2014:126-131

Patients on Hemodialysis

De novo renal carcinoma in renal transplant recipients: effect of early treatment. Tillou, X., Demailly, M., Hakami, F., Westeel, P. F., Saint, F., and Petit, J.. Transplant Proc 2009:3314-6

Renal cell carcinoma in patients with end-stage renal disease: relationship between histological type and duration of dialysis. Nouh, M. A., Kuroda, N., Yamashita, M., Hayashida, Y., Yano, T., Minakuchi, J., Taniguchi, S., Nomura, I., Inui, M., Sugimoto, M., and Kakehi, Y.. BJU Int 2010:620-7

Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Hajj, P., Ferlicot, S., Massoud, W., Awad, A., Hammoudi, Y., Charpentier, B., Durrbach, A., Droupy, S., and Benoit, G.. Urology 2009:631-4

Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population. Hashimoto Y., Takagi T., Kondo T., Iizuka J., Kobayashi H., Omae K., Yoshida K., and Tanabe K.. Int. J. Clin. Oncol. 2015:

Renal cell carcinoma in patients with end-stage renal disease has favorable overall prognosis. Shrewsberry A.B., Osunkoya A.O., Jiang K., Westby R., Canter D., Pattaras J., Turgeon N., Master V.A., and Ogan K.. Clin. Transplant. 2014:211-216

Patients with familial conditions

Image guided percutaneous probe ablation for renal tumors in 65 solitary kidneys: functional and oncological outcomes. Altunrende, F., Autorino, R., Hillyer, S., Yang, B., Laydner, H., White, M. A., Khanna, R., Isac, W., Spana, G., Stein, R. J., Haber, G. P., O'Malley, C. M., Remer, E. M., and Kaouk, J. H.. J Urol 2011:35-41

Is it safe and effective to treat complex renal cysts by the laparoscopic approach? Pinheiro, T., Sepulveda, F., Natalin, R. H., Metrebian, E., Medina, R., Goldman, S. M., Ortiz, V., and Andreoni, C.. J Endourol 2011:471-6

Percutaneous cryoablation of renal masses: impact of patient selection and treatment parameters on outcomes. Vricella, G. J., Haaga, J. R., Adler, B. L., Dean Nakamoto,

Cherullo, E. E., Flick, S., and Ponsky, L. E.. Urology 2011:649-54

The prognostic value of the width of the surgical margin in the enucleoresection of small renal cell carcinoma: an intermediate-term follow-up. Jeong, S. J., Kim, K. T., Chung, M. S., Hong, S. K., Byun, S. S., and Lee, S. E.. Urology 2010:587-92

Partial nephrectomy for renal tumours: the Singapore General Hospital experience. Yip, S. K., Cheng, W. S., Tan, B. S., Li, M. K., and Foo, K. T.. J R Coll Surg Edinb 99:156-60

No Original Data

[Controversies of partial nephrectomy for renal cell carcinoma: survey in the German-speaking countries]. Tietze, S., Herms, M., Behrendt, W., Krause, J., and Hamza, A.. Urologe A 2014:1181-5

The challenges of managing urological malignancy in the elderly. Abu-Ghanem, Y., Dhesi, J. K., and Challacombe, B. J., BJU Int 2014:12-5

[Radiofrequency ablation of kidney tumors]. Souteyrand, P., Chagnaud, C., Lechevallier, E., and Andre, M. Prog Urol 2013:1163-7

Initial experience with arterial spin-labeling MR imaging to assess histology of renal masses. Masarapu, V. and Kim, H. L.. Quant Imaging Med Surg 2013:130-1

Cost-utility analysis of radical nephrectomy versus partial nephrectomy in the management of small renal masses: Adjusting for the burden of ensuing chronic kidney disease. Klinghoffer, Z., Tarride, J. E., Novara, G., Ficarra, V., Kapoor, A., Shayegan, B., and Braga, L. H.. Can Urol Assoc J 2013:108-13

The management of a clinical t1b renal tumor in the presence of a normal contralateral kidney. Weight, C. J., Miller, D. C., Campbell, S. C., Derweesh, I. H., Lane, B. R., and Messing, E. M.. J Urol 2013:1198-202

[Nephron-sparing treatments for kidney cancer]. Casuscelli, J., Fischereder, M., Gratzke, C., Staehler, M., and Stief, C. G.. MMW Fortschr Med 2012:45-6, 48

Re: Features associated with recurrence beyond 5 years after nephrectomy and nephron-sparing surgery for renal cell carcinoma: development and internal validation of a risk model (PRELANE score) to predict late recurrence based on a large multicenter database (CORONA/SATURN project). Taneja, S. S.. J Urol 2013:67-8

Lymph node excision for renal cancer. Montgomery, J. S. and Leibovich, B. C.. J Urol 2013:419-21

A novel technique to limit renal warm ischaemia time during laparoscopic partial nephrectomy. Sapre, N., Corcoran, N. M., Costello, A. J., and Agarwal, D.. BJU Int 2012:1216-9

Laparoscopic cryotherapy for renal tumours. Grange, P., Rouse, P., Kouriefs, C., Rao, A., Karamanolakis, D., Roy, A., and Arya, M.. BJU Int 2012:808-17

Focal therapy for renal mass lesions: where do we stand in 2012?. Rane, A., Stein, R., and Cadeddu, J.. BJU Int 2012:491-2

Application of gasless laparoendoscopic single port surgery, GasLESS, to partial nephrectomy for renal cell carcinoma: GasLESS-clampless partial nephrectomy as a multiply satisfactory method. Kihara, K.. Int J Urol 2012 :3.4

Zero-ischaemia robotic and laparoscopic partial nephrectomy (PN). Patil, M. B. and Gill, I. S.. BJU Int 2011:780-92

Preferred management option for small renal masses: laparoscopic partial nephrectomy. Kapoor, A.. Can Urol Assoc J 2010:139-41

Active surveillance as the preferred management option for small renal masses. Rendon, R. A.. Can Urol Assoc J 2010:136-8

Determining failure after renal ablative therapy for renal cell carcinoma: false-negative and false-positive imaging findings. Matin, S. F.. Urology 2010:1254-7

Open to debate. The motion: Cryotherapy is an efficient alternative for kidney cancer. Guazzoni, G., Nava, L., Lazzeri, M., Cestari, A., Volpe, A., and Kirkali, Z.. Eur Urol 2010:168-70

Current role of robotic assisted partial nephrectomy. Cestari, A., Guazzoni, G., Buffi, N. M., Scapaticci, E., Zanoni, M., Fabbri, F., Gadda, G., and Rigatti, P.. Arch Ital Urol Androl 2009:76-9

Reporting standards for percutaneous thermal ablation of renal cell carcinoma. Clark, T. W., Millward, S. F., Gervais, D. A., Goldberg, S. N., Grassi, C. J., Kinney, T. B., Phillips, D. A., Sacks, D., and Cardella, J. F.. J Vasc Interv Radiol 2009:S409-16

Robotic-assisted partial nephrectomy: surgical technique using a 3-arm approach and sliding-clip renorrhaphy. Cabello, J. M., Benway, B. M., and Bhayani, S. B.. Int Braz J Urol 2009:199-203; discussion 203-4

Robotic-assisted partial nephrectomy. Patel, M. N., Bhandari, M., Menon, M., and Rogers, C. G. BJU Int 2009:1296-311

Robot-assisted partial nephrectomy. Sairam, K. and Dasgupta, P.. BJU Int 2008:266-7

Evolution to nephron-sparing surgery for renal cell carcinoma. O'Malley, P. J., Bruyere, F., and Costello, A. J.. ANZ J Surg 2007:2-3

Organ-preserving endoscopic kidney cancer resection. Heinrich, E., Egner, T., Noe, M., Schiefelbein, F., and Schoen, G.. Eur Urol 2006:732-7

Laparoscopic partial nephrectomy: contemporary technique and outcomes. Haber, G. P. and Gill, I. S.. Eur Urol 2006:660-5

Percutaneous CT-guided radiofrequency ablation of renal neoplasms: factors influencing success. Marshall, F. F.. J Urol 2005:1782

[Laparoscopic tumor nephrectomy]. Janetschek, G., al-Zachrani, H., Vrabec, G., and Leeb, K.. Urologe A 2002:101-6

Matched comparison of radical nephrectomy vs nephronsparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Lau, W. K., Blute, M. L., Weaver, A. L., Torres, V. E., and Zincke, H.. Mayo Clin Proc 2000:1236-42

Impact of kidney cancer surgery on oncologic and kidney functional outcomes. Han J.S. and Huang W.C.. Am. J. Kidney Dis. 2011:846-854

Renal artery pseudoaneurysm after partial nephrectomy: Three case reports and a literature review. Albani J.M. and Novick A.C.. Urology 2003:227-231

A tumor of the kidney which should not be misdiagnosed: Une tumeur du rein a ne pas meconnaitre. Ismail O., Tissier F., Colin D., Flam T., Vieillefond A., and De Pinieux G.. Ann. Pathol. 2002:489-490

A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Taneja, S. S.. Journal of urology 2011:1637-8

Management of small indeterminate renal tumours: is there a case for needle biopsy?. Khan, A. A., Shergill, I. S., Gujral, S. S., and Timoney, A. G.. BJU Int 2007:1-3

To biopsy or not to biopsy: Results of 1000 renal mass biopsies at a single institution. Deshmukh S.M., Dhyani M., McGovern F.J., McDougal W.S., Olumi A.F., Dahl D.M., Arellano R., Samir A., Blute M.L., and Feldman A.S.. J. Urol. 2013:e437

Treatment of Exophytic Renal Cancer Smaller than 3 cm: Surgery versus Active Surveillance. Lallas C.D., Trabulsi E.J., Kaffenberger S.D., and Touijer K.A.. J. Urol. 2015:

Study address KQ1 but does not include imaging or one element from at least 2 of the categories -Demographic characteristics, Clinical, Blood/urine test Comparative Studies of the Proteome, Glycoproteome, and N-Glycome of Clear Cell Renal Cell Carcinoma Plasma before and after Curative Nephrectomy. Gbormittah, F. O., Lee, L. Y., Taylor, K., Hancock, W. S., and Iliopoulos, O.. J Proteome Res 2014:

The impact of tumour size on the probability of synchronous metastasis and survival in renal cell carcinoma patients: a population-based study. Ingimarsson, J. P., Sigurdsson, M. I., Hardarson, S., Petursdottir, V., Jonsson, E., Einarsson, G. V., and Gudbjartsson, T.. BMC Urol 2014:72

Diabetes mellitus as a risk factor for high grade renal cell carcinoma. Otunctemur, A., Ozbek, E., Sahin, S., Dursun, M., Besiroglu, H., Koklu, I., Erkoc, M., Danis, E., Bozkurt, M., and Gurbuz, A.. Asian Pac J Cancer Prev 2014:3993-6

Diagnostic and prognostic role of preoperative circulating CA 15-3, CA 125, and beta-2 microglobulin in renal cell carcinoma. Lucarelli, G., Ditonno, P., Bettocchi, C., Vavallo, A., Rutigliano, M., Galleggiante, V., Larocca, A. M., Castellano, G., Gesualdo, L., Grandaliano, G., Selvaggi, F. P., and Battaglia, M.. Dis Markers 2014:689795

Elevated serum-circulating RNA in patients with conventional renal cell cancer. Feng, G., Li, G., Gentil-Perret, A., Tostain, J., and Genin, C.. Anticancer Res 2008:321-6

Cell-free RNA content in urine as a possible molecular diagnostic tool for clear cell renal cell carcinoma. Zhao, A., Peoc'h, M., Cottier, M., Genin, C., Mottet, N., and Li, G.. Int J Cancer 2015:2610-5

Study does not give an adequate description of how complications and peri-operative outcomes were assessed

Enhanced computed tomography after partial nephrectomy in early postoperative period to detect asymptomatic renal artery pseudoaneurysm. Takagi, T., Kondo, T., Tajima, T., Campbell, S. C., and Tanabe, K.. Int J Urol 2014:880-5

Incidence of hypercoagulable events after image-guided percutaneous cryoablation of renal tumors: a single-center experience. Hartman, J. B., Bhojwani, N., Corn, D. J., Cooney, M. M., Haaga, J., Ponsky, L., Abouassaly, R., Paspulati, A., and Prologo, J. D.. J Vasc Interv Radiol 2014:776-9

Renal function outcomes following selective angioembolization for iatrogenic vascular lesions after partial nephrectomy. Gahan, J. C., Gaitonde, M., Wadskier, L., Cadeddu, J. A., and Trimmer, C.. J Endourol 2013:1516-9

Sutureless hemostatic control during laparoscopic NSS for the treatment of small renal masses. Minervini, A., Siena, G., Tuccio, A., Lapini, A., Serni, S., and Carini, M.. Surg Innov 2014:32-8

Robot-assisted partial nephrectomy: a comparison of the transperitoneal and retroperitoneal approaches. Hughes-Hallett, A., Patki, P., Patel, N., Barber, N. J., Sullivan, M., and Thilagarajah, R.. J Endourol 2013:869-74

Rates of open versus laparoscopic and partial versus radical nephrectomy for T1a renal cell carcinoma: a population-based evaluation. Bianchi, M., Becker, A., Abdollah, F., Trinh, Q. D., Hansen, J., Tian, Z., Shariat, S. F., Perrotte, P., Karakiewicz, P. I., and Sun, M.. Int J Urol 2013:1064-71

Fast access and early ligation of the renal pedicle significantly facilitates retroperitoneal laparoscopic radical nephrectomy procedures: modified laparoscopic radical nephrectomy. Yang, Q., Du, J., Zhao, Z. H., Chen, X. S., Zhou, L., and Yao, X.. World J Surg Oncol 2013:27

Bipolar versus multipolar radiofrequency (RF) ablation for the treatment of renal cell carcinoma: differences in technical and clinical parameters. Sommer, C. M., Lemm, G., Hohenstein, E., Stampfl, U., Bellemann, N., Teber, D., Rassweiler, J., Kauczor, H. U., Radeleff, B. A., and Pereira, P. L.. Int J Hyperthermia 2013:21-9

Antimicrobial prophylaxis is not necessary in clean category minimally invasive surgery for renal and adrenal tumors: a prospective study of 373 consecutive patients. Kijima, T., Masuda, H., Yoshida, S., Tatokoro, M., Yokoyama, M., Numao, N., Saito, K., Koga, F., Fujii, Y., and Kihara, K.. Urology 2012:570-5

[Clinical comparison between microporous polysaccharide hemispheres (MPH) and fibrin glue]. Sakata, R., Makiyama, K., Noguchi, G., Sano, F., Nakaigawa, N., Yao, M., and Kubota, Y.. Nihon Hinyokika Gakkai Zasshi 2012:8-13

Correlation of the RENAL nephrometry score with warm ischemia time after robotic partial nephrectomy. Altunrende, F., Laydner, H., Hernandez, A. V., Autorino, R., Khanna, R., White, M. A., Isac, W., Spana, G., Hillyer, S., Yang, B., Yakoubi, R., Haber, G. P., Kaouk, J. H., and Stein, R. J.. World J Urol 2013:1165-9

Integrating robotic partial nephrectomy to an existing robotic surgery program. Yuh, B., Muldrew, S., Menchaca, A., Yip, W., Lau, C., Wilson, T., and Josephson, D.. Can J Urol 2012:6193-200

Multiple factor analysis of urine leaks after retroperitoneal laparoscopic partial nephrectomy. Wang, P., Xia, D., and Wang, S.. Urol Int 2011:411-5

Implementation and external validation of Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) score for predicting complications in 74 consecutive partial nephrectomies. Tyritzis, S. I., Papadoukakis, S., Katafigiotis, I., Adamakis, I., Anastasiou, I., Stravodimos, K. G., Alamanis, C., Mitropoulos, D., and Constantinides, C. A.. BJU Int 2012:1813-8

The comparison of three renal tumor scoring systems: C-Index, P.A.D.U.A., and R.E.N.A.L. nephrometry scores. Okhunov, Z., Rais-Bahrami, S., George, A. K., Waingankar, N., Duty, B., Montag, S., Rosen, L., Sunday, S., Vira, M. A., and Kavoussi, L. R.. J Endourol 2011:1921-4

Does partial nephrectomy at an academic institution result in better outcomes?. Trinh, Q. D., Schmitges, J., Sun, M., Sammon, J., Shariat, S. F., Sukumar, S., Zorn, K., Bianchi, M., Jeldres, C., Perrotte, P., Graefen, M., Rogers, C. G., Peabody, J. O., Menon, M., and Karakiewicz, P. I.. World J Urol 2012:505-10

The effect of insurance status on outcomes after partial nephrectomy. Abdo, A., Trinh, Q. D., Sun, M., Schmitges, J., Bianchi, M., Sammon, J., Shariat, S. F., Sukumar, S., Zorn, K., Jeldres, C., Perrotte, P., Rogers, C. G., Peabody, J. O., Menon, M., and Karakiewicz, P. I.. Int Urol Nephrol 2012:343-51

Two-port robot-assisted vs standard robot-assisted laparoscopic partial nephrectomy: a matched-pair comparison. Arkoncel, F. R., Lee, J. W., Rha, K. H., Han, W. K., Jeoung, H. B., and Oh, C. K.. Urology 2011:581-5

Critical appraisal of the PADUA classification and assessment of the R.E.N.A.L. nephrometry score in patients undergoing partial nephrectomy. Hew, M. N., Baseskioglu, B., Barwari, K., Axwijk, P. H., Can, C., Horenblas, S., Bex, A., Rosette, J. J., and Pes, M. P.. J Urol 2011:42-6

Robot-assisted partial nephrectomy: evaluation of learning curve for an experienced renal surgeon. Haseebuddin, M., Benway, B. M., Cabello, J. M., and Bhayani, S. B.. J Endourol 2010:57-61

Current role of robotic assisted partial nephrectomy. Cestari, A., Guazzoni, G., Buffi, N. M., Scapaticci, E., Zanoni, M., Fabbri, F., Gadda, G., and Rigatti, P.. Arch Ital Urol Androl 2009:76-9

Retroperitoneal laparoscopic and open radical nephrectomy for T1 renal cell carcinoma. Wang, L., Wang, L., Yang, Q., Xiao, C., and Sun, Y.. J Endourol 2009:1509-12

Outcomes of laparoscopic partial nephrectomy after fellowship training. Shah, S. K., Matin, S. F., Singer, E. A., Eichel, L., and Kim, H. L.. JSLS 2009:154-9

Prospective comparative study between retroperitoneoscopic and hand-assisted laparoscopic approach for radical nephrectomy. Tobias-Machado, M., Ravizzini, P. I., Pertusier, L. O., Pedroso, E., and Wroclawski, E. R.. Int Braz J Urol 2009:284-91; discussion 291-2

Decision tree for laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small renal masses. Nisbet, A. A., Rieder, J. M., Tran, V. Q., Williams, S. G., and Chien, G. W.. J Endourol 2009:431-7

Impact of renal lesion size on perioperative and pathologic outcomes in patients undergoing laparoscopic partial nephrectomy. Eng, M. K., Bernstein, A. J., Katz, M. H., Shikanov, S., Zorn, K. C., and Shalhav, A. L.. J Endourol 2009:439-43

Comparison of different extraction sites used during laparoscopic radical nephrectomy. Bird, V. G., Au, J. K., Sandman, Y., De Los Santos, R., Ayyathurai, R., and Shields, J. M.. J Urol 2009:1565-70

Management of renal masses with laparoscopic-guided radiofrequency ablation versus laparoscopic partial nephrectomy. Bird, V. G., Carey, R. I., Ayyathurai, R., and Bird, V. Y.. J Endourol 2009:81-8

Retroperitoneoscopic nephrectomy in overweight and obese Japanese patients: complications and outcomes. Makiyama, K., Nakaigawa, N., Miyoshi, Y., Murakami, T., Yao, M., and Kubota, Y.. Urol Int 2008:427-30

Clinical experience with laparoscopic radical nephrectomy for renal cell carcinoma. Tsujihata, M., Nonomura, N., Momohara, C., Nishimura, K., Tsujimura, A., and Okuyama, A.. Urol Int 2008:301-5

[Laparoscopic radical nephrectomy--the cohort of 150 patients]. Eret, V., Hora, M., Klecka, J., Stransky, P., Ferda, J., Hes, O., and Urge, T.. Cas Lek Cesk 2007:758-62

Technical difficulties in retro-peritoneoscopic radical nephrectomy. Is tumor location important?. Lucan, M., Lucan, V., Ghervan, L., Elec, F., Iacob, G., and Barbos, A.. Chirurgia (Bucur) 2007:185-90

Analysis of complications following partial and total nephrectomy for renal cancer in a population based sample. Joudi, F. N., Allareddy, V., Kane, C. J., and Konety, B. R.. J Urol 2007:1709-14

Analysis of impact of body mass index on outcomes of laparoscopic renal surgery. Gong, E. M., Orvieto, M. A., Lyon, M. B., Lucioni, A., Gerber, G. S., and Shalhav, A. L.. Urology 2007:38-43

A prospective comparison of transperitoneal and retroperitoneal laparoscopic nephrectomy in the extremely obese patient. Berglund, R. K., Gill, I. S., Babineau, D., Desai, M., and Kaouk, J. H.. BJU Int 2007:871-4

The efficacy and safety of laparoscopic nephrectomy in patients with three or more comorbidities. Naya, Y., Tobe, T., Suyama, T., Araki, K., Komiya, A., Suzuki, H., Igarashi, T., and Ichikawa, T.. Int J Urol 2007:17-20

Perioperative clinical thromboembolic events after radical or partial nephrectomy. Pettus, J. A., Eggener, S. E., Shabsigh, A., Yanke, B., Snyder, M. E., Serio, A., Vickers, A., Russo, P., and Donat, S. M.. Urology 2006:988-92

Obesity as a risk factor for complications during laparoscopic surgery for renal cancer: multivariate analysis. Kurzer, E., Leveillee, R., and Bird, V.. J Endourol 2006:794-9

Minimizing knot tying during reconstructive laparoscopic urology. Shalhav, A. L., Orvieto, M. A., Chien, G. W., Mikhail, A. A., Zagaja, G. P., and Zorn, K. C.. Urology 2006:508-13

Organ-preserving endoscopic kidney cancer resection. Heinrich, E., Egner, T., Noe, M., Schiefelbein, F., and Schoen, G.. Eur Urol 2006:732-7

Sutureless nephron-sparing surgery: use of albumin glutaraldehyde tissue adhesive (BioGlue). Hidas, G., Kastin, A., Mullerad, M., Shental, J., Moskovitz, B., and Nativ, O.. Urology 2006:697-700; discussion 700

Incidence and treatment of complications in nephron sparing surgery. Seveso, M., Maugeri, O., Taverna, G., Giusti, G., Piccinelli, A., Benetti, A., Pasini, L., and Graziotti, P.. Arch Ital Urol Androl 2005:206-10

Renal artery pseudoaneurysm following laparoscopic partial nephrectomy. Singh, D. and Gill, I. S.. J Urol 2005 :2256-9

Laparoscopic partial nephrectomy: is it advantageous and safe to clamp the renal artery? Nadu, A., Kitrey, N., Mor, Y., Golomb, J., and Ramon, J., Urology 2005:279-82

Urological retroperitoneoscopic surgery for patients with prior intra-abdominal surgery. Mita, K., Shigeta, M., Mutaguchi, K., Matsubara, A., Yoshino, T., Seki, M., Mochizuki, H., Kato, M., Teishima, J., Kadonishi, Y., Yasumoto, H., and Usui, T.. Eur Urol 2005:97-101

Retroperitoneal laparoscopic nephron-sparing surgery for renal tumors: report of 32 cases. Zhang, X., Li, H. Z., Ma, X., Zheng, T., Li, L. C., and Ye, Z. Q.. Urology 2005:1080-4; discussion 1084-5

Laparoscopic partial nephrectomy: hand-assisted technique. Strup, S., Garrett, J., Gomella, L., and Rowland, R.. J Endourol 2005:456-9; discussion 459-60

Hemorrhagic complications after nephron-sparing surgery: angiographic diagnosis and management by transcatheter embolization. Heye, S., Maleux, G., Van Poppel, H., Oyen, R., and Wilms, G. AJR Am J Roentgenol 2005:1661-4

Closed suction or penrose drainage after partial nephrectomy: does it matter? Sanchez-Ortiz, R., Madsen, L. T., Swanson, D. A., Canfield, S. E., and Wood, C. G.. J Urol 2004:244-6

Benefits of laparoscopic renal surgery are more pronounced in patients with a high body mass index. Klingler, H. C., Remzi, M., Janetschek, G., and Marberger, M.. Eur Urol 2003:522-7

[Perioperative antibiotic prophylaxis in transperitoneal tumor nephrectomy: does it lower the rate of clinically significant postoperative infections?]. Steiner, T., Traue, C., and Schubert, J.. Urologe A 2003:34-7

Improvement of hemostasis in open and laparoscopically performed partial nephrectomy using a gelatin matrix-thrombin tissue sealant (FloSeal). Richter, F., Schnorr, D., Deger, S., Trk, I., Roigas, J., Wille, A., and Loening, S. A.. Urology 2003:73-7

Blood loss and the need for transfusion in patients who undergo partial or radical nephrectomy for renal cell carcinoma. Shvarts, O., Tsui, K. H., Smith, R. B., Kernion, J. B., and Belldegrun, A.. J Urol 2000:1160-3

Incisional hernia after laparoscopic nephrectomy with intact specimen removal: caveat emptor. Elashry, O. M., Giusti, G., Nadler, R. B., McDougall, E. M., and Clayman, R. V.. J Urol 97:363-9

Risk factors for postoperative hemorrhage after partial nephrectomy. Jung S., Min G.E., Chung B.I., and Jeon S.H.. Korean J. Urol. 2014:17-22

Robotic assisted Laparoscopic partial Nephrectomy for suspected Renal Cell Carcinoma: Retrospective review of surgical outcomes of 35 Cases. Bhayani S.B. and Das N.. BMC Surg. 2008:

Use of Haemostatic Agents and Glues during Laparoscopic Partial Nephrectomy: A Multi-Institutional Survey from the United States and Europe of 1347 Cases { A figure is presented }. Breda A., Stepanian S.V., Lam J.S., Liao J.C., Gill I.S., Colombo J.R., Guazzoni G., Stifelman M.D., Perry K.T., Celia A., Breda G., Fornara P., Jackman S.V., Rosales A., Palou J., Grasso M., Pansadoro V., Disanto V., Porpiglia F., Milani C., Abbou C.C., Gaston R., Janetschek G., Soomro N.A., De la Rosette J.J., Laguna P.M., and Schulam P.G.. Eur. Urol. 2007:798-803

Direct real-time temperature monitoring for laparoscopic and CT-guided radiofrequency ablation of renal tumors between 3 and 5 cm. Carey R.I. and Leveillee R.J.. J. Endourol. 2007:807-813

Percutaneous renal cryoablation: Feasibility under local anesthesia. De Kerviler E., Coffin A., De Bazelaire C., Meria P., Mongiat-Artus P., and Desgrandchamps F.. Cardiovasc. Intervent. Radiol. 2014:S234

Percutaneous renal cryoablation: Feasibility under local anesthesia. De Kerviler E., Coffin A., De Bazelaire C., Meria P., Mongiat-Artus P., and Desgrandchamps F.. Cardiovasc. Intervent. Radiol. 2014:S234

The impact of hospital volume on postoperative complications following robot-assisted partial nephrectomy. Monn, M. F., Bahler, C. D., Flack, C. K., Dube, H. T., and Sundaram, C. P.. J Endourol 2014:1231-6

Laparoscopic partial nephrectomy for multilocular cystic renal cell carcinoma: a potential gold standard treatment with excellent perioperative outcomes. Xu, B., Mi, Y., Zhou, L. Q., Jin, J., Zhang, Q., and Chen, G. F.. World J Surg Oncol 2014:111

Growth kinetics and short-term outcomes of cT1b and cT2 renal masses under active surveillance. Mehrazin, R., Smaldone, M. C., Kutikov, A., Li, T., Tomaszewski, J. J., Canter, D. J., Viterbo, R., Greenberg, R. E., Chen, D. Y., and Uzzo, R. G.. J Urol 2014:659-64

A single overnight stay is possible for most patients undergoing robotic partial nephrectomy. Abaza, R. and Shah, K.. Urology 2013:301-6

Near-infrared fluorescence imaging to facilitate superselective arterial clamping during zero-ischaemia robotic partial nephrectomy. Borofsky, M. S., Gill, I. S., Hemal, A. K., Marien, T. P., Jayaratna, I., Krane, L. S., and Stifelman, M. D.. BJU Int 2013:604-10

Application of retroperitoneal laparoscopic partial nephrectomy for renal cell carcinoma of the early stage. Wang, J., Qi, L., Zu, X., and Chen, M.. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2012:485-90

Comparison of total, selective, and nonarterial clamping techniques during laparoscopic and robot-assisted partial nephrectomy. Martin, G. L., Warner, J. N., Nateras, R. N., Andrews, P. E., Humphreys, M. R., and Castle, E. P.. J Endourol 2012:152-6

Complications of renal cryoablation: a single center experience. Sidana, A., Aggarwal, P., Feng, Z., Georgiades, C. S., Trock, B. J., and Rodriguez, R.. J Urol 2010:42-7

Laparoscopic and open partial nephrectomy: frequency and long-term follow-up of postoperative collections. Hecht, E. M., Bennett, G. L., Brown, K. W., Robbins, D., Hyams, E. S., Taneja, S. S., and Stifelman, M. A.. Radiology 2010:476-84

Laparoscopic partial nephrectomy for technically challenging tumours. Shikanov, S., Lifshitz, D. A., Deklaj, T., Katz, M. H., and Shalhav, A. L.. BJU Int 2010:91-4

Robotic partial nephrectomy versus laparoscopic partial nephrectomy for renal cell carcinoma: single-surgeon analysis of >100 consecutive procedures. Wang, A. J. and Bhayani, S. B.. Urology 2009:306-10

The impact of minimally invasive techniques on open partial nephrectomy: a 10-year single institutional experience. Weight, C. J., Fergany, A. F., Gunn, P. W., Lane, B. R., and Novick, A. C.. J Urol 2008:84-8

Laparoscopic partial nephrectomy: fifty cases. Bhayani, S. B.. J Endourol 2008:313-6

Comparison of transperitoneal versus retroperitoneal approach in laparoscopic radical nephrectomy for renal cell carcinoma: a single-center experience of 63 cases. Berdjis, N., Hakenberg, O. W., Leike, S., Zastrow, S., Manseck, A., Oehlschlager, S., and Wirth, M. P.. Urol Int 2006:166-9

Retroperitoneoscopic radical nephrectomy in obese patients: outcomes and considerations. Inoue, S., Mita, K., Shigeta, M., Mochizuki, H., Tanabe, T., Moriyama, H., and Usui, T.. Urol Int 2006:252-5

Laparoscopic versus open partial nephrectomy. Beasley, K. A., Al Omar, M., Shaikh, A., Bochinski, D., Khakhar, A., Izawa, J. I., Welch, R. O., Chin, J. L., Kapoor, A., and Luke, P. P.. Urology 2004:458-61

Renal artery occlusion during nephron-sparing surgery: Retrospective review of 301 cases. Duvdevani M., Mor Y., Kastin A., Laufer M., Nadu A., Golomb J., Zilberman D., Nativ O., and Ramon J.. Urology 2006:960-963

Renal sinus exposure as an independent factor predicting asymptomatic unruptured pseudoaneurysm formation detected in the early postoperative period after minimally invasive partial nephrectomy. Omae K., Kondo T., Takagi T., Morita S., Hashimoto Y., Kobayashi H., Iizuka J., Nozaki T., Yoshida K., and Tanabe K.. Int. J. Urol. 2015:356-361

Not relevant to key questions

The preoperative prognostic nutritional index is an independent predictor of survival in patients with renal cell carcinoma. Hofbauer, S. L., Pantuck, A. J., de Martino, M., Lucca, I., Haitel, A., Shariat, S. F., Belldegrun, A. S., and Klatte, T.. Urol Oncol 2014:

Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Haddad, A. Q., Kapur, P., Singla, N., Raman, J. D., Then, M. T., Nuhn, P., Buchner, A., Bastian, P., Seitz, C., Shariat, S. F., Bensalah, K., Rioux-Leclercq, N., Sagalowsky, A., Lotan, Y., and Margulis, V.. Cancer 2014:

Comparative Studies of the Proteome, Glycoproteome, and N-Glycome of Clear Cell Renal Cell Carcinoma Plasma before and after Curative Nephrectomy. Gbormittah, F. O., Lee, L. Y., Taylor, K., Hancock, W. S., and Iliopoulos, O.. J Proteome Res 2014:

Tumor miR-125b predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Fu, Q., Liu, Z., Pan, D., Zhang, W., Xu, L., Zhu, Y., Liu, H., and Xu, J.. Cancer Sci 2014:

Increased expression of Chitinase 3-like 1 and microvessel density predicts metastasis and poor prognosis in clear cell renal cell carcinoma. Zhang, J. P., Yuan, H. X., Kong, W. T., Liu, Y., Lin, Z. M., Wangs, W. P., and Guo, J. M.. Tumour Biol 2014:

Clinical Symptoms Predict Poor Overall Survival in Chronic-dialysis Patients with Renal Cell Carcinoma Associated with End-stage Renal Disease. Ikezawa, E., Kondo, T., Hashimoto, Y., Kobayashi, H., Iizuka, J., Takagi, T., Omae, K., and Tanabe, K.. Jpn J Clin Oncol 2014:

High preoperative C-reactive protein values predict poor survival in patients on chronic hemodialysis undergoing nephrectomy for renal cancer. Omae, K., Kondo, T., and Tanabe, K., Urol Oncol 2014:

Pretherapeutic gamma-glutamyltransferase is an independent prognostic factor for patients with renal cell carcinoma. Hofbauer, S. L., Stangl, K. I., de Martino, M., Lucca, I., Haitel, A., Shariat, S. F., and Klatte, T.. Br J Cancer 2014:

Expression of Neural Wiskott-Aldrich Syndrome Protein in Clear Cell Renal Cell Carcinoma and Its Correlation with Clinicopathological Features. Liu, G. H., Chen, J., Ji, Z. G., and Zhou, L.. Urol Int 2014:

Factors Associated With Diagnostic Accuracy When Performing a Pre-Ablation Renal Biopsy. Lorber, G., Jorda, M., and Leveillee, R. J.. J Endourol 2014:

Clinicopathologic Outcomes of Cystic Renal Cell Carcinoma. Donin, N. M., Mohan, S., Pham, H., Chandarana, H., Doshi, A., Deng, F. M., Stifelman, M. D., Taneja, S. S., and Huang, W. C.. Clin Genitourin Cancer 2014:

Low preoperative lymphocyte-monocyte ratio (LMR) represents a potentially poor prognostic factor in nonmetastatic clear cell renal cell carcinoma. Hutterer, G. C., Stoeckigt, C., Stojakovic, T., Jesche, J., Eberhard, K.,

Pummer, K., Zigeuner, R., and Pichler, M.. Urol Oncol 2014:

Surgeon-specific factors affecting treatment decisions among Canadian urologists in the management of pT1a renal tumours. Millman, A. L., Pace, K. T., Ordon, M., and Lee, J. Y.. Can Urol Assoc J 2014:183-9

Neutrophil-lymphocyte ratio in small renal masses. Bazzi, W. M., Dejbakhsh, S. Z., Bernstein, M., and Russo, P.. ISRN Urol 2014:759253

Comparison of diameter-axial-polar nephrometry and RENAL nephrometry score for treatment decision-making in patients with small renal mass. Naya, Y., Kawauchi, A., Oishi, M., Ueda, T., Fujihara, A., Naito, Y., Nakamura, T., Hongo, F., Kamoi, K., Okihara, K., and Miki, T.. Int J Clin Oncol 2014:

Diabetes Mellitus Is Independently Associated with an Increased Risk of Mortality in Patients with Clear Cell Renal Cell Carcinoma. Psutka, S. P., Stewart, S. B., Boorjian, S. A., Lohse, C. M., Tollefson, M. K., Cheville, J. C., Leibovich, B. C., and Thompson, R. H.. J Urol 2014:

Tumor signatures of PTHLH overexpression, high serum calcium, and poor prognosis were observed exclusively in clear cell but not non clear cell renal carcinomas. Yao, M., Murakami, T., Shioi, K., Mizuno, N., Ito, H., Kondo, K., Hasumi, H., Sano, F., Makiyama, K., Nakaigawa, N., Kishida, T., Nagashima, Y., Yamanaka, S., and Kubota, Y.. Cancer Med 2014:845-54

Extent of lymph node dissection at nephrectomy affects cancer-specific survival and metastatic progression in specific sub-categories of patients with renal cell carcinoma (RCC). Capitanio, U., Suardi, N., Matloob, R., Roscigno, M., Abdollah, F., Di Trapani, E., Moschini, M., Gallina, A., Salonia, A., Briganti, A., Montorsi, F., and Bertini, R.. BJU Int 2014:210-5

Is the follow-up of small renal angiomyolipomas a necessary precaution?. Maclean, D. F., Sultana, R., Radwan, R., McKnight, L., and Khastgir, J.. Clin Radiol 2014:822-6

[Significance of the R.E.N. A.L. nephrometry scoring system in renal tumour of T1 stage]. Liu, Y., Wang, H., Mao, X., Jing, T., Jiang, D., Ji, J., Liu, S., and Song, S.. Zhonghua Wai Ke Za Zhi 2014:139-42

Prognostic value of clinical and pathological factors for surgically treated localized clear cell renal cell carcinoma. Teng, J., Gao, Y., Chen, M., Wang, K., Cui, X., Liu, Y., and Xu, D.. Chin Med J (Engl) 2014:1640-4

GALNT4 Predicts Clinical Outcome in Patients with Clear Cell Renal Cell Carcinoma. Liu, Y., Liu, W., Xu, L., Liu, H., Zhang, W., Zhu, Y., Xu, J., and Gu, J.. J Urol 2014:

Analysis and validation of tissue biomarkers for renal cell carcinoma using automated high-throughput evaluation of protein expression. Abel, E. J., Bauman, T. M., Weiker, M., Shi, F., Downs, T. M., Jarrard, D. F., and Huang, W.. Hum Pathol 2014:1092-9

Preoperative butyrylcholinesterase level as an independent predictor of overall survival in clear cell renal cell carcinoma patients treated with nephrectomy. Koie, T., Ohyama, C., Mikami, J., Iwamura, H., Fujita, N., Sato, T., Kojima, Y., Fukushi, K., Yamamoto, H., Imai, A., Hatakeyama, S., Yoneyama, T., Hashimoto, Y., Kitayama, M., and Hirota, K.. ScientificWorldJournal 2014:948305

Novel prognostic model for patients with sarcomatoid renal cell carcinoma. Zhang, B. Y., Thompson, R. H., Lohse, C. M., Leibovich, B. C., Boorjian, S. A., Cheville, J. C., and Costello, B. A.. BJU Int 2014:

Prognostic Significance of p21-activated Kinase 6 Expression in Patients with Clear Cell Renal Cell Carcinoma. Liu, W., Liu, H., Liu, Y., Xu, L., Zhang, W., Zhu, Y., Xu, J., and Gu, J.. Ann Surg Oncol 2014:

Enhanced computed tomography after partial nephrectomy in early postoperative period to detect asymptomatic renal artery pseudoaneurysm. Takagi, T., Kondo, T., Tajima, T., Campbell, S. C., and Tanabe, K.. Int J Urol 2014:880-5

Approach via a small retroperitoneal anterior subcostal incision in the supine position for gasless laparoendoscopic single-port radical nephrectomy: initial experience of 42 patients. Morita, T., Fujisaki, A., Kubo, T., and Kurokawa, S.. BMC Urol 2014:29

Preoperative serum cholesterol is an independent prognostic factor for patients with renal cell carcinoma (RCC). de Martino, M., Leitner, C. V., Seemann, C., Hofbauer, S. L., Lucca, I., Haitel, A., Shariat, S. F., and Klatte, T.. BJU Int 2014:

Chromosome 9p deletions are an independent predictor of tumor progression following nephrectomy in patients with localized clear cell renal cell carcinoma. de Oliveira, D., Dall'Oglio, M. F., Reis, S. T., Zerati, M., Souza, I. C., Leite, K. R., and Srougi, M.. Urol Oncol 2014:601-6

Use and outcomes of extended antibiotic prophylaxis in urological cancer surgery. Calvert, J. K., Holt, S. K., Mossanen, M., James, A. C., Wright, J. L., Porter, M. P., and Gore, J. L.. J Urol 2014:425-9

Delay in nephrectomy and cancer control outcomes in elderly patients with small renal masses. Becker, A., Roghmann, F., Ravi, P., Tian, Z., Kluth, L. A., Gandaglia, G., Noldus, J., Dahlem, R., Schlomm, T., Graefen, M., Karakiewicz, P. I., Trinh, Q. D., and Sun, M.. Urol Int 2014:455-61

Factors Influencing the Operative Approach to Renal Tumors: Analyses According to RENAL Nephrometry Scores. Oh, J. H., Rhew, H. Y., and Kim, T. S.. Korean J Urol 2014:97-101

Growth kinetics of small renal masses: A prospective analysis from the Renal Cell Carcinoma Consortium of Canada. Organ, M., Jewett, M., Basiuk, J., Morash, C., Pautler, S., Siemens, D. R., Tanguay, S., Gleave, M., Drachenberg, D., Chow, R., Chin, J., Evans, A., Fleshner, N., Gallie, B., Haider, M., Kachura, J., Finelli, A., and Rendon, R. A.. Can Urol Assoc J 2014:24-7

Association of type of renal surgery and access to robotic technology for kidney cancer: results from a population-based cohort. Kardos, S. V., Gross, C. P., Shah, N. D., Schulam, P. G., Trinh, Q. D., Smaldone, M. C., Sun, M., Weight, C. J., Sammon, J., Han, L. C., and Kim, S. P.. BJU Int 2014:549-54

Current patterns of presentation and treatment of renal masses: a clinical research office of the endourological society prospective study. Laguna, M. P., Algaba, F., Cadeddu, J., Clayman, R., Gill, I., Gueglio, G., Hohenfellner, M., Joyce, A., Landman, J., Lee, B., and van Poppel, H.. J Endourol 2014:861-70

Simple enucleation versus standard partial nephrectomy for clinical T1 renal masses: perioperative outcomes based on a matched-pair comparison of 396 patients (RECORd project). Longo, N., Minervini, A., Antonelli, A., Bianchi, G., Bocciardi, A. M., Cunico, S. C., Fiori, C., Fusco, F., Giancane, S., Mari, A., Martorana, G., Mirone, V., Morgia, G., Novara, G., Porpiglia, F., Raspollini, M. R., Rocco, F., Rovereto, B., Schiavina, R., Serni, S., Simeone, C., Verze, P., Volpe, A., Ficarra, V., and Carini, M.. Eur J Surg Oncol 2014:762-8

Utilization of renal mass biopsy in patients with renal cell carcinoma. Leppert, J. T., Hanley, J., Wagner, T. H., Chung, B. I., Srinivas, S., Chertow, G. M., Brooks, J. D., and Saigal, C. S.. Urology 2014:774-9

Impact of Recurrent Copy Number Alterations and Cancer Gene Mutations on the Predictive Accuracy of Prognostic Models in Clear Cell Renal Cell Carcinoma. Hakimi, A. A., Mano, R., Ciriello, G., Gonen, M., Mikkilineni, N., Sfakianos, J. P., Kim, P. H., Motzer, R. J., Russo, P., Reuter, V. E., Hsieh, J. J., and Ostrovnaya, I... J Urol 2014:

Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma. White, N. M., Masui, O., Desouza, L. V., Krakovska, O., Metias, S., Romaschin, A. D., Honey, R. J., Stewart, R., Pace, K., Lee, J., Jewett, M. A., Bjarnason, G. A., Siu, K. W., and Yousef, G. M.. Oncotarget 2014:506-18

MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma. Jones, E. E., Powers, T. W., Neely, B. A., Cazares, L. H., Troyer, D. A., Parker, A. S., and Drake, R. R.. Proteomics 2014:924-35

The impact of perioperative blood transfusion on survival after nephrectomy for non-metastatic renal cell carcinoma (RCC). Linder, B. J., Thompson, R. H., Leibovich, B. C., Cheville, J. C., Lohse, C. M., Gastineau, D. A., and Boorjian, S. A. BJU Int 2014:368-74

A novel 3-dimensional image analysis system for casespecific kidney anatomy and surgical simulation to facilitate clampless partial nephrectomy. Komai, Y., Sakai, Y., Gotohda, N., Kobayashi, T., Kawakami, S., and Saito, N.. Urology 2014:500-6

Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization.

Gowrishankar, B., Cahill, L., Arndt, A. E., Al-Ahmadie, H., Lin, O., Chadalavada, K., Chaganti, S., Nanjangud, G. J., Murty, V. V., Chaganti, R. S., Reuter, V. E., and Houldsworth, J.. BJU Int 2014:

Renal cell carcinoma is more aggressive in Turkish patients with the metabolic syndrome. Ozbek, E., Otunctemur, A., Sahin, S., Dursun, M., Besiroglu, H., Koklu, I., Polat, E. C., Erkoc, M., Danis, E., and Bozkurt, M.. Asian Pac J Cancer Prev 2013:7351-4

Interleukin-6 (IL-6) and C-reactive protein (CRP) concentration prior to total nephrectomy are prognostic factors in localized renal cell carcinoma (RCC). Hrab, M., Olek-Hrab, K., Antczak, A., Kwias, Z., and Milecki, T.. Rep Pract Oncol Radiother 2013:304-9

Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Joseph, R. W., Kapur, P., Serie, D. J., Eckel-Passow, J. E., Parasramka, M., Ho, T., Cheville, J. C., Frenkel, E., Rakheja, D., Brugarolas, J., and Parker, A.. Cancer 2014:1059-67

Gender disparity in kidney cancer treatment: women are more likely to undergo radical excision of a localized renal mass. O'Malley, R. L., Underwood, W. 3rd, Brewer, K. A., Hayn, M. H., Kim, H. L., Mehedint, D. C., Safwat, M. W., Huang, W. C., and Schwaab, T.. Urology 2013:1065-9

Costs analysis of laparoendoscopic, single-site laparoscopic and open surgery for cT1 renal masses in a European high-volume centre. Pini, G., Ascalone, L., Greco, F., Mohammed, N., and Fornara, P.. World J Urol 2013:

The impact of metformin use on recurrence and cancerspecific survival in clinically localized high-risk renal cell carcinoma. Hakimi, A. A., Chen, L., Kim, P. H., Sjoberg, D., Glickman, L., Walker, M. R., and Russo, P.. Can Urol Assoc J 2013:E687-91

Age distribution for partial and radical nephrectomy: whose nephrons are being spared? von Klot, C., Herrmann, T. R., Wegener, G., Kuczyk, M. A., Hupe, M. C., Akkoyun, M., Peters, I., Kramer, M. W., and Merseburger, A. S.. Adv Ther 2013:924-32

Comparison of baseline quality of life measures between renal cell carcinoma patients undergoing partial versus radical nephrectomy. Arnold, M. L., Thiel, D. D., Diehl, N., Wu, K. J., Ames, S., and Parker, A. S.. BMC Urol 2013:52

Evolving epidemiologic trends in nonclear cell renal cell cancer: an analysis of the California Cancer Registry. Pai, A., Brunson, A., Brown, M., Pan, C. X., and Lara, P. N. Jr. Urology 2013:840-5

Role of CT in the assessment of muscular venous branch invasion in patients with renal cell carcinoma. Karlo, C. A., Donati, O. F., Marigliano, C., Tickoo, S. K., Hricak, H., Russo, P., and Akin, O.. AJR Am J Roentgenol 2013 :847-52

Can the Leibovich score for clear cell renal cell carcinoma (ccRCC) be accurately reported by a general pathologist?. Vasdev, N., Altal, Y., Mafeld, S., Wong, K., Chadwick, D.,

Gowda, B. D., Mutton, A., Nagarajan, S., and Bhatti, A.. BJU Int 2014:581-5

Do young patients with renal cell carcinoma feature a distinct outcome after surgery? A comparative analysis of patient age based on the multinational CORONA database. Aziz, A., May, M., Zigeuner, R., Pichler, M., Chromecki, T., Cindolo, L., Schips, L., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Hoschke, B., Gilfrich, C., Feciche, B., Fenske, F., Sountoulides, P., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Del Carmen Santiago Martin, M., Wieland, W. F., Salzano, L., Lotrecchiano, G., Waidelich, R., Stief, C., and Brookman-May, S.. J Urol 2014:310-5

Multi-institutional analysis of localized renal cell carcinoma that demonstrates the impact of diabetic status on prognosis after nephrectomy. Ha, Y. S., Kim, W. T., Yun, S. J., Lee, S. C., Kim, W. J., Park, Y. H., Kang, S. H., Hong, S. H., Byun, S. S., and Kim, Y. J.. Ann Surg Oncol 2013 :3662-8

Time to recurrence is a significant predictor of cancerspecific survival after recurrence in patients with recurrent renal cell carcinoma--results from a comprehensive multicentre database (CORONA/SATURN-Project). Brookman-May, S. D., May, M., Shariat, S. F., Novara, G., Zigeuner, R., Cindolo, L., De Cobelli, O., De Nunzio, C., Pahernik, S., Wirth, M. P., Longo, N., Simonato, A., Serni, S., Siracusano, S., Volpe, A., Morgia, G., Bertini, R., Dalpiaz, O., Stief, C., and Ficarra, V.. BJU Int 2013:909-16

Clear cell renal cell carcinoma and papillary renal cell carcinoma: differentiation of distinct histological types with multiphase CT. Bata, P., Gyebnar, J., Tarnoki, D. L., Tarnoki, A. D., Kekesi, D., Szendroi, A., Fejer, B., Szasz, A. M., Nyirady, P., Karlinger, K., and Berczi, V.. Diagn Interv Radiol 2013:387-92

Use of surveillance imaging following treatment of small renal masses. Kowalczyk, K. J., Harbin, A. C., Choueiri, T. K., Hevelone, N. D., Lipsitz, S. R., Trinh, Q. D., Tina Shih, Y. C., and Hu, J. C.. J Urol 2013:1680-5

Active surveillance, radiofrequency ablation, or cryoablation for the nonsurgical management of a small renal mass: a cost-utility analysis. Bhan, S. N., Pautler, S. E., Shayegan, B., Voss, M. D., Goeree, R. A., and You, J. J.. Ann Surg Oncol 2013:3675-84

Overall survival advantage with partial nephrectomy: a bias of observational data?. Shuch, B., Hanley, J., Lai, J., Vourganti, S., Kim, S. P., Setodji, C. M., Dick, A. W., Chow, W. H., and Saigal, C.. Cancer 2013:2981-9

Cost-utility analysis of radical nephrectomy versus partial nephrectomy in the management of small renal masses: Adjusting for the burden of ensuing chronic kidney disease. Klinghoffer, Z., Tarride, J. E., Novara, G., Ficarra, V., Kapoor, A., Shayegan, B., and Braga, L. H.. Can Urol Assoc J 2013:108-13

Patient and caregiver knowledge and utilization of partial versus radical nephrectomy: results of a national kidney foundation survey to assess educational needs of kidney cancer patients and caregivers. Russo, P., Szczech, L. A.,

Torres, G. S., and Swartz, M. D.. Am J Kidney Dis 2013 :939-46

Validation of serum C-reactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC). de Martino, M., Klatte, T., Seemann, C., Waldert, M., Haitel, A., Schatzl, G., Remzi, M., and Weibl, P.. BJU Int 2013:E348-53

Trends in the surgical management of localized renal masses: thermal ablation, partial and radical nephrectomy in the USA, 1998-2008. Woldrich, J. M., Palazzi, K., Stroup, S. P., Sur, R. L., Parsons, J. K., Chang, D., and Derweesh, I. H.. BJU Int 2013:1261-8

Trends in partial and radical nephrectomy: an analysis of case logs from certifying urologists. Poon, S. A., Silberstein, J. L., Chen, L. Y., Ehdaie, B., Kim, P. H., and Russo, P.. J Urol 2013:464-9

Impact of clinical and histopathological parameters on disease specific survival in patients with collecting duct renal cell carcinoma: development of a disease specific risk model. May, M., Ficarra, V., Shariat, S. F., Zigeuner, R., Chromecki, T., Cindolo, L., Burger, M., Gunia, S., Feciche, B., Wenzl, V., Aziz, A., Chun, F., Becker, A., Pahernik, S., Simeone, C., Longo, N., Zucchi, A., Antonelli, A., Mirone, V., Stief, C., Novara, G., and Brookman-May, S.. J Urol 2013 :458-63

Use of nephron-sparing surgery among renal cell carcinoma patients with diabetes and hypertension. Filson, C. P., Schwartz, K., Colt, J. S., Ruterbusch, J., Linehan, W. M., Chow, W. H., and Miller, D. C.. Urol Oncol 2014:27.e15-21

Rates of open versus laparoscopic and partial versus radical nephrectomy for T1a renal cell carcinoma: a population-based evaluation. Bianchi, M., Becker, A., Abdollah, F., Trinh, Q. D., Hansen, J., Tian, Z., Shariat, S. F., Perrotte, P., Karakiewicz, P. I., and Sun, M.. Int J Urol 2013:1064-71

Fenoldopam and renal function after partial nephrectomy in a solitary kidney: a randomized, blinded trial. O'Hara, J. F. Jr, Mahboobi, R., Novak, S. M., Bonilla, A. M., Mascha, E. J., Fergany, A. F., Campbell, S. C., Kaouk, J. H., Kaple, K. M., Gill, I. S., Ziegman, S. A., and Sessler, D. I.. Urology 2013:340-5

Clinical characteristics associated with treatment type for localized renal tumors: implications for practice pattern assessment. Smaldone, M. C., Churukanti, G., Simhan, J., Kim, S. P., Reyes, J., Zhu, F., Kutikov, A., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Urology 2013:269-75

Differential use of partial nephrectomy for intermediate and high complexity tumors may explain variability in reported utilization rates. Lane, B. R., Golan, S., Eggener, S., Tobert, C. M., Kahnoski, R. J., Kutikov, A., Smaldone, M., Whelan, C. M., Shalhav, A., and Uzzo, R. G.. J Urol 2013:2047-53

Does mechanical bowel preparation improve quality of laparoscopic nephrectomy? Propensity score-matched analysis in Japanese series. Sugihara, T., Yasunaga, H., Horiguchi, H., Fujimura, T., Nishimatsu, H., Ohe, K., Matsuda, S., Fushimi, K., Kattan, M. W., and Homma, Y.. Urology 2013:74-9

Radiofrequency ablation of small renal masses as an alternative to nephron-sparing surgery: preliminary results. Jasinski, M., Siekiera, J., Chlosta, P., Mikolajczak, W., and Drewa, T.. Wideochir Inne Tech Malo Inwazyjne 2011 :242-5

Pre-operative imaging may overestimate the kidney tumor size. Nasseh, H. R., Falahatkar, S., Ghanbari, A., and Bagheri Chenari, H.. Urol J 2012:662-6

Single nucleotide polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort study. Schutz, F. A., Pomerantz, M. M., Gray, K. P., Atkins, M. B., Rosenberg, J. E., Hirsch, M. S., McDermott, D. F., Lampron, M. E., Lee, G. S., Signoretti, S., Kantoff, P. W., Freedman, M. L., and Choueiri, T. K.. Lancet Oncol 2013:81-7

Wide range and variation in minimally invasive surgery for renal malignancy in Japan: a population-based analysis. Sugihara, T., Yasunaga, H., Horiguchi, H., Tsuru, N., Fujimura, T., Nishimatsu, H., Kume, H., Ohe, K., Matsuda, S., Fushimi, K., and Homma, Y.. Int J Clin Oncol 2013:1070-7

[The use of Surgisis(R) optimizes and simplifies partial nephrectomy for large renal tumors]. Schnoeller, T. J., de Petriconi, R., Hefty, R., Jentzmik, F., Al Ghazal, A., Steinestel, J., Mueller, J., Zengerling, F., Schrader, M., and Schrader, A. J.. Urologe A 2013:246-51

Nature of lesions undergoing radical nephrectomy for renal cancer. Mustafa, G., Ilhan, G., Necip, P., Kerem, T., and Kadir, C.. Asian Pac J Cancer Prev 2012 :4431-3

A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer. Yaycioglu, O., Eskicorapci, S., Karabulut, E., Soyupak, B., Gogus, C., Divrik, T., Turkeri, L., Yazici, S., and Ozen, H.. Jpn J Clin Oncol 2013:63-8

Uric acid levels correlate with baseline renal function and high levels are a potent risk factor for postoperative chronic kidney disease in patients with renal cell carcinoma. Jeon, H. G., Choo, S. H., Jeong, B. C., Seo, S. I., Jeon, S. S., Choi, H. Y., and Lee, H. M.. J Urol 2013:1249-54

Cyclooxygenase-2 expression and its prognostic significance in clear cell renal cell carcinoma. Lee, J. W., Park, J. H., Suh, J. H., Nam, K. H., Choe, J. Y., Jung, H. Y., Chae, J. Y., and Moon, K. C.. Korean J Pathol 2012 :237-45

Predictive ability of the 2002 and 2010 versions of the Tumour-Node-Metastasis classification system regarding metastasis-free, cancer-specific and overall survival in a European renal cell carcinoma single-centre series. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Groselj-Strele, A., Pummer, K., and Zigeuner, R., BJU Int 2013 :E191-5

Competing risks of death in patients with localized renal cell carcinoma: a comorbidity based model. Kutikov, A., Egleston, B. L., Canter, D., Smaldone, M. C., Wong, Y. N., and Uzzo, R. G.. J Urol 2012:2077-83

A novel technique to limit renal warm ischaemia time during laparoscopic partial nephrectomy. Sapre, N., Corcoran, N. M., Costello, A. J., and Agarwal, D. BJU Int 2012:1216-9

CD44 is associated with tumor recurrence and is an independent poor prognostic factor for patients with localized clear cell renal cell carcinoma after nephrectomy. Jeong, B. J., Liang, Z. L., Huang, S. M., Lim, J. S., Kim, J. M., and Lee, H. J.. Exp Ther Med 2012:811-817

[Analysis of clinicopathological features and prognosis in 68 patients with chromophobe renal cell carcinoma]. Huang, J. W., Zhang, J., Dong, B. J., Kong, W., Niu, S. X., Chen, Y. H., Xue, W., Liu, D. M., and Huang, Y. R.. Zhonghua Zhong Liu Za Zhi 2012:510-3

Renal volumetric analysis: a new paradigm in renal mass treatment assessment. Gorbatiy, V., Iremashvili, V., Castro, A., Mure, A., Ortiz, N., Castle, S. M., and Leveillee, R. J.. J Endourol 2013:361-5

Association of clinical and radiographic features with perinephric "sticky" fat. Bylund, J. R., Qiong, H., Crispen, P. L., Venkatesh, R., and Strup, S. E.. J Endourol 2013:370-3

Validation of CRP as prognostic marker for renal cell carcinoma in a large series of patients. Steffens, S., Kohler, A., Rudolph, R., Eggers, H., Seidel, C., Janssen, M., Wegener, G., Schrader, M., Kuczyk, M. A., and Schrader, A. J.. BMC Cancer 2012:399

Partial nephrectomy: is there an advantage of the self-retaining barbed suture in the perioperative period? A matched case-control comparison. Zondervan, P. J., Gozen, A. S., Opondo, D., Rassweiler, J. J., de la Rosette, J. J., and Laguna, M. P.. World J Urol 2012:659-64

Assessment of the pathologic inclusion criteria from contemporary adjuvant clinical trials for predicting disease progression after nephrectomy for renal cell carcinoma. Kim, S. P., Crispen, P. L., Thompson, R. H., Weight, C. J., Boorjian, S. A., Costello, B. A., Lohse, C. M., and Leibovich, B. C.. Cancer 2012:4412-20

Carcinoma of the collecting ducts of Bellini and renal medullary carcinoma: clinicopathologic analysis of 52 cases of rare aggressive subtypes of renal cell carcinoma with a focus on their interrelationship. Gupta, R., Billis, A., Shah, R. B., Moch, H., Osunkoya, A. O., Jochum, W., Hes, O., Bacchi, C. E., de Castro, M. G., Hansel, D. E., Zhou, M., Vankalakunti, M., Salles, P. G., Cabrera, R. A., Gown, A. M., and Amin, M. B.. Am J Surg Pathol 2012:1265-78

Prognostic significance of high nuclear grade in patients with pathologic T1a renal cell carcinoma. Suzuki, K., Mizuno, R., Mikami, S., Tanaka, N., Kanao, K., Kikuchi, E., Miyajima, A., Nakagawa, K., and Oya, M.. Jpn J Clin Oncol 2012:831-5

Tumour-related imaging parameters predicting the percentage of preserved normal renal parenchyma following nephron sparing surgery: a retrospective study. Aertsen, M., De Keyzer, F., Van Poppel, H., Joniau, S., De Wever, L., Lerut, E., Oyen, R., and Claus, F.. Eur Radiol 2013 :280-6

Kidney size and cancer-specific survival for patients undergoing nephrectomy for pT1 clear cell renal cell carcinoma. Jorns, J. J., Thiel, D. D., Lohse, C., Williams, A., Arnold, M., Cheville, J., Leibovich, B., and Parker, A. S.. Urology 2012:147-50

Antimicrobial prophylaxis is not necessary in clean category minimally invasive surgery for renal and adrenal tumors: a prospective study of 373 consecutive patients. Kijima, T., Masuda, H., Yoshida, S., Tatokoro, M., Yokoyama, M., Numao, N., Saito, K., Koga, F., Fujii, Y., and Kihara, K.. Urology 2012:570-5

[Analysis of the evolution of surgery for the treatment of primary renal tumors during the period 2006-2010: report of 458 consecutive surgeries]. Bellec, L., Thoulouzan, M., Soler, P., Khedis, M., Walschaerts, M., Delaunay, B., Crenn, G., Salloum, A., Rouvellat, P., Malavaud, B., Rischmann, P., Plante, P., Soulie, M., and Huyghe, E.. Prog Urol 2012:520-8

Assessing performance trends in laparoscopic nephrectomy and nephron-sparing surgery for localized renal tumors. Smaldone, M. C., Kutikov, A., Egleston, B., Simhan, J., Canter, D. J., Teper, E., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Urology 2012 :286-91

Staging lymphadenectomy in renal cell carcinoma must be extended: a sensitivity curve analysis. Capitanio, U., Suardi, N., Matloob, R., Abdollah, F., Castiglione, F., Briganti, A., Carenzi, C., Roscigno, M., Montorsi, F., and Bertini, R.. BJU Int 2013:412-8

Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. Keegan, K. A., Schupp, C. W., Chamie, K., Hellenthal, N. J., Evans, C. P., and Koppie, T. M.. J Urol 2012:391-7

The effect of race and gender on the surgical management of the small renal mass. Kates, M., Whalen, M. J., Badalato, G. M., and McKiernan, J. M.. Urol Oncol 2013:1794-9

Comparison of two core biopsy techniques before and after laparoscopic cryoablation of small renal cortical neoplasms. Truesdale, M. D., Mues, A. C., Sartori, S., Casazza, C. N., Hruby, G. W., Harik, L. R., O'Toole, K. M., Badani, K. K., Perez-Lanzac, A., and Landman, J.. JSLS 2011:509-16

RENAL nephrometry score predicts surgery type independent of individual surgeon's use of nephron-sparing surgery. Tobert, C. M., Kahnoski, R. J., Thompson, D. E., Anema, J. G., Kuntzman, R. S., and Lane, B. R.. Urology 2012:157-61

Characteristics and outcomes of tumors arising from the distal nephron. Abern, M. R., Tsivian, M., Polascik, T. J., and Coogan, C. L.. Urology 2012:140-6

Perioperative outcomes of laparoscopic radical nephrectomy for renal cell carcinoma in patients with dialysis-dependent end-stage renal disease. Yamashita, K., Ito, F., and Nakazawa, H.. Ther Apher Dial 2012:254-9

Integrating robotic partial nephrectomy to an existing robotic surgery program. Yuh, B., Muldrew, S., Menchaca, A., Yip, W., Lau, C., Wilson, T., and Josephson, D.. Can J Urol 2012:6193-200

Simplified hemostatic technique during laparoscopic partial nephrectomy. Tsivian, A., Tsivian, M., Benjamin, S., and Sidi, A. A.. Int Braz J Urol 2012:84-8

The fate of small renal masses, less then 1 cm size: outcome study. Lang, E. K., Hanano, A., Rudman, E., Thomas, R., Myers, L., Nguyen, Q., and Macchia, R. J.. Int Braz J Urol 2012:40-8; discussion 48

Prognostic nomogram for disease-free survival in patients with renal adenocarcinoma. Di Capua Sacoto, C., Budia, A., Garcia-Fadrique, G., Lujan, S., Ruiz-Cerda, J. L., and Jimenez-Cruz, J. F.. Urol Int 2012:271-6

Evolving practice patterns for the management of small renal masses in the USA. Yang, G., Villalta, J. D., Meng, M. V., and Whitson, J. M.. BJU Int 2012:1156-61

[Relevance of the clinical-pathological predictive factors in force in chromophobe renal cell cancer]. Pardo, P., Rodriguez-Faba, O., Palou, J., Algaba, F., Breda, A., Esquena, S., and Villavicencio, H.. Actas Urol Esp 2012:527-31

Treatment management of small renal masses in the 21st century: a paradigm shift. Sun, M., Abdollah, F., Bianchi, M., Trinh, Q. D., Jeldres, C., Thuret, R., Tian, Z., Shariat, S. F., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. Ann Surg Oncol 2012:2380-7

Safety and outcomes of surgical treatment of renal cell carcinoma in the elderly. O'Malley, R. L., Hayn, M. H., Hellenthal, N. J., Kim, H. L., Underwood, W. 3rd, and Schwaab, T.. Can J Urol 2012:6111-7

Radiofrequency ablation of incidental benign small renal mass: outcomes and follow-up protocol. Tan, Y. K., Best, S. L., Olweny, E., Park, S., Trimmer, C., and Cadeddu, J. A.. Urology 2012:827-30

Prediction of growth rate of solid renal masses: utility of MR imaging features--preliminary experience. Dodelzon, K., Mussi, T. C., Babb, J. S., Taneja, S. S., and Rosenkrantz, A. B.. Radiology 2012:884-93

Histologic tumor necrosis is an independent prognostic indicator for clear cell and papillary renal cell carcinoma. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Rehak, P., Pummer, K., and Zigeuner, R.. Am J Clin Pathol 2012:283-9

National trends in the use of partial nephrectomy: a rising tide that has not lifted all boats. Patel, S. G., Penson, D. F., Pabla, B., Clark, P. E., Cookson, M. S., Chang, S. S., Herrell, S. D., Smith, J. A. Jr, and Barocas, D. A.. J Urol 2012:816-21

NDRG2 is involved in the oncogenic properties of renal cell carcinoma and its loss is a novel independent poor prognostic factor after nephrectomy. Liang, Z. L., Kang, K., Yoon, S., Huang, S. M., Lim, J. S., Kim, J. M., Lim, J. S., and Lee, H. J.. Ann Surg Oncol 2012:2763-72

Low local metastatic rate may widen indication of nephronsparing surgery for renal cell carcinoma. Xiong, Z. Q., Zheng, J., Feng, C. C., Bao, Y., Ding, Q., and Fang, Z. J.. Ann Diagn Pathol 2012:190-5

Chromophobe renal cell carcinoma: analysis of 53 cases. Zhao, P. J., Chen, X. P., Li, X. S., Yao, L., Zhang, C. J., Yu, W., He, Q., He, Z. S., and Zhou, L. Q.. J Cancer Res Clin Oncol 2012:451-4

Do we continue to unnecessarily perform ipsilateral adrenalectomy at the time of radical nephrectomy? A population based study. Yap, S. A., Alibhai, S. M., Abouassaly, R., Timilshina, N., and Finelli, A.. J Urol 2012:398-404

Direct upper kidney pole access and early ligation of renal pedicle significantly facilitates transperitoneal laparoscopic nephrectomy procedures: Tunc technique. Tunc, L., Canda, A. E., Polat, F., Onaran, M., Atkin, S., Biri, H., and Bozkirli, I.. Surg Laparosc Endosc Percutan Tech 2011:453-7

Trends in the use of of nephron-sparing surgery (NSS) at an Australian tertiary referral centre: an analysis of surgical decision-making using the R.E.N.A.L. nephrometry scoring system. Satasivam, P., Rajarubendra, N., Chia, P. H., Munshey, A., Sengupta, S., and Bolton, D.. BJU Int 2012:1341-4

Contemporary trends in nephrectomy for renal cell carcinoma in the United States: results from a population based cohort. Kim, S. P., Shah, N. D., Weight, C. J., Thompson, R. H., Moriarty, J. P., Shippee, N. D., Costello, B. A., Boorjian, S. A., and Leibovich, B. C.. J Urol 2011 :1779-85

Tumour size, tumour complexity, and surgical approach are associated with nephrectomy type in small renal cortical tumours treated electively. Broughton, G. J., Clark, P. E., Barocas, D. A., Cookson, M. S., Smith, J. A. Jr, Herrell, S. D., and Chang, S. S.. BJU Int 2012:1607-13

Bilateral synchronous sporadic renal tumors: pathologic concordance and clinical implications. Patel, A. R., Lee, B. H., Campbell, S. C., Zhou, M., and Fergany, A. F.. Urology 2011:1095-9

Prognostic significance of CD45RO+ memory T cells in renal cell carcinoma. Hotta, K., Sho, M., Fujimoto, K., Shimada, K., Yamato, I., Anai, S., Konishi, N., Hirao, Y., Nonomura, K., and Nakajima, Y.. Br J Cancer 2011:1191-6

Absent Toll-like receptor-9 expression predicts poor prognosis in renal cell carcinoma. Ronkainen, H., Hirvikoski, P., Kauppila, S., Vuopala, K. S., Paavonen, T. K., Selander, K. S., and Vaarala, M. H.. J Exp Clin Cancer Res 2011:84

Prognostic factors in a large multi-institutional series of papillary renal cell carcinoma. Zucchi, A., Novara, G., Costantini, E., Antonelli, A., Carini, M., Carmignani, G., Cosciani Cunico, S., Fontana, D., Longo, N., Martignoni, G., Minervini, A., Mirone, V., Porena, M., Roscigno, M., Schiavina, R., Simeone, C., Simonato, A., Siracusano, S., Terrone, C., and Ficarra, V.. BJU Int 2012:1140-6

Incidence of multiple sporadic renal cell carcinomas in patients referred for renal radiofrequency ablation: implications for imaging follow-up. Beland, M. D., Wolf, F. J., Grand, D. J., Dupuy, D. E., and Mayo-Smith, W. W.. AJR Am J Roentgenol 2011:671-5

Zero-ischaemia robotic and laparoscopic partial nephrectomy (PN). Patil, M. B. and Gill, I. S.. BJU Int 2011:780-92

Iatrogenic splenectomy during left nephrectomy: a single-institution experience of eight years. Tan, K., Lewis, G. R., Chahal, R., Browning, A. J., Sundaram, S. K., Weston, P. M., Harrison, S. C., and Biyani, C. S.. Urol Int 2011:59-63

Metastatic potential of a renal mass according to original tumour size at presentation. Umbreit, E. C., Shimko, M. S., Childs, M. A., Lohse, C. M., Cheville, J. C., Leibovich, B. C., Blute, M. L., and Thompson, R. H.. BJU Int 2012:190-4; discussion 194

Lymphadenectomy improves survival of patients with renal cell carcinoma and nodal metastases. Whitson, J. M., Harris, C. R., Reese, A. C., and Meng, M. V.. J Urol 2011:1615-20

Robot-assisted retroperitoneal partial nephrectomy: technique and perioperative results. Weizer, A. Z., Palella, G. V., Montgomery, J. S., Miller, D. C., and Hafez, K. S.. J Endourol 2011:553-7

Laparoendoscopic single-site surgeries: a single-center experience of 171 consecutive cases. Choi, K. H., Ham, W. S., Rha, K. H., Lee, J. W., Jeon, H. G., Arkoncel, F. R., Yang, S. C., and Han, W. K.. Korean J Urol 2011:31-8

Clinicopathological outcomes of clinical T1a renal cell carcinoma by tumor size. Kitagawa, Y., Nakashima, K., Shima, T., Izumi, K., Narimoto, K., Miwa, S., Miyagi, T., Maeda, Y., Kadono, Y., Konaka, H., Mizokami, A., and Namiki, M.. Jpn J Clin Oncol 2011:637-41

Preoperative nutritional status is an important predictor of survival in patients undergoing surgery for renal cell carcinoma. Morgan, T. M., Tang, D., Stratton, K. L., Barocas, D. A., Anderson, C. B., Gregg, J. R., Chang, S. S., Cookson, M. S., Herrell, S. D., Smith, J. A. Jr, and Clark, P. E.. Eur Urol 2011:923-8

Is there a need to further subclassify pT2 renal cell cancers as implemented by the revised 7th TNM version?. Waalkes, S., Becker, F., Schrader, A. J., Janssen, M., Wegener, G., Merseburger, A. S., Schrader, M., Hofmann, R., Stockle, M., and Kuczyk, M. A.. Eur Urol 2011:258-63

Late recurrence of renal cell carcinoma: retrospective and collaborative study of the Japanese Society of Renal Cancer. Miyao, N., Naito, S., Ozono, S., Shinohara, N.,

Masumori, N., Igarashi, T., Nakao, M., Tsushima, T., Senga, Y., Horie, S., Kanayama, H. O., Tokuda, N., and Kobayashi, M.. Urology 2011:379-84

Validation of the 2009 TNM version in a large multiinstitutional cohort of patients treated for renal cell carcinoma: are further improvements needed?. Novara, G., Ficarra, V., Antonelli, A., Artibani, W., Bertini, R., Carini, M., Cosciani Cunico, S., Imbimbo, C., Longo, N., Martignoni, G., Martorana, G., Minervini, A., Mirone, V., Montorsi, F., Schiavina, R., Simeone, C., Serni, S., Simonato, A., Siracusano, S., Volpe, A., and Carmignani, G.. Eur Urol 2010:588-95

Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Vieira, J., Henrique, R., Ribeiro, F. R., Barros-Silva, J. D., Peixoto, A., Santos, C., Pinheiro, M., Costa, V. L., Soares, M. J., Oliveira, J., Jeronimo, C., and Teixeira, M. R.. Genes Chromosomes Cancer 2010:935-47

A collaborative approach reduces the learning curve and improves outcomes in laparoscopic nephrectomy. Schneider, C. L., Cobb, W. S., Carbonell, A. M., Hill, L. K., and Flanagan, W. F.. Surg Endosc 2011:182-5

Comparison of accuracy of 14-, 18- and 20-G needles in ex-vivo renal mass biopsy: a prospective, blinded study. Breda, A., Treat, E. G., Haft-Candell, L., Leppert, J. T., Harper, J. D., Said, J., Raman, S., Smith, R. B., Belldegrun, A. S., and Schulam, P. G.. BJU Int 2010:940-5

[Primary treatment of renal cell carcinoma. Yesterday, today, tomorrow]. Dufour, B.. Bull Acad Natl Med 2009:691-707; discussion 707-8

[Laparoscopic radical nephrectomy in big surgical specimens]. Alonso, y. Gregorio S, Sanchez, S., Soler, C., Rando, A., Giron, M., Tabernero Gomez, A. J., Aguilera, A., Cisneros Ledo, J., and de la Pena Barthel, J.. Actas Urol Esp 2009:755-8

Predicting collecting system transection at laparoscopic partial nephrectomy: analysis of tumor parameters. Shikanov, S., Lifshitz, D. A., Deklaj, T., Katz, M. H., and Shalhav, A. L.. J Endourol 2009:1863-6

Incidental angiomyolipoma resected during renal surgery for an enhancing renal mass. Berglund, R. K., Bernstein, M., Manion, M. T., Touijer, K. A., and Russo, P.. BJU Int 2009:1650-4

Angiomyolipomata: challenges, solutions, and future prospects based on over 100 cases treated. Sooriakumaran, P., Gibbs, P., Coughlin, G., Attard, V., Elmslie, F., Kingswood, C., Taylor, J., Corbishley, C., Patel, U., and Anderson, C.. BJU Int 2010:101-6

Hybrid renal cell carcinomas containing histopathologic features of chromophobe renal cell carcinomas and oncocytomas have excellent oncologic outcomes. Waldert, M., Klatte, T., Haitel, A., Ozsoy, M., Schmidbauer, J., Marberger, M., and Remzi, M.. Eur Urol 2010:661-5

A novel and ergonomic patient position for laparoscopic kidney surgery. Martin, G. L., Nunez, R. N., Martin, A. D.,

Andrews, P. E., and Castle, E. P.. Can J Urol 2009:4580-3

Increasing the number of biopsy cores before renal cryoablation increases the diagnostic yield. Kramer, B. A., Whelan, C. M., Vestal, J. C., and Schwartz, B. F.. J Endourol 2009:283-6

Organ-confined clear cell renal cell carcinoma: the prognostic impact of microvascular invasion, nuclear grade and tumour size. Zubac, D. P., Bostad, L., Kihl, B., Eide, J., Wentzel-Larsen, T., and Haukaas, S. A.. APMIS 2008:1027-33

Diagnostic yield of renal biopsy immediately prior to laparoscopic radiofrequency ablation: a multicenter study. Kyle, C. C., Wingo, M. S., Carey, R. I., Leveillee, R. J., and Bird, V. G.. J Endourol 2008:2291-3

A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Karakiewicz, P. I., Suardi, N., Capitanio, U., Jeldres, C., Ficarra, V., Cindolo, L., de la Taille, A., Tostain, J., Mulders, P. F., Bensalah, K., Artibani, W., Salomon, L., Zigeuner, R., Valeri, A., Descotes, J. L., Rambeaud, J. J., Mejean, A., Montorsi, F., Bertini, R., and Patard, J. J.. Eur Urol 2009:287-95

External validation of the Mayo Clinic cancer specific survival score in a Japanese series of clear cell renal cell carcinoma. Fujii, Y., Saito, K., Iimura, Y., Sakai, Y., Koga, F., Kawakami, S., Kumagai, J., and Kihara, K.. J Urol 2008:1290-5; discussion 1295-6

Renal surgery in the elderly: morbidity in patients aged >75 years in a contemporary series. Staehler, M., Haseke, N., Stadler, T., Bader, M., Karl, A., Becker, A., and Stief, C. G. BJU Int 2008:684-7

Renal cell carcinoma radiofrequency ablation: evaluation of efficacy based on histological correlation. Mylona, S., Ntai, S., Stroumpouli, E., Glentzes, V., Martinis, S., and Thanos, L.. Br J Radiol 2008:479-84

Tumor size does not predict risk of metastatic disease or prognosis of small renal cell carcinomas. Klatte, T., Patard, J. J., de Martino, M., Bensalah, K., Verhoest, G., de la Taille, A., Abbou, C. C., Allhoff, E. P., Carrieri, G., Riggs, S. B., Kabbinavar, F. F., Belldegrun, A. S., and Pantuck, A. J.. J Urol 2008:1719-26

Analysis of clinicopathologic predictors of oncologic outcome provides insight into the natural history of surgically managed papillary renal cell carcinoma. Margulis, V., Tamboli, P., Matin, S. F., Swanson, D. A., and Wood, C. G.. Cancer 2008:1480-8

Impact of gender in renal cell carcinoma: an analysis of the SEER database. Aron, M., Nguyen, M. M., Stein, R. J., and Gill, I. S.. Eur Urol 2008:133-40

Laparoscopic renal oncological surgery in the presence of abdominal aortic and vena caval pathology: 8-year experience. Lin, Y. C., Haber, G. P., Turna, B., Frota, R., Koenig, P., Desai, M., Kaouk, J., and Gill, I. S.. J Urol 2008:455-60; discussion 460

Disparities in treatment and outcome for renal cell cancer among older black and white patients. Berndt, S. I., Carter, H. B., Schoenberg, M. P., and Newschaffer, C. J.. J Clin Oncol 2007:3589-95

Nephrectomy: indications, complications and mortality in 154 consecutive patients. Rafique, M.. J Pak Med Assoc 2007:308-11

Renal cell carcinoma: a clinicopathological follow-up study after radical nephrectomy. Zubac, D. P., Bostad, L., Gestblom, C., Kihl, B., Seidal, T., Wentzel-Larsen, T., and Bakke, A. M.. Scand J Urol Nephrol 2007:191-7

Does tumor size or microvascular invasion affect prognosis in patients with renal cell carcinoma?. Miyagawa, T., Shimazui, T., Hinotsu, S., Oikawa, T., Sekido, N., Miyanaga, N., Kawai, K., and Akaza, H.. Jpn J Clin Oncol 2007:197-200

Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Pignot, G., Elie, C., Conquy, S., Vieillefond, A., Flam, T., Zerbib, M., Debre, B., and Amsellem-Ouazana, D.. Urology 2007:230-5

Prognostic relevance of capsular involvement and collecting system invasion in stage I and II renal cell carcinoma. Klatte, T., Chung, J., Leppert, J. T., Lam, J. S., Pantuck, A. J., Figlin, R. A., and Belldegrun, A. S.. BJU Int 2007:821-4

Dynamic outcome prediction in patients with clear cell renal cell carcinoma treated with radical nephrectomy: the D-SSIGN score. Thompson, R. H., Leibovich, B. C., Lohse, C. M., Cheville, J. C., Zincke, H., Blute, M. L., and Frank, I.. J Urol 2007:477-80

[Opened vs. laparoscopic radical nephrectomy in renal adenocarcinoma cost comparison]. Herranz Amo, F., Subira Rios, D., Hernandez Fernandez, C., Martinez Salamanca, J. I., Monzo, J. I., and Cabello Benavente, R.. Actas Urol Esp 2006:921-5

Results of computerized tomography guided percutaneous ablation of renal masses with nondiagnostic pre-ablation pathological findings. Permpongkosol, S., Link, R. E., Solomon, S. B., and Kavoussi, L. R.. J Urol 2006:463-7; discussion 467

Mini-flank supra-11th rib incision for open partial or radical nephrectomy. Diblasio, C. J., Snyder, M. E., and Russo, P.. BJU Int 2006:149-56

Laparoscopic nephrectomy: new standard of care?. Sim, H. G., Yip, S. K., Ng, C. Y., Teo, Y. S., Tan, Y. H., Siow, W. Y., and Cheng, W. S.. Asian J Surg 2005:277-81

Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cindolo, L., Patard, J. J., Chiodini, P., Schips, L., Ficarra, V., Tostain, J., de La Taille, A., Altieri, V., Lobel, B., Zigeuner, R. E., Artibani, W., Guille, F., Abbou, C. C., Salzano, L., and Gallo, C.. Cancer 2005:1362-71

Prior abdominal surgery and radiation do not complicate the retroperitoneoscopic approach to the kidney or adrenal gland. Viterbo, R., Greenberg, R. E., Al-Saleem, T., and Uzzo, R. G.. J Urol 2005;446-50

Urological retroperitoneoscopic surgery for patients with prior intra-abdominal surgery. Mita, K., Shigeta, M., Mutaguchi, K., Matsubara, A., Yoshino, T., Seki, M., Mochizuki, H., Kato, M., Teishima, J., Kadonishi, Y., Yasumoto, H., and Usui, T.. Eur Urol 2005:97-101

The accuracy of 250 fine needle biopsies of renal tumors. Wunderlich, H., Hindermann, W., Al Mustafa, A. M., Reichelt, O., Junker, K., and Schubert, J. J Urol 2005:44-6

Comparison of presentation and outcome for patients 18 to 40 and 60 to 70 years old with solid renal masses. Gillett, M. D., Cheville, J. C., Karnes, R. J., Lohse, C. M., Kwon, E. D., Leibovich, B. C., Zincke, H., and Blute, M. L.. J Urol 2005:1893-6

Laparoscopic heminephrectomy for tumor. Finelli, A., Gill, I. S., Desai, M. M., Tan, Y. H., Moinzadeh, A., Singh, D., and Kaouk, J. H.. Urology 2005:473-8

Laparoscopic specimen extraction: morcellation. Varkarakis, I., Rha, K., Hernandez, F., Kavoussi, L. R., and Jarrett, T. W.. BJU Int 2005:27-31

Hand-assisted retroperitoneoscopic radical nephrectomy and nephroureterectomy. Kawauchi, A., Fujito, A., Soh, J., Ukimura, O., Mizutani, Y., and Miki, T.. J Endourol 2004:365-9

Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Beck, S. D., Patel, M. I., Snyder, M. E., Kattan, M. W., Motzer, R. J., Reuter, V. E., and Russo, P.. Ann Surg Oncol 2004:71-7

Closed suction or penrose drainage after partial nephrectomy: does it matter?. Sanchez-Ortiz, R., Madsen, L. T., Swanson, D. A., Canfield, S. E., and Wood, C. G. J Urol 2004:244-6

Racial disparity in incidence patterns and outcome of kidney cancer. Vaishampayan, U. N., Do, H., Hussain, M., and Schwartz, K.. Urology 2003:1012-7

Renal cell carcinoma as a cause of end-stage renal disease in the United States: patient characteristics and survival. Stiles, K. P., Moffatt, M. J., Agodoa, L. Y., Swanson, S. J., and Abbott, K. C.. Kidney Int 2003:247-53

Loss of expression of transforming growth factor-beta receptor as a prognostic factor in patients with renal cell carcinoma. Miyajima, A., Asano, T., Seta, K., Asano, T., Kakoi, N., and Hayakawa, M.. Urology 2003:1072-7

Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Cheville, J. C., Lohse, C. M., Zincke, H., Weaver, A. L., and Blute, M. L.. Am J Surg Pathol 2003:612-24

Influence of age on the prognosis of patients with renal cell carcinoma (RCC). Yusim, I., Mermershtain, W.,

Neulander, E., Eidelberg, I., Gusakova, I., and Kaneti, J.. Onkologie 2002:548-50

Prospective analysis of computerized tomography and needle biopsy with permanent sectioning to determine the nature of solid renal masses in adults. Dechet, C. B., Zincke, H., Sebo, T. J., King, B. F., LeRoy, A. J., Farrow, G. M., and Blute, M. L.. J Urol 2003:71-4

[Transcatheter renal arterial embolization in malignant renal neoplasms: clinical results and indications for use of the method in multi-profile hospitals]. Vaicekavicius, E. and Pranculis, A.. Medicina (Kaunas) 2002:888-91

Prediction of post-operative glomerular filtration rate after nephrectomy for renal malignancy. Johansson, M. and Moonen, M.. Clin Physiol 2001:688-92

Renal cell carcinoma: evaluation of the 1997 TNM system and recommendations for follow-up after surgery. Gofrit, O. N., Shapiro, A., Kovalski, N., Landau, E. H., Shenfeld, O. Z., and Pode, D.. Eur Urol 2001:669-74; discussion 675

Carcinological risks and retroperitoneal laparoscopy. Cicco, A., Salomon, L., Hoznek, H., Alame, W., Saint, F., Bralet, M. P., Antiphon, P., Chopin, D. K., and Abbou, C. C.. Eur Urol 2000:606-12

Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. Levy, D. A., Slaton, J. W., Swanson, D. A., and Dinney, C. P.. J Urol 98:1163-7

RENAL nephrometry score is a predictive factor for the annual growth rate of renal mass. Matsumoto R., Abe T., Shinohara N., Murai S., Maruyama S., Tsuchiya K., and Nonomura K.. Int. J. Urol. 2014:549-552

Clinical outcome of small renal cell carcinoma after delayed surgery versus immediate surgery. Sugimoto K., Shimizu N., Nose K., Tahara H., Imanishi M., Nishioka T., Esa A., Kajikawa H., and Uemura H.. J. Cancer 2013:514-518

Laparoendoscopic single-site surgery in urology: Worldwide multi-institutional analysis of 1076 cases. Kaouk J.H., Autorino R., Kim F.J., Han D.H., Lee S.W., Yinghao S., Cadeddu J.A., Derweesh I.H., Richstone L., Cindolo L., Branco A., Greco F., Allaf M., Sotelo R., Liatsikos E., Stolzenburg J.-U., Rane A., White W.M., Han W.K., Haber G.-P., White M.A., Molina W.R., Jeong B.C., Lee J.Y., Linhui W., Best S., Stroup S.P., Rais-Bahrami S., Schips L., Fornara P., Pierorazio P., Giedelman C., Lee J.W., Stein R.J., and Rha K.H.. Eur. Urol. 2011:998-1005

Role of Intraarterial Embolization before Cryoablation of Large Renal Tumors: A Pilot Study. Woodrum D.A., Atwell T.D., Farrell M.A., Andrews J.C., Charboneau J.W., and Callstrom M.R.. J. Vasc. Intervent. Radiol. 2010:930-936

A Comparative Study of Quality of Life Issues Relating to Open Versus Laparoscopic Nephrectomy: A Prospective Pragmatic Study. Harryman O.A., Davenport K., Keoghane S., Keeley F.X., and Timoney A.G.. J. Urol. 2009:998-1003

Extensively cystic renal neoplasms in adults (Bosniak Classification II or III) - Possible "common" histological diagnoses: Multilocular cystic renal cell carcinoma, cystic nephroma, and mixed epithelial and stromal tumor of the kidney. Hora M., Hes O., Michal M., Boudova L., Chudacek Z., Kreuzberg B., and Klecka J.. Int. Urol. Nephrol. 2005:743-750

Complications of transperitoneal laparoscopic surgery in urology: Review of 1,311 procedures at a single center. Vallancien G., Cathelineau X., Baumert H., Doublet J.D., and Guillonneau B.. J. Urol. 2002:23-26

Renal cell carcinoma: Clinical and therapeutic considerations about 301 cases. Destito A., Servello C., Pisanti F., Lacquaniti S., Candidi M.O., Racioppi M., and Alcini E.. Acta Med. Rom. 99:498-503

Original report. Three-dimensional CT stereoscopic visualization of renal masses: Impact on diagnosis and patient treatment. Smith P.A., Marshall F.F., Urban B.A., Heath D.G., and Fishman E.K.. AM. J. ROENTGENOL. 97:1331-1334

Diagnosis of renal angiomyolipoma with hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Davenport, M. S., Neville, A. M., Ellis, J. H., Cohan, R. H., Chaudhry, H. S., and Leder, R. A.. Radiology 2011:158-65

Differentiation of clear from non-clear cell renal cell carcinoma using CT washout formula. Kopp, R. P., Aganovic, L., Palazzi, K. L., Cassidy, F. H., Sakamoto, K., and Derweesh, I. H.. Can J Urol 2013:6790-7

3D cone-beam CT guidance, a novel technique in renal biopsy--results in 41 patients with suspected renal masses. Braak, S. J., van Melick, H. H., Onaca, M. G., van Heesewijk, J. P., and van Strijen, M. J.. Eur Radiol 2012 :2547-52

Diagnostic accuracy of segmental enhancement inversion for the diagnosis of renal oncocytoma using biphasic computed tomography (CT) and multiphase contrastenhanced magnetic resonance imaging (MRI). Schieda, N., Al-Subhi, M., Flood, T. A., El-Khodary, M., and McInnes, M. D.. Eur Radiol 2014:2787-94

Unenhanced CT for the Diagnosis of Minimal-Fat Renal Angiomyolipoma. Schieda, N., Hodgdon, T., El-Khodary, M., Flood, T. A., and McInnes, M. D.. AJR Am J Roentgenol 2014:1236-41

Use of electron microscopy in core biopsy diagnosis of oncocytic renal tumors. Johnson, N. B., Johnson, M. M., Selig, M. K., and Nielsen, G. P.. Ultrastruct Pathol 2010:189-94

Unenhanced CT for the detection of renal cell carcinoma: effect of tumor size and contour type. Jung, S. I., Park, H. S., Kim, Y. J., and Jeon, H. J.. Abdom Imaging 2014:348-57

Computed tomography-guided renal tumor biopsies: tumor imaging features affecting sample adequacy. Davis, I. C., Heilbrun, M. E., Tangtiang, K., Childs, D. D., and Zagoria, R. J.. J Comput Assist Tomogr 2013:171-5

Histogram analysis of small solid renal masses: differentiating minimal fat angiomyolipoma from renal cell carcinoma. Chaudhry, H. S., Davenport, M. S., Nieman, C. M., Ho, L. M., and Neville, A. M.. AJR Am J Roentgenol 2012:377-83

Predicting the histology of small renal masses using preoperative dynamic contrast-enhanced magnetic resonance imaging. Kim, J. H., Bae, J. H., Lee, K. W., Kim, M. E., Park, S. J., and Park, J. Y.. Urology 2012:872-6

Analysis of surgical complications of renal tumor enucleation with standardized instruments and external validation of PADUA classification. Minervini, A., Vittori, G., Salvi, M., Sebastianelli, A., Tuccio, A., Siena, G., Masieri, L., Gacci, M., Lapini, A., Serni, S., and Carini, M.. Ann Surg Oncol 2013:1729-36

Indications for renal fine needle aspiration biopsy in the era of modern imaging modalities. Dragoescu, E. A. and Liu, L.. Cytojournal 2013:15

Comparison of Cox regression with other methods for determining prediction models and nomograms. Kattan, M. W.. J Urol 2003:S6-9; discussion S10

Role of ultrasonography in screening for urological malignancies in patients presenting with painless haematuria. Yip, S. K., Peh, W. C., Tam, P. C., Li, J. H., and Lam, C. H.. Ann Acad Med Singapore 99:174-7

FDG PET characterization of renal masses: preliminary experience. Goldberg, M. A., Mayo-Smith, W. W., Papanicolaou, N., Fischman, A. J., and Lee, M. J.. Clin Radiol 97:510-5

Screening for renal cell carcinoma using ultrasonography: a feasibility study. Filipas, D., Spix, C., Schulz-Lampel, D., Michaelis, J., Hohenfellner, R., Roth, S., and Thuroff, J. W.. BJU Int 2003:595-9

Comparison of 16-MDCT and MRI for characterization of kidney lesions. Beer, A. J., Dobritz, M., Zantl, N., Weirich, G., Stollfuss, J., and Rummeny, E. J.. AJR Am J Roentgenol 2006:1639-50

Computer-aided detection of kidney tumor on abdominal computed tomography scans. Kim, D. Y. and Park, J. W.. Acta Radiol 2004:791-5

Multiphasic helical CT of the kidney: increased conspicuity for detection and characterization of small (< 3-cm) renal masses. Szolar, D. H., Kammerhuber, F., Altziebler, S., Tillich, M., Breinl, E., Fotter, R., and Schreyer, H. H.. Radiology 97:211-7

Effectiveness of contrast enhanced ultrasonography in the assesment of renal masses. Alvarez Rodriguez S., Sanz Mayayo E., Lopez- Fando Lavalle L., Rodriguez-Patron Rodriguez R., Arias Funez F., Hevia Palacios V., and Burgos Revilla F.J.. Eur. Urol. Suppl. 2014:e393-e393a

Growth kinetics of small renal masses: A prospective analysis from the renal cell carcinoma consortium of Canada. Organ M., Jewett M., Abdolell M., Basiuka J., Fleshner N., Finelli A., Morash C., Pautler S., Chin J.,

Siemens R., Tanguay S., Gleave M., Drachenberg D., Chow R., Evans A., Gallie B., Haider M., Kachura J., and Rendon R.. J. Urol. 2013:e482

Can we predict malignancy in bosniak III renal lesions identified on multiphasic CT?. Goenka A., Remer E., Smith A., Obuchowski N., Klink J., and Campbell S.. Am. J. Roentgenol. 2012:

Evaluation of renal tumors by Image Guided biopsies with an empahasis on oncocytic neoplasms: A retrospective four year study from a large academic institution. Bhalla R., Wu A., and Kunju L.. J. Urol. 2011 :e282

Evaluation of renal tumors by image guided biopsies with an emphasis on oncocytic neoplasms: A retrospective four year study from a large academic institution. Bhalla R., Wu A., and Kunju L.P.. Lab. Invest. 2011:180A

Incidental detection of preclinical renal tumors with electron beam computed tomography: Report of 26 consecutive operated patients. Mitchell T.L., Pippin J.J., Devers S.M., Kimball T.E., Gibbons L.W., Cooper L.L., Gonzalez-Dunn V., and Cooper K.H.. J. Comput. Assisted Tomogr. 2000:843-845

Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Liao S.-Y., Aurelio O.N., Jan K., Zavada J., and Stanbridge E.J.. CANCER RES. 97:2827-2831

Readmissions after major urologic cancer surgery. Leow, J. J., Gandaglia, G., Sood, A., Ruhotina, N., Klett, D. E., Sammon, J. D., Schmid, M., Sun, M., Chang, S. L., Kibel, A. S., and Trinh, Q. D.. Can J Urol 2014:7537-46

The diagnostic accuracy of percutaneous renal needle core biopsy and its potential impact on the clinical management of renal cortical neoplasms. Gellert, L. L., Mehra, R., Chen, Y. B., Gopalan, A., Fine, S. W., Al-Ahmadie, H., Reuter, V. E., and Tickoo, S. K.. Arch Pathol Lab Med 2014:1673-9

High rate of benign histology in radiologically suspect renal lesions. Lindkvist Pedersen, C., Winck-Flyvholm, L., Dahl, C., and Azawi, N. H.. Dan Med J 2014:A4932

Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Schmid, M., Abd-El-Barr, A. E., Gandaglia, G., Sood, A., Olugbade, K. Jr, Ruhotina, N., Sammon, J. D., Varda, B., Chang, S. L., Kibel, A. S., Chun, F. K., Menon, M., Fisch, M., and Trinh, Q. D.. Urol Oncol 2014:1259-66

Risk evaluation of selective renal arterial embolization in the treatment of delayed hemorrhage from renal artery pseudoaneurysm after partial nephrectomy. Zhu, Y., Liu, Y., Zhang, J., and Lin, Z.. Cell Biochem Biophys 2014:1833-9

Management, pathology and outcomes of Bosniak category IIF and III cystic renal lesions. Weibl, P., Hora, M., Kollarik, B., Shariat, S. F., and Klatte, T.. World J Urol 2015:295-300

Evaluation of percutaneous biopsies of renal masses under MRI-guidance: a retrospective study about 26 cases.

Garnon, J., Schlier, A., Buy, X., Tsoumakidou, G., de Mathelin, M., Breton, E., and Gangi, A.. Eur Radiol 2015:617-23

Visceral fat accumulation is associated with different pathological subtypes of renal cell carcinoma (RCC): A multicentre study in China. Wang H.-K., Song X.-S., Cheng Y., Qu Y.-Y., Zhang S.-L., Dai B., Zhang H.-L., Shen Y.-J., Zhu Y.-P., Shi G.-H., Qin X.-J., Ma C.-G., Lin G.-W., Xiao W.-J., Zhu Y., and Ye D.-W.. BJU Int. 2014:496-502

Visceral obesity in predicting oncologic outcomes of localized renal cell carcinoma. Park Y.H., Lee J.K., Kim K.M., Kook H.R., Lee H., Kim K.B., Lee S., Byun S.-S., and Lee S.E.. J. Urol. 2014:1043-1049

MR imaging in the characterization of small renal masses. Willatt J.M., Hussain H.K., Chong S., Kappil M., Azar S.F., Liu P.S., Ruma J.A., and Elsayes K.M.. Abdom. Imaging 2014:761-769

Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Cornelis F., Tricaud E., Lasserre A.S., Petitpierre F., Bernhard J.C., Le Bras Y., Yacoub M., Bouzgarrou M., Ravaud A., and Grenier N.. Eur. Radiol. 2014:1068-1080

Small renal masses managed with active surveillance: Predictors of tumor growth rate after long-term follow-up. Schiavina R., Borghesi M., Dababneh H., Bianchi L., Longhi B., Diazzi D., Monti C., La Manna G., Martorana G., and Brunocilla E.. Clin. Genitourin. Cancer 2015:e87-e92

A prospective, multicenter evaluation of predictive factors for positive surgical margins after nephron-sparing surgery for renal cell carcinoma: The record1 italian project. Schiavina R., Serni S., Mari A., Antonelli A., Bertolo R., Bianchi G., Brunocilla E., Borghesi M., Carini M., Longo N., Martorana G., Mirone V., Morgia G., Porpiglia F., Rocco B., Rovereto B., Simeone C., Sodano M., Terrone C., Ficarra V., and Minervini A.. Clin. Genitourin. Cancer 2015:165-170

Preoperative serum cholesterol is an independent prognostic factor for patients with renal cell carcinoma (RCC). De Martino M., Leitner C.V., Seemann C., Hofbauer S.L., Lucca I., Haitel A., Shariat S.F., and Klatte T.. BJU Int. 2015:397-404

Notch1 predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. An H., Zhu Y., Xu L., Chen L., Lin Z., and Xu J.. Urology 2015:483.e9-483.e14

Snail predicts recurrence and survival of patients with localized clear cell renal cell carcinoma after surgical resection. Liu W., Liu Y., Liu H., Zhang W., An H., and Xu J. Urol. Oncol. Semin. Orig. Invest. 2015:69e1-69e10

Survival in patients with clear cell renal cell carcinoma is predicted by HIF-1(alpha) expression. Minardi D., Lucarini G., Santoni M., Mazzucchelli R., Burattini L., Conti A., Principi E., Bianconi M., Scartozzi M., Milanese G., Di

Primio R., Montironi R., Cascinu S., and Muzzonigro G.. Anticancer Res. 2015:433-438

A novel mathematical model to predict the severity of postoperative functional reduction before partial nephrectomy: The importance of calculating resected and ischemic volume. Shin T.Y., Komninos C., Kim D.W., So K.S., Bang K.S., Jeong H.-J., Han W.K., Hong S.J., Jung B.H., Lim S.K., Lee S.K., Lee W.K., and Rha K.H.. J. Urol. 2015:423-429

Diagnostic accuracy of preoperative computed tomography used alone to detect lymph-node involvement at radical nephrectomy. Connolly S.S., Raja A., Stunell H., Parashar D., Upponi S., Warren A.Y., Gnanapragasam V.J., and Eisen T.. Scand. J. Urol. 2015:142-148

TriMatch comparison of the efficacy of FloSeal versus TachoSil versus no hemostatic agents for partial nephrectomy: Results from a large multicenter dataset. Antonelli A., Minervini A., Mari A., Bertolo R., Bianchi G., Lapini A., Longo N., Martorana G., Mirone V., Morgia G., Novara G., Porpiglia F., Rocco B., Rovereto B., Schiavina R., Simeone C., Sodano M., Terrone C., Ficarra V., Carini M., and Serni S.. Int. J. Urol. 2015:47-52

Current patterns of presentation and treatment of renal masses: A clinical research office of the endourological society prospective study. Laguna M.P., Algaba F., Cadeddu J., Clayman R., Gill I., Gueglio G., Hohenfellner M., Joyce A., Landman J., Lee B., and Van Poppel H.. J. Endourol. 2014:861-870

Diagnosis of complex renal cystic masses and solid renal lesions using PET imaging: Comparison of 11C-acetate and 18F-FDG PET imaging. Oyama N., Ito H., Takahara N., Miwa Y., Akino H., Kudo T., Okazawa H., Fujibayashi Y., Komatsu K., Tsukahara K., and Yokoyama O.. Clin. Nucl. Med. 2014:e208-e214

Evaluation of long-term outcome for patients with renal cell carcinoma after surgery: Analysis of cancer deaths occurring more than 10 years after initial treatment. Kyoda Y., Kobayashi K., Hirobe M., Shindo T., Fukuta F., Hashimoto K., Tanaka T., Tonooka A., Kitamura H., Takahashi S., Masumori N., Hasegawa T., and Tsukamoto T.. Int. J. Clin. Oncol. 2014:146-151

Hilar Location is an Independent Prognostic Factor for Recurrence in T1 Renal Cell Carcinoma After Nephrectomy. Shim M., Song C., Park S., Kim A., Choi S.-K., Kim C.-S., and Ahn H.. Ann. Surg. Oncol. 2014:344-350

Results of a prospective study comparing the clinical efficacy of cryoablation of renal cell cancer followed by immediate partial nephrectomy. Khoder W.Y., Siegert S., Stief C.G., Becker A.J., and Waidelich R.. Eur. J. Surg. Oncol. 2014:96-102

Clinicopathological characteristics and outcomes of surgically excised renal masses in African Americans. Qi P., Tsivian M., Abern M.R., Passoni N.M., McGinley K.F., and Polascik T.J.. Urol. Oncol. Semin. Orig. Invest. 2014:555-560

Anatomic complexity quantitated by nephrometry score is associated with prolonged warm ischemia time during robotic partial nephrectomy. Tomaszewski J.J., Smaldone M.C., Mehrazin R., Kocher N., Ito T., Abbosh P., Baber J., Kutikov A., Viterbo R., Chen D.Y.T., Canter D.J., and Uzzo R.G.. Urology 2014:340-344

Adverse health outcomes associated with surgical management of the small renal mass. Shuch B., Hanley J.M., Lai J.C., Vourganti S., Setodji C.M., Dick A.W., Chow W.-H., and Saigal C.S.. J. Urol. 2014:301-308

Pathologic validation of renal cell carcinoma histology in the Surveillance, Epidemiology, and End Results program. Shuch B., Hofmann J.N., Merino M.J., Nix J.W., Vourganti S., Linehan W.M., Schwartz K., Ruterbusch J.J., Colt J.S., Purdue M.P., and Chow W.-H.. Urol. Oncol. Semin. Orig. Invest. 2014:23.e9-23.e13

Delay in nephrectomy and cancer control outcomes in elderly patients with small renal masses. Becker A., Roghmann F., Ravi P., Tian Z., Kluth L.A., Gandaglia G., Noldus J., Dahlem R., Schlomm T., Graefen M., Karakiewicz P.I., Trinh Q.-D., and Sun M.. Urol. Int. 2014:455-461

The key role of time in predicting progression-free survival in patients with renal cell carcinoma treated with partial or radical nephrectomy: Conditional survival analysis.

Abdollah F., Suardi N., Capitanio U., Matloob R., Fossati N., Castiglione F., Di Trapani E., Di Trapani D., Russo A., Carenzi C., Montorsi F., Rigatti P., and Bertini R.. Urol. Oncol. Semin. Orig. Invest. 2014:43.e9-43.e16

Patients with anatomically " simple" renal masses are more likely to be placed on active surveillance than those with anatomically " complex" lesions. Tomaszewski J.J., Uzzo R.G., Kocher N., Li T., Manley B., Mehrazin R., Ito T., Abbosh P., Viterbo R., Chen D.Y.T., Greenberg R.E., Canter D., Smaldone M.C., and Kutikov A.. Urol. Oncol. Semin. Orig. Invest. 2014:1267-1271

Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy?. McClintock T.R., Bjurlin M.A., Wysock J.S., Borofsky M.S., Marien T.P., Okoro C., and Stifelman M.D.. Urology 2014:327-332

Race and sex disparities in the treatment of older patients with T1a renal cell carcinoma: A comorbidity-controlled competing-risks model. Patel H.D., Kates M., Pierorazio P.M., and Allaf M.E.. Urol. Oncol. Semin. Orig. Invest. 2014:576-583

Clinical behavior of chromophobe renal cell carcinoma is less aggressive than that of clear cell renal cell carcinoma, independent of Fuhrman grade or tumor size. Steffens S., Roos F.C., Janssen M., Becker F., Steinestel J., Abbas M., Steinestel K., Wegener G., Siemer S., Thuroff J.W., Hofmann R., Stockle M., Schrader M., Hartmann A., Junker K., Kuczyk M.A., and Schrader A.J.. Virchows Arch. 2014:439-444

The impact of perioperative blood transfusion on survival after nephrectomy for non-metastatic renal cell carcinoma (RCC). Linder B.J., Thompson R.H., Leibovich B.C., Cheville J.C., Lohse C.M., Gastineau D.A., and Boorjian S.A.. BJU Int. 2014:368-374

Outcomes in patients undergoing nephrectomy for renal cancer on chronic anticoagulation therapy. Sfakianos J.P., Hakimi A.A., Kim P.H., Zabor E.C., Mano R., Bernstein M., Karellas M., and Russo P.. Eur. J. Surg. Oncol. 2014:1700-1705

Evaluation of renal mass biopsy risk stratification algorithm for robotic partial nephrectomy - Could a biopsy have guided management? Rahbar H., Bhayani S., Stifelman M., Kaouk J., Allaf M., Marshall S., Zargar H., Ball M.W., Larson J., and Rogers C.. J. Urol. 2014:1337-1342

Hand-assisted partial nephrectomy with early arterial clamp removal: Impact of the learning curve. Azawi N.H., Norus T.P., Wittendorff H.-E., and Dahl C.. Scand. J. Urol. 2014:538-543

Renal masses measuring under 2 cm: Pathologic outcomes and associations with MRI features. Rosenkrantz A.B., Wehrli N.E., Melamed J., Taneja S.S., and Shaikh M.B.. Eur. J. Radiol. 2014:1311-1316

Tumor enucleation vs sharp excision in minimally invasive partial nephrectomy: Technical benefit without impact on functional or oncologic outcomes. Mukkamala A., Allam C.L., Ellison J.S., Hafez K.S., Miller D.C., Montgomery J.S., Weizer A.Z., and Wolf Jr. J.S.. Urology 2014:1294-1299

Race and sex disparities in the treatment of older patients with T1a renal cell carcinoma: a comorbidity-controlled competing-risks model. Patel, H. D., Kates, M., Pierorazio, P. M., and Allaf, M. E.. Urol Oncol 2014:576-83

Cystic renal cell carcinomas: do they grow, metastasize, or recur?. Jhaveri, K., Gupta, P., Elmi, A., Flor, L., Moshonov, H., Evans, A., and Jewett, M.. AJR Am J Roentgenol 2013:W292-6

Safety of en bloc ligation of the renal hilum during laparoscopic radical nephrectomy for renal cell carcinoma: a randomized controlled trial. Chung, J. H., Lee, S. W., Lee, K. S., Cho, W. Y., and Kim, T. H.. J Laparoendosc Adv Surg Tech A 2013:489-94

Evaluation of perirenal fat as a predictor of cT1a renal cortical neoplasm histopathology and surgical outcomes. Okhunov Z., Mues A.C., Kline M., Haramis G., Xu B., Mirabile G., Vira M., and Landman J.. J. Endourol. 2012:911-916

Bilateral renal cell carcinoma. Therapy management and histopathological results in long-term follow-up of 66 patients: Der bilaterale nierentumor. Therapiemanagement und histopathologische ergebnisse mit langzeitverlauf bei 66 patienten. Siemer S., Uder M., Zell A., Ponicke C., Humke U., Ziegler M., and Stockle M.. Urologe Ausg. A 2001:114-120

Laparoscopic procedures in urology: Laparoskopische operationen in der urologie. Turk I., Deger S., Schonberger B., and Loening S.A.. J. Urol. Urogynakol. 99:69-72

Characterization of small solid renal lesions: can benign and malignant tumors be differentiated with CT?. Millet, I., Doyon, F. C., Hoa, D., Thuret, R., Merigeaud, S., Serre, I., and Taourel, P.. AJR Am J Roentgenol 2011:887-96

The accuracy of renal tumor biopsy: analysis from a national prospective study. Bernhard, J. C., Bigot, P., Pignot, G., Baumert, H., Zini, L., Lang, H., Crepel, M., Monod, P., Salomon, L., Bellec, L., Roupret, M., Schneider, M., Xylinas, E., Paparel, P., Bruyere, F., Berger, J., Ansieau, J. P., Gimel, P., Salome, F., Castagnola, C., Pfister, C., Legraverend, J. M., Timsit, M. O., Le Pellec, L., Auberget, J. L., Rolland, E., Mallet, R., Mejean, A., and Patard, J. J.. World J Urol 2014:

Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images?. Hodgdon, T., McInnes, M. D., Schieda, N., Flood, T. A., Lamb, L., and Thornhill, R. E.. Radiology 2015:142215

Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms - Our clinical experience. Mytsyk Y., Borys Y., Komnatska I., Dutka I., and Shatynska-Mytsyk I.. Pol. J. Radiol. 2014:290-295

Renal sinus exposure as an independent factor predicting asymptomatic unruptured pseudoaneurysm formation detected in the early postoperative period after minimally invasive partial nephrectomy. Omae K., Kondo T., Takagi T., Morita S., Hashimoto Y., Kobayashi H., Iizuka J., Nozaki T., Yoshida K., and Tanabe K.. Int. J. Urol. 2015:356-361

Differentiation of renal oncocytoma and renal clear cell carcinoma using relative CT enhancement ratio. Ren A., Cai F., Shang Y.-N., Ma E.-S., Huang Z.-G., Wang W., Lu Y., and Zhang X.-Z.. Chin. Med. J. 2015:175-179

Do we need to clamp the renal hilum liberally during the initial phase of the learning curve of robot-assisted nephron-sparing surgery?. Acar O., Esen T., Musaoglu A., and Vural M.. Sci. World J. 2014:

Does not provide any OUTCOME of interest

Clinicopathologic Outcomes of Cystic Renal Cell Carcinoma. Donin, N. M., Mohan, S., Pham, H., Chandarana, H., Doshi, A., Deng, F. M., Stifelman, M. D., Taneja, S. S., and Huang, W. C.. Clin Genitourin Cancer 2014:

Surgeon-specific factors affecting treatment decisions among Canadian urologists in the management of pT1a renal tumours. Millman, A. L., Pace, K. T., Ordon, M., and Lee, J. Y.. Can Urol Assoc J 2014:183-9

Patients with anatomically " simple" renal masses are more likely to be placed on active surveillance than those with anatomically " complex" lesions. Tomaszewski, J. J., Uzzo, R. G., Kocher, N., Li, T., Manley, B., Mehrazin, R., Ito, T., Abbosh, P., Viterbo, R.,

Chen, D. Y., Greenberg, R. E., Canter, D., Smaldone, M. C., and Kutikov, A.. Urol Oncol 2014:

Flank muscle volume changes after open and laparoscopic partial nephrectomy. Crouzet, S., Chopra, S., Tsai, S., Kamoi, K., Haber, G. P., Remer, E. M., Berger, A. K., Gill, I. S., and Aron, M.. J Endourol 2014:1202-7

R.E.N.A.L. Nephrometry scoring: how well correlated are urologist, radiologist, and collaborator scores? Monn, M. F., Gellhaus, P. T., Masterson, T. A., Patel, A. A., Tann, M., Cregar, D. M., and Boris, R. S.. J Endourol 2014:1006-10

Practice patterns for the surgical treatment of T1 renal cell carcinoma: A nationwide population-based register study. Ljungberg, B., Gudmundsson, E., Christensen, S., and Lundstam, S.. Scand J Urol 2014:445-52

Incidence of hypercoagulable events after image-guided percutaneous cryoablation of renal tumors: a single-center experience. Hartman, J. B., Bhojwani, N., Corn, D. J., Cooney, M. M., Haaga, J., Ponsky, L., Abouassaly, R., Paspulati, A., and Prologo, J. D.. J Vasc Interv Radiol 2014:776-9

Practical and intuitive surgical approach renal ranking to predict outcomes in the management of renal tumors: a novel score tool. Tannus, M., Goldman, S. M., and Andreoni, C.. J Endourol 2014:487-92

Histopathologic findings of small renal tumor biopsies performed immediately after cryoablation therapy: a retrospective study of 50 cases. Tayal, S., Kim, F. J., Sehrt, D., Miano, R., Pompeo, A., and Molina, W.. Am J Clin Pathol 2014:35-42

Pathological characteristics and prognostic effect of peritumoral capsule penetration in renal cell carcinoma after tumor enucleation. Minervini, A., Rosaria Raspollini, M., Tuccio, A., Di Cristofano, C., Siena, G., Salvi, M., Vittori, G., Sebastianelli, A., Lapini, A., Serni, S., and Carini, M.. Urol Oncol 2014:50.e15-22

Adverse health outcomes associated with surgical management of the small renal mass. Shuch, B., Hanley, J. M., Lai, J. C., Vourganti, S., Setodji, C. M., Dick, A. W., Chow, W. H., and Saigal, C. S.. J Urol 2014:301-8

Overall survival advantage with partial nephrectomy: a bias of observational data?. Shuch, B., Hanley, J., Lai, J., Vourganti, S., Kim, S. P., Setodji, C. M., Dick, A. W., Chow, W. H., and Saigal, C.. Cancer 2013:2981-9

Is diameter-axial-polar scoring predictive of renal functional damage in patients undergoing partial nephrectomy? An evaluation using technetium Tc 99m ((9)(9)Tcm) diethylene-triamine-penta-acetic acid (DTPA) glomerular filtration rate. Wang, L., Li, M., Chen, W., Wu, Z., Cai, C., Xiang, C., Sheng, J., Liu, B., Yang, Q., and Sun, Y.. BJU Int 2013:1191-8

Renal lymph nodes for tumor staging: appraisal of 871 nephrectomies with examination of hilar fat. Mehta, V., Mudaliar, K., Ghai, R., Quek, M. L., Milner, J., Flanigan, R. C., and Picken, M. M.. Arch Pathol Lab Med 2013:1584-90

Evaluation of anatomic and morphologic nomogram to predict malignant and high-grade disease in a cohort of patients with small renal masses. Bagrodia, A., Harrow, B., Liu, Z. W., Olweny, E. O., Faddegon, S., Yin, G., Tan, Y. K., Han, W. K., Lotan, Y., Margulis, V., and Cadeddu, J. A.. Urol Oncol 2014:37.e17-23

Trends in partial and radical nephrectomy: an analysis of case logs from certifying urologists. Poon, S. A., Silberstein, J. L., Chen, L. Y., Ehdaie, B., Kim, P. H., and Russo, P.. J Urol 2013:464-9

Use of nephron-sparing surgery among renal cell carcinoma patients with diabetes and hypertension. Filson, C. P., Schwartz, K., Colt, J. S., Ruterbusch, J., Linehan, W. M., Chow, W. H., and Miller, D. C.. Urol Oncol 2014 :27.e15-21

A comparison of pathologic outcomes of matched robotic and open partial nephrectomies. Mellon, M. J., Lucas, S. M., Kum, J. B., Cheng, L., and Sundaram, C.. Int Urol Nephrol 2013:381-5

Clinical characteristics associated with treatment type for localized renal tumors: implications for practice pattern assessment. Smaldone, M. C., Churukanti, G., Simhan, J., Kim, S. P., Reyes, J., Zhu, F., Kutikov, A., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Urology 2013:269-75

Long-term outcome of small, organ-confined renal cell carcinoma (RCC) is not always favourable. Shindo, T., Masumori, N., Kobayashi, K., Fukuta, F., Hirobe, M., Tonooka, A., Hasegawa, T., Kitamura, H., and Tsukamoto, T.. BJU Int 2013:941-5

Value of metastin receptor immunohistochemistry in predicting metastasis after radical nephrectomy for pT1 clear cell renal cell carcinoma. Shoji, S., Nakano, M., Tomonaga, T., Kim, H., Hanai, K., Usui, Y., Nagata, Y., Miyazawa, M., Sato, H., Tang, X. Y., Osamura, Y. R., Uchida, T., Terachi, T., and Takeya, K.. Clin Exp Metastasis 2013:607-14

Patient safety and the diffusion of surgical innovations: a national analysis of laparoscopic partial nephrectomy. Parsons, J. K., Palazzi, K., Chang, D., and Stroup, S. P.. Surg Endosc 2013:1674-80

Comparison of the 2002 and 2010 TNM classification systems regarding outcome prediction in clear cell and papillary renal cell carcinoma. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Groselj-Strele, A., Hoefler, G., Pummer, K., and Zigeuner, R.. Histopathology 2013:237-46

Renal volumetric analysis: a new paradigm in renal mass treatment assessment. Gorbatiy, V., Iremashvili, V., Castro, A., Mure, A., Ortiz, N., Castle, S. M., and Leveillee, R. J.. J Endourol 2013:361-5

Association of clinical and radiographic features with perinephric "sticky" fat. Bylund, J. R., Qiong, H., Crispen, P. L., Venkatesh, R., and Strup, S. E.. J Endourol 2013:370-3

Tumour-related imaging parameters predicting the percentage of preserved normal renal parenchyma following nephron sparing surgery: a retrospective study. Aertsen, M., De Keyzer, F., Van Poppel, H., Joniau, S., De Wever, L., Lerut, E., Oyen, R., and Claus, F.. Eur Radiol 2013:280-6

Overexpression of IL-32 is a novel prognostic factor in patients with localized clear cell renal cell carcinoma. Lee, H. J., Liang, Z. L., Huang, S. M., Lim, J. S., Yoon, D. Y., Lee, H. J., and Kim, J. M.. Oncol Lett 2012:490-496

[Analysis of the evolution of surgery for the treatment of primary renal tumors during the period 2006-2010: report of 458 consecutive surgeries]. Bellec, L., Thoulouzan, M., Soler, P., Khedis, M., Walschaerts, M., Delaunay, B., Crenn, G., Salloum, A., Rouvellat, P., Malavaud, B., Rischmann, P., Plante, P., Soulie, M., and Huyghe, E.. Prog Urol 2012:520-8

Assessing performance trends in laparoscopic nephrectomy and nephron-sparing surgery for localized renal tumors. Smaldone, M. C., Kutikov, A., Egleston, B., Simhan, J., Canter, D. J., Teper, E., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Urology 2012:286-91

Staging lymphadenectomy in renal cell carcinoma must be extended: a sensitivity curve analysis. Capitanio, U., Suardi, N., Matloob, R., Abdollah, F., Castiglione, F., Briganti, A., Carenzi, C., Roscigno, M., Montorsi, F., and Bertini, R.. BJU Int 2013:412-8

Assessment of cancer control outcomes in patients with high-risk renal cell carcinoma treated with partial nephrectomy. Hansen, J., Sun, M., Bianchi, M., Rink, M., Tian, Z., Hanna, N., Meskawi, M., Schmitges, J., Shariat, S. F., Chun, F. K., Perrotte, P., Graefen, M., and Karakiewicz, P. I.. Urology 2012:347-53

The effect of race and gender on the surgical management of the small renal mass. Kates, M., Whalen, M. J., Badalato, G. M., and McKiernan, J. M.. Urol Oncol 2013:1794-9

Pathological implications of areas of lower enhancement on contrast-enhanced computed tomography in renal-cell carcinoma: additional information for selecting candidates for surveillance protocols. Villalobos-Gollas, M., Aguilar-Davidov, B., Culebro-Garcia, C., Gomez-Alvarado, M. O., Rojas-Garcia, P., Ibarra-Fombona, R., Uribe-Uribe, N., Feria-Bernal, G., Castillejos-Molina, R., Sotomayor, M., Gabilondo, F., and Rodriguez-Covarrubias, F.. Int Urol Nephrol 2012:1369-74

Comparison of two core biopsy techniques before and after laparoscopic cryoablation of small renal cortical neoplasms. Truesdale, M. D., Mues, A. C., Sartori, S., Casazza, C. N., Hruby, G. W., Harik, L. R., O'Toole, K. M., Badani, K. K., Perez-Lanzac, A., and Landman, J.. JSLS 2011:509-16

RENAL nephrometry score predicts surgery type independent of individual surgeon's use of nephron-sparing surgery. Tobert, C. M., Kahnoski, R. J., Thompson, D. E., Anema, J. G., Kuntzman, R. S., and Lane, B. R.. Urology 2012:157-61

Characteristics and outcomes of tumors arising from the distal nephron. Abern, M. R., Tsivian, M., Polascik, T. J., and Coogan, C. L.. Urology 2012:140-6

[Nephron-sparing surgery: our experience]. Crestani, A., Guttilla, A., Dal Moro, F., Valotto, C., and Zattoni, F.. Urologia 2012:97-101

Understanding criteria for surveillance of patients with a small renal mass. Jacobs, B. L., Tan, H. J., Montgomery, J. S., Weizer, A. Z., Wood, D. P., Miller, D. C., Wolf, J. S. Jr, and Hafez, K. S.. Urology 2012:1027-32

The role of pathology in small renal mass laparoscopic cryoablation. Lagerveld, B. W., van Dekken, H., van Leenders, G. J., and van der Zee, J. A.. Adv Urol 2012 :539648

Volume-outcome relationships in the treatment of renal tumors. Abouassaly, R., Finelli, A., Tomlinson, G. A., Urbach, D. R., and Alibhai, S. M.. J Urol 2012:1984-8

Perioperative outcomes of robotic and open partial nephrectomy for moderately and highly complex renal lesions. Simhan, J., Smaldone, M. C., Tsai, K. J., Li, T., Reyes, J. M., Canter, D., Kutikov, A., Chen, D. Y., Greenberg, R. E., Uzzo, R. G., and Viterbo, R.. J Urol 2012:2000-4

Inpatient safety trends in laparoscopic and open nephrectomy for renal tumours. Stroup, S. P., Palazzi, K. L., Chang, D. C., Ward, N. T., and Parsons, J. K.. BJU Int 2012:1808-13

Intraoperative ultrasonography: a useful tool in retrolaparoscopic nephron-sparing surgery. Kang, N., Niu, Y., Zhang, J., Wang, J., Tian, X., Yan, Y., Yu, Z., and Xing, N.. Urol Int 2012:338-42

Impact of comorbidity on complications after nephrectomy: use of the Clavien Classification of Surgical Complications. Hennus, P. M., Kroeze, S. G., Bosch, J. L., and Jans, J. J.. BJU Int 2012:682-7

Functional recovery after partial nephrectomy: effects of volume loss and ischemic injury. Simmons, M. N., Hillyer, S. P., Lee, B. H., Fergany, A. F., Kaouk, J., and Campbell, S. C.. J Urol 2012:1667-73

Under-grading of <4 cm renal masses on renal biopsy. Harris, C. R., Whitson, J. M., and Meng, M. V.. BJU Int 2012:794-7

Simplified hemostatic technique during laparoscopic partial nephrectomy. Tsivian, A., Tsivian, M., Benjamin, S., and Sidi, A. A.. Int Braz J Urol 2012:84-8

Prognostic nomogram for disease-free survival in patients with renal adenocarcinoma. Di Capua Sacoto, C., Budia, A., Garcia-Fadrique, G., Lujan, S., Ruiz-Cerda, J. L., and Jimenez-Cruz, J. F.. Urol Int 2012:271-6

Evolving practice patterns for the management of small renal masses in the USA. Yang, G., Villalta, J. D., Meng, M. V., and Whitson, J. M.. BJU Int 2012:1156-61

[Relevance of the clinical-pathological predictive factors in force in chromophobe renal cell cancer]. Pardo, P.,

Rodriguez-Faba, O., Palou, J., Algaba, F., Breda, A., Esquena, S., and Villavicencio, H.. Actas Urol Esp 2012:527-31

Laparoscopic cryotherapy for renal tumours. Grange, P., Rouse, P., Kouriefs, C., Rao, A., Karamanolakis, D., Roy, A., and Arya, M.. BJU Int 2012:808-17

Treatment management of small renal masses in the 21st century: a paradigm shift. Sun, M., Abdollah, F., Bianchi, M., Trinh, Q. D., Jeldres, C., Thuret, R., Tian, Z., Shariat, S. F., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. Ann Surg Oncol 2012:2380-7

Higher perioperative morbidity and in-hospital mortality in patients with end-stage renal disease undergoing nephrectomy for non-metastatic kidney cancer: a population-based analysis. Schmitges, J., Trinh, Q. D., Sun, M., Hansen, J., Bianchi, M., Jeldres, C., Perrotte, P., Dahlem, R., Shariat, S. F., Chun, F. K., Montorsi, F., Menon, M., Fisch, M., Graefen, M., and Karakiewicz, P. I.. BJU Int 2012:E183-90

Optimal surgical margin in nephron-sparing surgery for T1b renal cell carcinoma. Chen, X. S., Zhang, Z. T., Du, J., Bi, X. C., Sun, G., and Yao, X.. Urology 2012:836-9

NDRG2 is involved in the oncogenic properties of renal cell carcinoma and its loss is a novel independent poor prognostic factor after nephrectomy. Liang, Z. L., Kang, K., Yoon, S., Huang, S. M., Lim, J. S., Kim, J. M., Lim, J. S., and Lee, H. J.. Ann Surg Oncol 2012:2763-72

Low local metastatic rate may widen indication of nephronsparing surgery for renal cell carcinoma. Xiong, Z. Q., Zheng, J., Feng, C. C., Bao, Y., Ding, Q., and Fang, Z. J.. Ann Diagn Pathol 2012:190-5

A non-cancer-related survival benefit is associated with partial nephrectomy. Sun, M., Trinh, Q. D., Bianchi, M., Hansen, J., Hanna, N., Abdollah, F., Shariat, S. F., Briganti, A., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. Eur Urol 2012:725-31

Growth pattern of renal cell carcinoma (RCC) in patients with delayed surgical intervention. Li, X. S., Yao, L., Gong, K., Yu, W., He, Q., Zhou, L. Q., and He, Z. S.. J Cancer Res Clin Oncol 2012:269-74

[Partial elective nephrectomy]. Zungri, E., Martinez, L., Leal, D., and Lorenzo, L.. Actas Urol Esp 2012:160-4

Trends in the use of of nephron-sparing surgery (NSS) at an Australian tertiary referral centre: an analysis of surgical decision-making using the R.E.N.A.L. nephrometry scoring system. Satasivam, P., Rajarubendra, N., Chia, P. H., Munshey, A., Sengupta, S., and Bolton, D.. BJU Int 2012:1341-4

Contemporary trends in nephrectomy for renal cell carcinoma in the United States: results from a population based cohort. Kim, S. P., Shah, N. D., Weight, C. J., Thompson, R. H., Moriarty, J. P., Shippee, N. D., Costello, B. A., Boorjian, S. A., and Leibovich, B. C.. J Urol 2011:1779-85

Validation of the 2009 TNM Classification for Renal Cell Carcinoma: Comparison with the 2002 TNM Classification by Concordance Index. Lee, C., You, D., Park, J., Jeong, I. G., Song, C., Hong, J. H., Ahn, H., and Kim, C. S.. Korean J Urol 2011:524-30

Incidence of multiple sporadic renal cell carcinomas in patients referred for renal radiofrequency ablation: implications for imaging follow-up. Beland, M. D., Wolf, F. J., Grand, D. J., Dupuy, D. E., and Mayo-Smith, W. W.. AJR Am J Roentgenol 2011:671-5

Tumour diameter and decreased preoperative estimated glomerular filtration rate are independently correlated in patients with renal cell carcinoma. Donin, N. M., Suh, L. K., Barlow, L., Hruby, G. W., Newhouse, J., and McKiernan, J.. BJU Int 2012:379-83

Increasing use of kidney sparing approaches for localized renal tumors in a community based health system: impact on renal functional outcomes. Lane, B. R., Chen, H., Morrow, M., Anema, J. G., and Kahnoski, R. J.. J Urol 2011:1229-35

Degree and Predictors of Functional Loss of the Operated Kidney following Nephron-Sparing Surgery: Assessment by Quantitative SPECT of 99m Tc-Dimercaptosuccinic Acid Scintigraphy. Nativ, O., Levi, A., Farfara, R., Halachmi, S., and Moskovitz, B.. Adv Urol 2011:961525

The Karakiewicz nomogram is the most useful clinical predictor for survival outcomes in patients with localized renal cell carcinoma. Tan, M. H., Li, H., Choong, C. V., Chia, K. S., Toh, C. K., Tang, T., Tan, P. H., Wong, C. F., Lau, W., and Cheng, C.. Cancer 2011:5314-24

Benefits of a combined approach to sampling of renal neoplasms as demonstrated in a series of 351 cases. Parks, G. E., Perkins, L. A., Zagoria, R. J., Garvin, A. J., Sirintrapun, S. J., and Geisinger, K. R.. Am J Surg Pathol 2011:827-35

Chyluria after radiofrequency ablation of renal tumors. Kaur, H., Matin, S. F., Javadi, S., Johnson, V. E., Choi, H., Sandler, C., and Ahrar, K.. J Vasc Interv Radiol 2011 :924-7

Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. Kim, S. P., Alt, A. L., Weight, C. J., Costello, B. A., Cheville, J. C., Lohse, C., Allmer, C., and Leibovich, B. C.. J Urol 2011:2035-9

Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Cho, A., Lee, J. E., Kwon, G. Y., Huh, W., Lee, H. M., Kim, Y. G., Kim, D. J., Oh, H. Y., and Choi, H. Y.. Nephrol Dial Transplant 2011:3496-501

Risk factors for conversion to hand assisted laparoscopy or open surgery during laparoscopic renal surgery. Rowley, M. W. and Wolf, J. S. Jr. J Urol 2011:940-4

Clinical characteristics and outcomes of patients with recurrence 5 years after nephrectomy for localized renal cell carcinoma. Adamy, A., Chong, K. T., Chade, D., Costaras, J., Russo, G., Kaag, M. G., Bernstein, M., Motzer, R. J., and Russo, P., J Urol 2011:433-8

Clinical predictors of renal mass pathological features. Tsivian, M., Mouraviev, V., Albala, D. M., Caso, J. R., Robertson, C. N., Madden, J. F., and Polascik, T. J. BJU Int 2011:735-40

Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Sun, M., Thuret, R., Abdollah, F., Lughezzani, G., Schmitges, J., Tian, Z., Shariat, S. F., Montorsi, F., Patard, J. J., Perrotte, P., and Karakiewicz, P. I.. Eur Urol 2011:135-41

Diagnostic value of processing cytologic aspirates of renal tumors in agar cell (tissue) blocks. Smedts, F., Schrik, M., Horn, T., and Hopman, A. H.. Acta Cytol 2010:587-94

The Prognostic Factors for Patients with pT1a Renal Cell Carcinoma. Kim, J. M., Song, P. H., Kim, H. T., and Park, T. C.. Korean J Urol 2010:233-8

Predicting occult multifocality of renal cell carcinoma. Tsivian, M., Moreira, D. M., Caso, J. R., Mouraviev, V., Madden, J. F., Bratslavsky, G., Robertson, C. N., Albala, D. M., and Polascik, T. J.. Eur Urol 2010:118-26

The prognostic value of erythrocyte polyamines in the preoperative evaluation of patients with renal cell carcinoma. Lughezzani, G., Karakiewicz, P. I., Bigot, P., Perrotte, P., Crepel, M., Rioux-Leclercq, N., Catros-Quemener, V., Moulinoux, J. P., Bouet, F., Cipolla, B., and Patard, J. J.. Eur J Cancer 2010:1927-35

Characterization of contrast enhancement in the ablation zone immediately after radiofrequency ablation of renal tumors. Javadi, S., Ahrar, J. U., Ninan, E., Gupta, S., Matin, S. F., and Ahrar, K.. J Vasc Interv Radiol 2010 :690-5

Radiofrequency ablation of renal tumours: diagnostic accuracy of contrast-enhanced ultrasound for early detection of residual tumour. Hoeffel, C., Pousset, M., Timsit, M. O., Elie, C., Mejean, A., Merran, S., Tranquart, F., Khairoune, A., Joly, D., Richard, S., Helenon, O., and Correas, J. M.. Eur Radiol 2010:1812-21

Variation in the incidence of and risk factors for the development of nephrolithiasis after radical or partial nephrectomy. Bagrodia, A., Malcolm, J. B., Diblasio, C. J., Mehrazin, R., Patterson, A. L., Wake, R. W., Wan, J. Y., and Derweesh, I. H.. BJU Int 2010:1200-4

Predicting collecting system transection at laparoscopic partial nephrectomy: analysis of tumor parameters. Shikanov, S., Lifshitz, D. A., Deklaj, T., Katz, M. H., and Shalhav, A. L.. J Endourol 2009:1863-6

Laparoscopic partial nephrectomy: predictors of prolonged warm ischemia. Lifshitz, D. A., Shikanov, S., Jeldres, C., Deklaj, T., Karakiewicz, P. I., Zorn, K. C., Eggener, S. E., and Shalhav, A. L.. J Urol 2009:860-5

Bowel displacement for CT-guided tumor radiofrequency ablation: techniques and anatomic considerations. Ginat, D.

T., Saad, W., Davies, M., Walman, D., and Erturk, E.. J Endourol 2009:1259-64

MRI and CT characteristics of successfully ablated renal masses: Imaging surveillance after radiofrequency ablation. Davenport, M. S., Caoili, E. M., Cohan, R. H., Ellis, J. H., Higgins, E. J., Willatt, J., and Fox, G. A.. AJR Am J Roentgenol 2009:1571-8

Estimation and prediction of renal function in patients with renal tumor. Kim, H. L., Shah, S. K., Tan, W., Shikanov, S. A., Zorn, K. C., Shalhav, A. L., and Wilding, G. E.. J Urol 2009:2451-60; discussion 2460-1

Nephron-sparing surgery: the effect of surface cooling and temporary renal artery occlusion on renal function. Bakirtas, H., Eroglu, M., Naldoken, S., Akbulut, Z., and Tekdogan, U. Y.. Urol Int 2009:24-7

Age at diagnosis is a determinant factor of renal cell carcinoma-specific survival in patients treated with nephrectomy. Karakiewicz, P. I., Jeldres, C., Suardi, N., Hutterer, G. C., Perrotte, P., Capitanio, U., Ficarra, V., Cindolo, L., de La Taille, A., Tostain, J., Mulders, P. F., Salomon, L., Zigeuner, R., Schips, L., Chautard, D., Valeri, A., Lechevallier, E., Descots, J. L., Lang, H., Mejean, A., Verhoest, G., and Patard, J. J.. Can Urol Assoc J 2008:610-7

Diagnostic yield of renal biopsy immediately prior to laparoscopic radiofrequency ablation: a multicenter study. Kyle, C. C., Wingo, M. S., Carey, R. I., Leveillee, R. J., and Bird, V. G.. J Endourol 2008:2291-3

Obesity and morbid obesity are associated with a greater conversion rate to open surgery for standard but not hand assisted laparoscopic radical nephrectomy. Gabr, A. H., Elsayed, E. R., Gdor, Y., Roberts, W. W., and Wolf, J. S. Jr. J Urol 2008:2357-62; discussion 2362

Effect of baseline glomerular filtration rate on survival in patients undergoing partial or radical nephrectomy for renal cortical tumors. Pettus, J. A., Jang, T. L., Thompson, R. H., Yossepowitch, O., Kagiwada, M., and Russo, P.. Mayo Clin Proc 2008:1101-6

[Splenic injury during left nephrectomy for renal cell cancer]. Zielinski, H., Pawlicki, B., Bortnowski, L., Jedynak, R., Piotrowicz, G., and Galka, M.. Pol Merkur Lekarski 2008:502-5

Incidence of benign pathologic lesions at partial nephrectomy for presumed RCC renal masses: Japanese dual-center experience with 176 consecutive patients. Fujii, Y., Komai, Y., Saito, K., Iimura, Y., Yonese, J., Kawakami, S., Ishikawa, Y., Kumagai, J., Kihara, K., and Fukui, I.. Urology 2008:598-602

Elective laparoscopic partial nephrectomy in patients with tumors >4 cm. Rais-Bahrami, S., Romero, F. R., Lima, G. C., Kohanim, S., Permpongkosol, S., Trock, B. J., Jarrett, T. W., and Kavoussi, L. R.. Urology 2008:580-3

Renal cell carcinoma radiofrequency ablation: evaluation of efficacy based on histological correlation. Mylona, S., Ntai, S., Stroumpouli, E., Glentzes, V., Martinis, S., and Thanos, L.. Br J Radiol 2008:479-84

Elevated serum-circulating RNA in patients with conventional renal cell cancer. Feng, G., Li, G., Gentil-Perret, A., Tostain, J., and Genin, C.. Anticancer Res 2008:321-6

Transperitoneal laparoscopic radical nephrectomy for large (more than 7 cm) renal masses. Berger, A. D., Kanofsky, J. A., O'Malley, R. L., Hyams, E. S., Chang, C., Taneja, S. S., and Stifelman, M. D.. Urology 2008:421-4

Immediate renal tumor involution after radiofrequency thermal ablation. Ganguli, S., Brennan, D. D., Faintuch, S., Rayan, M. E., and Goldberg, S. N.. J Vasc Interv Radiol 2008:412-8

Comparison of standard and hand-assisted laparoscopic radical nephrectomy for renal cell carcinoma. Harano, M., Eto, M., Yokomizo, A., Tatsugami, K., Hamaguchi, M., and Naito, S.. Fukuoka Igaku Zasshi 2007:389-96

Impact of gender in renal cell carcinoma: an analysis of the SEER database. Aron, M., Nguyen, M. M., Stein, R. J., and Gill, I. S.. Eur Urol 2008:133-40

CT-guided biopsy for the diagnosis of renal tumors before treatment with percutaneous ablation. Heilbrun, M. E., Zagoria, R. J., Garvin, A. J., Hall, M. C., Krehbiel, K., Southwick, A., and Clark, P. E.. AJR Am J Roentgenol 2007:1500-5

[Opened vs. laparoscopic radical nephrectomy in renal adenocarcinoma cost comparison]. Herranz Amo, F., Subira Rios, D., Hernandez Fernandez, C., Martinez Salamanca, J. I., Monzo, J. I., and Cabello Benavente, R.. Actas Urol Esp 2006:921-5

Positive surgical parenchymal margin after laparoscopic partial nephrectomy for renal cell carcinoma: oncological outcomes. Permpongkosol, S., Colombo, J. R. Jr, Gill, I. S., and Kavoussi, L. R.. J Urol 2006:2401-4

Incidence of benign lesions for clinically localized renal masses smaller than 7 cm in radiological diameter: influence of sex. Snyder, M. E., Bach, A., Kattan, M. W., Raj, G. V., Reuter, V. E., and Russo, P.. J Urol 2006:2391-5; discussion 2395-6

The influence of clinical and pathological stage discrepancy on cancer specific survival in patients treated for renal cell carcinoma. Svatek, R. S., Lotan, Y., Herman, M. P., Duchene, D. A., Sagalowsky, A. I., and Cadeddu, J. A.. J Urol 2006:1321-5; discussion 125

Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. Remzi, M., Ozsoy, M., Klingler, H. C., Susani, M., Waldert, M., Seitz, C., Schmidbauer, J., and Marberger, M.. J Urol 2006:896-9

Efficacy and safety of fast-track recovery strategy for patients undergoing laparoscopic nephrectomy. Recart, A., Duchene, D., White, P. F., Thomas, T., Johnson, D. B., and Cadeddu, J. A.. J Endourol 2005:1165-9

Hand-assisted laparoscopic radical nephrectomy: comparison of the transperitoneal and retroperitoneal approaches. Shiraishi, K., Eguchi, S., Mohri, J., and Kamiryo, Y.. Surg Laparosc Endosc Percutan Tech 2005:216-9

Independent validation of the 2002 American Joint Committee on cancer primary tumor classification for renal cell carcinoma using a large, single institution cohort. Frank, I., Blute, M. L., Leibovich, B. C., Cheville, J. C., Lohse, C. M., and Zincke, H.. J Urol 2005:1889-92

Ureteropelvic junction obstruction after partial nephrectomy. Singh, D., Desai, M., Novick, A. C., and Streem, S. B.. J Endourol 2005:416-8

Hemorrhagic complications after nephron-sparing surgery: angiographic diagnosis and management by transcatheter embolization. Heye, S., Maleux, G., Van Poppel, H., Oyen, R., and Wilms, G. AJR Am J Roentgenol 2005:1661-4

Renal neoplasms in younger adults: analysis of 112 tumors from a single institution according to the new 2004 World Health Organization classification and 2002 American Joint Committee on Cancer Staging System. Cao, Y., Paner, G. P., Perry, K. T., Flanigan, R. C., Campbell, S. C., and Picken, M. M.. Arch Pathol Lab Med 2005:487-91

Laparoscopic specimen extraction: morcellation. Varkarakis, I., Rha, K., Hernandez, F., Kavoussi, L. R., and Jarrett, T. W.. BJU Int 2005:27-31

Pathological stage does not alter the prognosis for renal lesions determined to be stage T1 by computerized tomography. Roberts, W. W., Bhayani, S. B., Allaf, M. E., Chan, T. Y., Kavoussi, L. R., and Jarrett, T. W.. J Urol 2005:713-5

Associations with contralateral recurrence following nephrectomy for renal cell carcinoma using a cohort of 2,352 patients. Bani-Hani, A. H., Leibovich, B. C., Lohse, C. M., Cheville, J. C., Zincke, H., and Blute, M. L.. J Urol 2005:391-4

Prediction of postoperative renal function by preoperative serum creatinine level and three-dimensional diagnostic image reconstruction in patients with renal cell carcinoma. Tanaka, N., Fujimoto, K., Tani, M., Yoshii, M., Yoshida, K., Hirao, Y., and Ozono, S.. Urology 2004:904-8

A renal mass in the setting of a nonrenal malignancy: When is a renal tumor biopsy appropriate? Sanchez-Ortiz, R. F., Madsen, L. T., Bermejo, C. E., Wen, S., Shen, Y., Swanson, D. A., and Wood, C. G.. Cancer 2004:2195-201

Evaluation of patients referred for percutaneous ablation of renal tumors: importance of a preprocedural diagnosis. Tuncali, K., vanSonnenberg, E., Shankar, S., Mortele, K. J., Cibas, E. S., and Silverman, S. G.. AJR Am J Roentgenol 2004:575-82

Guidelines for the surveillance of localized renal cell carcinoma based on the patterns of relapse after nephrectomy. Stephenson, A. J., Chetner, M. P., Rourke, K., Gleave, M. E., Signaevsky, M., Palmer, B., Kuan, J., Brock, G. B., and Tanguay, S.. J Urol 2004:58-62

[Radical retroperitoneal nephrectomy]. Heidenreich, A.. Aktuelle Urol 2004:65-76

Impact of arterial occlusion during partial nephrectomy on residual renal function: an evaluation with (99m)technetium-dimercaptosuccinic acid scintigraphy. Kondo, T., Nakazawa, H., Ito, F., Onitsuka, S., Ryoji, O., Yago, R., Hashimoto, Y., and Toma, H.. Int J Urol 2002:435-40

Prognostic importance of tumor size for localized conventional (clear cell) renal cell carcinoma: assessment of TNM T1 and T2 tumor categories and comparison with other prognostic parameters. Delahunt, B., Kittelson, J. M., McCredie, M. R., Reeve, A. E., Stewart, J. H., and Bilous, A. M.. Cancer 2002:658-64

Can renal oncocytomas be distinguished from renal cell carcinoma on fine-needle aspiration specimens? A study of conventional smears in conjunction with ancillary studies. Liu, J. and Fanning, C. V.. Cancer 2001:390-7

Prediction of post-operative glomerular filtration rate after nephrectomy for renal malignancy. Johansson, M. and Moonen, M.. Clin Physiol 2001:688-92

Cystic renal cell carcinoma: pathological features, survival and implications for treatment. Bielsa, O., Lloreta, J., and Gelabert-Mas, A.. Br J Urol 98:16-20

Renal function after radical nephrectomy: Development and validation of predictive models in Japanese patients. Yokoyama M., Fujii Y., Takeshita H., Kawamura N., Nakayama T., Iimura Y., Sakura M., Ishioka J., Saito K., Koga F., Masuda H., Noro A., Arisawa C., Kitahara S., and Kihara K.. Int. J. Urol. 2014:238-242

RENAL nephrometry score is a predictive factor for the annual growth rate of renal mass. Matsumoto R., Abe T., Shinohara N., Murai S., Maruyama S., Tsuchiya K., and Nonomura K.. Int. J. Urol. 2014:549-552

Clinico-pathological prognostic factors of renal cell carcinoma: A 15-year review from a single center in Greece. Grivas N., Kafarakis V., Tsimaris I., Raptis P., Hastazeris K., and Stavropoulos N.E.. Urol. Ann. 2014:116-121

Stage T1NOMO renal cell carcinoma: The prognosid in Asian patients. Zhang Z.-L., Chen W., Li Y.-H., Liu Z.-W., Luo J.-H., Lau W., Tan M.-H., and Zhou F.-J.. Chin. J. Cancer 2011:772-778

Robotics applied in laparoscopic kidney surgery: The Yonsei University experience of 127 cases. Lorenzo E.I.S., Jeong W., Oh C.K., Chung B.H., Choi Y.D., and Rha K.H.. Urology 2011:114-118

Thermal protection during percutaneous thermal ablation procedures: Interest of carbon dioxide dissection and temperature monitoring. Buy X., Tok C.-H., Szwarc D., Bierry G., and Gangi A.. Cardiovasc. Intervent. Radiol. 2009:529-534

A Comparative Study of Quality of Life Issues Relating to Open Versus Laparoscopic Nephrectomy: A Prospective Pragmatic Study. Harryman O.A., Davenport K., Keoghane S., Keeley F.X., and Timoney A.G.. J. Urol. 2009:998-1003

Clinicopathological features and survival rates of patients with renal cell carcinoma under 50 years of age. Atmaca A.F., Bayrak O., Kandemir O., Serefoglu E.C., Culha I.E., Canda A.E., and Balbay M.D.. Cent. Eur. J. Med. 2008:453-458

Robotic assisted Laparoscopic partial Nephrectomy for suspected Renal Cell Carcinoma: Retrospective review of surgical outcomes of 35 Cases. Bhayani S.B. and Das N.. BMC Surg. 2008:

Use of Haemostatic Agents and Glues during Laparoscopic Partial Nephrectomy: A Multi-Institutional Survey from the United States and Europe of 1347 Cases { A figure is presented }. Breda A., Stepanian S.V., Lam J.S., Liao J.C., Gill I.S., Colombo J.R., Guazzoni G., Stifelman M.D., Perry K.T., Celia A., Breda G., Fornara P., Jackman S.V., Rosales A., Palou J., Grasso M., Pansadoro V., Disanto V., Porpiglia F., Milani C., Abbou C.C., Gaston R., Janetschek G., Soomro N.A., De la Rosette J.J., Laguna P.M., and Schulam P.G.. Eur. Urol. 2007:798-803

Pathological Features of Renal Neoplasms Classified by Size and Symptomatology. Schlomer B., Figenshau R.S., Yan Y., Venkatesh R., and Bhayani S.B.. J. Urol. 2006:1317-1320

Extensively cystic renal neoplasms in adults (Bosniak Classification II or III) - Possible "common" histological diagnoses: Multilocular cystic renal cell carcinoma, cystic nephroma, and mixed epithelial and stromal tumor of the kidney. Hora M., Hes O., Michal M., Boudova L., Chudacek Z., Kreuzberg B., and Klecka J.. Int. Urol. Nephrol. 2005:743-750

Neuromuscular complications after percutaneous radiofrequency ablation of renal tumors. Bhayani S.B., Allaf M.E., Su L.-M., and Solomon S.B.. Urology 2005:592.e24-592.e25

Clinicopathological Features of Incidentally Detected Renal Cell Carcinoma in Japan. Miyake H., Ishimura T., Sakai I., Hara I., and Eto H.. UroOncology 2003:95-98

The symptoms of renal cell carcinoma related to patients' survival. Ou Y.-C., Yang C.-R., Ho H.-C., Cheng C.-L., Kao Y.-L., Su C.-K., Chiu K.-Y., and Chen W.-M.. J. Chin. Med. Assoc. 2003:537-543

Complications of transperitoneal laparoscopic surgery in urology: Review of 1,311 procedures at a single center. Vallancien G., Cathelineau X., Baumert H., Doublet J.D., and Guillonneau B.. J. Urol. 2002:23-26

Significance of intratumoral microscopic vascular invasion in patients with renal cell carcinoma. Dall'Oglio M.F., Srougi M., Goncalves P.D., Leitte K., Scortegagna Jr. E., and Hering F.. Braz. J. Urol. 2002:20-24

Radiologic, pathologic and molecular attributes of two types of papillary renal adenocarcinomas. Mydlo J.H., Weinstein R., Misseri R., Axiotis C., and Thelmo W.. Scand. J. Urol. Nephrol. 2001:262-269

Original report. Three-dimensional CT stereoscopic visualization of renal masses: Impact on diagnosis and patient treatment. Smith P.A., Marshall F.F., Urban B.A.,

Heath D.G., and Fishman E.K.. AM. J. ROENTGENOL. 97:1331-1334

Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: results using the PADUA classification system. Shin, T. Y., Kim, J., Koo, K. C., Lim, S. K., Kim, D. W., Kang, M. W., Rha, K. H., Choi, Y. D., and Ham, W. S.. BJU Int 2014:754-61

Differentiation of clear from non-clear cell renal cell carcinoma using CT washout formula. Kopp, R. P., Aganovic, L., Palazzi, K. L., Cassidy, F. H., Sakamoto, K., and Derweesh, I. H.. Can J Urol 2013:6790-7

[Results of fine-needle aspiration cytology (FNAC) in the diagnosis of indeterminate solid renal tumours]. Li, G., Cuilleron, M., Cottier, M., Rambaud, B., Tostain, J., and Gigante, M.. Prog Urol 2010:30-4

Histogram analysis of small solid renal masses: differentiating minimal fat angiomyolipoma from renal cell carcinoma. Chaudhry, H. S., Davenport, M. S., Nieman, C. M., Ho, L. M., and Neville, A. M.. AJR Am J Roentgenol 2012:377-83

Combination of core biopsy and fine-needle aspiration increases diagnostic rate for small solid renal tumors. Li, G., Cuilleron, M., Zhao, A., Obadia, F., Mouracade, P., Tostain, J., Cottier, M., Peoc'h, M., and Gigante, M.. Anticancer Res 2012:3463-6

EUS-guided FNA aspiration of kidney masses: a multicenter U.S. experience. DeWitt, J., Gress, F. G., Levy, M. J., Hernandez, L. V., Eloubeidi, M. A., Mishra, G., Sherman, S., Al-Haddad, M. A., and LeBlanc, J. K.. Gastrointest Endosc 2009:573-8

Contrast-enhanced ultrasound using a time-intensity curve for the diagnosis of renal cell carcinoma. Aoki, S., Hattori, R., Yamamoto, T., Funahashi, Y., Matsukawa, Y., Gotoh, M., Yamada, Y., and Honda, N.. BJU Int 2011:349-54

Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Kroeze, S. G., Huisman, M., Verkooijen, H. M., van Diest, P. J., Ruud Bosch, J. L., and van den Bosch, M. A.. Cardiovasc Intervent Radiol 2012:680-5

Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. Oh, T. H., Lee, Y. H., and Seo, I. Y.. Korean J Urol 2014:587-92

Characterization of solid renal masses using 64-slice multidetector CT scanner. El-Esawy, S. S., Abou El-Ghar, M. E., Gaballa, G. M., and Zahra, S. A.. ScientificWorldJournal 2009:441-8

Detection of renal lesion enhancement with dual-energy multidetector CT. Neville, A. M., Gupta, R. T., Miller, C. M., Merkle, E. M., Paulson, E. K., and Boll, D. T.. Radiology 2011:173-83

MR imaging in the characterization of small renal masses. Willatt, J. M., Hussain, H. K., Chong, S., Kappil, M., Azar,

S. F., Liu, P. S., Ruma, J. A., and Elsayes, K. M.. Abdom Imaging 2014:761-9

MR imaging of renal masses interpreted on CT to be suspicious. Tello, R., Davison, B. D., O'Malley, M., Fenlon, H., Thomson, K. R., Witte, D. J., and Harewood, L.. AJR Am J Roentgenol 2000:1017-22

[Characterization and outcome of renal cancers <:/= 4cm treated by surgery]. Gigante, M., Li, G., Gentil-Perret, A., Chamba, C., and Tostain, J.. Prog Urol 2010:572-7

Management of small indeterminate renal tumours: is there a case for needle biopsy?. Khan, A. A., Shergill, I. S., Gujral, S. S., and Timoney, A. G.. BJU Int 2007:1-3

Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system. Clevert, D. A., Minaifar, N., Weckbach, S., Jung, E. M., Stock, K., Reiser, M., and Staehler, M.. Clin Hemorheol Microcirc 2008:171-8

Cystic renal masses: accurate Bosniak classification requires adequate renal CT. Curry, N. S., Cochran, S. T., and Bissada, N. K.. AJR Am J Roentgenol 2000:339-42

Multiphasic enhancement patterns of small renal masses ((less-than or equal to)4 cm) on preoperative computed tomography: Utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Pierorazio P.M., Hyams E.S., Tsai S., Feng Z., Trock B.J., Mullins J.K., Johnson P.T., Fishman E.K., and Allaf M.E.. Urology 2013:1265-1271

Growth kinetics of small renal masses: A prospective analysis from the renal cell carcinoma consortium of Canada. Organ M., Jewett M., Abdolell M., Basiuka J., Fleshner N., Finelli A., Morash C., Pautler S., Chin J., Siemens R., Tanguay S., Gleave M., Drachenberg D., Chow R., Evans A., Gallie B., Haider M., Kachura J., and Rendon R.. J. Urol. 2013 :e482

Differential diagnosis of renal oncocytoma and carcinoma by spiral CT. Zhang J., Ma D.-Q., He W., Zhang Z.-J., Hu Y.-M., and Xu Y.. Chin. J. Med. Imaging Technol. 2007:718-720

Study on diagnosis of renal tumors by real-time contrast-enhanced ultrasonography. Li J., Zhou X.-D., Luo E.-P., Han Z.-H., Zheng M., Zheng M.-J., and Wang L.. Chin. J. Med. Imaging Technol. 2006:591-593

Small renal masses: Assessment of lesion characterization and vascularity on dynamic contrast-enhanced MR imaging with fat suppression. Scialpi M., Di Maggio A., Midiri M., Loperfido A., Angelelli G., and Rotondo A.. Am. J. Roentgenol. 2000:751-757

Readmissions after major urologic cancer surgery. Leow, J. J., Gandaglia, G., Sood, A., Ruhotina, N., Klett, D. E., Sammon, J. D., Schmid, M., Sun, M., Chang, S. L., Kibel, A. S., and Trinh, Q. D.. Can J Urol 2014:7537-46

Small renal masses managed with active surveillance: Predictors of tumor growth rate after long-term follow-up. Schiavina R., Borghesi M., Dababneh H., Bianchi L., Longhi B., Diazzi D., Monti C., La Manna G., Martorana G., and Brunocilla E.. Clin. Genitourin. Cancer 2015:e87-e92

A prospective, multicenter evaluation of predictive factors for positive surgical margins after nephron-sparing surgery for renal cell carcinoma: The record1 italian project. Schiavina R., Serni S., Mari A., Antonelli A., Bertolo R., Bianchi G., Brunocilla E., Borghesi M., Carini M., Longo N., Martorana G., Mirone V., Morgia G., Porpiglia F., Rocco B., Rovereto B., Simeone C., Sodano M., Terrone C., Ficarra V., and Minervini A.. Clin. Genitourin. Cancer 2015:165-170

R.E.N.A.L. nephrometry score in clinical stage T1 renal mass: Ramathibodi hospital experience. Prasit S., Sirisreetreerux P., Sangkum P., Kijvikai K., Viseshsindh W., Kongchareonsombat W., Leenanupunth C., and Kochakarn W.. J. Med. Assoc. Thailand 2015:181-187

Anatomic complexity quantitated by nephrometry score is associated with prolonged warm ischemia time during robotic partial nephrectomy. Tomaszewski J.J., Smaldone M.C., Mehrazin R., Kocher N., Ito T., Abbosh P., Baber J., Kutikov A., Viterbo R., Chen D.Y.T., Canter D.J., and Uzzo R.G.. Urology 2014:340-344

Renal masses measuring under 2 cm: Pathologic outcomes and associations with MRI features. Rosenkrantz A.B., Wehrli N.E., Melamed J., Taneja S.S., and Shaikh M.B.. Eur. J. Radiol. 2014:1311-1316

Bosniak category III cysts are more likely to be malignant than we expected in the era of multidetector computed tomography technology. Bata P., Tarnoki A.D., Tarnoki D.L., Szasz A.M., Poloskei G., Fejer B., Gyebnar J., Nyirady P., Berczi V., Karlinger K., and Szendroi A.. J. Res. Med. Sci. 2014:634-638

Factors Associated with Diagnostic Accuracy When Performing a Preablation Renal Biopsy. Lorber, G., Jorda, M., and Leveillee, R., J Endourol 2014:

Nephron-sparing Techniques Independently Decrease the Risk of Cardiovascular Events Relative to Radical Nephrectomy in Patients with a T1a-T1b Renal Mass and Normal Preoperative Renal Function. Capitanio, U., Terrone, C., Antonelli, A., Minervini, A., Volpe, A., Furlan, M., Matloob, R., Regis, F., Fiori, C., Porpiglia, F., Di Trapani, E., Zacchero, M., Serni, S., Salonia, A., Carini, M., Simeone, C., Montorsi, F., and Bertini, R.. Eur Urol 2014:

Renal surgery for kidney cancer in Germany 2005-2006: length of stay, risk of postoperative complications and inhospital death. Stang, A. and Buchel, C.. BMC Urol 2014:74

Evaluation of Renal Mass Biopsy Risk Stratification Algorithm for Robotic Partial Nephrectomy-Could a Biopsy Have Guided Management?. Rahbar, H., Bhayani, S., Stifelman, M., Kaouk, J., Allaf, M., Marshall, S., Zargar, H., Ball, M., Larson, J., and Rogers, C.. J Urol 2014: Survival advantage of partial over radical nephrectomy in patients presenting with localized renal cell carcinoma. Roos, F. C., Steffens, S., Junker, K., Janssen, M., Becker, F., Wegener, G., Brenner, W., Steinestel, J., Schnoeller, T. J., Schrader, M., Hofmann, R., Thuroff, J. W., Kuczyk, M. A., Wunderlich, H., Siemer, S., Hartmann, A., Stockle, M., and Schrader, A. J., BMC Cancer 2014:372

Outcomes in patients undergoing nephrectomy for renal cancer on chronic anticoagulation therapy. Sfakianos, J. P., Hakimi, A. A., Kim, P. H., Zabor, E. C., Mano, R., Bernstein, M., Karellas, M., and Russo, P.. Eur J Surg Oncol 2014:

An obese body habitus does not preclude a minimally invasive partial nephrectomy. Reynolds, C., Hannon, M., Lehman, K., Harpster, L. E., and Raman, J. D.. Can J Urol 2014:7145-9

The impact of type 2 diabetes on the outcome of localized renal cell carcinoma. Hofner, T., Zeier, M., Hatiboglu, G., Eisen, C., Schonberg, G., Hadaschik, B., Teber, D., Duensing, S., Trumpp, A., Hohenfellner, M., and Pahernik, S.. World J Urol 2013:

Renal function following curative surgery for renal cell carcinoma: who is at risk for renal insufficiency?. Kong, H. J., Park, J. S., Kim, D. Y., Shin, H. S., and Jung, H. J.. Korean J Urol 2013:830-3

Estimating the risk of chronic kidney disease after nephrectomy. Ngo, T. C., Hurley, M. P., Thong, A. E., Jeon, S. H., Leppert, J. T., and Chung, B. I.. Can J Urol 2013:7035-41

Is there a volume-outcome relationship for partial nephrectomy? Couapel, J. P., Bensalah, K., Bernhard, J. C., Pignot, G., Zini, L., Lang, H., Rigaud, J., Salomon, L., Bellec, L., Soulie, M., Vaessen, C., Roupret, M., Jung, J. L., Mourey, E., Bigot, P., Bruyere, F., Berger, J., Ansieau, J. P., Gimel, P., Salome, F., Hubert, J., Pfister, C., Baumert, H., Timsit, M. O., Mejean, A., and Patard, J. J.. World J Urol 2014:1323-9

Population level assessment of hospital based outcomes following laparoscopic versus open partial nephrectomy during the adoption of minimally invasive surgery. Tan, H. J., Wolf, J. S. Jr, Ye, Z., Hafez, K. S., and Miller, D. C.. J Urol 2014:1231-7

Factors that affect proportional glomerular filtration rate after minimally invasive partial nephrectomy. Hakimi, A. A., Ghavamian, R., Williams, S. K., Kim, P. H., Chen, L., Sfakianos, J. P., Keren-Paz, G. E., Sankin, A., Ginzburg, N., and Coleman, J. A.. J Endourol 2013:1371-5

Renal function outcomes for multifocal renal neoplasms managed by radiofrequency ablation. Gupta, P., Allen, B. C., Chen, M. Y., Childs, D. D., Kota, G., and Zagoria, R. J.. Cardiovasc Intervent Radiol 2013:1329-35

Angiomyolipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT. Zhang, Y. Y., Luo, S., Liu, Y., and Xu, R. T.. Clin Radiol 2013:365-70

Urinary NGAL and KIM-1: biomarkers for assessment of acute ischemic kidney injury following nephron sparing

surgery. Abassi, Z., Shalabi, A., Sohotnik, R., Nativ, O., Awad, H., Bishara, B., Frajewicki, V., Sukhotnik, I., Abbasi, A., and Nativ, O.. J Urol 2013:1559-66

Single-center comparative oncologic outcomes of surgical and percutaneous cryoablation for treatment of renal tumors. Goyal, J., Verma, P., Sidana, A., Georgiades, C. S., and Rodriguez, R.. J Endourol 2012:1413-9

Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Krane, L. S., Manny, T. B., and Hemal, A. K.. Urology 2012:110-6

Nephrometry score is associated with volume loss and functional recovery after partial nephrectomy. Simmons, M. N., Hillyer, S. P., Lee, B. H., Fergany, A. F., Kaouk, J., and Campbell, S. C.. J Urol 2012:39-44

Renal cell carcinoma stage migration in a single European centre over 25 years: effects on 5- and 10-year metastasisfree survival. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Pummer, K., and Zigeuner, R.. Int Urol Nephrol 2012:997-1004

Understanding the role of percutaneous biopsy in the management of patients with a small renal mass. Tan, H. J., Jacobs, B. L., Hafez, K. S., Montgomery, J. S., Weizer, A. Z., Wood, D. P. Jr, Miller, D. C., and Wolf, J. S. Jr. Urology 2012:372-7

Significant impact of age at diagnosis on the prognosis of Japanese patients with pT1 renal cell carcinoma following surgical resection. Sakai, I., Miyake, H., Muramaki, M., Kondo, Y., Kusuda, Y., Yamada, Y., and Fujisawa, M.. BJU Int 2012:695-9

Laparoscopic and open partial nephrectomy: frequency and long-term follow-up of postoperative collections. Hecht, E. M., Bennett, G. L., Brown, K. W., Robbins, D., Hyams, E. S., Taneja, S. S., and Stifelman, M. A.. Radiology 2010:476-84

Identifying the risk of disease progression after surgery for localized renal cell carcinoma. Abel, E. J., Culp, S. H., Meissner, M., Matin, S. F., Tamboli, P., and Wood, C. G.. BJU Int 2010:1277-83

Hydrodisplacement in the percutaneous cryoablation of 50 renal tumors. Bodily, K. D., Atwell, T. D., Mandrekar, J. N., Farrell, M. A., Callstrom, M. R., Schmit, G. D., and Charboneau, J. W.. AJR Am J Roentgenol 2010:779-83

Central and deep renal tumors can be effectively ablated: radiofrequency ablation outcomes with fiberoptic peripheral temperature monitoring. Wingo, M. S. and Leveillee, R. J.. J Endourol 2008:1261-7

Preservation of renal function following partial or radical nephrectomy using 24-hour creatinine clearance. Clark, A. T., Breau, R. H., Morash, C., Fergusson, D., Doucette, S., and Cagiannos, I.. Eur Urol 2008:143-49

Enucleation of renal cell carcinoma with ablation of the tumour base. Kutikov, A., Vanarsdalen, K. N., Gershman, B., Fossett, L. K., Guzzo, T. J., Wein, A. J., and Malkowicz, S. B.. BJU Int 2008:688-91

Follow-up of renal masses after cryosurgery using computed tomography; enhancement patterns and cryolesion size. Beemster, P., Phoa, S., Wijkstra, H., de la Rosette, J., and Laguna, P., BJU Int 2008:1237-42

Intermediate-term prospective results of radiofrequency-assisted laparoscopic partial nephrectomy: a non-ischaemic coagulative technique. Zeltser, I. S., Moonat, S., Park, S., Anderson, J. K., and Cadeddu, J. A.. BJU Int 2008:36-8

Image-guided biopsy in the evaluation of renal mass lesions in contemporary urological practice: indications, adequacy, clinical impact, and limitations of the pathological diagnosis. Shah, R. B., Bakshi, N., Hafez, K. S., Wood, D. P. Jr, and Kunju, L. P.. Hum Pathol 2005:1309-15

Prognostic role of Fuhrman grade and vascular endothelial growth factor in pT1a clear cell carcinoma in partial nephrectomy specimens. Minardi, D., Lucarini, G., Mazzucchelli, R., Milanese, G., Natali, D., Galosi, A. B., Montironi, R., Biagini, G., and Muzzonigro, G.. J Urol 2005:1208-12

Does the distance to normal renal parenchyma (DTNRP) in nephron-sparing surgery for renal cell carcinoma have an effect on survival? Akcetin, Z., Zugor, V., Elsasser, D., Krause, F. S., Lausen, B., Schrott, K. M., and Engehausen, D. G.. Anticancer Res 2005:1629-32

Application of TNM, 2002 version, in localized renal cell carcinoma: is it able to predict different cancer-specific survival probability?. Ficarra, V., Novara, G., Galfano, A., Novella, G., Schiavone, D., and Artibani, W.. Urology 2004:1050-4

Prognostic significance of morphologic parameters in renal cell carcinoma. Erdogan, F., Demirel, A., and Polat, O.. Int J Clin Pract 2004:333-6

The impact of tumor size on clinical outcome in patients with localized renal cell carcinoma treated by radical nephrectomy. Nativ, O., Sabo, E., Raviv, G., Madjar, S., Halachmi, S., and Moskovitz, B.. J Urol 97:729-32

Evaluation of perirenal fat as a predictor of cT1a renal cortical neoplasm histopathology and surgical outcomes. Okhunov Z., Mues A.C., Kline M., Haramis G., Xu B., Mirabile G., Vira M., and Landman J.. J. Endourol. 2012:911-916

The significance of serum ferritin level in renal cell carcinoma: Bobrek Hucrelikanserde serum ferritin duzeyinin onemi. Erdemir F., Parlaktas B.S., Uluocak N., Ozcan F., Celik M., and Gokce O.. Turk Urol. Derg. 2005:479-484

Benign lesions underwent radical nephrectomy for renal cancer: Bobrek tumoru on tanisi ile radikal nefrektomi yapilan benin lezyonlar. Sahin M.O., Canda A.E., Mungan M.U., Kirkali Z., and Sade M.. Turk Urol. Derg. 2004:405-409

RENAL nephrometry score is a predictive factor for the annual growth rate of renal mass. Matsumoto, R., Abe, T., Shinohara, N., Murai, S., Maruyama, S., Tsuchiya, K., and Nonomura, K.. Int J Urol 2014:549-52

Partial nephrectomy for T2 renal masses: contemporary trends and oncologic efficacy. Alanee S., Nutt M., Moore A., Holland B., Dynda D., Wilber A., and El-Zawahry A.. Int. Urol. Nephrol. 2015:

Learning curves for robot-Assisted and laparoscopic partial nephrectomy. Hanzly M., Frederick A., Creighton T., Atwood K., Mehedint D., Kauffman E.C., Kim H.L., and Schwaab T.. J. Endourol. 2015:297-303

Prospective Evaluation of the Association of Adherent Perinephric Fat With Perioperative Outcomes of Robotic-assisted Partial Nephrectomy. Davidiuk A.J., Parker A.S., Thomas C.S., Heckman M.G., Custer K., and Thiel D.D.. Urology 2015:

Perinephric fat thickness is an independent predictor of operative complexity during robot-assisted partial nephrectomy. Macleod L.C., Hsi R.S., Gore J.L., Wright J.L., and Harper J.D.. J. Endourol. 2014:587-591

Do we need to clamp the renal hilum liberally during the initial phase of the learning curve of robot-assisted nephron-sparing surgery?. Acar O., Esen T., Musaoglu A., and Vural M.. Sci. World J. 2014:

Comparison of warm and cold ischemia on renal function after partial nephrectomy. Funahashi Y., Yoshino Y., Sassa N., Matsukawa Y., Takai S., and Gotoh M.. Urology 2014:1408-1413

Other

Intraoperative sonography during open partial nephrectomy for renal cell cancer: does it alter surgical management?. Bhosale, P. R., Wei, W., Ernst, R. D., Bathala, T. K., Reading, R. M., Wood, C. G., and Bedi, D. G.. AJR Am J Roentgenol 2014:822-7

Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Haddad, A. Q., Kapur, P., Singla, N., Raman, J. D., Then, M. T., Nuhn, P., Buchner, A., Bastian, P., Seitz, C., Shariat, S. F., Bensalah, K., Rioux-Leclercq, N., Sagalowsky, A., Lotan, Y., and Margulis, V.. Cancer 2014:

The impact of tumour size on the probability of synchronous metastasis and survival in renal cell carcinoma patients: a population-based study. Ingimarsson, J. P., Sigurdsson, M. I., Hardarson, S., Petursdottir, V., Jonsson, E., Einarsson, G. V., and Gudbjartsson, T.. BMC Urol 2014:72

Tumor miR-125b predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Fu, Q., Liu, Z., Pan, D., Zhang, W., Xu, L., Zhu, Y., Liu, H., and Xu, J.. Cancer Sci 2014:

Low enhancement on multiphase contrast-enhanced CT images: an independent predictor of the presence of high tumor grade of clear cell renal cell carcinoma. Zhu, Y. H., Wang, X., Zhang, J., Chen, Y. H., Kong, W., and Huang, Y. R.. AJR Am J Roentgenol 2014:W295-300

Results of a comparative study analyzing octogenarians with renal cell carcinoma in a competing risk analysis with

patients in the seventh decade of life. May, M., Cindolo, L., Zigeuner, R., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Wolff, I., Feciche, B., Fenske, F., Pichler, M., Schips, L., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Santiago Martin, M. D., Salzano, L., Lotrecchiano, G., Waidelich, R., Stief, C., Sountoulides, P., and Brookman-May, S.. Urol Oncol 2014:

Factors Associated With Diagnostic Accuracy When Performing a Pre-Ablation Renal Biopsy. Lorber, G., Jorda, M., and Leveillee, R. J.. J Endourol 2014:

Low preoperative lymphocyte-monocyte ratio (LMR) represents a potentially poor prognostic factor in nonmetastatic clear cell renal cell carcinoma. Hutterer, G. C., Stoeckigt, C., Stojakovic, T., Jesche, J., Eberhard, K., Pummer, K., Zigeuner, R., and Pichler, M.. Urol Oncol 2014:

Pathological characteristics and radiographic correlates of complex renal cysts. Reese, A. C., Johnson, P. T., Gorin, M. A., Pierorazio, P. M., Allaf, M. E., Fishman, E. K., Netto, G. J., and Pavlovich, C. P.. Urol Oncol 2014:

[Controversies of partial nephrectomy for renal cell carcinoma: survey in the German-speaking countries]. Tietze, S., Herms, M., Behrendt, W., Krause, J., and Hamza, A.. Urologe A 2014:1181-5

Analysis and validation of tissue biomarkers for renal cell carcinoma using automated high-throughput evaluation of protein expression. Abel, E. J., Bauman, T. M., Weiker, M., Shi, F., Downs, T. M., Jarrard, D. F., and Huang, W.. Hum Pathol 2014:1092-9

Clinical consequences of nephrectomy performed on medical grounds. Glazar, W., Dobrowolska-Glazar, B., Urbanowicz, W., and Sulowicz, W.. Przegl Lek 2014:1-4

Tumour characteristics and surgical treatment of renal cell carcinoma in Sweden 2005-2010: a population-based study from the National Swedish Kidney Cancer Register.

Thorstenson, A., Bergman, M., Scherman-Plogell, A. H., Hosseinnia, S., Ljungberg, B., Adolfsson, J., and Lundstam, S.. Scand J Urol 2014:231-8

Hydro-Jet-assisted laparoscopic partial nephrectomy with no renal arterial clamping: a preliminary study in a single center. Gao, Y., Chen, L., Ning, Y., Cui, X., Yin, L., Chen, J., Wang, J., Shao, B., and Xu, D.. Int Urol Nephrol 2014:1289-93

Chromosome 9p deletions are an independent predictor of tumor progression following nephrectomy in patients with localized clear cell renal cell carcinoma. de Oliveira, D., Dall'Oglio, M. F., Reis, S. T., Zerati, M., Souza, I. C., Leite, K. R., and Srougi, M.. Urol Oncol 2014:601-6

The initial experience with RENAL Nephrometry in children, adolescents, and young adults with renal tumors. Cost, N. G., DeFoor, W. R. Jr, Crotty, E. J., and Geller, J. I.. Pediatr Blood Cancer 2014:1434-9

Use and outcomes of extended antibiotic prophylaxis in urological cancer surgery. Calvert, J. K., Holt, S. K.,

Mossanen, M., James, A. C., Wright, J. L., Porter, M. P., and Gore, J. L.. J Urol 2014:425-9

Delay in nephrectomy and cancer control outcomes in elderly patients with small renal masses. Becker, A., Roghmann, F., Ravi, P., Tian, Z., Kluth, L. A., Gandaglia, G., Noldus, J., Dahlem, R., Schlomm, T., Graefen, M., Karakiewicz, P. I., Trinh, Q. D., and Sun, M.. Urol Int 2014:455-61

Comparison of the Complications and the Cost of Open and Laparoscopic Radical Nephrectomy in Renal Tumors Larger than 7 centimeters. Bayrak, O., Seckiner, I., Erturhan, S., Cil, G., Erbagci, A., and Yagci, F.. Urol J 2014:1222-7

Trends of adult primary malignant renal tumors over 6 years. Khalil Ibrahim, A.. Pak J Med Sci 2013:1385-8

Simple enucleation versus standard partial nephrectomy for clinical T1 renal masses: perioperative outcomes based on a matched-pair comparison of 396 patients (RECORd project). Longo, N., Minervini, A., Antonelli, A., Bianchi, G., Bocciardi, A. M., Cunico, S. C., Fiori, C., Fusco, F., Giancane, S., Mari, A., Martorana, G., Mirone, V., Morgia, G., Novara, G., Porpiglia, F., Raspollini, M. R., Rocco, F., Rovereto, B., Schiavina, R., Serni, S., Simeone, C., Verze, P., Volpe, A., Ficarra, V., and Carini, M.. Eur J Surg Oncol 2014:762-8

Impact of Recurrent Copy Number Alterations and Cancer Gene Mutations on the Predictive Accuracy of Prognostic Models in Clear Cell Renal Cell Carcinoma. Hakimi, A. A., Mano, R., Ciriello, G., Gonen, M., Mikkilineni, N., Sfakianos, J. P., Kim, P. H., Motzer, R. J., Russo, P., Reuter, V. E., Hsieh, J. J., and Ostrovnaya, I.. J Urol 2014:

Benefit in regionalization of care for patients treated with nephrectomy: a Nationwide Inpatient Sample. Becker, A., Bianchi, M., Hansen, J., Tian, Z., Shariat, S. F., Popa, I., Perrotte, P., Trinh, Q. D., Karakiewicz, P. I., and Sun, M.. World J Urol 2014:

External validation of TNM-C score in three community hospital cohorts for clear cell renal cell carcinoma. Nakayama, T., Saito, K., Ishioka, J., Kawano, K., Morimoto, S., Matsuoka, Y., Okuno, T., Moriyama, S., Takeshita, H., Noro, A., Fujii, Y., and Kihara, K.. Anticancer Res 2014:921-6

Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma. White, N. M., Masui, O., Desouza, L. V., Krakovska, O., Metias, S., Romaschin, A. D., Honey, R. J., Stewart, R., Pace, K., Lee, J., Jewett, M. A., Bjarnason, G. A., Siu, K. W., and Yousef, G. M.. Oncotarget 2014:506-18

External validation of the modified Glasgow prognostic score for renal cancer. Tai, C. G., Johnson, T. V., Abbasi, A., Herrell, L., Harris, W. B., Kucuk, O., Canter, D. J., Ogan, K., Pattaras, J. G., Nieh, P. T., and Master, V. A.. Indian J Urol 2014:33-7

Clinicopathological characteristics and outcomes of surgically excised renal masses in African Americans. Qi, P., Tsivian, M., Abern, M. R., Passoni, N. M., McGinley, K. F., and Polascik, T. J.. Urol Oncol 2014:555-60

The impact of perioperative blood transfusion on survival after nephrectomy for non-metastatic renal cell carcinoma (RCC). Linder, B. J., Thompson, R. H., Leibovich, B. C., Cheville, J. C., Lohse, C. M., Gastineau, D. A., and Boorjian, S. A.. BJU Int 2014:368-74

Practical and intuitive surgical approach renal ranking to predict outcomes in the management of renal tumors: a novel score tool. Tannus, M., Goldman, S. M., and Andreoni, C.. J Endourol 2014:487-92

Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Joseph, R. W., Kapur, P., Serie, D. J., Eckel-Passow, J. E., Parasramka, M., Ho, T., Cheville, J. C., Frenkel, E., Rakheja, D., Brugarolas, J., and Parker, A.. Cancer 2014:1059-67

Histopathologic findings of small renal tumor biopsies performed immediately after cryoablation therapy: a retrospective study of 50 cases. Tayal, S., Kim, F. J., Sehrt, D., Miano, R., Pompeo, A., and Molina, W.. Am J Clin Pathol 2014:35-42

Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Liu, J. J., Leppert, J. T., Maxwell, B. G., Panousis, P., and Chung, B. I.. Urol Oncol 2014:473-9

Small renal cell carcinomas--how dangerous are they really? Results of a large multicenter study. Steffens, S., Junker, K., Roos, F. C., Janssen, M., Becker, F., Henn, D., Wegener, G., Siemer, S., Hofmann, R., Schrader, M., Stockle, M., Thuroff, J. W., Hartmann, A., Kuczyk, M. A., and Schrader, A. J.. Eur J Cancer 2014:739-45

The impact of metformin use on recurrence and cancerspecific survival in clinically localized high-risk renal cell carcinoma. Hakimi, A. A., Chen, L., Kim, P. H., Sjoberg, D., Glickman, L., Walker, M. R., and Russo, P.. Can Urol Assoc J 2013:E687-91

Pathological characteristics and prognostic effect of peritumoral capsule penetration in renal cell carcinoma after tumor enucleation. Minervini, A., Rosaria Raspollini, M., Tuccio, A., Di Cristofano, C., Siena, G., Salvi, M., Vittori, G., Sebastianelli, A., Lapini, A., Serni, S., and Carini, M.. Urol Oncol 2014:50.e15-22

Renal Pelvic Anatomy Is Associated with Incidence, Grade, and Need for Intervention for Urine Leak Following Partial Nephrectomy. Tomaszewski, J. J., Cung, B., Smaldone, M. C., Mehrazin, R., Kutikov, A., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Eur Urol 2013:

Comparison of baseline quality of life measures between renal cell carcinoma patients undergoing partial versus radical nephrectomy. Arnold, M. L., Thiel, D. D., Diehl, N., Wu, K. J., Ames, S., and Parker, A. S.. BMC Urol 2013:52

Soft coagulation in partial nephrectomy without renorrhaphy: feasibility of a new technique and early outcomes. Ota, T., Komori, H., Rii, J., Ochi, A., Suzuki, K., Shiga, N., and Nishiyama, H.. Int J Urol 2014:244-7

Multi-institutional analysis of localized renal cell carcinoma that demonstrates the impact of diabetic status on prognosis after nephrectomy. Ha, Y. S., Kim, W. T., Yun, S. J., Lee, S. C., Kim, W. J., Park, Y. H., Kang, S. H., Hong, S. H., Byun, S. S., and Kim, Y. J.. Ann Surg Oncol 2013 :3662-8

Time to recurrence is a significant predictor of cancer-specific survival after recurrence in patients with recurrent renal cell carcinoma--results from a comprehensive multicentre database (CORONA/SATURN-Project). Brookman-May, S. D., May, M., Shariat, S. F., Novara, G., Zigeuner, R., Cindolo, L., De Cobelli, O., De Nunzio, C., Pahernik, S., Wirth, M. P., Longo, N., Simonato, A., Serni, S., Siracusano, S., Volpe, A., Morgia, G., Bertini, R., Dalpiaz, O., Stief, C., and Ficarra, V.. BJU Int 2013:909-16

Active surveillance, radiofrequency ablation, or cryoablation for the nonsurgical management of a small renal mass: a cost-utility analysis. Bhan, S. N., Pautler, S. E., Shayegan, B., Voss, M. D., Goeree, R. A., and You, J. J.. Ann Surg Oncol 2013:3675-84

Conditional survival after nephrectomy for renal cell carcinoma (RCC): changes in future survival probability over time. Bianchi, M., Becker, A., Hansen, J., Trinh, Q. D., Tian, Z., Abdollah, F., Briganti, A., Shariat, S. F., Perrotte, P., Montorsi, F., Karakiewicz, P. I., and Sun, M.. BJU Int 2013: E283-9

Sutureless hemostatic control during laparoscopic NSS for the treatment of small renal masses. Minervini, A., Siena, G., Tuccio, A., Lapini, A., Serni, S., and Carini, M.. Surg Innov 2014:32-8

Gender differences in clinicopathological features and survival in surgically treated patients with renal cell carcinoma: an analysis of the multicenter CORONA database. May, M., Aziz, A., Zigeuner, R., Chromecki, T., Cindolo, L., Schips, L., De Cobelli, O., Rocco, B., De Nunzio, C., Tubaro, A., Coman, I., Truss, M., Dalpiaz, O., Hoschke, B., Gilfrich, C., Feciche, B., Stoltze, A., Fenske, F., Fritsche, H. M., Figenshau, R. S., Madison, K., Sanchez-Chapado, M., Martin Mdel, C., Salzano, L., Lotrecchiano, G., Joniau, S., Waidelich, R., Stief, C., and Brookman-May, S.. World J Urol 2013:1073-80

Carbonic anhydrase IX (CAIX) is not an independent predictor of outcome in patients with clear cell renal cell carcinoma (ccRCC) after long-term follow-up. Zhang, B. Y., Thompson, R. H., Lohse, C. M., Dronca, R. S., Cheville, J. C., Kwon, E. D., and Leibovich, B. C.. BJU Int 2013:1046-53

Treatment and overall survival in renal cell carcinoma: a Swedish population-based study (2000-2008). Wahlgren, T., Harmenberg, U., Sandstrom, P., Lundstam, S.,

Kowalski, J., Jakobsson, M., Sandin, R., and Ljungberg, B.. Br J Cancer 2013:1541-9

Bilateral synchronous sporadic renal masses: intermediate functional and oncological outcomes at a single institution. Woodson, B., Fernandez, R., Stewart, C., Mandava, S., Wang, L., and Lee, B. R.. Int Urol Nephrol 2013:619-25

Assessing the accuracy and generalizability of the preoperative and postoperative Karakiewicz nomograms for renal cell carcinoma: results from a multicentre European and US study. Cindolo, L., Chiodini, P., Brookman-May, S., De Cobelli, O., May, M., Squillacciotti, S., De Nunzio, C., Tubaro, A., Coman, I., Feciche, B., Truss, M., Wirth, M. P., Dalpiaz, O., Chromecki, T. F., Shariat, S. F., Sanchez-Chapado, M., Santiago Martin Mdel, C., Rocco, B., Salzano, L., Lotrecchiano, G., Berardinelli, F., and Schips, L.. BJU Int 2013:578-84

Trends in the surgical management of localized renal masses: thermal ablation, partial and radical nephrectomy in the USA, 1998-2008. Woldrich, J. M., Palazzi, K., Stroup, S. P., Sur, R. L., Parsons, J. K., Chang, D., and Derweesh, I. H.. BJU Int 2013:1261-8

Impact of clinical and histopathological parameters on disease specific survival in patients with collecting duct renal cell carcinoma: development of a disease specific risk model. May, M., Ficarra, V., Shariat, S. F., Zigeuner, R., Chromecki, T., Cindolo, L., Burger, M., Gunia, S., Feciche, B., Wenzl, V., Aziz, A., Chun, F., Becker, A., Pahernik, S., Simeone, C., Longo, N., Zucchi, A., Antonelli, A., Mirone, V., Stief, C., Novara, G., and Brookman-May, S.. J Urol 2013 :458-63

Predictive factors of chronic kidney disease stage V after partial nephrectomy in a solitary kidney: a multi-institutional study. Verhoest, G., Patard, J. J., Oger, E., Rioux-Leclercq, N., Peyronnet, B., Bessede, T., Laguna, P., Barwari, K., Rigaud, J., Roupret, M., Coffin, G., Bernhard, J. C., Long, J. A., Zisman, A., Berger, J., Paparel, P., Maurin, C., Lechevallier, E., Bertini, R., Ouzaid, I., Salomon, L., Bex, A., Farfara, R., Ljungberg, B., Rodriguez, A. R., and Bensalah, K.. Urol Oncol 2014:28.e21-6

The effect of gender and age on kidney cancer survival: younger age is an independent prognostic factor in women with renal cell carcinoma. Rampersaud, E. N., Klatte, T., Bass, G., Patard, J. J., Bensaleh, K., Bohm, M., Allhoff, E. P., Cindolo, L., De La Taille, A., Mejean, A., Soulie, M., Bellec, L., Christophe Bernhard, J., Pfister, C., Colombel, M., Belldegrun, A. S., Pantuck, A. J., and George, D.. Urol Oncol 2014:30.e9-13

Influence of body mass index, smoking, and blood pressure on survival of patients with surgically-treated, low stage renal cell carcinoma: a 14-year retrospective cohort study. Park, B., Jeong, B. C., Seo, S. I., Jeon, S. S., Choi, H. Y., and Lee, H. M.. J Korean Med Sci 2013:227-36

The true risk of blood transfusion after nephrectomy for renal masses: a population-based study. Vricella, G. J.,

Finelli, A., Alibhai, S. M., Ponsky, L. E., and Abouassaly, R.. BJU Int 2013:1294-300

Association of microvascular and capillary-lymphatic invasion with outcome in patients with renal cell carcinoma. Eisenberg, M. S., Cheville, J. C., Thompson, R. H., Kaushik, D., Lohse, C. M., Boorjian, S. A., Costello, B. A., and Leibovich, B. C.. J Urol 2013:37-43

Long-term outcome of small, organ-confined renal cell carcinoma (RCC) is not always favourable. Shindo, T., Masumori, N., Kobayashi, K., Fukuta, F., Hirobe, M., Tonooka, A., Hasegawa, T., Kitamura, H., and Tsukamoto, T.. BJU Int 2013:941-5

Differential use of partial nephrectomy for intermediate and high complexity tumors may explain variability in reported utilization rates. Lane, B. R., Golan, S., Eggener, S., Tobert, C. M., Kahnoski, R. J., Kutikov, A., Smaldone, M., Whelan, C. M., Shalhav, A., and Uzzo, R. G.. J Urol 2013:2047-53

[Renal cell carcinoma: A 12-year retrospective study of epidemiologic, therapeutic and follow-up data]. Arnoux, V., Long, J. A., Jund, J., Fiard, G., Terrier, N., Thuillier, C., Boillot, B., Rambeaud, J. J., and Descotes, J. L.. Prog Urol 2013:15-21

Overall survival and development of stage IV chronic kidney disease in patients undergoing partial and radical nephrectomy for benign renal tumors. Kaushik, D., Kim, S. P., Childs, M. A., Lohse, C. M., Costello, B. A., Cheville, J. C., Boorjian, S. A., Leibovich, B. C., and Thompson, R. H.. Eur Urol 2013:600-6

Comparison of the loss of renal function after cold ischemia open partial nephrectomy, warm ischemia laparoscopic partial nephrectomy and laparoscopic partial nephrectomy using microwave coagulation. Kawahara, T., Sakata, R., Kawahara, K., Ito, H., Miyoshi, Y., Sano, F., Nakaigawa, N., Uemura, H., Yao, M., Kubota, Y., and Makiyama, K.. Curr Urol 2013:118-23

Patient safety and the diffusion of surgical innovations: a national analysis of laparoscopic partial nephrectomy. Parsons, J. K., Palazzi, K., Chang, D., and Stroup, S. P.. Surg Endosc 2013:1674-80

Surgically induced chronic kidney disease may be associated with a lower risk of progression and mortality than medical chronic kidney disease. Lane, B. R., Campbell, S. C., Demirjian, S., and Fergany, A. F.. J Urol 2013:1649-55

Racial disparity in renal cell carcinoma patient survival according to demographic and clinical characteristics. Chow, W. H., Shuch, B., Linehan, W. M., and Devesa, S. S.. Cancer 2013:388-94

Can we predict which patients will evolve to chronic kidney disease after nephrectomy for cortical renal tumors?. Torricelli, F. C., Danilovic, A., Marchini, G. S., Sant'Anna, A. C., Dall'Oglio, M. F., and Srougi, M.. Int Braz J Urol 2012:637-43; discussion 644

Competing risks of death in patients with localized renal cell carcinoma: a comorbidity based model. Kutikov, A.,

Egleston, B. L., Canter, D., Smaldone, M. C., Wong, Y. N., and Uzzo, R. G., J Urol 2012:2077-83

Predictive factors for late recurrence in patients with stage T1 clear cell renal cell carcinoma: a multiinstitutional study. Ha, Y. S., Park, Y. H., Kang, S. H., Hong, S. H., Hwang, T. K., Byun, S. S., and Kim, Y. J.. Clin Genitourin Cancer 2013:51-5

Feasibility and outcomes of laparoscopic renal intervention after prior open ipsilateral retroperitoneal surgery. Boris, R. S., Gupta, G. N., Benson, J. S., Linehan, W. M., Pinto, P. A., and Bratslavsky, G.. J Endourol 2013:196-201

The effect of gender on nephrectomy perioperative outcomes: a national survey. Sammon, J., Trinh, Q. D., Sun, M., Bianchi, M., Schmitges, J., Shariat, S. F., Ghani, K. R., Sukumar, S., Jeldres, C., Briganti, A., Perrotte, P., Rogers, C. G., Peabody, J. O., Montorsi, F., Menon, M., and Karakiewicz, P. I.. Can J Urol 2012:6337-44

External validation of the preoperative Karakiewicz nomogram in a large multicentre series of patients with renal cell carcinoma. Gontero, P., Sun, M., Antonelli, A., Bertini, R., Carini, M., Carmignani, G., Longo, N., Martorana, G., Minervini, A., Mirone, V., Morgia, G., Novara, G., Oderda, M., Simeone, C., Simonato, A., Siracusano, S., Tizzani, A., Volpe, A., Karakiewicz, P., and Ficarra, V.. World J Urol 2013:1285-90

Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. Keegan, K. A., Schupp, C. W., Chamie, K., Hellenthal, N. J., Evans, C. P., and Koppie, T. M.. J Urol 2012:391-7

Assessment of cancer control outcomes in patients with high-risk renal cell carcinoma treated with partial nephrectomy. Hansen, J., Sun, M., Bianchi, M., Rink, M., Tian, Z., Hanna, N., Meskawi, M., Schmitges, J., Shariat, S. F., Chun, F. K., Perrotte, P., Graefen, M., and Karakiewicz, P. I.. Urology 2012:347-53

Incidence and long-term prognosis of papillary compared to clear cell renal cell carcinoma--a multicentre study. Steffens, S., Janssen, M., Roos, F. C., Becker, F., Schumacher, S., Seidel, C., Wegener, G., Thuroff, J. W., Hofmann, R., Stockle, M., Siemer, S., Schrader, M., Hartmann, A., Kuczyk, M. A., Junker, K., and Schrader, A. J.. Eur J Cancer 2012:2347-52

Pathological implications of areas of lower enhancement on contrast-enhanced computed tomography in renal-cell carcinoma: additional information for selecting candidates for surveillance protocols. Villalobos-Gollas, M., Aguilar-Davidov, B., Culebro-Garcia, C., Gomez-Alvarado, M. O., Rojas-Garcia, P., Ibarra-Fombona, R., Uribe-Uribe, N., Feria-Bernal, G., Castillejos-Molina, R., Sotomayor, M., Gabilondo, F., and Rodriguez-Covarrubias, F.. Int Urol Nephrol 2012:1369-74

Perioperative outcomes of laparoscopic radical nephrectomy for renal cell carcinoma in patients with dialysis-dependent end-stage renal disease. Yamashita, K., Ito, F., and Nakazawa, H.. Ther Apher Dial 2012:254-9

Prognostic factors in renal cell carcinoma: analysis of 227 patients treated at the Brazilian National Cancer Institute. Ornellas, A. A., Andrade, D. M., Ornellas, P., Wisnescky, A., and Schwindt, A. B.. Int Braz J Urol 2012:185-94

The impact of delaying radical nephrectomy for stage II or higher renal cell carcinoma. Kim, K. H., You, D., Jeong, I. G., Song, C., Hong, J. H., Ahn, H., and Kim, C. S.. J Cancer Res Clin Oncol 2012:1561-7

Perioperative outcomes of robotic and open partial nephrectomy for moderately and highly complex renal lesions. Simhan, J., Smaldone, M. C., Tsai, K. J., Li, T., Reyes, J. M., Canter, D., Kutikov, A., Chen, D. Y., Greenberg, R. E., Uzzo, R. G., and Viterbo, R.. J Urol 2012:2000-4

Impact of renal function on cardiovascular events in patients undergoing radical nephrectomy for renal cancer. Takeshita, H., Yokoyama, M., Fujii, Y., Chiba, K., Ishioka, J., Noro, A., and Kihara, K.. Int J Urol 2012:722-8

Inpatient safety trends in laparoscopic and open nephrectomy for renal tumours. Stroup, S. P., Palazzi, K. L., Chang, D. C., Ward, N. T., and Parsons, J. K.. BJU Int 2012:1808-13

Intraoperative ultrasonography: a useful tool in retrolaparoscopic nephron-sparing surgery. Kang, N., Niu, Y., Zhang, J., Wang, J., Tian, X., Yan, Y., Yu, Z., and Xing, N.. Urol Int 2012:338-42

Impact of comorbidity on complications after nephrectomy: use of the Clavien Classification of Surgical Complications. Hennus, P. M., Kroeze, S. G., Bosch, J. L., and Jans, J. J.. BJU Int 2012:682-7

Functional recovery after partial nephrectomy: effects of volume loss and ischemic injury. Simmons, M. N., Hillyer, S. P., Lee, B. H., Fergany, A. F., Kaouk, J., and Campbell, S. C.. J Urol 2012:1667-73

Under-grading of <4 cm renal masses on renal biopsy. Harris, C. R., Whitson, J. M., and Meng, M. V.. BJU Int 2012 :794-7

Laparoscopic and robotic partial nephrectomy with controlled hypotensive anesthesia to avoid hilar clamping: feasibility, safety and perioperative functional outcomes. Papalia, R., Simone, G., Ferriero, M., Costantini, M., Guaglianone, S., Forastiere, E., and Gallucci, M.. J Urol 2012:1190-4

Higher perioperative morbidity and in-hospital mortality in patients with end-stage renal disease undergoing nephrectomy for non-metastatic kidney cancer: a population-based analysis. Schmitges, J., Trinh, Q. D., Sun, M., Hansen, J., Bianchi, M., Jeldres, C., Perrotte, P., Dahlem, R., Shariat, S. F., Chun, F. K., Montorsi, F., Menon, M., Fisch, M., Graefen, M., and Karakiewicz, P. I.. BJU Int 2012:E183-90

Three-dimensional tumour volume and cancer-specific survival for patients undergoing nephrectomy to treat pT1 clear-cell renal cell carcinoma. Jorns, J., Thiel, D. D., Lohse, C. M., Williams, A., Arnold, M. L., Cheville, J. C., Leibovich, B. C., and Parker, A. S.. BJU Int 2012:956-60

Pre-existing type-2 diabetes is not an adverse prognostic factor in patients with renal cell carcinoma: a single-center retrospective study. Antonelli, A., Arrighi, N., Corti, S., Zanotelli, T., Cozzoli, A., Cosciani Cunico, S., and Simeone, C.. Urol Oncol 2013:1310-5

Histologic tumor necrosis is an independent prognostic indicator for clear cell and papillary renal cell carcinoma. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Rehak, P., Pummer, K., and Zigeuner, R.. Am J Clin Pathol 2012:283-9

Does prolonged warm ischemia after partial nephrectomy under pneumoperitoneum cause irreversible damage to the affected kidney? Choi, J. D., Park, J. W., Lee, S. Y., Jeong, B. C., Jeon, S. S., Lee, H. M., Choi, H. Y., and Seo, S. I.. J Urol 2012:802-6

Renal function outcomes after nephrectomy for kidney cancer in elderly patients. Markic, D., Valencic, M., Spanjol, J., Materljan, M., and Fuckar, D.. Coll Antropol 2011:121-4

Hospital volume is a determinant of postoperative complications, blood transfusion and length of stay after radical or partial nephrectomy. Sun, M., Bianchi, M., Trinh, Q. D., Abdollah, F., Schmitges, J., Jeldres, C., Shariat, S. F., Graefen, M., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. J Urol 2012:405-10

Clinical utility of the Glasgow Prognostic Score in patients undergoing curative nephrectomy for renal clear cell cancer: basis of new prognostic scoring systems. Lamb, G. W., Aitchison, M., Ramsey, S., Housley, S. L., and McMillan, D. C.. Br J Cancer 2012:279-83

Direct upper kidney pole access and early ligation of renal pedicle significantly facilitates transperitoneal laparoscopic nephrectomy procedures: Tunc technique. Tunc, L., Canda, A. E., Polat, F., Onaran, M., Atkin, S., Biri, H., and Bozkirli, I.. Surg Laparosc Endosc Percutan Tech 2011 :453-7

Postoperative complications and long-term survival among patients treated surgically for renal cell carcinoma. Tan, H. J., Hafez, K. S., Ye, Z., Wei, J. T., and Miller, D. C.. J Urol 2012:60-6

Randomized controlled study of natural interferon alpha as adjuvant treatment for stage II or III renal cell carcinoma. Hinotsu, S., Kawai, K., Ozono, S., Tsushima, T., Tokuda, N., Nomata, K., Naito, S., and Akaza, H.. Int J Clin Oncol 2013:68-74

Renal cell carcinoma in young patients is associated with poorer prognosis. Lee, L. S., Yuen, J. S., and Sim, H. G.. Ann Acad Med Singapore 2011:401-6

Quality of life of patients undergoing surgical treatment for newly-diagnosed, clinically localized renal cell carcinoma. Ames, S. C., Parker, A. S., Crook, J. E., Diehl, N. N., Tan, W. W., Williams, C. R., and Ames, G. E.. J Psychosoc Oncol 2011:593-605

[Partial elective nephrectomy]. Zungri, E., Martinez, L., Leal, D., and Lorenzo, L.. Actas Urol Esp 2012:160-4

External validation of the Leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single European center applying routine pathology. Pichler, M., Hutterer, G. C., Chromecki, T. F., Jesche, J., Kampel-Kettner, K., Rehak, P., Pummer, K., and Zigeuner, R.. J Urol 2011:1773-7

Comparison of rates and risk factors for development of anaemia and erythropoiesis-stimulating agent utilization after radical or partial nephrectomy. Woldrich, J., Mehrazin, R., Bazzi, W. M., Bagrodia, A., Kopp, R. P., Malcolm, J. B., Kane, C. J., Patterson, A. L., Wan, J. Y., and Derweesh, I. H.. BJU Int 2012:1019-25

Prognosis and characteristics of renal cell carcinoma in hemodialysis patients: bilateral occurrence does not influence cancer-specific survival. Takagi, T., Kondo, T., Izuka, J., Kobayashi, H., Tomita, E., Hashimoto, Y., and Tanabe, K... Int J Urol 2011:806-12

Outcomes and clinicopathologic variables associated with late recurrence after nephrectomy for localized renal cell carcinoma. Kim, S. P., Weight, C. J., Leibovich, B. C., Thompson, R. H., Costello, B. A., Cheville, J. C., Lohse, C. M., and Boorjian, S. A.. Urology 2011:1101-6

Prognostic factors in a large multi-institutional series of papillary renal cell carcinoma. Zucchi, A., Novara, G., Costantini, E., Antonelli, A., Carini, M., Carmignani, G., Cosciani Cunico, S., Fontana, D., Longo, N., Martignoni, G., Minervini, A., Mirone, V., Porena, M., Roscigno, M., Schiavina, R., Simeone, C., Simonato, A., Siracusano, S., Terrone, C., and Ficarra, V.. BJU Int 2012:1140-6

Tumour diameter and decreased preoperative estimated glomerular filtration rate are independently correlated in patients with renal cell carcinoma. Donin, N. M., Suh, L. K., Barlow, L., Hruby, G. W., Newhouse, J., and McKiernan, J.. BJU Int 2012:379-83

A multidisciplinary evaluation of inter-reviewer agreement of the nephrometry score and the prediction of long-term outcomes. Weight, C. J., Atwell, T. D., Fazzio, R. T., Kim, S. P., Kenny, M., Lohse, C. M., Boorjian, S. A., Leibovich, B. C., and Thompson, R. H.. J Urol 2011:1223-8

Increasing use of kidney sparing approaches for localized renal tumors in a community based health system: impact on renal functional outcomes. Lane, B. R., Chen, H., Morrow, M., Anema, J. G., and Kahnoski, R. J.. J Urol 2011:1229-35

Impact of tumor size on renal function and prediction of renal insufficiency after radical nephrectomy in patients with renal cell carcinoma. Ohno, Y., Nakashima, J., Ohori, M., Hashimoto, T., Iseki, R., Hatano, T., and Tachibana, M.. J Urol 2011:1242-6

The effect of hypertension and diabetes on the degree of renal function deterioration after unilateral nephrectomy. Satasivam, P., Rao, K., Guggenheimer, K., Stanton, R., Sowter, S., Sengupta, S., and Bolton, D.. BJU Int 2011:1508-12

Critical appraisal of the PADUA classification and assessment of the R.E.N.A.L. nephrometry score in patients

undergoing partial nephrectomy. Hew, M. N., Baseskioglu, B., Barwari, K., Axwijk, P. H., Can, C., Horenblas, S., Bex, A., Rosette, J. J., and Pes, M. P.. J Urol 2011:42-6

Image guided percutaneous probe ablation for renal tumors in 65 solitary kidneys: functional and oncological outcomes. Altunrende, F., Autorino, R., Hillyer, S., Yang, B., Laydner, H., White, M. A., Khanna, R., Isac, W., Spana, G., Stein, R. J., Haber, G. P., O'Malley, C. M., Remer, E. M., and Kaouk, J. H... J Urol 2011:35-41

Benefits of a combined approach to sampling of renal neoplasms as demonstrated in a series of 351 cases. Parks, G. E., Perkins, L. A., Zagoria, R. J., Garvin, A. J., Sirintrapun, S. J., and Geisinger, K. R.. Am J Surg Pathol 2011:827-35

Chronic pulmonary diseases are independent risk factors for complications after radical nephrectomy. Tokgoz, H., Akduman, B., Unal, I., Erol, B., Akyurek, E., and Mungan, N. A.. Int Urol Nephrol 2011:1025-31

Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Cho, A., Lee, J. E., Kwon, G. Y., Huh, W., Lee, H. M., Kim, Y. G., Kim, D. J., Oh, H. Y., and Choi, H. Y.. Nephrol Dial Transplant 2011:3496-501

Is it safe and effective to treat complex renal cysts by the laparoscopic approach? Pinheiro, T., Sepulveda, F., Natalin, R. H., Metrebian, E., Medina, R., Goldman, S. M., Ortiz, V., and Andreoni, C.. J Endourol 2011:471-6

Percutaneous cryoablation of renal masses: impact of patient selection and treatment parameters on outcomes. Vricella, G. J., Haaga, J. R., Adler, B. L., Dean Nakamoto, Cherullo, E. E., Flick, S., and Ponsky, L. E.. Urology 2011:649-54

Prognostic factors for renal dysfunction after nephrectomy in renal cell carcinomas. Xu, Y. and Wu, B.. J Surg Res 2011:e53-7

Adverse renal outcomes in subjects undergoing nephrectomy for renal tumors: a population-based analysis. Klarenbach, S., Moore, R. B., Chapman, D. W., Dong, J., and Braam, B.. Eur Urol 2011:333-9

Contemporary experience with laparoscopic radical nephrectomy. Mues, A. C., Haramis, G., Rothberg, M. B., Okhunov, Z., Casazza, C., and Landman, J.. J Laparoendosc Adv Surg Tech A 2011:15-8

Clinical predictors of renal mass pathological features. Tsivian, M., Mouraviev, V., Albala, D. M., Caso, J. R., Robertson, C. N., Madden, J. F., and Polascik, T. J.. BJU Int 2011:735-40

Comparison of laparoscopic versus open radical nephrectomy for large renal tumors: a retrospective analysis of multi-center results. Jeon, S. H., Kwon, T. G., Rha, K. H., Sung, G. T., Lee, W., Lim, J. S., Jeong, Y. B., Hong, S. H., Kim, H. H., and Byun, S. S.. BJU Int 2011:817-21

Benefit of laparoscopic radical nephrectomy in patients with a high BMI. Hagiwara, M., Miyajima, A., Matsumoto, K., Kikuchi, E., Nakagawa, K., and Oya, M.. Jpn J Clin Oncol 2011:400-4

Comparison of radical and partial nephrectomy in terms of renal function: a retrospective cohort study. Suer, E., Burgu, B., Gokce, M. I., Turkolmez, K., Beduk, Y., and Baltaci, S.. Scand J Urol Nephrol 2011:24-9

Kidney function following nephrectomy: similitude and discrepancies between kidney cancer and living donation. Timsit, M. O., Nguyen, K. N., Rouach, Y., Elie, C., Loupy, A., Fournier, C., Legendre, C., and Mejean, A.. Urol Oncol 2012 :482-6

Histopathological predictors of renal function decrease after laparoscopic radical nephrectomy. Gautam, G., Lifshitz, D., Shikanov, S., Moore, J. M., Eggener, S. E., Shalhav, A. L., and Chang, A.. J Urol 2010:1872-6

Clinico-radio-pathologic features of a solitary solid renal mass at MDCT examination. Kim, E. Y., Park, B. K., Kim, C. K., and Lee, H. M.. Acta Radiol 2010:1143-8

Impact of body mass index and weight loss on cancerspecific and overall survival in patients with surgically resected renal cell carcinoma. Brookman-May, S., Kendel, F., Hoschke, B., Wieland, W. F., Burger, M., Rossler, W., and May, M.. Scand J Urol Nephrol 2011:5-14

Retroperitoneoscopic nephrectomy with a modified hand-assisted approach. Capolicchio, J. P., Saemi, A., Trotter, S., and Plante, M. K.. Urology 2011:607-11

Laparoscopic nephrectomy: initial experience with 120 cases. Cheema, I. A., Manecksha, R. P., Murphy, M., and Flynn, R.. Ir Med J 2010:49-51

[Experiences of open transperitoneal radical nephrectomy for large renal masses]. Yao, X. D., Ye, D. W., Zhang, S. L., Dai, B., Zhang, H. L., Shen, Y. J., Zhu, Y., Zhu, Y. P., Shi, G. H., Ma, C. G., Xiao, W. J., Qin, X. J., and Lin, G. W.. Zhonghua Yi Xue Za Zhi 2010:1117-9

The Prognostic Factors for Patients with pT1a Renal Cell Carcinoma. Kim, J. M., Song, P. H., Kim, H. T., and Park, T. C.. Korean J Urol 2010:233-8

Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering. Kamai, T., Furuya, N., Kambara, T., Abe, H., Honda, M., Shioyama, Y., Kaji, Y., and Yoshida, K.. BMC Urol 2010:7

The prognostic value of the width of the surgical margin in the enucleoresection of small renal cell carcinoma: an intermediate-term follow-up. Jeong, S. J., Kim, K. T., Chung, M. S., Hong, S. K., Byun, S. S., and Lee, S. E.. Urology 2010:587-92

Impact of body mass index on perioperative outcomes of laparoscopic radical nephrectomy in Japanese patients with clinically localized renal cell carcinoma. Miyake, H., Muramaki, M., Tanaka, K., Takenaka, A., and Fujisawa, M.. Int J Urol 2010:522-6

Radiofrequency ablation of renal tumours: diagnostic accuracy of contrast-enhanced ultrasound for early detection of residual tumour. Hoeffel, C., Pousset, M., Timsit, M. O., Elie, C., Mejean, A., Merran, S., Tranquart, F., Khairoune, A., Joly, D., Richard, S., Helenon, O., and Correas, J. M.. Eur Radiol 2010:1812-21

The use of the American Society of Anesthesiology Classification as a prognostic factor in patients with renal cell carcinoma. de Cassio Zequi, S., de Campos, E. C., Guimaraes, G. C., Bachega, W. Jr, da Fonseca, F. P., and Lopes, A.. Urol Int 2010:67-72

Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. Leibovich, B. C., Lohse, C. M., Crispen, P. L., Boorjian, S. A., Thompson, R. H., Blute, M. L., and Cheville, J. C.. J Urol 2010:1309-15

Minimum incision endoscopic surgery (MIES) in Japanese urology: results of adrenalectomy, radical nephrectomy and radical prostatectomy. Kihara, K., Kobayashi, T., Kawakami, S., Fujii, Y., Kageyama, Y., and Masuda, H.. Aktuelle Urol 2010:S15-9

Transperitoneal laparoscopic radical nephrectomy for patients with dialysis-dependent end-stage renal disease: an analysis and comparison of perioperative outcome. Bird, V. G., Shields, J. M., Aziz, M., De Los Santos, R., Ayyathurai, R., and Ciancio, G.. Urology 2010:1335-42

Prognostic factors influencing long-term survival of patients undergoing nephron-sparing surgery for nonmetastatic renal-cell carcinoma (RCC) with imperative indications. Haferkamp, A., Kurosch, M., Pritsch, M., Hatiboglu, G., Macher-Goeppinger, S., Pfitzenmaier, J., Pahernik, S., Wagener, N., and Hohenfellner, M.. Ann Surg Oncol 2010:544-51

[Functional results of partial nephrectomy for kidney tumors]. Petrov, S. B., Shpilenia, E. S., and Shkarupa, D. D.. Vestn Khir Im I I Grek 2009:85-7

Evaluating overall survival and competing risks of death in patients with localized renal cell carcinoma using a comprehensive nomogram. Kutikov, A., Egleston, B. L., Wong, Y. N., and Uzzo, R. G.. J Clin Oncol 2010:311-7

[Primary treatment of renal cell carcinoma. Yesterday, today, tomorrow]. Dufour, B.. Bull Acad Natl Med 2009:691-707; discussion 707-8

De novo renal carcinoma in renal transplant recipients: effect of early treatment. Tillou, X., Demailly, M., Hakami, F., Westeel, P. F., Saint, F., and Petit, J.. Transplant Proc 2009:3314-6

[Laparoscopic radical nephrectomy in big surgical specimens]. Alonso, y. Gregorio S, Sanchez, S., Soler, C., Rando, A., Giron, M., Tabernero Gomez, A. J., Aguilera, A., Cisneros Ledo, J., and de la Pena Barthel, J.. Actas Urol Esp 2009:755-8

Renal cell carcinoma in patients with end-stage renal disease: relationship between histological type and duration of dialysis. Nouh, M. A., Kuroda, N., Yamashita, M., Hayashida, Y., Yano, T., Minakuchi, J., Taniguchi, S.,

Nomura, I., Inui, M., Sugimoto, M., and Kakehi, Y.. BJU Int 2010:620-7

Impact of Charlson's comorbidity index on overall survival following tumor nephrectomy for renal cell carcinoma. Ather, M. H. and Nazim, S. M.. Int Urol Nephrol 2010 :299-303

Laparoscopic radical nephrectomy for patients with T2 and T3 renal-cell carcinoma: evaluation of perioperative outcomes. Bird, V. G., Shields, J. M., Aziz, M., Ayyathurai, R., De Los Santos, R., and Roeter, D. H.. J Endourol 2009:1527-33

Laparoscopic radical nephrectomy for large renal-cell carcinomas. Hattori, R., Osamu, K., Yoshino, Y., Tsuchiya, F., Fujita, T., Yamada, S., Funahashi, Y., Ono, Y., and Gotoh, M.. J Endourol 2009:1523-6

A multi-institutional study on the safety and efficacy of specimen morcellation after laparoscopic radical nephrectomy for clinical stage T1 or T2 renal cell carcinoma. Wu, S. D., Lesani, O. A., Zhao, L. C., Johnston, W. K., Wolf, J. S. Jr, Clayman, R. V., and Nadler, R. B.. J Endourol 2009:1513-8

Laparoscopic radical nephrectomy for renal masses 7 centimeters or larger. Rosoff, J. S., Raman, J. D., Sosa, R. E., and Del Pizzo, J. J.. JSLS 2009:148-53

Does histologic subtype affect oncologic outcomes after nephron-sparing surgery?. Crepel, M., Isbarn, H., Capitanio, U., Liberman, D., Jeldres, C., Sun, M., Shariat, S. F., Widmer, H., Arjane, P., Graefen, M., Montorsi, F., Patard, J. J., Perrotte, P., and Karakiewicz, P. I.. Urology 2009:842-5

Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Hajj, P., Ferlicot, S., Massoud, W., Awad, A., Hammoudi, Y., Charpentier, B., Durrbach, A., Droupy, S., and Benoit, G.. Urology 2009:631-4

Patient and pathologic correlates with perioperative and long-term outcomes of laparoscopic radical nephrectomy. Gabr, A. H., Gdor, Y., Strope, S. A., Roberts, W. W., and Wolf, J. S. Jr. Urology 2009:635-40

Urinary collecting system invasion is an independent prognostic factor of organ confined renal cell carcinoma. Verhoest, G., Avakian, R., Bensalah, K., Thuret, R., Ficarra, V., Artibani, W., Tostain, J., Guille, F., Cindolo, L., De La Taille, A., Abbou, C. C., Salomon, L., Rioux-Leclercq, N., and Patard, J. J.. J Urol 2009:854-9

Approach and specimen handling do not influence oncological perioperative and long-term outcomes after laparoscopic radical nephrectomy. Gabr, A. H., Gdor, Y., Strope, S. A., Roberts, W. W., and Wolf, J. S. Jr. J Urol 2009:874-80

Baseline renal function, ischaemia time and blood loss predict the rate of renal failure after partial nephrectomy. Jeldres, C., Bensalah, K., Capitanio, U., Zini, L., Perrotte, P., Suardi, N., Tostain, J., Valeri, A., Descotes, J. L., Rambeaud, J. J., de La Taille, A., Salomon, L., Abbou, C., Patard, J. J., and Karakiewicz, P. I.. BJU Int 2009:1632-5

Overweight is associated with improved cancer-specific survival in patients with organ-confined renal cell carcinoma. Schrader, A. J., Rustemeier, J., Rustemeier, J. C., Timmesfeld, N., Varga, Z., Hegele, A., Olbert, P. J., and Hofmann, R.. J Cancer Res Clin Oncol 2009:1693-9

Four-arm robotic partial nephrectomy for complex renal cell carcinoma. Gong, Y., Du, C., Josephson, D. Y., Wilson, T. G., and Nelson, R.. World J Urol 2010:111-5

Renal Tumor Quantification and Classification in Contrast-Enhanced Abdominal CT. Linguraru, M. G., Yao, J., Gautam, R., Peterson, J., Li, Z., Linehan, W. M., and Summers, R. M.. Pattern Recognit 2009:1149-1161

Hybrid renal cell carcinomas containing histopathologic features of chromophobe renal cell carcinomas and oncocytomas have excellent oncologic outcomes. Waldert, M., Klatte, T., Haitel, A., Ozsoy, M., Schmidbauer, J., Marberger, M., and Remzi, M.. Eur Urol 2010:661-5

MRI and CT characteristics of successfully ablated renal masses: Imaging surveillance after radiofrequency ablation. Davenport, M. S., Caoili, E. M., Cohan, R. H., Ellis, J. H., Higgins, E. J., Willatt, J., and Fox, G. A.. AJR Am J Roentgenol 2009:1571-8

Validation of a postoperative prognostic model consisting of tumor microvascular invasion, size, and grade to predict disease-free and cancer-specific survival of patients with surgically resected renal cell carcinoma. May, M., Brookman-Amissah, S., Kendel, F., Knoll, N., Roigas, J., Hoschke, B., Miller, K., Gilfrich, C., Pflanz, S., and Gralla, O.. Int J Urol 2009:616-21

Single center experience with percutaneous and laparoscopic cryoablation of small renal masses. Malcolm, J. B., Berry, T. T., Williams, M. B., Logan, J. E., Given, R. W., Lance, R. S., Barone, B., Shaves, S., Vingan, H., and Fabrizio, M. D.. J Endourol 2009:907-11

Metastatic renal cell carcinoma risk according to tumor size. Thompson, R. H., Hill, J. R., Babayev, Y., Cronin, A., Kaag, M., Kundu, S., Bernstein, M., Coleman, J., Dalbagni, G., Touijer, K., and Russo, P.. J Urol 2009:41-5

Factors predicting health-related quality of life recovery in patients undergoing surgical treatment for renal tumors: prospective evaluation using the RAND SF-36 Health Survey. Novara, G., Secco, S., Botteri, M., De Marco, V., Artibani, W., and Ficarra, V.. Eur Urol 2010:112-20

Laparoscopic radical versus partial nephrectomy for tumors >4 cm: intermediate-term oncologic and functional outcomes. Simmons, M. N., Weight, C. J., and Gill, I. S.. Urology 2009:1077-82

Limitation for performing ultrasound-guided radiofrequency ablation of small renal masses. Park, B. K., Kim, C. K., Choi, H. Y., Lee, H. M., Jeon, S. S., Seo, S. I., and Han, D. H.. Eur J Radiol 2010:248-52

Postoperative surveillance for renal cell carcinoma: a multifactorial histological subtype specific protocol. Siddiqui, S. A., Frank, I., Cheville, J. C., Lohse, C. M., Leibovich, B. C., and Blute, M. L. BJU Int 2009:778-85

Radical nephrectomy surgical outcomes in the University HealthSystem Consortium Data Base: Impact of hospital case volume, hospital size, and geographic location on 40,000 patients. Mitchell, R. E., Lee, B. T., Cookson, M. S., Barocas, D. A., Duke Herrell, S., Clark, P. E., Smith, J. A., and Chang, S. S.. Cancer 2009:2447-52

A single institution experience of 141 cases of laparoscopic radical nephrectomy with cost-reductive measures. Kumar, A., Gupta, N. P., and Hemal, A. K.. J Endourol 2009:445-9

Decision tree for laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small renal masses. Nisbet, A. A., Rieder, J. M., Tran, V. Q., Williams, S. G., and Chien, G. W.. J Endourol 2009:431-7

Pre-operative renal arterial embolisation does not provide survival benefit in patients with radical nephrectomy for renal cell carcinoma. May, M., Brookman-Amissah, S., Pflanz, S., Roigas, J., Hoschke, B., and Kendel, F.. Br J Radiol 2009:724-31

Comparison of rates and risk factors for developing chronic renal insufficiency, proteinuria and metabolic acidosis after radical or partial nephrectomy. Malcolm, J. B., Bagrodia, A., Derweesh, I. H., Mehrazin, R., Diblasio, C. J., Wake, R. W., Wan, J. Y., and Patterson, A. L.. BJU Int 2009:476-81

A population-based comparison of survival after nephrectomy vs nonsurgical management for small renal masses. Zini, L., Perrotte, P., Jeldres, C., Capitanio, U., Duclos, A., Jolivet-Tremblay, M., Arjane, P., Peloquin, F., Pharand, D., Villers, A., Montorsi, F., Patard, J. J., and Karakiewicz, P. I.. BJU Int 2009:899-904; discussion 904

Prognostic value of capsular invasion for localized clear-cell renal cell carcinoma. Cho, H. J., Kim, S. J., Ha, U. S., Hong, S. H., Kim, J. C., Choi, Y. J., and Hwang, T. K.. Eur Urol 2009:1006-12

Organ-confined clear cell renal cell carcinoma: the prognostic impact of microvascular invasion, nuclear grade and tumour size. Zubac, D. P., Bostad, L., Kihl, B., Eide, J., Wentzel-Larsen, T., and Haukaas, S. A.. APMIS 2008:1027-33

The prognostic relevance of interactions between venous invasion, lymph node involvement and distant metastases in renal cell carcinoma after radical nephrectomy. Zubac, D. P., Bostad, L., Seidal, T., Wentzel-Larsen, T., and Haukaas, S. A.. BMC Urol 2008:19

Transperitoneal versus retroperitoneal laparoscopic radical nephrectomy: a comparative study. Taue, R., Izaki, H., Koizumi, T., Kishimoto, T., Oka, N., Fukumori, T., Takahashi, M., and Kanayama, H. O.. Int J Urol 2009:263-7

Retroperitoneoscopic nephrectomy in overweight and obese Japanese patients: complications and outcomes. Makiyama, K., Nakaigawa, N., Miyoshi, Y., Murakami, T., Yao, M., and Kubota, Y.. Urol Int 2008:427-30

Cancer-specific and non-cancer-related mortality rates in European patients with T1a and T1b renal cell carcinoma.

Zini, L., Patard, J. J., Capitanio, U., Crepel, M., de La Taille, A., Tostain, J., Ficarra, V., Bernhard, J. C., Ferriere, J. M., Pfister, C., Villers, A., Montorsi, F., and Karakiewicz, P. I.. BJU Int 2009:894-8

Age at diagnosis is a determinant factor of renal cell carcinoma-specific survival in patients treated with nephrectomy. Karakiewicz, P. I., Jeldres, C., Suardi, N., Hutterer, G. C., Perrotte, P., Capitanio, U., Ficarra, V., Cindolo, L., de La Taille, A., Tostain, J., Mulders, P. F., Salomon, L., Zigeuner, R., Schips, L., Chautard, D., Valeri, A., Lechevallier, E., Descots, J. L., Lang, H., Mejean, A., Verhoest, G., and Patard, J. J.. Can Urol Assoc J 2008:610-7

Stage-specific effect of nodal metastases on survival in patients with non-metastatic renal cell carcinoma. Capitanio, U., Jeldres, C., Patard, J. J., Perrotte, P., Zini, L., de La Taille, A., Ficarra, V., Cindolo, L., Bensalah, K., Artibani, W., Tostain, J., Valeri, A., Zigeuner, R., Mejean, A., Descotes, J. L., Lechevallier, E., Mulders, P. F., Lang, H., Jacqmin, D., and Karakiewicz, P. I.. BJU Int 2009:33-7

Number of needle passes does not correlate with the diagnostic yield of renal fine needle aspiration cytology. Andonian, S., Okeke, Z., Okeke, D. A., Sugrue, C., Wasserman, P. G., and Lee, B. R.. J Endourol 2008:2377-80

Obesity and morbid obesity are associated with a greater conversion rate to open surgery for standard but not hand assisted laparoscopic radical nephrectomy. Gabr, A. H., Elsayed, E. R., Gdor, Y., Roberts, W. W., and Wolf, J. S. Jr. J Urol 2008:2357-62; discussion 2362

Effect of baseline glomerular filtration rate on survival in patients undergoing partial or radical nephrectomy for renal cortical tumors. Pettus, J. A., Jang, T. L., Thompson, R. H., Yossepowitch, O., Kagiwada, M., and Russo, P.. Mayo Clin Proc 2008:1101-6

Evaluation of renicapsular involvement in Stages I and II renal cell carcinoma from the morphological and prognostic point of view. May, M., Brookman-Amissah, S., Roigas, J., Gilfrich, C. P., Pflanz, S., Hoschke, B., and Gunia, S.. Urol Oncol 2010:274-9

Radiofrequency ablation of renal tumors in the solitary kidney. Krambeck, A. E., Farrell, M. A., Callstrom, M. R., Atwell, T. D., Charboneau, J. W., Chow, G. K., Dimarco, D. S., and Patterson, D. E.. Can J Urol 2008:4163-8; discussion 4168

Robotic nephrectomy for the treatment of benign and malignant disease. Rogers, C., Laungani, R., Krane, L. S., Bhandari, A., Bhandari, M., and Menon, M.. BJU Int 2008:1660-5

Incidence of benign pathologic lesions at partial nephrectomy for presumed RCC renal masses: Japanese dual-center experience with 176 consecutive patients. Fujii, Y., Komai, Y., Saito, K., Iimura, Y., Yonese, J., Kawakami, S., Ishikawa, Y., Kumagai, J., Kihara, K., and Fukui, I.. Urology 2008:598-602

Elective laparoscopic partial nephrectomy in patients with tumors >4 cm. Rais-Bahrami, S., Romero, F. R., Lima, G. C., Kohanim, S., Permpongkosol, S., Trock, B. J., Jarrett, T. W., and Kavoussi, L. R.. Urology 2008:580-3

Retroperitoneal laparoscopic radical nephrectomy: intermediate oncological results. Larre, S., Kanso, C., De La Taille, A., Hoznek, A., Vordos, D., Yiou, R., Abbou, C. C., and Salomon, L.. World J Urol 2008:611-5

Nephron-sparing surgery: a call for greater application of established techniques. Young, J. G., Luscombe, C. J., Lynch, C., and Wallace, D. M.. BJU Int 2008:1389-93

Impact of comorbidity on overall survival in patients surgically treated for renal cell carcinoma. Berger, D. A., Megwalu, I. I., Vlahiotis, A., Radwan, M. H., Serrano, M. F., Humphrey, P. A., Piccirillo, J. F., and Kibel, A. S.. Urology 2008:359-63

The efficacy of laparoscopic radical nephrectomy for renal cell cancer in the elderly: an oncological outcome analysis. Harano, M., Eto, M., Yokomizo, A., Tatsugami, K., Hamaguchi, M., and Naito, S.. Int J Urol 2008:577-81

Transperitoneal approach for radical nephrectomy: five years experience at Pakistan Institute of Medical Sciences, Islamabad, Pakistan. Ghaffar, F., Sajid, M. A., and Anwar, K.. J Ayub Med Coll Abbottabad 2007:15-8

Preoperative nomogram predicting 12-year probability of metastatic renal cancer. Raj, G. V., Thompson, R. H., Leibovich, B. C., Blute, M. L., Russo, P., and Kattan, M. W.. J Urol 2008:2146-51; discussion 2151

Percutaneous renal cryoablation: experience treating 115 tumors. Atwell, T. D., Farrell, M. A., Leibovich, B. C., Callstrom, M. R., Chow, G. K., Blute, M. L., and Charboneau, J. W.. J Urol 2008:2136-40; discussion 2140-1

How long is too long? The effect of the duration of anaesthesia on the incidence of non-urological complications after surgery. Routh, J. C., Bacon, D. R., Leibovich, B. C., Zincke, H., Blute, M. L., and Frank, I.. BJU Int. 2008:301-4

Evaluation of the association of current cigarette smoking and outcome for patients with clear cell renal cell carcinoma. Parker, A., Lohse, C., Cheville, J., Leibovich, B., Igel, T., and Blute, M.. Int J Urol 2008:304-8

Tumor size does not predict risk of metastatic disease or prognosis of small renal cell carcinomas. Klatte, T., Patard, J. J., de Martino, M., Bensalah, K., Verhoest, G., de la Taille, A., Abbou, C. C., Allhoff, E. P., Carrieri, G., Riggs, S. B., Kabbinavar, F. F., Belldegrun, A. S., and Pantuck, A. J.. J Urol 2008:1719-26

Transperitoneal laparoscopic radical nephrectomy for large (more than 7 cm) renal masses. Berger, A. D., Kanofsky, J. A., O'Malley, R. L., Hyams, E. S., Chang, C., Taneja, S. S., and Stifelman, M. D.. Urology 2008:421-4

Association of abnormal preoperative laboratory values with survival after radical nephrectomy for clinically confined clear cell renal cell carcinoma. Magera, J. S. Jr,

Leibovich, B. C., Lohse, C. M., Sengupta, S., Cheville, J. C., Kwon, E. D., and Blute, M. L.. Urology 2008:278-82

Immediate renal tumor involution after radiofrequency thermal ablation. Ganguli, S., Brennan, D. D., Faintuch, S., Rayan, M. E., and Goldberg, S. N.. J Vasc Interv Radiol 2008:412-8

Evaluation of the impact of body mass index on outcome among renal mass patients treated with hand-assisted laparoscopic radical nephrectomy. Parker, A. S., Lewis, R., Heckman, M. G., Diehl, N. H., Brisson, T., Pak, R., and Wehle, M. J.. J Endourol 2008:301-6

Incidence of local and port site recurrence of urologic cancer after laparoscopic surgery. Tanaka, K., Hara, I., Takenaka, A., Kawabata, G., and Fujisawa, M.. Urology 2008:728-34

The influence of body mass index on the long-term survival of patients with renal cell carcinoma after tumour nephrectomy. Haferkamp, A., Pritsch, M., Bedke, J., Wagener, N., Pfitzenmaier, J., Buse, S., and Hohenfellner, M., BJU Int 2008:1243-6

Comparison of standard and hand-assisted laparoscopic radical nephrectomy for renal cell carcinoma. Harano, M., Eto, M., Yokomizo, A., Tatsugami, K., Hamaguchi, M., and Naito, S.. Fukuoka Igaku Zasshi 2007:389-96

Laparoscopic radical nephrectomy versus open radical nephrectomy in T1-T3 renal tumors: An outcome analysis. Ganpule, A. P., Sharma, R., Thimmegowda, M., Veeramani, M., and Desai, M. R.. Indian J Urol 2008:39-43

Core biopsies of renal tumors: a study on diagnostic accuracy, interobserver, and intraobserver variability. Kummerlin, I., ten Kate, F., Smedts, F., Horn, T., Algaba, F., Trias, I., de la Rosette, J., and Laguna, M. P.. Eur Urol 2008:1219-25

En bloc stapler ligation of the renal vascular pedicle during laparoscopic nephrectomy. Buse, S., Gilfrich, C., Pfitzenmaier, J., Bedke, J., Haferkamp, A., and Hohenfellner, M., BJU Int. 2008:878-82

Surgical resection provides excellent outcomes for patients with cystic clear cell renal cell carcinoma. Webster, W. S., Thompson, R. H., Cheville, J. C., Lohse, C. M., Blute, M. L., and Leibovich, B. C.. Urology 2007:900-4; discussion 904

Nephron-sparing surgery versus radical nephrectomy in the treatment of intracapsular renal cell carcinoma up to 7cm. Antonelli, A., Cozzoli, A., Nicolai, M., Zani, D., Zanotelli, T., Perucchini, L., Cunico, S. C., and Simeone, C.. Eur Urol 2008:803-9

[Transabdominal radical nephrectomy for renal cell carcinoma: an experience on 155 patients]. Chen, X. F., Zhou, F. J., Han, H., Qin, Z. K., Liu, Z. W., Yu, S. L., Li, Y. H., Wang, H., and Hou, G. L.. Ai Zheng 2007:528-32

Nephrectomy: indications, complications and mortality in 154 consecutive patients. Rafique, M.. J Pak Med Assoc 2007:308-11

Microvascular tumor invasion, tumor size and Fuhrman grade: a pathological triad for prognostic evaluation of renal cell carcinoma. Dall'Oglio, M. F., Ribeiro-Filho, L. A., Antunes, A. A., Crippa, A., Nesrallah, L., Goncalves, P. D., Leite, K. R., and Srougi, M.. J Urol 2007:425-8; discussion 428

Prognostic impact of tumor size on pT2 renal cell carcinoma: an international multicenter experience. Klatte, T., Patard, J. J., Goel, R. H., Kleid, M. D., Guille, F., Lobel, B., Abbou, C. C., De La Taille, A., Tostain, J., Cindolo, L., Altieri, V., Ficarra, V., Artibani, W., Prayer-Galetti, T., Allhoff, E. P., Schips, L., Zigeuner, R., Figlin, R. A., Kabbinavar, F. F., Pantuck, A. J., Belldegrun, A. S., and Lam, J. S.. J Urol 2007:35-40; discussion 40

CT-guided biopsy for the diagnosis of renal tumors before treatment with percutaneous ablation. Heilbrun, M. E., Zagoria, R. J., Garvin, A. J., Hall, M. C., Krehbiel, K., Southwick, A., and Clark, P. E.. AJR Am J Roentgenol 2007:1500-5

Renal cell carcinoma: a clinicopathological follow-up study after radical nephrectomy. Zubac, D. P., Bostad, L., Gestblom, C., Kihl, B., Seidal, T., Wentzel-Larsen, T., and Bakke, A. M.. Scand J Urol Nephrol 2007:191-7

Impact of clinicopathological parameters in patients treated for renal cell carcinoma. Dall'Oglio, M. F., Arap, M. A., Antunes, A. A., Cury, J., Leite, K. R., and Srougi, M.. J Urol 2007:1687-91

Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis. Hollingsworth, J. M., Miller, D. C., Daignault, S., and Hollenbeck, B. K.. Cancer 2007:1763-8

ECOG performance status 0 or 1 and symptom classification do not improve the ability to predict renal cell carcinoma-specific survival. Karakiewicz, P. I., Trinh, Q. D., de la Taille, A., Abbou, C. C., Salomon, L., Tostain, J., Cindolo, L., Artibani, W., Ficarra, V., and Patard, J. J.. Eur J Cancer 2007:1023-9

The follow-up management of non-metastatic renal cell carcinoma: definition of a surveillance protocol. Antonelli, A., Cozzoli, A., Zani, D., Zanotelli, T., Nicolai, M., Cunico, S. C., and Simeone, C.. BJU Int 2007:296-300

Diagnostic yield of 58 consecutive imaging-guided biopsies of solid renal masses: should we biopsy all that are indeterminate?. Beland, M. D., Mayo-Smith, W. W., Dupuy, D. E., Cronan, J. J., and DeLellis, R. A.. AJR Am J Roentgenol 2007:792-7

[Outcome of open and laparoscopic nephrectomies in a county hospital--centralization]. Lund, L., Jonler, M., and Bisballe, S.. Ugeskr Laeger 2007:602-4

Sporadic renal cell carcinoma in young and elderly patients: are there different clinicopathological features and disease specific survival rates? Denzinger, S., Otto, W., Burger, M., Hammerschmied, C., Junker, K., Hartmann, A., Wieland, W. F., and Walter, B.. World J Surg Oncol 2007:16

Prognostic relevance of capsular involvement and collecting system invasion in stage I and II renal cell carcinoma. Klatte, T., Chung, J., Leppert, J. T., Lam, J. S., Pantuck, A. J., Figlin, R. A., and Belldegrun, A. S.. BJU Int 2007:821-4

Dynamic outcome prediction in patients with clear cell renal cell carcinoma treated with radical nephrectomy: the D-SSIGN score. Thompson, R. H., Leibovich, B. C., Lohse, C. M., Cheville, J. C., Zincke, H., Blute, M. L., and Frank, I.. J Urol 2007:477-80

Nephron sparing surgery: A single institution experience. Agrawal, S., Jha, M. S., Khurana, N., Ansari, M. S., Dubey, D., Srivastava, A., Kapoor, R., Kumar, A., Jain, M., and Mandhani, A.. Indian J Urol 2007:23-7

Laparoscopic radical nephrectomy: comparison of clinical Stage T1 and T2 renal tumors. Gong, E. M., Lyon, M. B., Orvieto, M. A., Lucioni, A., Gerber, G. S., and Shalhav, A. L.. Urology 2006:1183-7

Conventional and hand-assisted laparoscopic radical nephrectomy: Comparative analysis of 271 cases. Matin, S. F., Dhanani, N., Acosta, M., and Wood, C. G.. J Endourol 2006:891-4

Perioperative clinical thromboembolic events after radical or partial nephrectomy. Pettus, J. A., Eggener, S. E., Shabsigh, A., Yanke, B., Snyder, M. E., Serio, A., Vickers, A., Russo, P., and Donat, S. M.. Urology 2006:988-92

Incidence of benign lesions for clinically localized renal masses smaller than 7 cm in radiological diameter: influence of sex. Snyder, M. E., Bach, A., Kattan, M. W., Raj, G. V., Reuter, V. E., and Russo, P.. J Urol 2006:2391-5; discussion 2395-6

Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma. Parker, A. S., Lohse, C. M., Cheville, J. C., Thiel, D. D., Leibovich, B. C., and Blute, M. L.. Urology 2006:741-6

Gender discrepancies in the diagnosis of renal cortical tumors. Pierorazio, P. M., Murphy, A. M., Benson, M. C., and McKiernan, J. M.. World J Urol 2007:81-5

Prognostic significance of common preoperative laboratory variables in clear cell renal cell carcinoma. Lee, S. E., Byun, S. S., Han, J. H., Han, B. K., and Hong, S. K.. BJU Int 2006:1228-32

Risk of renal insufficiency in African-Americans after radical nephrectomy for kidney cancer. Hepps, D. and Chernoff, A.. Urol Oncol 2006:391-5

Increased preoperative serum C-reactive protein level predicts a poor prognosis in patients with localized renal cell carcinoma. Komai, Y., Saito, K., Sakai, K., and Morimoto, S.. BJU Int 2007:77-80

Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. Remzi, M., Ozsoy, M., Klingler, H. C., Susani, M., Waldert, M., Seitz, C., Schmidbauer, J., and Marberger, M.. J Urol 2006:896-9

Experiences in US-guided percutaneous radiofrequency ablation of 44 renal tumors in 31 patients: analysis of predictors for complications and technical success. Veltri, A., Calvo, A., Tosetti, I., Pagano, E., Genovesio, A., Virzi, V., Ferrando, U., Fontana, D., and Gandini, G.. Cardiovasc Intervent Radiol 2006:811-8

Renal cell carcinoma recurrence after nephrectomy for localized disease: predicting survival from time of recurrence. Eggener, S. E., Yossepowitch, O., Pettus, J. A., Snyder, M. E., Motzer, R. J., and Russo, P.. J Clin Oncol 2006:3101-6

Open partial nephrectomy: outcomes from two UK centres. Ray, E. R., Turney, B. W., Singh, R., Chandra, A., Cranston, D. W., and O'Brien, T. S.. BJU Int 2006:1211-5

Open partial nephrectomy for tumor in a solitary kidney: experience with 400 cases. Fergany, A. F., Saad, I. R., Woo, L., and Novick, A. C.. J Urol 2006:1630-3; discussion 1633

Intraoperative conversion of laparoscopic partial nephrectomy. Rais-Bahrami, S., Lima, G. C., Varkarakis, I. M., Romero, F. R., Trock, B., Jarrett, T. W., and Kavoussi, L. R.. J Endourol 2006:205-8

Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results. Nazemi, T., Galich, A., Sterrett, S., Klingler, D., Smith, L., and Balaji, K. C.. Int Braz J Urol 2006:15-22

Impact of body mass index on survival of patients with surgically treated renal cell carcinoma. Donat, S. M., Salzhauer, E. W., Mitra, N., Yanke, B. V., Snyder, M. E., and Russo, P.. J Urol 2006:46-52

Retroperitoneoscopic versus open surgical radical nephrectomy for large renal cell carcinoma in clinical stage cT2 or cT3a: quality of life, pain and reconvalescence. Dillenburg, W., Poulakis, V., Skriapas, K., de Vries, R., Ferakis, N., Witzsch, U., Melekos, M., and Becht, E.. Eur Urol 2006:314-22; discussion 322-3

Follow-up of renal oncocytoma diagnosed by percutaneous tumor biopsy. Neuzillet, Y., Lechevallier, E., Andre, M., Daniel, L., Nahon, O., and Coulange, C.. Urology 2005:1181-5

Proposal for revision of the TNM classification system for renal cell carcinoma. Ficarra, V., Guille, F., Schips, L., de la Taille, A., Prayer Galetti, T., Tostain, J., Cindolo, L., Novara, G., Zigeuner, R., Bratti, E., Li, G., Altieri, V., Abbou, C. C., Zanolla, L., Artibani, W., and Patard, J. J.. Cancer 2005:2116-23

The laparoscopic nephrectomy learning curve: a single centre's development of a de novo practice. Phillips, J., Catto, J. W., Lavin, V., Doyle, D., Smith, D. J., Hastie, K. J., and Oakley, N. E.. Postgrad Med J 2005:599-603

Early ligature of renal artery during radical laparoscopic transperitoneal nephrectomy: description of standard technique and direct access. Porpiglia, F., Terrone, C., Cracco, C., Cossu, M., Grande, S., Musso, F., Renard, J.,

and Scarpa, R. M.. J Endourol 2005:623-6; discussion 626-7

[Miniinvasive laparoscopic or retroperitoneoscopic radical nephrectomy for the parenchymal tumor]. Hora, M., Klecka, J. Jr, Hes, O., Ferda, J., and Urge, T.. Rozhl Chir 2005:246-52

Laparoscopic nephrectomy. Poulsen, E. U., Eddy, B., and Poulsen, J.. Scand J Urol Nephrol 2005:138-42

Laparoscopic nephrectomy: initial experience in Israel with 110 cases. Nadu, A., Mor, Y., Chen, J., Sofer, M., Golomb, J., and Ramon, J.. Isr Med Assoc J 2005:431-4

Multiinstitutional European validation of the 2002 TNM staging system in conventional and papillary localized renal cell carcinoma. Ficarra, V., Schips, L., Guille, F., Li, G., De La Taille, A., Prayer Galetti, T., Cindolo, L., Novara, G., Zigeuner, R. E., Bratti, E., Tostain, J., Altieri, V., Abbou, C. C., Artibani, W., and Patard, J. J.. Cancer 2005:968-74

Incisional hernia following hand-assisted laparoscopic surgery for renal cell cancer. Troxel, S. A. and Das, S.. JSLS 2005:196-8

A description of radical nephrectomy practice and outcomes in England: 1995-2002. Nuttall, M., Cathcart, P., van der Meulen, J., Gillatt, D., McIntosh, G., and Emberton, M.. BJU Int 2005:58-61

Direct access to the renal artery at the level of treitz ligament during left radical laparoscopic transperitoneal nephrectomy. Porpiglia, F., Terrone, C., Cracco, C., Renard, J., Musso, F., Grande, S., and Scarpa, R. M.. Eur Urol 2005:291-5

Laparoscopic partial nephrectomy: hand-assisted technique. Strup, S., Garrett, J., Gomella, L., and Rowland, R.. J Endourol 2005:456-9; discussion 459-60

Comparison of presentation and outcome for patients 18 to 40 and 60 to 70 years old with solid renal masses. Gillett, M. D., Cheville, J. C., Karnes, R. J., Lohse, C. M., Kwon, E. D., Leibovich, B. C., Zincke, H., and Blute, M. L.. J Urol 2005:1893-6

Percutaneous radiofrequency ablation of renal tumors: technique, complications, and outcomes. Ahrar, K., Matin, S., Wood, C. G., Wallace, M. J., Gupta, S., Madoff, D. C., Rao, S., Tannir, N. M., Jonasch, E., Pisters, L. L., Rozner, M. A., Kennamer, D. L., and Hicks, M. E.. J Vasc Interv Radiol 2005:679-88

[Results of open radical nephrectomy in a series of 230 patients]. Peyromaure, M., Barry Delongchamps, N., Roffi, F., Debre, B., and Zerbib, M.. Prog Urol 2005:18-22

Renal neoplasms in younger adults: analysis of 112 tumors from a single institution according to the new 2004 World Health Organization classification and 2002 American Joint Committee on Cancer Staging System. Cao, Y., Paner, G. P., Perry, K. T., Flanigan, R. C., Campbell, S. C., and Picken, M. M.. Arch Pathol Lab Med 2005:487-91

Laparoscopic heminephrectomy for tumor. Finelli, A., Gill, I. S., Desai, M. M., Tan, Y. H., Moinzadeh, A., Singh, D., and Kaouk, J. H.. Urology 2005:473-8

Impact of tumor size on the long-term survival of patients with early stage renal cell cancer. Kuczyk, M., Wegener, G., Merseburger, A. S., Anastasiadis, A., Machtens, S., Zumbragel, A., Hartmann, J. T., Bokemeyer, C., Jonas, U., and Stenzl, A.. World J Urol 2005:50-4

Pathological stage does not alter the prognosis for renal lesions determined to be stage T1 by computerized tomography. Roberts, W. W., Bhayani, S. B., Allaf, M. E., Chan, T. Y., Kavoussi, L. R., and Jarrett, T. W.. J Urol 2005:713-5

Learning curve of hand-assisted retroperitoneoscopic nephrectomy in less-experienced laparoscopic surgeons. Kawauchi, A., Fujito, A., Soh, J., Yoneda, K., Ukimura, O., Mizutani, Y., and Miki, T.. Int J Urol 2005:1-6

Predicting postoperative renal insufficiency in patients undergoing nephrectomy for renal malignancy: assessment by renal scintigraphy using 99mtechnetium-mercaptoacetyltriglycine. Shirasaki, Y., Saika, T., Tsushima, T., Nasu, Y., Arata, R., and Kumon, H.. J Urol 2005:388-90

pT2 classification for renal cell carcinoma. Can its accuracy be improved?. Frank, I., Blute, M. L., Leibovich, B. C., Cheville, J. C., Lohse, C. M., Kwon, E. D., and Zincke, H.. J Urol 2005:380-4

Re-evaluation of the Tumour-Node-Metastasis staging of locally advanced renal cortical tumours: absolute size (T2) is more significant than renal capsular invasion (T3a). Murphy, A. M., Gilbert, S. M., Katz, A. E., Goluboff, E. T., Sawczuk, I. S., Olsson, C. A., Benson, M. C., and McKiernan, J. M.. BJU Int 2005:27-30

Prospective randomized comparison of transperitoneal versus retroperitoneal laparoscopic radical nephrectomy. Desai, M. M., Strzempkowski, B., Matin, S. F., Steinberg, A. P., Ng, C., Meraney, A. M., Kaouk, J. H., and Gill, I. S.. J Urol 2005:38-41

Clinicopathological features of recurrence after radical surgery for nonmetastatic renal cell carcinoma. Ishimura, T., Sakai, I., Harada, K., Hara, I., Eto, H., and Miyake, H.. Int J Clin Oncol 2004:369-72

Laparoscopic radical nephrectomy for large (greater than 7 cm, T2) renal tumors. Steinberg, A. P., Finelli, A., Desai, M. M., Abreu, S. C., Ramani, A. P., Spaliviero, M., Rybicki, L., Kaouk, J., Novick, A. C., and Gill, I. S.. J Urol 2004:2172-6

Management of renal masses in patients medically unsuitable for nephrectomy--natural history, complications, and outcome. Lamb, G. W., Bromwich, E. J., Vasey, P., and Aitchison, M.. Urology 2004:909-13

Prognostic factors in patients with renal cell carcinoma: is TNM (1997) staging relevant in Indian subpopulation?. Srivastava, A., Mandhani, A., Kapoor, R., Jain, M., Dubey, D., Srivastava, A., Raghavendra, M., and Kumar, A.. Indian J Cancer 2004:99-103

Portless endoscopic radical nephrectomy via a single minimum incision in 80 patients. Kihara, K., Kageyama, Y., Yano, M., Kobayashi, T., Kawakami, S., Fujii, Y., Masuda, H., and Hyochi, N.. Int J Urol 2004:714-20

Long-term consequence of renal function following nephrectomy for renal cell cancer. Shirasaki, Y., Tsushima, T., Nasu, Y., and Kumon, H.. Int J Urol 2004:704-8

The British Association of Urological Surgeons Section of Endourology audit of laparoscopic nephrectomy. Keoghane, S. R., Keeley, F. X., Timoney, A. G., Tolley, D. A., Joyce, A., and Downey, P.. BJU Int 2004:577-81

Laparoscopic radical nephrectomy in the elderly. Varkarakis, I., Neururer, R., Harabayashi, T., Bartsch, G., and Peschel, R.. BJU Int 2004:517-20

Kidney function after nephrectomy for renal cell carcinoma. Shirasaki, Y., Tsushima, T., Saika, T., Nasu, Y., and Kumon, H.. Urology 2004:43-7; discussion 48

Guidelines for the surveillance of localized renal cell carcinoma based on the patterns of relapse after nephrectomy. Stephenson, A. J., Chetner, M. P., Rourke, K., Gleave, M. E., Signaevsky, M., Palmer, B., Kuan, J., Brock, G. B., and Tanguay, S.. J Urol 2004:58-62

Microscopic venous invasion in renal cell carcinoma as a predictor of recurrence after radical surgery. Ishimura, T., Sakai, I., Hara, I., Eto, H., and Miyake, H.. Int J Urol 2004:264-8

Impact of surgical volume on mortality and length of stay after nephrectomy. Taub, D. A., Miller, D. C., Cowan, J. A., Dimick, J. B., Montie, J. E., and Wei, J. T.. Urology 2004:862-7

Use of American Society of Anesthesiologists physical status classification to assess perioperative risk in patients undergoing radical nephrectomy for renal cell carcinoma. Han, K. R., Kim, H. L., Pantuck, A. J., Dorey, F. J., Figlin, R. A., and Belldegrun, A. S.. Urology 2004:841-6; discussion 846-7

Laparoscopic radical nephrectomy: techniques, results and oncological outcome in 125 consecutive cases. Wille, A. H., Roigas, J., Deger, S., Tullmann, M., Turk, I., and Loening, S. A.. Eur Urol 2004:483-8; discussion 488-9

Permanent flank bulge is a consequence of flank incision for radical nephrectomy in one half of patients. Chatterjee, S., Nam, R., Fleshner, N., and Klotz, L.. Urol Oncol 2004:36-9

Hand assisted laparoscopic radical nephrectomy: comparison with open radical nephrectomy. Lee, S. E., Ku, J. H., Kwak, C., Kim, H. H., and Paick, S. H.. J Urol 2003:756-9

Single-center comparison of purely laparoscopic, hand-assisted laparoscopic, and open radical nephrectomy in patients at high anesthetic risk. Baldwin, D. D., Dunbar, J. A., Parekh, D. J., Wells, N., Shuford, M. D., Cookson, M. S., Smith, J. A. Jr, Herrell, S. D., Chang, S. S., and McDougall, E. M.. J Endourol 2003:161-7

Outcome and survival with nonsurgical management of renal cell carcinoma. Baird, A. D., Woolfenden, K. A., Desmond, A. D., Fordham, M. V., and Parsons, K. F.. BJU Int 2003:600-2

Clinicopathological study of renal cell carcinoma. Nakatani, T., Yoshida, N., Iwata, H., Kuratsukuri, K., Uchida, J., Kawashima, H., Ikemoto, S., and Sugimura, K.. Oncol Rep 2003:679-85

Renal cell carcinoma: gender difference in incidental detection and cancer-specific survival. Beisland, C., Medby, P. C., and Beisland, H. O.. Scand J Urol Nephrol 2002:414-8

[Laparoscopic radical nephrectomy: indications, techniques, and oncological outcome]. Wille, A. H., Roigas, J., Deger, S., Turk, I., Tullmann, M., Dubbke, A., and Schnorr, D.. Urologe A 2003:205-10

Incidental and symptomatic renal tumors: impact on patient survival. Dall'Oglio, M. F., Srougi, M., Goncalves, P. D., Leite, K., Nesrallah, L., and Hering, F.. Sao Paulo Med J 2002:165-9

Hand-assisted laparoscopy for large renal specimens: a multi-institutional study. Stifelman, M. D., Handler, T., Nieder, A. M., Del Pizzo, J., Taneja, S., Sosa, R. E., and Shichman, S. J.. Urology 2003:78-82

Prospective analysis of computerized tomography and needle biopsy with permanent sectioning to determine the nature of solid renal masses in adults. Dechet, C. B., Zincke, H., Sebo, T. J., King, B. F., LeRoy, A. J., Farrow, G. M., and Blute, M. L.. J Urol 2003:71-4

Mode of presentation of renal cell carcinoma provides prognostic information. Lee, C. T., Katz, J., Fearn, P. A., and Russo, P.. Urol Oncol 2002:135-40

An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. Frank, I., Blute, M. L., Cheville, J. C., Lohse, C. M., Weaver, A. L., and Zincke, H.. J Urol 2002:2395-400

Sporadic renal cell carcinoma in young adults: presentation, treatment, and outcome. Abou El Fettouh, H. I., Cherullo, E. E., El-Jack, M., Al Maslamani, Y., and Novick, A. C.. Urology 2002:806-10

Thrombocytosis is associated with a significant increase in the cancer specific death rate after radical nephrectomy. O'Keefe, S. C., Marshall, F. F., Issa, M. M., Harmon, M. P., and Petros, J. A.. J Urol 2002:1378-80

Prognostic significance of primary-tumor extension, stage and grade of nuclear differentiation in patients with renal cell carcinoma. Fiori, E., De Cesare, A., Galati, G., Bononi, M., D'Andrea, N., Barbarosos, A., Izzo, L., and Bolognese, A.. J Exp Clin Cancer Res 2002:229-32

Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. Ficarra, V., Righetti, R., Pilloni, S., D'amico, A., Maffei, N., Novella, G., Zanolla, L., Malossini, G., and Mobilio, G.. Eur Urol 2002:190-8

Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Uchida, K., Miyao, N., Masumori, N., Takahashi, A., Oda, T., Yanase, M., Kitamura, H., Itoh, N., Sato, M., and Tsukamoto, T.. Int J Urol 2002:19-23

Coloepiploic mobilization during left radical nephrectomy for renal cell carcinoma is indicated to reduce the risk of iatrogenic splenectomy. Mejean, A., Chretien, Y., Vogt, B., Cazin, S., Balian, C., Thiounn, N., and Dufour, B.. Urology 2002:358-61

Laparoscopic radical nephrectomy in 100 patients: a single center experience from the United States. Gill, I. S., Meraney, A. M., Schweizer, D. K., Savage, S. S., Hobart, M. G., Sung, G. T., Nelson, D., and Novick, A. C.. Cancer 2001:1843-55

Renal cell carcinoma: evaluation of the 1997 TNM system and recommendations for follow-up after surgery. Gofrit, O. N., Shapiro, A., Kovalski, N., Landau, E. H., Shenfeld, O. Z., and Pode, D.. Eur Urol 2001:669-74; discussion 675

Matched comparison of radical nephrectomy vs nephronsparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Lau, W. K., Blute, M. L., Weaver, A. L., Torres, V. E., and Zincke, H.. Mayo Clin Proc 2000:1236-42

Laparoscopic versus open radical nephrectomy: a 9-year experience. Dunn, M. D., Portis, A. J., Shalhav, A. L., Elbahnasy, A. M., Heidorn, C., McDougall, E. M., and Clayman, R. V.. J Urol 2000:1153-9

Comparison of preoperative embolization followed by radical nephrectomy with radical nephrectomy alone for renal cell carcinoma. Zielinski, H., Szmigielski, S., and Petrovich, Z.. Am J Clin Oncol 2000:6-12

Renal cell carcinoma: prognostic significance of incidentally detected tumors. Tsui, K. H., Shvarts, O., Smith, R. B., Figlin, R., de Kernion, J. B., and Belldegrun, A.. J Urol 2000:426-30

Mortality and morbidity after nephrectomy for renal cell carcinoma using a transperitoneal anterior subcostal incision. Mejean, A., Vogt, B., Quazza, J. E., Chretien, Y., and Dufour, B.. Eur Urol 99:298-302

Fine-needle aspiration of renal masses in adults: analysis of results and diagnostic problems in 108 cases. Truong, L. D., Todd, T. D., Dhurandhar, B., and Ramzy, I.. Diagn Cytopathol 99:339-49

Significant prognostic factors for 5-year survival after curative resection of renal cell carcinoma. Masuda, H., Kurita, Y., Fukuta, K., Mugiya, S., Suzuki, K., and Fujita, K.. Int J Urol 98:418-22

Cystic renal cell carcinoma: pathological features, survival and implications for treatment. Bielsa, O., Lloreta, J., and Gelabert-Mas, A.. Br J Urol 98:16-20

Laparoscopic nephrectomy: the experience of the laparoscopy working group of the German Urologic Association. Rassweiler, J., Fornara, P., Weber, M., Janetschek, G., Fahlenkamp, D., Henkel, T., Beer, M.,

Stackl, W., Boeckmann, W., Recker, F., Lampel, A., Fischer, C., Humke, U., and Miller, K.. J Urol 98:18-21

Radical nephrectomy for renal cell carcinoma: long-term results and prognostic factors on a series of 328 cases. Giberti, C., Oneto, F., Martorana, G., Rovida, S., and Carmignani, G.. Eur Urol 97:40-8

Risk factors for postoperative hemorrhage after partial nephrectomy. Jung S., Min G.E., Chung B.I., and Jeon S.H.. Korean J. Urol. 2014:17-22

Clinico-pathological prognostic factors of renal cell carcinoma: A 15-year review from a single center in Greece. Grivas N., Kafarakis V., Tsimaris I., Raptis P., Hastazeris K., and Stavropoulos N.E.. Urol. Ann. 2014:116-121

Clinical outcome of small renal cell carcinoma after delayed surgery versus immediate surgery. Sugimoto K., Shimizu N., Nose K., Tahara H., Imanishi M., Nishioka T., Esa A., Kajikawa H., and Uemura H.. J. Cancer 2013:514-518

Percutaneous image-guided radiofrequency ablation of renal neoplasms: Seven-year local experience. Tsang K.W.K., Lee S.F., Cheung H.Y., Lui P.Y., and Tam K.Y.. Hong Kong 2013:17-26

Visceral obesity and risk of high grade disease in clinical T1a renal cell carcinoma. Zhu Y., Wang H.-K., Zhang H.-L., Yao X.-D., Zhang S.-L., Dai B., Shen Y.-J., Liu X.-H., Zhou L.-P., and Ye D.-W.. J. Urol. 2013:447-453

Body mass index and survival in patients with renal cell carcinoma: A clinical-based cohort and meta-analysis. Choi Y., Park B., Jeong B.C., Seo S.I., Jeon S.S., Choi H.Y., Adami H.-O., Lee J.E., and Lee H.M.. Int. J. Cancer 2013:625-634

Importance of local data on occurrence and outcomes of renal cell cancer. Veeratterapillay R., Rakhra S., El-Sherif A., Robson C., Johnson M.I., Pickard R.S., Soomro N., and Heer R.. J. Clini. Urol. 2013:158-163

Robotic laparoendoscopic single site urological surgery: Analysis of 50 consecutive cases. White M.A., Autorino R., Spana G., Hillyer S., Stein R.J., and Kaouk J.H.. J. Urol. 2012:1696-1701

Stage T1NOMO renal cell carcinoma: The prognosid in Asian patients. Zhang Z.-L., Chen W., Li Y.-H., Liu Z.-W., Luo J.-H., Lau W., Tan M.-H., and Zhou F.-J.. Chin. J. Cancer 2011:772-778

Robotics applied in laparoscopic kidney surgery: The Yonsei University experience of 127 cases. Lorenzo E.I.S., Jeong W., Oh C.K., Chung B.H., Choi Y.D., and Rha K.H.. Urology 2011:114-118

Fine needle aspiration of renal cortical lesions in adults. Adeniran A.J., Al-Ahmadie H., Iyengar P., Reuter V.E., and Lin O.. Diagn. Cytopathol. 2010:710-715

Prognostic Impact of Histological Subtype on Surgically Treated Localized Renal Cell Carcinoma. Teloken P.E., Thompson R.H., Tickoo S.K., Cronin A., Savage C., Reuter V.E., and Russo P.. J. Urol. 2009:2132-2136 Nephron-sparing surgery for small renal cell carcinoma. Li Y., Zhu S., Cai W., Chen S., and Li Q.. J. Nanjing Med. Univ. 2009:207-211

Young Age Is Independent Prognostic Factor for Cancer-Specific Survival of Low-Stage Clear Cell Renal Cell Carcinoma. Jung E.-J., Lee H.J., Kwak C., Ku J.H., and Moon K.C.. Urology 2009:137-141

Clinicopathological features and survival rates of patients with renal cell carcinoma under 50 years of age. Atmaca A.F., Bayrak O., Kandemir O., Serefoglu E.C., Culha I.E., Canda A.E., and Balbay M.D.. Cent. Eur. J. Med. 2008:453-458

Direct real-time temperature monitoring for laparoscopic and CT-guided radiofrequency ablation of renal tumors between 3 and 5 cm. Carey R.I. and Leveillee R.J.. J. Endourol. 2007:807-813

Randomized trial of laparoscopic (nu) open nephrectomy. Burgess N.A., Koo B.C., Calvert R.C., Hindmarsh A., Donaldson P.J., and Rhodes M.. J. Endourol. 2007:610-613

Laparoscopic Cryoablation of Small Renal Masses: Technique and Results after 6-Year Experience. Cestari A., Guazzoni G., Buffi N.M., Riva M., and Rigatti P.. Eur. Urol. Suppl. 2007:646-652

Pathological Features of Renal Neoplasms Classified by Size and Symptomatology. Schlomer B., Figenshau R.S., Yan Y., Venkatesh R., and Bhayani S.B.. J. Urol. 2006:1317-1320

Laparoscopic radical nephrectomy for renal cell carcinoma: Oncologically safe?: Laparoscopische behandeling van niercelcarcinoom: Oncologisch verantwoord?. Schatteman P., Tuytten T., Carpentier P., Fonteyne E., and Mottrie A.. Tijdschr. Geneeskd. 2005:179-184

Renal artery pseudoaneurysm after partial nephrectomy: Three case reports and a literature review. Albani J.M. and Novick A.C.. Urology 2003:227-231

Incidental detection beyond pathological factors as prognostic predictor of renal cell carcinoma. Ficarra V., Prayer-Galetti T., Novella G., Bratti E., Maffei N., Dal Bianco M., Artibani W., and Pagano F.. Eur. Urol. 2003:663-669

Perioperative homologous blood transfusion and survival in patients with surgically treated renal cell carcinoma. Mermershtain W., Eidelberg I., Yusim I., Ariad S., and Kaneti J.. UroOncology 2003:23-25

Stage pT1 renal cell carcinoma: Review of the prognostic significance of size. Zucchi A., Mearini L., Mearini E., and Costantini E.. Urol. Int. 2003:47-50

Renal cell carcinoma: Clinical experience and technical success with radio-frequency ablation of 42 tumors. Gervais D.A., McGovern F.J., Arellano R.S., Scott McDougal W., and Mueller P.R.. Radiology 2003:417-424

A retrospective analysis of serum CA 15-3 concentrations in patients with localised or metastatic renal cancer and its

impact on prognosis and follow-up. A single-centre experience. Briasoulis E., Pentheroudakis G., Letsa I., and Pavlidis N.. UroOncology 2002:179-184

Radiologic, pathologic and molecular attributes of two types of papillary renal adenocarcinomas. Mydlo J.H., Weinstein R., Misseri R., Axiotis C., and Thelmo W.. Scand. J. Urol. Nephrol. 2001:262-269

Importance of early detection of renal carcinoma with regard to the prognosis: Vyznam vcasneho zachytu karcinomu ledviny - Vzhledem k prognoze. Fiala A. and Urban M.. Prakt. Lek. 2001:197-199

Renal cell carcinoma: Clinical and therapeutic considerations about 301 cases. Destito A., Servello C., Pisanti F., Lacquaniti S., Candidi M.O., Racioppi M., and Alcini E.. Acta Med. Rom. 99:498-503

Impact of tumor size on the clinical outcomes of patients with Robson Stage I renal cell carcinoma. Kinouchi T., Saiki S., Meguro N., Maeda O., Kuroda M., Usami M., and Kotake T.. Cancer 99:689-695

A review of our first 100 cases of laparoscopic nephrectomy: Defining risk factors for complications. Keeley F.X. and Tolley D.A.. Br. J. Urol. 98:615-618

Partial nephrectomy: Alternative treatment for selected patients with renal cell carcinoma. Duque J.L.F., Loughlin K.R., O'Leary M.P., Kumar S., and Richie J.P.. Urology 98:584-590

Laparoscopic radical nephrectomy with morcellation for renal cell carcinoma: The Saskatoon experience. Barrett P.H., Fentie D.D., and Taranger L.A.. Urology 98:23-28

Prognosis in the cases with renal cell carcinoma according to clinical parameters. Fukuda M., Satomi Y., Asakura T., Hosaka M., Noguchi S., Kishida T., Kondou I., Ida T., Hirokawa M., Kumagai H., Shiozaki H., Ishizuka E., Miyai K., Fukuoka H., Sasaki K., Oogo Y., Koudaira T., Ogawa K., Nakahashi M., Matsuura K., Moriyama M., Udagawa K., Senga Y., Ishibashi Y., and Shimura H.. Jpn. J. Urol. 98:647-656

Assessment of renal lesions with blood oxygenation leveldependent MRI at 3 T: Preliminary experience. Min, J. H., Kim, C. K., Park, B. K., Kim, E., and Kim, B.. American Journal of Roentgenology 2011: W489-W494

Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: results using the PADUA classification system. Shin, T. Y., Kim, J., Koo, K. C., Lim, S. K., Kim, D. W., Kang, M. W., Rha, K. H., Choi, Y. D., and Ham, W. S.. BJU Int 2014:754-61

Individualized renal mass biopsy strategy for Chinese patients with different subtypes and necrosis area. Shi, G. H., Chen, Y., Yao, X. D., Zhang, S. L., Dai, B., Feng, L. Q., Zhang, H. L., Shen, Y. J., Zhu, Y., Zhu, Y. P., Xiao, W. J., Ma, C. G., Wen, L. G., Qin, X. J., Yang, L. F., and Ye, D. W.. Urol Oncol 2013:920-3

Diagnosis of renal angiomyolipoma with hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Davenport, M. S., Neville, A. M., Ellis, J. H., Cohan, R. H., Chaudhry, H. S., and Leder, R. A.. Radiology 2011:158-65

Diagnostic accuracy of segmental enhancement inversion for the diagnosis of renal oncocytoma using biphasic computed tomography (CT) and multiphase contrastenhanced magnetic resonance imaging (MRI). Schieda, N., Al-Subhi, M., Flood, T. A., El-Khodary, M., and McInnes, M. D.. Eur Radiol 2014:2787-94

Unenhanced CT for the detection of renal cell carcinoma: effect of tumor size and contour type. Jung, S. I., Park, H. S., Kim, Y. J., and Jeon, H. J.. Abdom Imaging 2014:348-57

Computed tomography-guided renal tumor biopsies: tumor imaging features affecting sample adequacy. Davis, I. C., Heilbrun, M. E., Tangtiang, K., Childs, D. D., and Zagoria, R. J.. J Comput Assist Tomogr 2013:171-5

What is the added value of combined core biopsy and fine needle aspiration in the diagnostic process of renal tumours? Barwari, K., Kummerlin, I. P., ten Kate, F. J., Algaba, F., Trias, I., Wijkstra, H., De la Rosette, J. J., and Laguna, P.. World J Urol 2013:823-7

Typing of renal tumors by morphological and immunocytochemical evaluation of fine needle aspirates. Strojan Flezar, M., Gutnik, H., Jeruc, J., and Kirbis, I. S.. Virchows Arch 2011:607-14

Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques?. Hindman, N., Ngo, L., Genega, E. M., Melamed, J., Wei, J., Braza, J. M., Rofsky, N. M., and Pedrosa, I.. Radiology 2012:468-77

Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. Razek, A. A., Farouk, A., Mousa, A., and Nabil, N.. J Comput Assist Tomogr 2011:332-6

Combination of core biopsy and fine-needle aspiration increases diagnostic rate for small solid renal tumors. Li, G., Cuilleron, M., Zhao, A., Obadia, F., Mouracade, P., Tostain, J., Cottier, M., Peoc'h, M., and Gigante, M.. Anticancer Res 2012:3463-6

EUS-guided FNA aspiration of kidney masses: a multicenter U.S. experience. DeWitt, J., Gress, F. G., Levy, M. J., Hernandez, L. V., Eloubeidi, M. A., Mishra, G., Sherman, S., Al-Haddad, M. A., and LeBlanc, J. K.. Gastrointest Endosc 2009:573-8

Contrast-enhanced ultrasound using a time-intensity curve for the diagnosis of renal cell carcinoma. Aoki, S., Hattori, R., Yamamoto, T., Funahashi, Y., Matsukawa, Y., Gotoh, M., Yamada, Y., and Honda, N.. BJU Int 2011:349-54

The value of contrast enhanced ultrasound (CEUS) in the characterisation of patients with renal masses. Ignee, A., Straub, B., Brix, D., Schuessler, G., Ott, M., and Dietrich, C. F.. Clin Hemorheol Microcirc 2010:275-90

Exophytic renal masses: angular interface with renal parenchyma for distinguishing benign from malignant

lesions at MR imaging. Verma, S. K., Mitchell, D. G., Yang, R., Roth, C. G., O'Kane, P., Verma, M., and Parker, L.. Radiology 2010:501-7

Minimal fat renal angiomyolipoma: the initial study with contrast-enhanced ultrasonography. Lu, Q., Wang, W., Huang, B., Li, C., and Li, C.. Ultrasound Med Biol 2012:1896-901

Cytological punctures in the diagnosis of renal tumours: a study on accuracy and reproducibility. Kummerlin, I. P., Smedts, F., ten Kate, F. J., Horn, T., Algaba, F., Trias, I., Wijkstra, H., de la Rosette, J. J., and Laguna, M. P.. Eur Urol 2009:187-95

Diffusion-weighted MRI in inflammatory renal lesions: all that glitters is not RCC!. Goyal, A., Sharma, R., Bhalla, A. S., Gamanagatti, S., and Seth, A.. Eur Radiol 2013:272-9

Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Young, J. R., Margolis, D., Sauk, S., Pantuck, A. J., Sayre, J., and Raman, S. S.. Radiology 2013:444-53

Accuracy of multiphase helical tomography in detection and characterisation of suspected renal masses using histopathological findings as gold standard. Siddiqui, T. S., Tariq, A., Rehman, B., Siddiqui, T. S., and Asim, A.. J Ayub Med Coll Abbottabad 2010:170-3

Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Graser, A., Becker, C. R., Staehler, M., Clevert, D. A., Macari, M., Arndt, N., Nikolaou, K., Sommer, W., Stief, C., Reiser, M. F., and Johnson, T. R.. Invest Radiol 2010:399-405

Value of T2-weighted MR imaging in differentiating lowfat renal angiomyolipomas from other renal tumors. Choi, H. J., Kim, J. K., Ahn, H., Kim, C. S., Kim, M. H., and Cho, K. S.. Acta Radiol 2011:349-53

Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Kroeze, S. G., Huisman, M., Verkooijen, H. M., van Diest, P. J., Ruud Bosch, J. L., and van den Bosch, M. A.. Cardiovasc Intervent Radiol 2012:680-5

High temporal resolution 3D gadolinium-enhanced dynamic MR imaging of renal tumors with pharmacokinetic modeling: preliminary observations. Chandarana, H., Amarosa, A., Huang, W. C., Kang, S. K., Taneja, S., Melamed, J., and Kim, S.. J Magn Reson Imaging 2013:802-8

Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. Oh, T. H., Lee, Y. H., and Seo, I. Y.. Korean J Urol 2014:587-92

Percutaneous US-guided needle biopsies of solid renal masses. Aribas, B. K., Arda, K., Aktas, E., Ciledag, N., Yakut, F., Sahin, G., Cosar, Y., Dogan, K., and Kaya, G.. Neoplasma 2011:146-52

Evaluation of percutaneous biopsies of renal masses under MRI-guidance: a retrospective study about 26 cases.

Garnon, J., Schlier, A., Buy, X., Tsoumakidou, G., de Mathelin, M., Breton, E., and Gangi, A.. Eur Radiol 2014

Is there a role of the enhancement degree of the lesion on computerized tomography for the characterization of renal tumors?. Kutman, K., Suer, E., Beduk, Y., Ozturk, E., Gulpinar, O., Gokce, I., and Baltaci, S.. J Urol 2013:436-40

Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values. Erbay, G., Koc, Z., Karadeli, E., Kuzgunbay, B., Goren, M. R., and Bal, N.. Acta Radiol 2012 :359-65

Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. Tamai, H., Takiguchi, Y., Oka, M., Shingaki, N., Enomoto, S., Shiraki, T., Furuta, M., Inoue, I., Iguchi, M., Yanaoka, K., Arii, K., Shimizu, Y., Nakata, H., Shinka, T., Sanke, T., and Ichinose, M.. J Ultrasound Med 2005:1635-40

Indications for renal fine needle aspiration biopsy in the era of modern imaging modalities. Dragoescu, E. A. and Liu, L.. Cytojournal 2013:15

Detection of renal lesion enhancement with dual-energy multidetector CT. Neville, A. M., Gupta, R. T., Miller, C. M., Merkle, E. M., Paulson, E. K., and Boll, D. T.. Radiology 2011:173-83

Evaluation of imaging-guided fine-needle percutaneous biopsy of renal masses. Jaff, A., Molinie, V., Mellot, F., Guth, A., Lebret, T., and Scherrer, A.. Eur Radiol 2005:1721-6

Renal mass core biopsy: accuracy and impact on clinical management. Maturen, K. E., Nghiem, H. V., Caoili, E. M., Higgins, E. G., Wolf, J. S. Jr, and Wood, D. P. Jr. AJR Am J Roentgenol 2007:563-70

Diagnostic value of CT-guided biopsy of indeterminate renal masses. Eshed, I., Elias, S., and Sidi, A. A.. Clin Radiol 2004:262-7

Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Taouli, B., Thakur, R. K., Mannelli, L., Babb, J. S., Kim, S., Hecht, E. M., Lee, V. S., and Israel, G. M.. Radiology 2009:398-407

Visceral obesity is associated with better recurrence-free survival after curative surgery for Japanese patients with localized clear cell renal cell carcinoma. Kaneko, G., Miyajima, A., Yuge, K., Yazawa, S., Mizuno, R., Kikuchi, E., Jinzaki, M., and Oya, M.. Jpn J Clin Oncol 2014:

Role of percutaneous image-guided biopsy in the evaluation of renal masses. Hara, I., Miyake, H., Hara, S., Arakawa, S., Hanioka, K., and Kamidono, S.. Urol Int 2001:199-202

[Characterization and outcome of renal cancers <:/= 4cm treated by surgery]. Gigante, M., Li, G., Gentil-Perret, A., Chamba, C., and Tostain, J.. Prog Urol 2010:572-7

Can high-attenuation renal cysts be differentiated from renal cell carcinoma at unenhanced CT?. Jonisch, A. I.,

Rubinowitz, A. N., Mutalik, P. G., and Israel, G. M.. Radiology 2007:445-50

Renal masses--evaluation by amplitude coded colour Doppler sonography and multiphasic contrast-enhanced CT. Riccabona, M., Szolar, D., Preidler, K., Uggowitzer, M., Kugler, C., Dorfler, O., and Schreyer, H. H.. Acta Radiol 99:457-61

Role of ultrasonography in screening for urological malignancies in patients presenting with painless haematuria. Yip, S. K., Peh, W. C., Tam, P. C., Li, J. H., and Lam, C. H.. Ann Acad Med Singapore 99:174-7

FDG PET characterization of renal masses: preliminary experience. Goldberg, M. A., Mayo-Smith, W. W., Papanicolaou, N., Fischman, A. J., and Lee, M. J.. Clin Radiol 97:510-5

Dynamic computed tomography and color Doppler ultrasound of renal parenchymal neoplasms: correlations with histopathological findings. Kitamura, H., Fujimoto, H., Tobisu, K., Mizuguchi, Y., Maeda, T., Matsuoka, N., Komiyama, M., Nakagawa, T., and Kakizoe, T.. Jpn J Clin Oncol 2004:78-81

Comparison of 16-MDCT and MRI for characterization of kidney lesions. Beer, A. J., Dobritz, M., Zantl, N., Weirich, G., Stollfuss, J., and Rummeny, E. J.. AJR Am J Roentgenol 2006:1639-50

Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dualenergy CT. Song, K. D., Kim, C. K., Park, B. K., and Kim, B. AJR Am J Roentgenol 2011:W1076-82

Computer-aided detection of kidney tumor on abdominal computed tomography scans. Kim, D. Y. and Park, J. W.. Acta Radiol 2004:791-5

[Small incidental renal tumors. Evaluation and biological parameters]. Remzi, M. and Memarsadeghi, M.. Urologe A 2007:478, 480-4

Multiphasic helical CT of the kidney: increased conspicuity for detection and characterization of small (< 3-cm) renal masses. Szolar, D. H., Kammerhuber, F., Altziebler, S., Tillich, M., Breinl, E., Fotter, R., and Schreyer, H. H.. Radiology 97:211-7

Radiologically guided percutaneous fine-needle aspiration biopsy of pelvic and retroperitoneal masses: a retrospective study of 68 cases. Guo, Z., Kurtycz, D. F., De Las Casas, L. E., and Hoerl, H. D.. Diagn Cytopathol 2001:43-9

Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms - our clinical experience. Mytsyk, Y., Borys, Y., Komnatska, I., Dutka, I., and Shatynska-Mytsyk, I.. Pol J Radiol 2014:290-5

Fine-needle aspiration of cystic lesions of the kidney. Morphologic spectrum and diagnostic problems in 41 cases. Todd, T. D., Dhurandhar, B., Mody, D., Ramzy, I., and Truong, L. D.. Am J Clin Pathol 99:317-28

Fast sequences with fat suppression in breath-hold mode: new standard in contrast-enhanced T1-weighted MR

imaging of renal tumors?. Walter, C., Heindel, W., Kruessell, M., Kugel, H., Jung, G., and Gindele, A.. Eur Radiol 2001:2092-8

Role of active surveillance in the management of small renal masses in elderly and co-morbid patients: A retrospective study with long-term follow-up. Brunocilla E., Borghesi M., Schiavina R., Della Mora L., Cevenini M., Pultrone C., Del Prete C., Gentile G., Monti C., and Martorana G.. Eur. Urol. Suppl. 2014:e89

To biopsy or not to biopsy: Results of 1000 renal mass biopsies at a single institution. Deshmukh S.M., Dhyani M., McGovern F.J., McDougal W.S., Olumi A.F., Dahl D.M., Arellano R., Samir A., Blute M.L., and Feldman A.S.. J. Urol. 2013:e437

Active surveillance of small renal masses: First Italian prospective study. Volpe A., Munegato S., Zegna L., Di Domenico A., De Angelis P., Mondino P., and Terrone C.. Eur. Urol. Suppl. 2013:e174

Renal biopsy: Simple, safe and reliable. Fazakas Zs., Nagy V., Fekete Z., and Boszormenyi-Nagy G.. Eur. Urol. Suppl. 2012:114-115

Percutaneous image-guided needle biopsy of renal masses with core biopsy technique: From exception to rule. Veltri A., Sardo D., Basso E., Binello F., Gazzera C., and Garetto I.. Cardiovasc. Intervent. Radiol. 2012:S204

Role of percutaneous biopsy in the diagnosis of the small renal masses: Our experience. Cova G., Beniamin F., Dugo M., and Maccatrozzo L.. Anticancer Res. 2012:1868-1869

Minimally invasive open tumor enucleation vs. percutaneous radiofrequency ablation vs. active surveillance of small renal masses <3 cm in elderly patients: Long-term results of a prospective follow-up study. Brausi M., De Luca G., Gavioli M., Verrini G., Peracchia G., Romano A., Viola M., and Giliberto G.L.. Anticancer Res. 2011:1819

Quantification of competing risks of death in patients with localized renal cell carcinoma (RCC): A comprehensive nomogram incorporating co-morbidities. Kutikov A., Egleston B.L., Smaldone M.C., Canter D., Wong Y.-N., and Uzzo R.G.. J. Urol. 2011:e666

Evaluation of renal tumors by Image Guided biopsies with an empahasis on oncocytic neoplasms: A retrospective four year study from a large academic institution. Bhalla R., Wu A., and Kunju L.. J. Urol. 2011:e282

Evaluation of renal tumors by image guided biopsies with an emphasis on oncocytic neoplasms: A retrospective four year study from a large academic institution. Bhalla R., Wu A., and Kunju L.P.. Lab. Invest. 2011:180A

Mini-invasive open tumour enucleation vs. percutaneous radiofrequency ablation (PRA) of small renal masses <3 cm in elderly patients: Long-term results of a prospective follow-up study. Brausi M., De Luca G., Gavioli M., Verrini G., Simonini G., Romano A., Peracchia G., Viola M., and Giliberto G.L.. Anticancer Res. 2010:1401

Correlation between Fuhrman grading in percutaneous needle biopsy and surgical resection specimens in clear cell renal carcinoma (less-than or equal to) 4 cm in size. Fahim L., Finelli A., Ryan P., Jewett M., Kachura J., and Evans A.J.. Lab. Invest. 2010:190A

Radiofrequency ablation of small renal masses: Prognostic implications of a history of RCC and solitary kidney. Tailly T., Oyen R., Van Poppel H., and Joniau S.. J. Endourol. 2009:A10

Results of RFA in patients with small renal masses, a single-centre experience with median follow-up of 48 months. Joniau S., Tailly T., Goeman L., Oyen R., and Van Poppel H.. J. Endourol. 2009:A9

Helical CT evaluation of renal mass lesions: A prospective study. Bajwa R.P.S., Sandhu P., Aulakh B.S., Sandhu J.S., Saggar K., and Ahluwalia A.. J. Indian Acad. Clin. Med. 2007:262-264

Differential diagnosis of renal oncocytoma and carcinoma by spiral CT. Zhang J., Ma D.-Q., He W., Zhang Z.-J., Hu Y.-M., and Xu Y.. Chin. J. Med. Imaging Technol. 2007:718-720

Characterization and staging of renal tumors: Significance of MRI diagnostics: Charakterisierung und staging von nierentumoren: Bedeutung der MRT-diagnostik. Kalinka A., Gerlach A., Arlart I.P., Gunes N., Hauser T.-K., Wurstlin S., and Bosse A.. RoFo Fortschr. Geb. Rontgenstr. Bildgebenden Verfahren 2006:298-305

Subtyping of renal cortical neoplasms in fine needle aspiration biopsies using a decision tree based on genomic alterations detected by fluorescence in situ hybridization. Gowrishankar, B., Cahill, L., Arndt, A. E., Al-Ahmadie, H., Lin, O., Chadalavada, K., Chaganti, S., Nanjangud, G. J., Murty, V. V., Chaganti, R. S., Reuter, V. E., and Houldsworth, J. BJU Int 2014:881-90

Accuracy of Contrast-enhanced US for Differentiating Benign from Malignant Solid Small Renal Masses. Atri, M., Tabatabaeifar, L., Jang, H. J., Finelli, A., Moshonov, H., and Jewett, M.. Radiology 2015:140907

Unenhanced CT for the diagnosis of minimal-fat renal angiomyolipoma. Schieda, N., Hodgdon, T., El-Khodary, M., Flood, T. A., and McInnes, M. D.. AJR Am J Roentgenol 2014:1236-41

Contrast-enhanced ultrasonography for evaluation of cystic renal mass: in comparison to contrast-enhanced CT and conventional ultrasound. Xue, L. Y., Lu, Q., Huang, B. J., Ma, J. J., Yan, L. X., Wen, J. X., and Wang, W. P.. Abdom Imaging 2014:1274-83

Lessons learned from the comparative study between renal mass biopsy and the analysis of the surgical specimen. Dominguez-Esteban, M., Villacampa-Auba, F., Garcia-Munoz, H., Tejido Sanchez, A., Romero Otero, J., and de la Rosa Kehrmann, F.. Actas Urol Esp 2014:655-61

Surgical and conservative management of small renal tumors. Starolis E., Silinis D., Bakavicius A., and Karvelis Z.. Eur. Urol. Suppl. 2014:e1205

Role of active surveillance in the management of small renal masses in elderly and co-morbid patients: A retrospective study with long-term follow-up. Brunocilla E., Borghesi M., Schiavina R., Della Mora L., Cevenini M., Pultrone C., Del Prete C., Gentile G., Monti C., and Martorana G.. Eur. Urol. Suppl. 2014:e89

Effectiveness of contrast enhanced ultrasonography in the assesment of renal masses. Alvarez Rodriguez S., Sanz Mayayo E., Lopez- Fando Lavalle L., Rodriguez-Patron Rodriguez R., Arias Funez F., Hevia Palacios V., and Burgos Revilla F.J. Eur. Urol. Suppl. 2014:e393-e393a

Visceral obesity in predicting oncologic outcomes of localized renal cell carcinoma. Park Y.H., Lee J.K., Kim K.M., Kook H.R., Lee H., Kim K.B., Lee S., Byun S.-S., and Lee S.E.. J. Urol. 2014:1043-1049

Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Cornelis F., Tricaud E., Lasserre A.S., Petitpierre F., Bernhard J.C., Le Bras Y., Yacoub M., Bouzgarrou M., Ravaud A., and Grenier N.. Eur. Radiol. 2014:1068-1080

Evaluation of indeterminate renal masses with contrastenhanced US: A diagnostic performance study. Barr R.G., Peterson C., and Hindi A.. Radiology 2014:133-142

Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. Chung M.S., Choi H.J., Kim M.-H., and Cho K.-S.. Am. J. Roentgenol. 2014:765-771

CT texture analysis of renal masses: Pilot study using random forest classification for prediction of pathology. Raman S.P., Chen Y., Schroeder J.L., Huang P., and Fishman E.K.. Acad. Radiol. 2014:1587-1596

Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. Oh T.H., Lee Y.H., and Seo I.Y.. Korean J. Urol. 2014:587-592

Renal Function is Associated with Nephrometry Score After Partial Nephrectomy: A Study Using Diethylene Triamine Penta-Acetic Acid (DTPA) Renal Scanning. Kwon T., Jeong I.G., Ryu J., Lee C., Lee C., You D., and Kim C.-S.. Ann. Surg. Oncol. 2015:

The application of PADUA scoring system for predicting complications of laparoscopic renal cryoablation. Zhuang J., Lian H., Zhao X., Zhang G., Gan W., Li X., and Guo H.. Int. Urol. Nephrol. 2015:

Partial nephrectomy for the treatment of renal cell carcinoma (RCC) and the risk of end-stage renal disease (ESRD). Yap S.A., Finelli A., Urbach D.R., Tomlinson G.A., and Alibhai S.M.. BJU Int. 2015:

Nomograms incorporating serum C-reactive protein effectively predict mortality before and after surgical treatment of renal cell carcinoma. Hsiao W., Herrel L.A., Yu C., Kattan M.W., Canter D.J., Carthon B.C., Ogan K., and Master V.A.. Int. J. Urol. 2015:264-270

Clinicopathologic outcomes of cystic renal cell carcinoma. Donin N.M., Mohan S., Pham H., Chandarana H., Doshi A., Deng F.-M., Stifelman M.D., Taneja S.S., and Huang W.C.. Clin. Genitourin. Cancer 2015:67-70

Visceral obesity is associated with better recurrence-free survival after curative surgery for Japanese patients with localized clear cell renal cell carcinoma. Kaneko G., Miyajima A., Yuge K., Yazawa S., Mizuno R., Kikuchi E., Jinzaki M., and Oya M.. Jpn. J. Clin. Oncol. 2015:210-216

Clinical outcomes of patients with nondiagnostic biopsy during cryoablation of small renal masses. Babaian K.N., Okhunov Z., Juncal S., Ordon M., Lusch A., Zand T., Andreoni C., and Landman J.. Urology 2015:605-609

Diagnostic accuracy of preoperative computed tomography used alone to detect lymph-node involvement at radical nephrectomy. Connolly S.S., Raja A., Stunell H., Parashar D., Upponi S., Warren A.Y., Gnanapragasam V.J., and Eisen T.. Scand. J. Urol. 2015:142-148

Different clinicopathological features between patients who developed early and late recurrence following surgery for renal cell carcinoma. Fujii Y., Ikeda M., Kurosawa K., Tabata M., Kamigaito T., Hosoda C., and Okaneya T.. Int. J. Clin. Oncol. 2014:

Partial and Radical Nephrectomy for Unilateral Synchronous Multifocal Renal Cortical Tumors. Mano R., Kent M., Larish Y., Winer A.G., Chevinsky M.S., Hakimi A.A., Sternberg I.A., Sjoberg D.D., and Russo P.. Urology 2015:

Racial Disparities in Postoperative Complications After Radical Nephrectomy: A Population-based Analysis. Chung B.I., Leow J.J., Gelpi-Hammerschmidt F., Wang Y., Del Giudice F., De S., Chou E.P., Song K.H., Almario L., and Chang S.L.. Urology 2015:

Role of percutaneous needle core biopsy in diagnosis and clinical management of renal masses. Hu R., Montemayor-Garcia C., and Das K.. Hum. Pathol. 2015:

Survival advantage of partial over radical nephrectomy in patients presenting with localized renal cell carcinoma. Roos F.C., Steffens S., Junker K., Janssen M., Becker F., Wegener G., Brenner W., Steinestel J., Schnoeller T.J., Schrader M., Hofmann R., Thuroff J.W., Kuczyk M.A., Wunderlich H., Siemer S., Hartmann A., Stockle M., and Schrader A.J.. BMC Cancer 2014:

Diagnosis of complex renal cystic masses and solid renal lesions using PET imaging: Comparison of 11C-acetate and 18F-FDG PET imaging. Oyama N., Ito H., Takahara N., Miwa Y., Akino H., Kudo T., Okazawa H., Fujibayashi Y., Komatsu K., Tsukahara K., and Yokoyama O.. Clin. Nucl. Med. 2014:e208-e214

Evaluation of long-term outcome for patients with renal cell carcinoma after surgery: Analysis of cancer deaths occurring more than 10 years after initial treatment. Kyoda Y., Kobayashi K., Hirobe M., Shindo T., Fukuta F., Hashimoto K., Tanaka T., Tonooka A., Kitamura H., Takahashi S., Masumori N., Hasegawa T., and Tsukamoto T.. Int. J. Clin. Oncol. 2014:146-151

Renal cell carcinoma in patients with end-stage renal disease has favorable overall prognosis. Shrewsberry A.B., Osunkoya A.O., Jiang K., Westby R., Canter D., Pattaras J., Turgeon N., Master V.A., and Ogan K.. Clin. Transplant. 2014:211-216

Diabetes mellitus is independently associated with an increased risk of mortality in patients with clear cell renal cell carcinoma. Psutka S.P., Stewart S.B., Boorjian S.A., Lohse C.M., Tollefson M.K., Cheville J.C., Leibovich B.C., and Thompson R.H.. J. Urol. 2014:1620-1627

Pathological characteristics and radiographic correlates of complex renal cysts. Reese A.C., Johnson P.T., Gorin M.A., Pierorazio P.M., Allaf M.E., Fishman E.K., Netto G.J., and Pavlovich C.P.. Urol. Oncol. Semin. Orig. Invest. 2014:1010-1016

Predictive factors for postoperative complications in radical nephrectomy for renal cell carcinoma. Wongvittavas N., Panumatrassamee K., Opanuraks J., Usawachintachit M., Ratchanon S., Tantiwongse K., Bunyaratavej C., Santingamkun A., and Prasopsanti K.. Asian Biomed. 2014:763-769

Outcome of nephrectomies in Malta since 2000. Busuttil G., Bugeja S., Zammit P., Mattocks S., and German K.. Malta Med. J. 2014:9-14

Results of a prospective study comparing the clinical efficacy of cryoablation of renal cell cancer followed by immediate partial nephrectomy. Khoder W.Y., Siegert S., Stief C.G., Becker A.J., and Waidelich R.. Eur. J. Surg. Oncol. 2014:96-102

Pathologic validation of renal cell carcinoma histology in the Surveillance, Epidemiology, and End Results program. Shuch B., Hofmann J.N., Merino M.J., Nix J.W., Vourganti S., Linehan W.M., Schwartz K., Ruterbusch J.J., Colt J.S., Purdue M.P., and Chow W.-H.. Urol. Oncol. Semin. Orig. Invest. 2014:23.e9-23.e13

Pre-existing type 2 diabetes mellitus is an independent risk factor for mortality and progression in patients with renal cell carcinoma. Vavallo A., Simone S., Lucarelli G., Rutigliano M., Galleggiante V., Grandaliano G., Gesualdo L., Campagna M., Cariello M., Ranieri E., Pertosa G., Lastilla G., Selvaggi F.P., Ditonno P., and Battaglia M.. Medicine 2014:

A population-based competing-risks analysis of survival after nephrectomy for renal cell carcinoma. Bianchi M., Gandaglia G., Trinh Q.-D., Hansen J., Becker A., Abdollah F., Tian Z., Lughezzani G., Roghmann F., Briganti A., Montorsi F., Karakiewicz P.I., and Sun M.. Urol. Oncol. Semin. Orig. Invest. 2014:46.e1-46.e7

Delay in nephrectomy and cancer control outcomes in elderly patients with small renal masses. Becker A., Roghmann F., Ravi P., Tian Z., Kluth L.A., Gandaglia G., Noldus J., Dahlem R., Schlomm T., Graefen M., Karakiewicz P.I., Trinh Q.-D., and Sun M.. Urol. Int. 2014:455-461

The effect of gender and age on kidney cancer survival: Younger age is an independent prognostic factor in women with renal cell carcinoma. Rampersaud E.N., Klatte T., Bass G., Patard J.-J., Bensaleh K., Bohm M., Allhoff E.P., Cindolo L., De La Taille A., Mejean A., Soulie M., Bellec L., Christophe Bernhard J., Pfister C., Colombel M., Belldegrun A.S., Pantuck A.J., and George D. Urol. Oncol. Semin. Orig. Invest. 2014:30.e9-30.e13

The key role of time in predicting progression-free survival in patients with renal cell carcinoma treated with partial or radical nephrectomy: Conditional survival analysis.

Abdollah F., Suardi N., Capitanio U., Matloob R., Fossati N., Castiglione F., Di Trapani E., Di Trapani D., Russo A., Carenzi C., Montorsi F., Rigatti P., and Bertini R.. Urol. Oncol. Semin. Orig. Invest. 2014:43.e9-43.e16

Evaluation of anatomic and morphologic nomogram to predict malignant and high-grade disease in a cohort of patients with small renal masses. Bagrodia A., Harrow B., Liu Z.-W., Olweny E.O., Faddegon S., Yin G., Tan Y.K., Han W.K., Lotan Y., Margulis V., and Cadeddu J.A.. Urol. Oncol. Semin. Orig. Invest. 2014:37.e17-37.e23

Race and sex disparities in the treatment of older patients with T1a renal cell carcinoma: A comorbidity-controlled competing-risks model. Patel H.D., Kates M., Pierorazio P.M., and Allaf M.E.. Urol. Oncol. Semin. Orig. Invest. 2014:576-583

The impact of perioperative blood transfusion on survival after nephrectomy for non-metastatic renal cell carcinoma (RCC). Linder B.J., Thompson R.H., Leibovich B.C., Cheville J.C., Lohse C.M., Gastineau D.A., and Boorjian S.A.. BJU Int. 2014:368-374

Bosniak category III cysts are more likely to be malignant than we expected in the era of multidetector computed tomography technology. Bata P., Tarnoki A.D., Tarnoki D.L., Szasz A.M., Poloskei G., Fejer B., Gyebnar J., Nyirady P., Berczi V., Karlinger K., and Szendroi A.. J. Res. Med. Sci. 2014:634-638

Factors Associated with Diagnostic Accuracy When Performing a Preablation Renal Biopsy. Lorber, G., Jorda, M., and Leveillee, R.. J Endourol 2014:

CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Mazzei, F. G., Mazzei, M. A., Cioffi Squitieri, N., Pozzessere, C., Righi, L., Cirigliano, A., Guerrini, S., D'Elia, D., Ambrosio, M. R., Barone, A., del Vecchio, M. T., and Volterrani, L.. Biomed Res Int 2014:135013

Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Schmid, M., Abd-El-Barr, A. E., Gandaglia, G., Sood, A., Olugbade, K. Jr, Ruhotina, N., Sammon, J. D., Varda, B., Chang, S. L., Kibel, A. S., Chun, F. K., Menon, M., Fisch, M., and Trinh, Q. D.. Urol Oncol 2014:

The impact of hospital volume on postoperative complications following robot-assisted partial nephrectomy. Monn, M. F., Bahler, C. D., Flack, C. K., Dube, H. T., and Sundaram, C. P.. J Endourol 2014:1231-6

The association of baseline health and gender with small renal mass pathology. Bazzi, W. M., Dejbakhsh, S. Z., Bernstein, M., and Russo, P.. Can J Urol 2014:7271-6

Cancer-free survival and local tumor control after impendence-based radiofrequency ablation of biopsy-proven renal cell carcinomas with a minimum of 1-year follow-up. Forauer, A. R., Dewey, B. J., and Seigne, J. D.. Urol Oncol 2014:869-76

Does gender influence morbidity or mortality in the surgical treatment of renal masses?. Minnillo, B. J., Horowitz, A., Finelli, A., Alibhai, S. M., Ponsky, L. E., and Abouassaly, R.. Can Urol Assoc J 2014:E311-6

Predictive factors for benign lesions in partially or radically resected kidneys in a single independent cancer center. Soga, N., Ogura, Y., and Hayashi, N.. Curr Urol 2013:70-4

Outcomes in patients undergoing nephrectomy for renal cancer on chronic anticoagulation therapy. Sfakianos, J. P., Hakimi, A. A., Kim, P. H., Zabor, E. C., Mano, R., Bernstein, M., Karellas, M., and Russo, P.. Eur J Surg Oncol 2014:

Laparoscopic partial nephrectomy for multilocular cystic renal cell carcinoma: a potential gold standard treatment with excellent perioperative outcomes. Xu, B., Mi, Y., Zhou, L. Q., Jin, J., Zhang, Q., and Chen, G. F.. World J Surg Oncol 2014:111

Race and sex disparities in the treatment of older patients with T1a renal cell carcinoma: a comorbidity-controlled competing-risks model. Patel, H. D., Kates, M., Pierorazio, P. M., and Allaf, M. E.. Urol Oncol 2014:576-83

The impact of type 2 diabetes on the outcome of localized renal cell carcinoma. Hofner, T., Zeier, M., Hatiboglu, G., Eisen, C., Schonberg, G., Hadaschik, B., Teber, D., Duensing, S., Trumpp, A., Hohenfellner, M., and Pahernik, S.. World J Urol 2013:

Renal function following curative surgery for renal cell carcinoma: who is at risk for renal insufficiency?. Kong, H. J., Park, J. S., Kim, D. Y., Shin, H. S., and Jung, H. J.. Korean J Urol 2013:830-3

Estimating the risk of chronic kidney disease after nephrectomy. Ngo, T. C., Hurley, M. P., Thong, A. E., Jeon, S. H., Leppert, J. T., and Chung, B. I.. Can J Urol 2013:7035-41

Is there a volume-outcome relationship for partial nephrectomy? Couapel, J. P., Bensalah, K., Bernhard, J. C., Pignot, G., Zini, L., Lang, H., Rigaud, J., Salomon, L., Bellec, L., Soulie, M., Vaessen, C., Roupret, M., Jung, J. L., Mourey, E., Bigot, P., Bruyere, F., Berger, J., Ansieau, J. P., Gimel, P., Salome, F., Hubert, J., Pfister, C., Baumert, H., Timsit, M. O., Mejean, A., and Patard, J. J.. World J Urol 2014:1323-9

Percutaneous renal cryoablation: prospective experience treating 120 consecutive tumors. Buy, X., Lang, H., Garnon, J., Sauleau, E., Roy, C., and Gangi, A.. AJR Am J Roentgenol 2013:1353-61

Incidence and risk factors of chronic kidney disease in korean patients with t1a renal cell carcinoma before and after radical or partial nephrectomy. Kim, S. H., Lee, S. E., Hong, S. K., Jeong, C. W., Park, Y. H., Kim, Y. J., Kang, S. H., Hong, S. H., Choi, W. S., and Byun, S. S.. Jpn J Clin Oncol 2013:1243-8

Small tumour size is associated with new-onset chronic kidney disease after radical nephrectomy in patients with renal cell carcinoma. Jeon, H. G., Choo, S. H., Sung, H. H., Jeong, B. C., Seo, S. I., Jeon, S. S., Choi, H. Y., and Lee, H. M.. Eur J Cancer 2014:64-9

A population-based competing-risks analysis of survival after nephrectomy for renal cell carcinoma. Bianchi, M., Gandaglia, G., Trinh, Q. D., Hansen, J., Becker, A., Abdollah, F., Tian, Z., Lughezzani, G., Roghmann, F., Briganti, A., Montorsi, F., Karakiewicz, P. I., and Sun, M.. Urol Oncol 2014:46.e1-7

The 1-year decline in estimated glomerular filtration rate (eGFR) after radical nephrectomy in patients with renal masses and matched living kidney donors is the same. Hew, M. N., Opondo, D., Cordeiro, E. R., van Donselaarvan der Pant, K. A., Bemelman, F. J., Idu, M. M., de la Rosette, J. J., and Laguna, M. P.. BJU Int 2014:E49-55

Trends in renal function after radical nephrectomy: a multicentre analysis. Chung, J. S., Son, N. H., Byun, S. S., Lee, S. E., Hong, S. K., Jeong, C. W., Lee, S. C., Chae, D. W., Choi, W. S., Park, Y. H., Hong, S. H., Kim, Y. J., and Kang, S. H.. BJU Int 2014:408-15

Health-related quality of life in long-term survivors after renal cancer treatment. Beisland, C., Beisland, E., Hjelle, K. M., Bostad, L., Hjermstad, M. J., Aarstad, A. K., and Aarstad, H. J.. Scand J Urol 2014:52-64

Cystic renal cell carcinomas: do they grow, metastasize, or recur?. Jhaveri, K., Gupta, P., Elmi, A., Flor, L., Moshonov, H., Evans, A., and Jewett, M.. AJR Am J Roentgenol 2013:W292-6

How can the R.E.N.A.L. nephrometry scoring system aid management of a solid renal mass?. Wong, M. H., Cho, K. Y., Ho, K. L., Wong, K. W., Lai, C. T., Man, C. M., and Yiu, M. K.. Hong Kong Med J 2014:37-44

Charlson score as a single pertinent criterion to select candidates for active surveillance among patients with small renal masses. Audenet, F., Audouin, M., Drouin, S. J., Comperat, E., Mozer, P., Chartier-Kastler, E., Mejean, A., Cussenot, O., Shariat, S. F., and Roupret, M.. World J Urol 2014:513-8

Predictive preoperative factors for renal insufficiency in patients followed for more than 5 years after radical nephrectomy. Ahn, J. S., Kim, H. J., Jeon, H. G., Jeong, B. C., Seo, S. I., Lee, H. M., Choi, H. Y., and Jeon, S. S.. Korean J Urol 2013:303-10

Laparoendoscopic single-site nephrectomy compared with conventional laparoscopic nephrectomy: a 5-year, single-surgeon experience. Antonelli, J. A., Bagrodia, A., Odom, C., Olweny, E. O., Faddegon, S., and Cadeddu, J. A.. Eur Urol 2013:412-8

Robotic-assisted transperitoneal nephron-sparing surgery for small renal masses with associated surgical procedures: surgical technique and preliminary experience. Ceccarelli, G., Codacci-Pisanelli, M., Patriti, A., Ceribelli, C., Biancafarina, A., and Casciola, L.. Updates Surg 2013:183-90

Perioperative mortality and associated factors in patients undergoing radical nephrectomy. Diaz-Hung, A. M., Garcia-Perdomo, H. A., Carbonell-Gonzalez, J., Castillo-Cobaleda, D. F., and Garcia-Angel, A. F.. Actas Urol Esp 2013:608-12

Factors that affect proportional glomerular filtration rate after minimally invasive partial nephrectomy. Hakimi, A. A., Ghavamian, R., Williams, S. K., Kim, P. H., Chen, L., Sfakianos, J. P., Keren-Paz, G. E., Sankin, A., Ginzburg, N., and Coleman, J. A.. J Endourol 2013:1371-5

Diagnostic radiation exposure during surveillance in patients with pT1a renal cell carcinoma. Lipsky, M. J., Shapiro, E. Y., Hruby, G. W., and McKiernan, J. M.. Urology 2013:1190-5

Laparoendoscopic single-site partial nephrectomy: a multiinstitutional outcome analysis. Greco, F., Autorino, R., Rha, K. H., Derweesh, I., Cindolo, L., Richstone, L., Herrmann, T. R., Liatsikos, E., Sun, Y., Fanizza, C., Nagele, U., Stolzenburg, J. U., Rais-Bahrami, S., Liss, M. A., Schips, L., Kassab, A., Wang, L., Kallidonis, P., Wu, Z., Young, S. T., Mohammed, N., Haber, G. P., Springer, C., Fornara, P., and Kaouk, J. H.. Eur Urol 2013:314-22

Iatrogenic splenectomy during nephrectomy for renal tumors. Wang, J. K., Tollefson, M. K., Kim, S. P., Boorjian, S. A., Leibovich, B. C., Lohse, C. M., Cheville, J. C., and Thompson, R. H.. Int J Urol 2013:896-902

A single overnight stay is possible for most patients undergoing robotic partial nephrectomy. Abaza, R. and Shah, K... Urology 2013:301-6

Renal function outcomes for multifocal renal neoplasms managed by radiofrequency ablation. Gupta, P., Allen, B. C., Chen, M. Y., Childs, D. D., Kota, G., and Zagoria, R. J.. Cardiovasc Intervent Radiol 2013:1329-35

Renal cell carcinoma: radiofrequency ablation with a multiple-electrode switching system--a phase II clinical study. Takaki, H., Nakatsuka, A., Uraki, J., Yamanaka, T., Fujimori, M., Hasegawa, T., Arima, K., Sugimura, Y., and Yamakado, K.. Radiology 2013:285-92

Prevalence and impact on survival of positive surgical margins in partial nephrectomy for renal cell carcinoma: a population-based study. Ani, I., Finelli, A., Alibhai, S. M., Timilshina, N., Fleshner, N., and Abouassaly, R.. BJU Int 2013:E300-5

Comparison of laparoendoscopic single-site and multiport laparoscopic radical and partial nephrectomy: a prospective, nonrandomized study. Bazzi, W. M., Stroup, S. P., Kopp, R. P., Cohen, S. A., Sakamoto, K., and Derweesh, I. H.. Urology 2012:1039-45

[Haemostasis control during laparoscopic partial nephrectomy without parenchymal renorrhaphy: the

VIVOSTAT((R)) experience]. Hevia, M., Abascal-Junquera, J. M., Sacristan, R., Suarez, J., Lobo, B., Mendez, S., Pellejero, P., and Abascal-Garcia, R.. Actas Urol Esp 2013:47-53

Evaluation of patient-reported quality-of-life outcomes after renal surgery. Kim, S. B., Williams, S. B., Cheng, S. C., Sanda, M. G., and Wagner, A. A.. Urology 2012:1268-73

Comparison of total, selective, and nonarterial clamping techniques during laparoscopic and robot-assisted partial nephrectomy. Martin, G. L., Warner, J. N., Nateras, R. N., Andrews, P. E., Humphreys, M. R., and Castle, E. P.. J Endourol 2012:152-6

Significant impact of age at diagnosis on the prognosis of Japanese patients with pT1 renal cell carcinoma following surgical resection. Sakai, I., Miyake, H., Muramaki, M., Kondo, Y., Kusuda, Y., Yamada, Y., and Fujisawa, M.. BJU Int 2012:695-9

The effect of age on the morbidity of kidney surgery. Abouassaly, R., Alibhai, S. M., Tomlinson, G. A., Urbach, D. R., and Finelli, A.. J Urol 2011:811-6

Comparison of rates and risk factors for development of osteoporosis and fractures after radical or partial nephrectomy. Bagrodia, A., Mehrazin, R., Bazzi, W. M., Silberstein, J., Malcolm, J. B., Stroup, S. P., Raheem, O., Wake, R. W., Kane, C. J., Patterson, A. L., Wan, J. Y., and Derweesh, I. H.. Urology 2011:614-9

Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL Nephrometry score. Kutikov, A., Smaldone, M. C., Egleston, B. L., Manley, B. J., Canter, D. J., Simhan, J., Boorjian, S. A., Viterbo, R., Chen, D. Y., Greenberg, R. E., and Uzzo, R. G.. Eur Urol 2011:241-8

Population-level comparative effectiveness of laparoscopic versus open radical nephrectomy for patients with kidney cancer. Tan, H. J., Wolf, J. S. Jr, Ye, Z., Wei, J. T., and Miller, D. C.. Cancer 2011:4184-93

Young age as favorable prognostic factor for cancerspecific survival in localized renal cell carcinoma. Komai, Y., Fujii, Y., Iimura, Y., Tatokoro, M., Saito, K., Otsuka, Y., Koga, F., Arisawa, C., Kawakami, S., Okuno, T., Tsujii, T., Kageyama, Y., Morimoto, S., Toma, T., Higashi, Y., Fukui, I., and Kihara, K.. Urology 2011:842-7

Renal cell carcinoma in octogenarians: nephron sparing surgery should remain the standard of care. Hellenthal, N. J., Mansour, A. M., Hayn, M. H., and Schwaab, T.. J Urol 2011:415-20

Oncologic long-term outcome of elective nephron-sparing surgery versus radical nephrectomy in patients with renal cell carcinoma stage pT1b or greater in a matched-pair cohort. Roos, F. C., Brenner, W., Muller, M., Schubert, C., Jager, W. J., Thuroff, J. W., and Hampel, C.. Urology 2011:803-8

The role of percutaneous needle biopsy in differentiation of renal tumors. Izumi, K., Narimoto, K., Sugimoto, K.,

Kobori, Y., Maeda, Y., Mizokami, A., Koh, E., Yamada, T., Yano, S., and Namiki, M.. Jpn J Clin Oncol 2010:1081-6

Identifying the risk of disease progression after surgery for localized renal cell carcinoma. Abel, E. J., Culp, S. H., Meissner, M., Matin, S. F., Tamboli, P., and Wood, C. G.. BJU Int 2010:1277-83

Predictive factors for ipsilateral recurrence after nephronsparing surgery in renal cell carcinoma. Bernhard, J. C., Pantuck, A. J., Wallerand, H., Crepel, M., Ferriere, J. M., Bellec, L., Maurice-Tison, S., Robert, G., Albouy, B., Pasticier, G., Soulie, M., Lopes, D., Lacroix, B., Bensalah, K., Pfister, C., Thuret, R., Tostain, J., De La Taille, A., Salomon, L., Abbou, C., Colombel, M., Belldegrun, A. S., and Patard, J. J.. Eur Urol 2010:1080-6

Predicting renal functional outcomes after surgery for renal cortical tumours: a multifactorial analysis. Barlow, L. J., Korets, R., Laudano, M., Benson, M., and McKiernan, J.. BJU Int 2010:489-92

Renal functional outcomes for tumours in a solitary kidney managed by ablative or extirpative techniques. Raman, J. D., Raj, G. V., Lucas, S. M., Williams, S. K., Lauer, E. M., Ahrar, K., Matin, S. F., Leveillee, R. J., and Cadeddu, J. A.. BJU Int 2010:496-500

Robotic partial nephrectomy with sliding-clip renorrhaphy: technique and outcomes. Benway, B. M., Wang, A. J., Cabello, J. M., and Bhayani, S. B.. Eur Urol 2009:592-9

Pathological tumour diameter predicts risk of conventional subtype in small renal cortical tumours. Laudano, M. A., Klafter, F. E., Katz, M., McCann, T. R., Desai, M., Benson, M. C., and McKiernan, J. M.. BJU Int 2008:1385-8

Survival rates after resection for localized kidney cancer: 1989 to 2004. Russo, P., Jang, T. L., Pettus, J. A., Huang, W. C., Eggener, S. E., O'Brien, M. F., Karellas, M. E., Karanikolas, N. T., and Kagiwada, M. A.. Cancer 2008: 84-96

Management of renal tumors by image-guided radiofrequency ablation: experience in 105 tumors. Breen, D. J., Rutherford, E. E., Stedman, B., Roy-Choudhury, S. H., Cast, J. E., Hayes, M. C., and Smart, C. J.. Cardiovasc Intervent Radiol 2007:936-42

Retroperitoneoscopic radical nephrectomy in obese patients: outcomes and considerations. Inoue, S., Mita, K., Shigeta, M., Mochizuki, H., Tanabe, T., Moriyama, H., and Usui, T.. Urol Int 2006:252-5

Image-guided biopsy in the evaluation of renal mass lesions in contemporary urological practice: indications, adequacy, clinical impact, and limitations of the pathological diagnosis. Shah, R. B., Bakshi, N., Hafez, K. S., Wood, D. P. Jr, and Kunju, L. P.. Hum Pathol 2005:1309-15

Application of TNM, 2002 version, in localized renal cell carcinoma: is it able to predict different cancer-specific survival probability? Ficarra, V., Novara, G., Galfano, A., Novella, G., Schiavone, D., and Artibani, W.. Urology 2004:1050-4

Laparoscopic radical nephrectomy in obese patients: outcomes and technical considerations. Fugita, O. E., Chan, D. Y., Roberts, W. W., Kavoussi, L. R., and Jarrett, T. W.. Urology 2004:247-52; discussion 252

Clinicopathological factors predicting recurrence of N0M0 renal cell carcinoma: a case series analysis of one facility. Masuda, A., Aoki, M., Tokunaga, M., Usui, Y., Abe, T., Miyakita, H., Kinoshita, H., Kawamura, N., and Terachi, T.. Int J Urol 2003:511-7

Percutaneous computed tomography-guided radiofrequency ablation of renal masses in high surgical risk patients: preliminary results. Su, L. i., Jarrett, T. W., Chan, D. Y., Kavoussi, L. R., and Solomon, S. B.. Urology 2003:26-33

Renal cell carcinoma in patients with prior spinal cord injury. Brandes, S. B., Smith, J. B., Longo, W. E., Virgo, K. S., and Johnson, F. E.. J Spinal Cord Med 2001:251-6

Comparison of complications after radical and partial nephrectomy: results from the National Veterans Administration Surgical Quality Improvement Program. Corman, J. M., Penson, D. F., Hur, K., Khuri, S. F., Daley, J., Henderson, W., and Krieger, J. N.. BJU Int 2000:782-9

Partial nephrectomy for renal tumours: the Singapore General Hospital experience. Yip, S. K., Cheng, W. S., Tan, B. S., Li, M. K., and Foo, K. T.. J R Coll Surg Edinb 99:156-60

Imaging guided biopsy of renal masses: indications, accuracy and impact on clinical management. Wood, B. J., Khan, M. A., McGovern, F., Harisinghani, M., Hahn, P. F., and Mueller, P. R.. J Urol 99:1470-4

Partial nephrectomy for selected renal cortical tumours of (greater-than or equal to)7 cm. Karellas M.E., Obrien M.F., Jang T.L., Bernstein M., and Russo P.. BJU Int. 2010:1484-1487

Bilateral renal cell carcinoma. Therapy management and histopathological results in long-term follow-up of 66 patients: Der bilaterale nierentumor. Therapiemanagement und histopathologische ergebnisse mit langzeitverlauf bei 66 patienten. Siemer S., Uder M., Zell A., Ponicke C., Humke U., Ziegler M., and Stockle M.. Urologe Ausg. A 2001:114-120

Laparoscopic procedures in urology: Laparoskopische operationen in der urologie. Turk I., Deger S., Schonberger B., and Loening S.A.. J. Urol. Urogynakol. 99:69-72

Characterization of small solid renal lesions: can benign and malignant tumors be differentiated with CT?. Millet, I., Doyon, F. C., Hoa, D., Thuret, R., Merigeaud, S., Serre, I., and Taourel, P.. AJR Am J Roentgenol 2011:887-96

RENAL nephrometry score is a predictive factor for the annual growth rate of renal mass. Matsumoto, R., Abe, T., Shinohara, N., Murai, S., Maruyama, S., Tsuchiya, K., and Nonomura, K.. Int J Urol 2014:549-52

The accuracy of renal tumor biopsy: analysis from a national prospective study. Bernhard, J. C., Bigot, P., Pignot, G., Baumert, H., Zini, L., Lang, H., Crepel, M.,

Monod, P., Salomon, L., Bellec, L., Roupret, M., Schneider, M., Xylinas, E., Paparel, P., Bruyere, F., Berger, J., Ansieau, J. P., Gimel, P., Salome, F., Castagnola, C., Pfister, C., Legraverend, J. M., Timsit, M. O., Le Pellec, L., Auberget, J. L., Rolland, E., Mallet, R., Mejean, A., and Patard, J. J.. World J Urol 2014:

Role of MRI in indeterminate renal mass: diagnostic accuracy and impact on clinical decision making. Kwon, T., Jeong, I. G., Yoo, S., Lee, J., Hong, S., You, D., Hong, J. H., Ahn, H., and Kim, C. S.. Int Urol Nephrol 2015:585-93

Can radiologists and urologists reliably determine renal mass histology using standard preoperative computed tomography imaging?. Monn, M. F., Gellhaus, P. T., Patel, A. A., Masterson, T. A., Tann, M., and Boris, R. S.. J Endourol 2015:391-6

Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms - Our clinical experience. Mytsyk Y., Borys Y., Komnatska I., Dutka I., and Shatynska-Mytsyk I.. Pol. J. Radiol. 2014:290-295

Renal cryoablation of small renal masses: A Korea university experience. Kim H.K., Pyun J.H., Kim J.Y., Kim S.B., Cho S., Kang S.G., Lee J.G., Kim J.J., Cheon J., and Kang S.H.. Korean J. Urol. 2015:117-124

Differentiation of renal oncocytoma and renal clear cell carcinoma using relative CT enhancement ratio. Ren A., Cai F., Shang Y.-N., Ma E.-S., Huang Z.-G., Wang W., Lu Y., and Zhang X.-Z.. Chin. Med. J. 2015:175-179

Trends in renal function after radical nephrectomy: A multicentre analysis. Chung J.S., Son N.H., Byun S.-S., Lee S.E., Hong S.K., Jeong C.W., Lee S.C., Chae D.-W., Choi W.S., Park Y.H., Hong S.H., Kim Y.J., and Kang S.H.. BJU Int. 2014:408-415

Health-related quality of life in long-term survivors after renal cancer treatment. Beisland C., Beisland E., Hjelle K.M., Bostad L., Hjermstad M.J., Aarstad A.K.H., and Aarstad H.J.. Scand. J. Urol. 2014:52-64

Local recurrence after radical nephrectomy for kidney cancer: Management and prediction of outcomes. A multi-institutional study. Paparel P., Bigot P., Matillon X., Bensalah K., Salomon L., Baumert H., Bastide C., Thuret R., Karsenty G., Long J.A., Ammi M., Bessede T., Bin S., Roux A., Escudier B., Rioux Leclercq N., Pignot G., Soulie M., and Patard J.-J.. J. Surg. Oncol. 2014:126-131

Serum level and immunohistochemical expression of vascular endothelial growth factor for the prediction of postoperative recurrence in renal cell carcinoma. Fujita, N., Okegawa, T., Terado, Y., Tambo, M., Higashihara, E., and Nutahara, K.. BMC Res Notes 2014:369

Clinical features and treatment of collecting duct carcinoma of the kidney from the korean cancer study group genitourinary and gynecology cancer committee. Kwon, K. A., Oh, S. Y., Kim, H. Y., Kim, H. S., Lee, H. Y., Kim, T. M., Lim, H. Y., Lee, N. R., Lee, H. J., Hong, S. H., and Rha, S. Y.. Cancer Res Treat 2014:141-7

Prospective randomized controlled trial of conventional laparoscopic versus laparoendoscopic single-site radical nephrectomy for localized renal cell carcinoma: a preliminary report regarding quality of life. Park, Y. H., Kim, K. T., Ko, K., and Kim, H. H.. World J Urol 2014:

Do we need to clamp the renal hilum liberally during the initial phase of the learning curve of robot-assisted nephron-sparing surgery?. Acar, O., Esen, T., Musaoglu, A., and Vural, M.. ScientificWorldJournal 2014:498917

Laparoscopic partial nephrectomy for endophytic hilar tumors: feasibility and outcomes. Di Pierro, G. B., Tartaglia, N., Aresu, L., Polara, A., Cielo, A., Cristini, C., Grande, P., Gentile, V., and Grosso, G.. Eur J Surg Oncol 2014:769-74

Nephron-Sparing Surgery for Renal Masses Measuring Larger Than 7 cm on Preoperative Imaging: A Single Surgeon, Single Center Experience. Esen, T., Acar, O., Musaoglu, A., Vural, M., and Akpek, S.. ISRN Surg 2013 :691080

Robotic retroperitoneal partial nephrectomy: a four-arm approach. Feliciano, J. and Stifelman, M.. JSLS 2012:208-11

Bipolar versus multipolar radiofrequency (RF) ablation for the treatment of renal cell carcinoma: differences in technical and clinical parameters. Sommer, C. M., Lemm, G., Hohenstein, E., Stampfl, U., Bellemann, N., Teber, D., Rassweiler, J., Kauczor, H. U., Radeleff, B. A., and Pereira, P. L.. Int J Hyperthermia 2013:21-9

Comparison of the loss of renal function after cold ischemia open partial nephrectomy, warm ischemia laparoscopic partial nephrectomy and laparoscopic partial nephrectomy using microwave coagulation. Kawahara, T., Sakata, R., Kawahara, K., Ito, H., Miyoshi, Y., Sano, F., Nakaigawa, N., Uemura, H., Yao, M., Kubota, Y., and Makiyama, K.. Curr Urol 2013:118-23

Radiofrequency ablation of small renal masses as an alternative to nephron-sparing surgery: preliminary results. Jasinski, M., Siekiera, J., Chlosta, P., Mikolajczak, W., and Drewa, T.. Wideochir Inne Tech Malo Inwazyjne 2011:242-5

Application of gasless laparoendoscopic single port surgery, GasLESS, to partial nephrectomy for renal cell carcinoma: GasLESS-clampless partial nephrectomy as a multiply satisfactory method. Kihara, K.. Int J Urol 2012:3-4

Outcome of laser-assisted laparoscopic partial nephrectomy without ischaemia for peripheral renal tumours. Khoder, W. Y., Sroka, R., Siegert, S., Stief, C. G., and Becker, A. J.. World J Urol 2012:633-8

Transition from laparoscopic to robotic partial nephrectomy: the learning curve for an experienced laparoscopic surgeon. Lavery, H. J., Small, A. C., Samadi, D. B., and Palese, M. A.. JSLS 2011:291-7

Delayed proximal ureteric stricture formation after complex partial nephrectomy. Reyes, J. M., Canter, D. J., Sirohi, M.,

Simhan, J., Smaldone, M. C., Teper, E., Kutikov, A., Chen, D. Y., and Uzzo, R. G.. BJU Int 2012:539-43

Robot-assisted retroperitoneal partial nephrectomy: technique and perioperative results. Weizer, A. Z., Palella, G. V., Montgomery, J. S., Miller, D. C., and Hafez, K. S.. J Endourol 2011:553-7

Cryoablation for endophytic renal cell carcinoma: intermediate-term oncologic efficacy and safety. Park, S. H., Kang, S. H., Ko, Y. H., Kang, S. G., Park, H. S., Moon du, G., Lee, J. G., Kim, J. J., and Cheon, J.. Korean J Urol 2010:518-24

Radical nephrectomy and nephroureterectomy in patients over 80 years old. Labanaris, A. P., Zugor, V., Labanaris, A. P., Elias, P., and Kuhn, R.. Int Braz J Urol 2010:141-8: discussion 149-50

Radiofrequency ablation of kidney tumours in patients with a solitary kidney. Prevoo, W., van den Munckhof, M. P., Meinhardt, W., Horenblas, S., and van den Bosch, M. A.. Clin Radiol 2010:230-6

Robot-assisted partial nephrectomy: evaluation of learning curve for an experienced renal surgeon. Haseebuddin, M., Benway, B. M., Cabello, J. M., and Bhayani, S. B.. J Endourol 2010:57-61

Bowel displacement for CT-guided tumor radiofrequency ablation: techniques and anatomic considerations. Ginat, D. T., Saad, W., Davies, M., Walman, D., and Erturk, E.. J Endourol 2009:1259-64

Renal insufficiency is not a contraindication for cryoablation of small renal masses. Bourne, A. E., Kramer, B. A., Steiner, H. L., and Schwartz, B. F.. J Endourol 2009:1195-8

Four-arm robotic partial nephrectomy for complex renal cell carcinoma. Gong, Y., Du, C., Josephson, D. Y., Wilson, T. G., and Nelson, R.. World J Urol 2010:111-5

Single center experience with percutaneous and laparoscopic cryoablation of small renal masses. Malcolm, J. B., Berry, T. T., Williams, M. B., Logan, J. E., Given, R. W., Lance, R. S., Barone, B., Shaves, S., Vingan, H., and Fabrizio, M. D.. J Endourol 2009:907-11

Laparoscopic partial nephrectomy without hilar control. Jeon, S. S. and Kim, I. Y.. J Endourol 2008:1937-9; discussion 1941-2

A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. Hemal, A. K. and Kumar, A.. World J Urol 2009:89-94

Feasibility of laparoscopic partial nephrectomy after previous ipsilateral renal procedures. Turna, B., Aron, M., Frota, R., Desai, M. M., Kaouk, J., and Gill, I. S.. Urology 2008:584-8

Simultaneous "cut and suture": a novel technique for laparoscopic partial nephrectomy without vascular clamping. Schatloff, O., Ramon, J., and Nadu, A.. Urology 2008:1203-4; discussion 1204-5

[Comparative study of laparoscopic partial nephrectomy and traditional open procedure: analysis of 26 cases]. Ou, T. W., Zhang, Y., Cui, X., and Zhang, B.. Zhonghua Yi Xue Za Zhi 2007:2549-51

Effect of radiofrequency ablation of renal tumors on renal function in patients with a solitary kidney. Syvanthong, C., Wile, G. E., and Zagoria, R. J.. AJR Am J Roentgenol 2007:1619-21

The efficacy and safety of laparoscopic nephrectomy in patients with three or more comorbidities. Naya, Y., Tobe, T., Suyama, T., Araki, K., Komiya, A., Suzuki, H., Igarashi, T., and Ichikawa, T.. Int J Urol 2007:17-20

Laparoscopic partial nephrectomy for incidental stage pT2 or worse tumors. Ukimura, O., Haber, G. P., Remer, E. M., and Gill, I. S.. Urology 2006:976-82

Positive surgical parenchymal margin after laparoscopic partial nephrectomy for renal cell carcinoma: oncological outcomes. Permpongkosol, S., Colombo, J. R. Jr, Gill, I. S., and Kavoussi, L. R.. J Urol 2006:2401-4

Results of computerized tomography guided percutaneous ablation of renal masses with nondiagnostic pre-ablation pathological findings. Permpongkosol, S., Link, R. E., Solomon, S. B., and Kavoussi, L. R.. J Urol 2006:463-7; discussion 467

Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results. Nazemi, T., Galich, A., Sterrett, S., Klingler, D., Smith, L., and Balaji, K. C.. Int Braz J Urol 2006:15-22

A prospective study of laparoscopic radical nephrectomy for T1 tumors--is transperitoneal, retroperitoneal or hand assisted the best approach?. Nadler, R. B., Loeb, S., Clemens, J. Q., Batler, R. A., Gonzalez, C. M., and Vardi, I. Y.. J Urol 2006:1230-3; discussion 1234

[An original modification of wedge resection of the kidney in renal cell carcinoma]. Alferov, S. M. and Grishin, M. A.. Urologiia 2005:23-6

The use of acellular porcine collagen matrix to facilitate renal parenchymal closure during partial nephrectomy. Douglas, D. A., Cross, W. R., and Prescott, S.. BJU Int 2005:1142-3

Hand-assisted laparoscopic radical nephrectomy: comparison of the transperitoneal and retroperitoneal approaches. Shiraishi, K., Eguchi, S., Mohri, J., and Kamiryo, Y.. Surg Laparosc Endosc Percutan Tech 2005:216-9

Direct access to the renal artery at the level of treitz ligament during left radical laparoscopic transperitoneal nephrectomy. Porpiglia, F., Terrone, C., Cracco, C., Renard, J., Musso, F., Grande, S., and Scarpa, R. M.. Eur Urol 2005:291-5

Retroperitoneal laparoscopic nephron-sparing surgery for renal tumors: report of 32 cases. Zhang, X., Li, H. Z., Ma, X., Zheng, T., Li, L. C., and Ye, Z. Q.. Urology 2005:1080-4; discussion 1084-5

Laparoscopic nephrectomy: an early experience at Queen Mary Hospital. Cheung, M. C., Lee, F. C., Chu, S. M., Leung, Y. L., Wong, B. B., Ho, K. L., and Tam, P. C.. Hong Kong Med J 2005:7-11

Evaluation of patients referred for percutaneous ablation of renal tumors: importance of a preprocedural diagnosis. Tuncali, K., vanSonnenberg, E., Shankar, S., Mortele, K. J., Cibas, E. S., and Silverman, S. G.. AJR Am J Roentgenol 2004:575-82

Natural history of renal masses followed expectantly. Kassouf, W., Aprikian, A. G., Laplante, M., and Tanguay, S.. J Urol 2004:111-3; discussion 113

Single-center comparison of purely laparoscopic, hand-assisted laparoscopic, and open radical nephrectomy in patients at high anesthetic risk. Baldwin, D. D., Dunbar, J. A., Parekh, D. J., Wells, N., Shuford, M. D., Cookson, M. S., Smith, J. A. Jr, Herrell, S. D., Chang, S. S., and McDougall, E. M.. J Endourol 2003:161-7

Imaging-guided radiofrequency ablation of solid renal tumors. Farrell, M. A., Charboneau, W. J., DiMarco, D. S., Chow, G. K., Zincke, H., Callstrom, M. R., Lewis, B. D., Lee, R. A., and Reading, C. C.. AJR Am J Roentgenol 2003:1509-13

[Improvement of hemostasis in laparoscopic and open partial nephrectomy with gelatin thrombin matrix (FloSeal)]. Richter, F., Tullmann, M. E., Turk, I., Deger, S., Roigas, J., Wille, A., and Schnorr, D.. Urologe A 2003:338-46

Hand-assisted laparoscopic vs the open (flank incision) approach to radical nephrectomy. Busby, E., Das, S., Rao Tunuguntla, H. S., and Evans, C. P.. BJU Int 2003:341-4

Laparoscopic partial nephrectomy for renal tumor: single center experience comparing clamping and no clamping techniques of the renal vasculature. Guillonneau, B., Bermudez, H., Gholami, S., El Fettouh, H., Gupta, R., Adorno Rosa, J., Baumert, H., Cathelineau, X., Fromont, G., and Vallancien, G.. J Urol 2003:483-6

[Surgical outcomes of nephron-sparing surgery for renal tumors]. Minowada, S., Homma, Y., Takeuchi, T., Tomita, K., Kameyama, S., Ohta, N., and Kitamura, T.. Nihon Hinyokika Gakkai Zasshi 2002:555-61

Percutaneous image-guided radiofrequency ablation of renal neoplasms: Seven-year local experience. Tsang K.W.K., Lee S.F., Cheung H.Y., Lui P.Y., and Tam K.Y.. Hong Kong 2013:17-26

Role of Intraarterial Embolization before Cryoablation of Large Renal Tumors: A Pilot Study. Woodrum D.A., Atwell T.D., Farrell M.A., Andrews J.C., Charboneau J.W., and Callstrom M.R.. J. Vasc. Intervent. Radiol. 2010:930-936

Laparoscopic partial nephrectomy in a solitary kidney. Jea W.L., Lim T., Ill Y.S., and Joung S.R.. Korean J. Urol. 2009:463-467

Thermal protection during percutaneous thermal ablation procedures: Interest of carbon dioxide dissection and

temperature monitoring. Buy X., Tok C.-H., Szwarc D., Bierry G., and Gangi A.. Cardiovasc. Intervent. Radiol. 2009:529-534

Magnetic resonance imaging findings after laparoscopic renal cryoablation. Bolte S.L., Ankem M.K., Moon T.D., Hedican S.P., Lee F.T., Sadowski E.A., and Nakada S.Y.. Urology 2006:485-489

Laparoscopic operations in urology - Results and complications in 150 patients: Laparoskopicke vykony v urologii - Vysledky a komplikacie u 150 pacientov. L'uptak J., Svihra J., Javorka K., Vrany M., Elias B., Sopilko I., and Kliment Jr. J.. Endoskopie 2005:66-72

Radiofrequency ablation in the treatment of renal tumors; early experience. Iguchi T., Mimura H., Mukai T., Dendo S., Hyodo T., Fujiwara H., Hara T., Yasui K., Kanazawa S., Hiraki Y., Tsushima T., and Kumon H.. Jpn. J. Clin. Radiol. 2004:542-546

Results of RFA in patients with small renal masses, a single-centre experience with median follow-up of 48 months. Joniau S., Tailly T., Goeman L., Oyen R., and Van Poppel H.. J. Endourol. 2009:A9

Different presentations of renal cell cancer on ultrasound and computerized tomography. Markic, D., Krpina, K., Ahel, J., Spanjol, J., Grskovic, A., Stifter, S., Ethordevic, G., Stemberger, C., Pavlovic, I., and Maricic, A.. Urologia 2014:228-32

Retroperitoneal laparoscopic partial nephrectomy for moderately complex renal hilar tumors. Xu B., Zhang Q., and Jin J.. Urol. Int. 2014:400-406

Renal function and oncologic outcomes after cryoablation or partial nephrectomy for tumors in solitary kidneys. Goyal, J., Sidana, A., Georgiades, C. S., and Rodriguez, R.. Korean J Urol 2011:384-9

Haemostatics in surgery and our experience in the enucleoresection of renal cell carcinoma. Pace, G., Saldutto, P., Vicentini, C., and Miano, L.. World J Surg Oncol 2010:37

Ischemic renal damage after nephron-sparing surgery in patients with normal contralateral kidney. Funahashi, Y., Hattori, R., Yamamoto, T., Kamihira, O., Kato, K., and Gotoh, M.. Eur Urol 2009:209-15

Renal cell carcinoma in patients with prior spinal cord injury. Brandes, S. B., Smith, J. B., Longo, W. E., Virgo, K. S., and Johnson, F. E.. J Spinal Cord Med 2001:251-6

A comparison of early results of laparoscopic radical nephrectomy with open radical nephrectomy: Laparoskopik radikal nefrektominin erken sonuclarinin acik radikal nefrektomi ile karsilastirilmasi. Oktay B., Yavascaoglu I., Vuruskan H., Kordan Y., Caliskan Z., and Ozturk M.. Turk Urol. Derg. 2005:178-181

Experience with retroperitoneoscopic nephrectomy. Moriyama H., Inoue S., Tanabe T., and Hayashi T.. Nishinihon J. Urol. 2005:119-123

Our initial experiences with laparoscopic nephrectomy: Laparoskopik nefrektomide baslangic deneyimlerimiz. Kural A.R., Demirkesen O., Akpinar H., Tufek I., Yalcin V., and Ozkan B.. Turk Urol. Derg. 2004:414-421

Evaluation of percutaneous biopsies of renal masses under MRI-guidance: a retrospective study about 26 cases. Garnon, J., Schlier, A., Buy, X., Tsoumakidou, G., de Mathelin, M., Breton, E., and Gangi, A.. Eur Radiol 2014

MR imaging in the characterization of small renal masses. Willatt, J. M., Hussain, H. K., Chong, S., Kappil, M., Azar, S. F., Liu, P. S., Ruma, J. A., and Elsayes, K. M.. Abdom Imaging 2014:761-9

Different presentations of renal cell cancer on ultrasound and computerized tomography. Markic, D., Krpina, K., Ahel, J., Spanjol, J., Grskovic, A., Stifter, S., Ethordevic, G., Stemberger, C., Pavlovic, I., and Maricic, A.. Urologia 2014:228-32

Different presentations of renal cell cancer on ultrasound and computerized tomography. Markic, D., Krpina, K., Ahel, J., Spanjol, J., Grskovic, A., Stifter, S., Ethordevic, G., Stemberger, C., Pavlovic, I., and Maricic, A.. Urologia 2014:0

A non-cancer-related survival benefit is associated with partial nephrectomy. Sun, M., Trinh, Q. D., Bianchi, M., Hansen, J., Hanna, N., Abdollah, F., Shariat, S. F., Briganti, A., Montorsi, F., Perrotte, P., and Karakiewicz, P. I.. Eur Urol 2012:725-31

Two-port robot-assisted vs standard robot-assisted laparoscopic partial nephrectomy: a matched-pair comparison. Arkoncel, F. R., Lee, J. W., Rha, K. H., Han, W. K., Jeoung, H. B., and Oh, C. K.. Urology 2011:581-5

Clinical characteristics and outcomes of patients with recurrence 5 years after nephrectomy for localized renal cell carcinoma. Adamy, A., Chong, K. T., Chade, D., Costaras, J., Russo, G., Kaag, M. G., Bernstein, M., Motzer, R. J., and Russo, P.. J Urol 2011:433-8

Prognostic importance of tumor size for localized conventional (clear cell) renal cell carcinoma: assessment of TNM T1 and T2 tumor categories and comparison with other prognostic parameters. Delahunt, B., Kittelson, J. M., McCredie, M. R., Reeve, A. E., Stewart, J. H., and Bilous, A. M.. Cancer 2002:658-64

Iatrogenic splenectomy during nephrectomy for renal tumors. Wang, J. K., Tollefson, M. K., Kim, S. P., Boorjian, S. A., Leibovich, B. C., Lohse, C. M., Cheville, J. C., and Thompson, R. H.. Int J Urol 2013:896-902

Renal nephrometry score is associated with urine leak after partial nephrectomy. Bruner, B., Breau, R. H., Lohse, C. M., Leibovich, B. C., and Blute, M. L.. BJU Int 2011:67-72

A giant clot. Gupta, R., Jindal, A., and Cranston-D'Amato, H.. Am J Respir Crit Care Med 2014:e68

[Radiofrequency ablation of kidney tumors]. Souteyrand, P., Chagnaud, C., Lechevallier, E., and Andre, M. Prog Urol 2013:1163-7

Impact of kidney cancer surgery on oncologic and kidney functional outcomes. Han J.S. and Huang W.C.. Am. J. Kidney Dis. 2011:846-854

Recurrent renal cell carcinoma after laparoscopic resection. Lang E.K., Gupta N., and Thomas R.. J. Urol. 2006:315

Neuromuscular complications after percutaneous radiofrequency ablation of renal tumors. Bhayani S.B., Allaf M.E., Su L.-M., and Solomon S.B.. Urology 2005 :592.e24-592.e25

Papillary renal cell carcinoma containing fat without calcification mimicking angiomyolipoma on CT. Schuster T.G., Ferguson M.R., Baker D.E., Schaldenbrand J.D., and Solomon M.H.. Am. J. Roentgenol. 2004:1402-1404

A rare complication of radical nephrectomy: A pancreatic pseudocyst. Lekili M., Coskun T., Gunduz I., Temeltas G., and Buyuksu C.. BJU Int. 2002:e30-e31

Desmopressin induced hyponatremia and seizures after laparoscopic radical nephrectomy. Pruthi R.S., Kang J., and Vick R.. J. Urol. 2002:187

Appendix D. Evidence Tables

Evidence Tables for KQs 1 and 2-Diagnostic KQs

Table D1: Study Characteristics Table for KQs 1 and 2

Author, year	Study design	Study site Study location		Start year of recruitment
Akdogan, 2012 ¹	Retrospective cohort	Single center	Europe	1990
Antonelli, 2014 ²	Retrospective cohort	Single center	North America	2010
Bazzi, 2014 ³	Retrospective cohort	Single center	North America	1998
Campbell, 1997 ⁴	Prospective cohort	Single center	North America	1994
Choi, 2012 ⁵	Retrospective cohort	Single center	Asia	2000
Chung, 2014 ⁶	Retrospective cohort	Single center	Asia	2008
Chyhrai, 2010 ⁷	Retrospective cohort	Single center	Europe	2004
Fujita, 20138	Prospective cohort	Single center	Asia	2000
Halverson, 20139	Retrospective cohort	Single center	North America	1999
Harisinghani, 2003 ¹⁰	Retrospective cohort	Single center	North America	1991
Jeon, 2010 ¹¹	Retrospective cohort	Single center	Asia	1997
Kava, 2012 ¹²	Prospective cohort	Single center	North America	1992
Keehn, 2014 ¹³	Retrospective cohort	Single center	North America	2002
Koo, 2013 ¹⁴	Retrospective cohort	Single center	Asia	2005
Lane, 2007 ¹⁵	Retrospective cohort	Single center	North America	1999
Leveridge, 2011 ¹⁶	Retrospective cohort	Single center	North America	2000
Londono, 2013 ¹⁷	Retrospective cohort	Single center	North America	2005
Menogue, 2012 ¹⁸	Case series	Single center	Australia	1999
Millet, 2012 ¹⁹	Retrospective cohort	Single center	Europe	2006
Mullins, 2012 ²⁰	Retrospective cohort	Multiple center	North America	2007
Murphy, 2009 ²¹	Retrospective cohort	Single center	North America	1988
Neuzillet, 2003 ²²	Retrospective cohort	Single center	Europe	1995
Nishikawa, 2014 ²³	Retrospective cohort	Single center	Asia	2002
Park, 2011 ²⁴	Retrospective cohort	Single center	Asia	2000
Park, 2013 ²⁵	Retrospective cohort	Single center	Asia	2004
Rosenkratz, 2014 ²⁶	Retrospective cohort	Single center	North America	NR
Salem, 2012 ²⁷	Retrospective cohort	Single center	Asia	NR
Shannon, 2008 ²⁸	Retrospective cohort	Single center	Australia	2000
Sofikerim, 2009 ²⁹	Prospective cohort	Single center	Asia	2001
Soga, 2012 ³⁰	Retrospective cohort	Single center	Asia	1991
Vasudevan, 2006 ³¹	Retrospective cohort	Single center	Australia	2000
Volpe, 2008 ³²	Retrospective cohort	Single center	North America	2000
Wang, 2009 ³³	Retrospective cohort	Single center	North America	1999
Xiong, 2010 ³⁴	Retrospective cohort	Single center	Asia	1999
Shin, 2013 ³⁵	Retrospective cohort	Single center Asia		2005

Author, year	Study design	Study site Study location		Start year of recruitment
Ball, 2015 ³⁶	Retrospective cohort	Multiple center		2007
		North America		
Schmidbauer, 2007 ³⁷	Retrospective cohort	Single center	Europe	2005
Reichelt, 2007 ³⁸	Retrospective cohort	Single center	Europe	NR
Prince, 2015 ³⁹	Retrospective cohort	Single center	North America	2000
Richard, 2015 ⁴⁰	Retrospective cohort	Single center	North America	2001

NR: Not Reported No Study reported source of funding

Table D2: Participant Characteristics Table for KQs 1 and 2

Author, year	Arm (n)	Actual length of follow- up (mean, median)	Women:n(%)	Age (years) Mean, Median, Range SD	Race, n(%) White (W), African American (AA), Asian (As), Others,	BMI: Mean (SD)	Current smokers(CS), n(%) Hypertension (H), n(%) DM, n (%) CVD, n(%) CKD-3, n(%) Solitary kidney, (SK)n(%)	GFR	Creatinine
Akdogan, 2012 ¹	Benign (88)	NR	49(28.2)	Median: 53.1 SD: 11.6	NR	NR	NR	NR	NR
Akdogan, 2012 ¹	RCC (362)	NR	125(71.8)	Median: 54.9 SD: 11.6	NR	NR	NR	NR	NR
Akdogan, 2012 ¹	Overall (450)	NR	174(38.3)	Median: 54.5 SD: 11.8	NR	NR	NR	NR	NR
Antonelli, 2014 ²	Overall (506)	NR	183(36.2)	Median: 64.8 Range: 14-85	NR	NR	NR	NR	NR
Bazzi, 2014 ³	Overall (1726)	NR	681(39.5)	Median: 60.5 IQR: 51.6-69.1	W: 1553(90) AA: 78(4.5) Others: 95(5.5)	NR	CKD-3: 523(30.3)	Median: 68.5 IQR: 57.7-81.8 Unit: ml/min/1.73m2	Median: 1.1 IQR: 0.9- 1.2 Unit: mg/dl
Campbell, 1997 ⁴	Overall (25)	NR	NR	NR	NR	NR	NR	NR	NR
Choi, 2012 ⁵	Benign (17)	NR	10(59)	Mean: 61.3 Range: 31-75	NR	NR	NR	NR	NR
Choi, 2012 ⁵	Malignant (67)	NR	17(25)	Mean: 63.2 Range: 32-83	NR	NR	NR	NR	NR
Chung, 2014 ⁶	-111	Mean: 16 Unit: months	46(NR)	Mean: men: 55.5, women: 49.5 Range: 17-78	NR	NR	NR	NR	NR
Chyhrai, 2010 ⁷	Overall (25)	Mean: 24 Unit: months	NR	Mean: 63 SD: 7.7	NR	NR	NR	NR	NR
Fujita, 2013 ⁸	Benign lesions (12)	NR	8(66.7)	Mean: 53.9 Median: 52.5 Range: 30-71	NR	NR	NR	NR	NR

Author, year	Arm (n)	Actual length of follow- up (mean, median)	Women:n(%)	Age (years) Mean, Median, Range SD	Race, n(%) White (W), African American (AA), Asian (As), Others,	BMI: Mean (SD)	Current smokers(CS), n(%) Hypertension (H), n(%) DM, n (%) CVD, n(%) CKD-3, n(%) Solitary kidney, (SK)n(%)	GFR	Creatinine
Fujita, 2013 ⁸	RCC (137)	NR	41(29.9)	Mean: 59.9 Median: 62 Range: 23-81	NR	NR	NR	NR	NR
Halverson, 2013,9	-151	NR	NR	Mean: 59 SD: 14	NR	NR	NR	NR	NR
Harisinghani, 2003 ¹⁰	Overall (28)	Median: 18 Unit: months	10(NR)	Range: 40-70	NR	NR	NR	NR	NR
Jeon, 2010 ¹¹	Benign (81)	Mean: 12 Unit: months	49(39.8)	Mean: 49.2 SD: 13.3	Asian: 81(100)	Mean: 23.3 SD: 2.7	H: 21(25.9) DM: 6(7.4)	Mean: 81.3 SD: 15.6 Unit: GFR, mL/min/1.73 m2	NR
Jeon, 2010 ¹¹	RCC (295)	Mean: 12 Unit: months	74(60.2)	Mean: 54.7 SD: 12.9	Asian: 295(100)	Mean: 24.2 SD: 2.8	H: 95(32.2) DM: 28(9.5)	Mean: 82.3 SD: 20.6 Unit: GFR, mL/min/1.73 m2	NR
Kava, 2012 ¹²	Benign (76)	NR	52(38)	Mean: 59.5 SD: 1.25	NR	Mean: 26.5 SD: 4.5	CS: 15(19.7)	NR	NR
Kava, 2012 ¹²	Malignant (240)	NR	85(62)	Mean: 57 SD: 1.6	NR	Mean: 28.6 SD: 5.6	CS: 51(21)	NR	NR
Keehn, 2014 ^{13*}	Overall (125)	NR	60(48)	Median: 63 IQR: 53.5-70.5	AA: 57(45.6) Others: 68(54.4)	Median: 29.5 IQR: 25.6- 33.4	NR	NR	Median: 1 IQR: 0.8- 1.2 Unit: mg/dl
Koo, 2013 ¹⁴	Patients with cT1 (1129)	NR	381(33.7)	Median: 54 Range: 18-88	NR	NR	NR	NR	NR
Koo, 2013 ¹⁴	Patients with cT1a (754)	NR	271(35.9)	Median: 55 Range: 18-84	NR	NR	NR	NR	NR

Author, year	Arm (n)	Actual length of follow- up (mean, median)	Women:n(%)	Age (years) Mean, Median, Range SD	Race, n(%) White (W), African American (AA), Asian (As), Others,	BMI: Mean (SD)	Current smokers(CS), n(%) Hypertension (H), n(%) DM, n (%) CVD, n(%) CKD-3, n(%) Solitary kidney, (SK)n(%)	GFR	Creatinine
Lane, 2007 ¹⁵	Overall (851)	Median: 1.4 Unit: years	NR(36)	Median:60 Range:23-87	NR	NR	CS: 249(20) SK: 107(13)	NR	Median: 1 Range: 0.4-5.3 Unit: mg/dl
Leveridge, 2011 ¹⁶	-294	NR	NR	Median: 64 Range: 25.7- 89.5	NR	NR	NR	NR	NR
Londono, 2013 ¹⁷	Overall (126)	NR	NR(33.3)	Mean: 65.3 SD: 14.6	W: NR(76.2) AA: NR(3.2) Asian: NR(3.2) Others: NR(4)	NR	NR	NR	NR
Menogue, 2012 ¹⁸	Overall (250)	NR	NR	Median: 64 Range: 22-88	NR	NR	NR	NR	NR
Millet, 2012 ¹⁹	-187	NR	30(50)	Median: 60 Range: 20-85	NR	NR	NR	NR	NR
Mullins, 2012 ²⁰	-873	NR	NR	NR	NR	NR	NR	NR	NR
Murphy, 2009 ²¹	Benign (106)	NR	51(20.9)	Mean: 61.7 Median: 65.5	W: 83(14.2) Others: 23(12.2)	NR	NR	NR	NR
Murphy, 2009 ²¹	Malignant (669)	NR	192(79.1)	Mean: 61.7 Median: 63.7	W: 503(85.8) Others: 166(87.8)	NR	NR	NR	NR
Neuzillet, 2003 ²²	Overall (88)	NR	40(45)	Mean: 61.32 Median: 64 Range: 21-88	NR	NR	NR	NR	NR
Nishikawa, 2014 ²³	Overall (144)	NR	49(34)	Mean: 60.9 SD: 12.5	NR	Mean: 24.5 SD: 3.6	NR	NR	NR
Nishikawa, 2014 ²³	Group 1(with an imaging pattern typical for	NR	35(34.3)	Mean: 62.1 SD: 12.1	NR	Mean: 24.6 SD: 3.4	NR	NR	NR

Author, year	Arm (n)	Actual length of follow- up (mean, median)	Women:n(%)	Age (years) Mean, Median, Range SD	Race, n(%) White (W), African American (AA), Asian (As), Others,	BMI: Mean (SD)	Current smokers(CS), n(%) Hypertension (H), n(%) DM, n (%) CVD, n(%) CKD-3, n(%) Solitary kidney, (SK)n(%)	GFR	Creatinine
	CCRCC) (102)								
Nishikawa, 2014 ²³	Group 2(with an imaging pattern atypical for CCRCC) (42)	NR	14(33.4)	Mean: 58 SD: 13.1	NR	Mean: 24.1 SD: 3.6	NR	NR	NR
Park, 2013 ²⁵	-59	NR	18(NR)	Mean: 56.8 Range: 24.0- 79.0	NR	NR	NR	NR	NR
Park, 2011 ²⁴	Benign (114)	NR	70(61.4)	Mean: 53.4 Range: 25-82	Asian: 114(100)	NR	SK: 0(0)	NR	NR
Park, 2011 ²⁴	Malignant (1484)	NR	447(30.1)	Mean: 54.4 Range: 1086	Asian: 1484(100)	NR	NR	NR	NR
Rosenkratz, 2014 ²⁶	-86	NR	41(NR)	Mean: 61 SD: 13	NR	NR	NR	NR	NR
Salem, 2012 ²⁷	Overall (145)	Mean: 25 Unit: months	46(31.7)	Mean: 67.2 SD: 11.6	NR	NR	SK: 3(2.1)	NR	NR
Shannon, 2008 ²⁸	Overall (221)	Median: 18 Unit: months	NR	Mean: 64 Range: 22-92	NR	NR	NR	NR	NR
Sofikerim, 2009 ²⁹	-42	Mean: 44.8 Unit: months	21(50)	Mean: 56.1 Range: 21-77	NR	NR	NR	NR	NR
Soga, 2012 ³⁰	Overall (409)	NR	100(24.4)	Mean: 60.5 Range: 22-86	NR	NR	NR	NR	NR

Author, year	Arm (n)	Actual length of follow- up (mean, median)	Women:n(%)	Age (years) Mean, Median, Range SD	Race, n(%) White (W), African American (AA), Asian (As), Others,	BMI: Mean (SD)	Current smokers(CS), n(%) Hypertension (H), n(%) DM, n (%) CVD, n(%) CKD-3, n(%) Solitary kidney, (SK)n(%)	GFR	Creatinine
Vasudevan, 2006 ³¹	Overall (92)	NR	NR	Mean: 62 Range: 22-92	NR	NR	NR	NR	NR
Volpe, 2008 ³²	Overall (100)	Mean: 22 Unit: months	NR	NR	NR	NR	NR	NR	NR
Wang, 2009 ³³	Overall (110)	Median: 1.1 Unit: year	38(NR)	Mean: 60.4 Range: 28-91	W: 92(NR) AA: 6(NR) Asian: 3(NR) Others: 5(NR)	NR	NR	NR	NR
Xiong, 2010 ³⁴	Benign (31)	NR	20(7)	NR	Asian: 31(100)	NR	NR	NR	NR
Xiong, 2010 ³⁴	Malignant (272)	NR	92(30)	NR	Asian: 272(100)	NR	NR	NR	NR
Ball, 2015 ³⁶	Overall (1009)	NR	NR(NR)	Median: 59.5 Range: 52-67	NR	NR	NR	NR Unit: NR	NR Unit: NR
Shin, 2013 ³⁵	Overall (1129)	NR	381(33.7)	Mean: 54.9 Median: 12.6	NR	NR	NR	NR Unit: NR	NR Unit: NR
Schmidbauer, 2007 ³⁷	Overall (118)	NR	15(20)	Mean: 63 Median: 64 Range: 24-86	NR	NR	NR	NR Unit: NR	NR Unit: NR
Reichelt, 2007 ³⁸	Overall (100)	NR	NR(NR)	Mean: 62.3 SD: 9.8	NR	NR	NR	NR Unit: NR	NR Unit: NR
Prince, 2015 ³⁹	Overall (525)	NR	NR(NR)	NR	NR	NR	NR	NR Unit: NR	NR Unit: NR
Richard, 2015 ⁴⁰	Overall (509)	NR	210(39.7)	Mean: 64 Median: NR Range: 54-73	NR	NR	NR	NR Unit: NR	NR Unit: NR

GFR=Glomerular Filtration Rate; NR=Not reported; n=Number; IQR=Inter Quartile Range CCI=Charlson Co-Morbidity Index; DM=Diabetes Mellitus; BMI=Body Mass Index; CVD=Cardiovascular Disease; CKD=Chronic Kidney Disease

No study reported American Society of Anesthesiologist Score
*Only study that reported Charlson Comorbidity Index with 7(5.6%) patients having an index of 1 and 25(20%) patients having an index of 2.

Table D3: Tumor Characteristics Table for KQs 1 and 2

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type: n(%)	Tumor size	Tumor side: n(%)	Tumor location: n(%)	Warm Ischemia time
Akdogan, 2012 ¹	Benign (88)	T1: 88(100)	Sac: 39(8.7) RC: 22(4.9) Others: 27(11.2)	Mean: 3.9 SD: 1.5	MUL: 0(0)	NR	NR
Akdogan, 2012 ¹	RCC (362)	T1: 362(100)	CC: 21(4.7) Pap: 5(1.1) Chro: 362(80.1)	Mean: 4.6 SD: 1.6	MUL: 0(0)	NR	NR
Antonelli, 2014 ²	Overall (506)	T1a: 506(100)	CC: 43(10.6) Others: 15(3.7)	Median: 2.5 Range: 0.1-4	NR	NR	NR
Bazzi, 2014 ³	Overall (1726)	T1a: 1726(100)	CC: 158(9.1) Sac: 162(9.4) RC: 63(3.7)	Median: 2.5 IQR: 1.8-3.2	RT: 875(50.7) LT: 851(49.3)	NR	NR
Blumenfeld, 2010 41	Post-op (81)	T1: 44(59) T1a: 35(45) T1b: 11(14) T2: 7(9) T1 and T2: 51(68)	CC: 3(4) Chro: 75(93) Sac: 2(3) Others: 1(1)	Mean: 5.3 Range: 1-17	RT: 32(40) LT: 42(52) BIL: 7(9)	NR	NR
Blumenfeld, 2010 ⁴¹	Pre-op (81)	NR	CC: 1(1) Chro: 78(96) Sac: 1(1) Others: 2(2)	NR	RT: 32(40) LIT: 42(52) BIL: 7(9)	NR	NR
Campbell, 1997 ⁴	Overall (25)	T1: 25(100)	Pap: 1(NR) Others: 4(NR)	Mean: 3.1	NR	NR	NR
Choi, 2012 ⁵	Benign (17)	T1a: 17(100)	Sac: 8(47) RC: 6(35) Others: 3(18)	Mean: 2.41 SD: 0.73	RT: 10(59) LT: 7(41)	Exophytic: 9(53) Endophytic: 8(47)	NR
Choi, 2012 ⁵	Malignant (67)	T1a: 67(100)	CC: 5(7) Others: 1(2)	Mean: 2.74 SD: 0.65	RT: 34(51) LT: 33(49)	Exophytic: 44(66) Endophytic: 23(34)	NR
Chung, 2014 ⁶	(111)	NR	CC: 12 Sac: 2 RC: 22 Others: 6	Mean: AML without fat: 1.5, AML with visible fat: 2.2 Range: 0.8-7.5	NR	NR	NR
Chyhrai, 2010 ⁷	Overall (25)	T1a: 25(100)	Sac: 6(24)	Mean: 2.5 Range: 1.5-4 SD: 1.03	NR	NR	NR
Fujita, 2013 ⁸	Benign lesions (12)	NR	NR	Mean: 2 Median: 2 Range: 0.9-3.5 SD: 0.8	RT: 9(75) LT: 3(25)	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type: n(%)	Tumor size	Tumor side: n(%)	Tumor location: n(%)	Warm Ischemia time
Fujita, 2013 ⁸	RCC (137)	T1a: 137(100)	NR	Mean: 2.4 Median: 2.3 Range: 0.7-4.0 SD: 0.8	RT: 73(53.3) LT: 64(46.7)	NR	NR
Halverson, 2013 ⁹	All masses (151)	T1a: 151(100)	CC: 3(1.9) Pap: 1(0.6) Sac: 0(0) Others: 22(14.5)	NR	NR	NR	NR
Halverson, 2013 ⁹	Non- benign/indeterminant biopsy (133)	T1a: 133(100)	CC: 3(2.2) Pap: 1(0.7) Sac: 0(0) Others: 4(3.0)	Mean: 2.8 SD: 0.8	NR	NR	NR
Harisinghani, 2003 ¹⁰	Overall (28)	NR	Sac: 1(NR)	NR	NR	NR	NR
Jeon, 2010 ¹¹	Benign (81)	T1: 81(100)	Sac: 11(2.9) RC: 35(9.3) Others: 35(9.3)	Mean: 2.1 Range: 0.1-4 SD: 0.9	NR	NR	Mean: 26.6
Jeon, 2010 ¹¹	RCC (295)	T1: 295(100)	CC: 14(3.7) Chro: 295(78.5)	Mean: 2.2 Range: 0.1-4 SD: 0.8	NR	NR	Mean: 29.3
Kava, 2012 ¹²	Benign (76)	T1: 76(100) T1a: 0(0) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	Sac: 26(8) RC: 29(9) Others: 21(7)	Mean: 3.7 SD: 2.5	NR	NR	NR
Kava, 2012 ¹²	Malignant (240)	T1: 240(100) T1a: 0(0) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	NR/NA	Mean: 3.4 SD: 1.5	NR	NR	NR
Keehn, 2014 ¹³	Overall (125)	NR	CC: 9(7.2) Others: 3(2.4)	Median: 2.5 IQR: 1.8-3.9	NR	NR	NR
Koo, 2013 ¹⁴	cT1 (1129)	T1: 1129(100)	CC: 69(6.1) Pap: 3(0.2) Chro: 1012(89.6) Others: 40(3.5)	Median: 3 Range: 0.6-7	RT: 74(6.5)	NR	NR
Koo, 2013 ¹⁴	cT1a (754)	T1a: 754(100)	CC: 39(5.1) Pap: 1(0.13) Chro: 658(87.2) Others: 34(4.5)	Median: 2.4 Range: 0.6-4	RT: 56(7.4)	NR	NR
Lane, 2007 ¹⁵	Overall (851)	T1: 851(100)	CC: 55(8) Chro: 6(NR) Others: 173(NR)	Median: 3 Range: 0.7-7	RT: 513(60	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type: n(%)	Tumor size	Tumor side: n(%)	Tumor location: n(%)	Warm Ischemia time
Leveridge, 2011 ¹⁶	NR	NR	CC: 13 Pap: 0 Chro: 208 Sac: 32 RC: 11 Others: 14	Median: 2.5 Range: 0.6-4.0	NR	NR	NR
Londono, 2013 ¹⁷	Overall (126)	NR	NR	Mean: 5.5	NR	NR	NR
Menogue, 2012 ¹⁸	Overall (250)	T1: 250(100) T1a: 250(100) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	NR	Median: 2.5 Range: 0.9-4	NR	NR	NR
Millet, 2012 ¹⁹	(187)	NR NR	CC: 13 Others: 1	Median: 3 Range: 0.9-4	NR	NR	NR
Mullins, 2012 ²⁰	(873)	NR	CC: 62(7.1) Sac: 77(8.8) RC: 63(7.2) Others: 84(9.6)	Malignant: 2.5, Benign: 2.3	NR	NR	NR
Murphy, 2009 ²¹	Benign (106)	T1: 106(100)	Sac: 57(53.8) RC: 21(19.8) Others: 28(16.4)	Median: 3	NR	NR	NR
Murphy, 2009 ²¹	Malignant (669)	T1: 669(100)	CC: 55(8.2) Others: 7(1)	Median: 3.7	NR	NR	NR
Neuzillet, 2003 ²²	Overall (88)	T1a: 88(100)	CC: 6(NR) Sac: 10(NR) RC: 3(NR) Others: 7(NR)	Median: 2.8 Range: 0.2-4	RT: 40(45)	NR	NR
Nishikawa, 2014 ²³	Overall (144)	T1a: 144(100)	CC: 8(5.6) Sac: 5(3.5) RC: 11(7.6) Others: 1(0.6)	Mean: 2.4 SD: 0.7	RT: 77(53.5) LT: 67(46.5)	NR	NR
Nishikawa, 2014 ²³	Group 1(with an imaging pattern typical for CCRCC) (102)	T1a: 102(100)	CC: 3(3) Sac: 3(3) RC: 4(3.9) Others: 0(0)	Mean: 2.2 Range: 1-4	RT: 57(55.9) LT: 45(44.1)	NR	NR
Nishikawa, 2014 ²³	Group 2(with an imaging pattern atypical for CCRCC) (42)	T1a: 42(100)	CC: 5(11.9) Sac: 2(4.8) RC: 7(16.7) Others: 1(2.4)	Mean: 2.5 Range: 1.5-3.9	RT: 20(47.6) LT: 22(52.4)	NR	NR
Park, 2013 ²⁵	(59)	NR	NR	Mean: 2.3 Range: 1.1-3.9	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type: n(%)	Tumor size	Tumor side: n(%)	Tumor location: n(%)	Warm Ischemia time
Park, 2011 ²⁴	Benign (114)	NR	Sac: 23(1.4) RC: 47(2.9)	Mean: 3.9 Range: 0.6-16	BIL: 0(0)	NR	NR
Park, 2011 ²⁴	Malignant (1484)	NR	CC: 93(5.8) Chro: 1468(91.9)	Mean: 4.9 Range: 0.6-24	BIL: 0(0)	NR	NR
Rosenkratz, 2014 ²⁶	(86)	NR	CC: 9 Sac: 13 RC: 8	Mean: 1.5 Range: 0.7-2.0 SD: 0.4	NR	NR	NR
Salem, 2012 ²⁷	Overall (145)	T1a: 145(100)	CC: 8(NR) Sac: 15(NR) Others: 24(NR)	Mean: 2.4 SD: 1.1	RT: 77(53.1) LT: 68(46.9)	NR	NR
Shannon, 2008 ²⁸	Overall (221)	T1: 221(100)	CC: 11(NR) Sac: 29(NR) RC: 13(NR)	Median: 2.9 Range: 1-4.9	NR	NR	NR
Sofikerim, 2009 ²⁹	(42)	NR	CC: 3 Pap: 0 Chro: 38 Sac: 1 RC: 1 Others: 2	Range: 25-140 SD: 63.9	NR	NR	NR
Soga, 2012 ³⁰	Overall (409)	NR	CC: 4(1) Pap: 2(0.5) Chro: 393(95.6) Sac: 4(1) RC: 7(1.7) Others: 7(1.7)	Mean: 5 Range: 0.8-23 SD: 3.2	RT: 252(61.3) LT: 159(38.7) MUL: 2(0.4)	NR	NR
Vasudevan, 2006 ³¹	Overall (92)	T1: 92(100)	CC: 5(NR) Sac: 14(NR) RC: 9 (NR) Others: 6(NR)	NR	NR	NR	NR
Volpe, 2008 ³²	Overall (100)	T1a: 100(100)	CC: 3(5.3) Chro: 4(NR) Sac: 7(38.9) RC: 5(27.8) Others: 12(NR)	NR	RT: NR(47) LT: NR(53)	Exophytic: NR(89)	NR
Wang, 2009 ³³	Overall (110)	T1: 110(100) T1a: 110(100)	NR	Mean: 2.7 Range: 0.5-4 SD: 0.9	RT: 50(45.5) LT: 60(54.5)	NR	NR
Xiong, 2010 ³⁴	Benign (31)	NR	Sac: 4(12.9) RC: 15(48.4) Others: 12(38.7)	NR	BIL: 0(0) MUL: 0(0)	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type: n(%)	Tumor size	Tumor side: n(%)	Tumor location: n(%)	Warm Ischemia time
Xiong, 2010 ³⁴	Malignant (272)	NR	Chro: 272(90)	NR	BIL: 0(0) MUL: 0(0)	NR	NR
Ball, 2015 ³⁶	Overall (1009)	T1: () T1a: 1009(1009) T1b: NA(NA) T2: NA(NA) T1 and T2: NA(NA)	CC: 68(8.9) Pap: NR Chro: NR Sac: NR RC: NR Others: 56(6.2)	Mean: 2.2 Median: NR Range: NR IQR: 1.6-3 SD: NR	NR	NR	NR
Shin, 2013 ³⁵	Overall (1129)	T1: 1129(100) T1a: () T1b: () T2: () T1 and T2: NA(NA)	CC: 69(6.8) Pap: 3(0.3) Chro: NR Sac: NR RC: NR Others: 16(1.6)	NR	NR	Hilar: 651(57.7) Exophytic: 883(78.2) Endophytic: 246(21.8)	NR
Schmidbauer, 2007 ³⁷	Overall (118)	T1: () T1a: () T1b: () T2: () T1 and T2: NA(NA)	CC: 3(NR) Pap: NR Chro: NR Sac: 13(NR) RC: 2(NR) Others: 16(1.6)	Mean: 4 Median: NR Range: 1.8 IQR: NR SD: NR	NR	NR	NR
Reichelt, 2007 ³⁸	Overall (100)	T1: () T1a: () T1b: () T2: () T1 and T2: NA(NA)	CC: 4(NR) Pap: NR Chro: NR Sac: 9(NR) RC: NR Others: 7(NR)	Mean: 4.9 Median: NR Range: 2.7 IQR: 0.11-13.2 SD: NR	RT: NR LT: NR(53) BIL: NR MUL: NR	NR	NR
Prince, 2015 ³⁹	Overall (525)	T1: 525(100) T1a: () T1b: () T2: () T1 and T2: NA(NA)	CC: NR Pap: NR Chro: NR Sac: NR RC: NR Others: NR	NR	NR	NR	NR
Ball, 2015 ³⁶	Overall (1009)	T1: () T1a: 1009(1009) T1b: NA(NA) T2: NA(NA) T1 and T2: NA(NA)	CC: 68(8.9) Pap: NR Chro: NR Sac: NR RC: NR Others: 56(6.2)	Mean: 2.2 Median: NR Range: NR IQR: 1.6-3 SD: NR	NR	NR	NR

NR: Not Reported; SD: Standard Deviation; RT: Right; LT: Left; BIL: Bilateral; MUL: Multiple; RC: Renal Cell; Sac: Sarcomatoid; Chro: Chromophobe; CC: Clear Cell No study reported positive margins

Table D4: Tumor Scores Table for KQs 1 and 2

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Akdogan, 201 ¹	Benign (88)	NR	NR	NR
Akdogan, 201 ¹	RCC (362)	NR	NR	NR
Antonelli, 2014 ²	Overall (506)	NR	Median: 5	NR
Bazzi, 2014 ³	Overall (1726)	NR	NR	NR
Blumenfeld, 20141	Post-op (81)	1-2: 36(47) 3-4: 25(32)	NR	NR
Blumenfeld, 2010 ⁴¹	Pre-op (81)	1-2: 55(80) 3-4: 14(20)	NR	NR
Campbell, 1997 ⁴	Overall (25)	NR	NR	NR
Choi, 2012 ⁵	Benign (17)	NR	NR	NR
Choi, 2012 ⁵	Malignant (67)	NR	NR	NR
Chung, 2014 ⁶	(111)	NR	NR	NR
Chyhrai, 2010 ⁷	Overall (25)	NR	NR	NR
Fujita, 2013 ⁸	Benign lesions (12)	NR	NR	NR
Fujita, 2013 ⁸	RCC (137)	NR	NR	NR
Halverson, 2013 ⁹	All masses (151)	NR	NR	NR
Halverson, 2013 ⁹	Non-benign/indeterminant biopsy (133)	NR	NR	NR
Harisinghani, 2003 ¹⁰	Overall (28)	NR	NR	NR
Jeon, 2010 ¹¹	Benign (81)	NR	NR	NR
Jeon, 2010 ¹¹	RCC (295)	NR	NR	NR
Kava, 2012 ¹²	Benign (76)	NR	NR	NR
Kava, 2012 ¹²	Malignant (240)	NR	NR	NR
Keehn, 2014 ¹³	Overall (125)	1-2: 65(52) 3-4: 16(12.8)	NR	NR
Koo, 2013 ¹⁴	cT1 (1129)	NR	Mean: 567 Median: 56 Range: 389 SD: 38.4	Mean: 7.19 Median: Range: 1 to 11 SD: 3.17
Koo, 2013 ¹⁴	cT1a (754)	NR	Mean: 410 Median: 62.3 Range: 215 SD: 32.6	Mean: 6.31 Range: 1 to 10 IQR: NR SD: 1.71
Lane, 2007 ¹⁵	Overall (851)	1-2: 439(65) 3-4: 233(35)	NR	NR
Leveridge, 2011 ¹⁶	NR	1-2: 99 3-4: 11	NR	NR
Londono, 2013 ¹⁷	Overall (126)	NR	NR	NR
Menogue, 2012 ¹⁸	Overall (250)	1-2: NR(94) 3-4: NR(6)	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Millet, 2012 ¹⁹	(187)	1-2: 53	NR	NR
		3-4: 8		
Mullins, 2012 ²⁰	(873)	NR	NR	NR
Murphy, 2009 ²¹	Benign (106)	NR	NR	NR
Murphy, 2009 ²¹	Malignant (669)	NR	NR	NR
Neuzillet, 2003 ²²	Overall (88)	1-2: 55(NR) 3-4: 6(NR)	NR	NR
Nishikawa, 2014 ²³	Overall (144)	NR	NR	NR
Nishikawa, 2014 ²³	Group 1(with an imaging pattern typical for CCRCC) (102)	NR	NR	NR
Nishikawa, 2014 ²³	Group 2(with an imaging pattern atypical for CCRCC) (42)	NR	NR	NR
Park, 2013 ²⁵	(59)	NR	NR	NR
Park, 2011 ²⁴	Benign (114)	NR	NR	NR
Park, 2011 ²⁴	Malignant (1484)	NR	NR	NR
Rosenkratz, 2014 ²⁶	(86)	NR	NR	NR
Salem, 2012 ²⁷	Overall (145)	1-2: 28(NR) 3-4: 19(NR)	NR	NR
Shannon, 2008 ²⁸	Overall (221)	NR	NR	NR
Sofikerim, 2009 ²⁹	(42)	NR	NR	NR
Soga, 2012 ³⁰	Overall (409)	NR	NR	NR
Vasudevan, 2006 ³¹	Overall (92)	NR	NR	NR
Volpe, 2008 ³²	Overall (100)	1-2: 30(73.2) 3-4: 11(26.8)	NR	NR
Wang, 2009 ³³	Overall (110)	NR	NR	NR
Xiong, 2010 ³⁴	Benign (31)	NR	NR	NR
Xiong, 2010 ³⁴	Malignant (272)	NR	NR	NR
Ball, 2015 ³⁶	Overall (1009)	1-2: 501(65) 3-4: 188(24.35)	NR	NR
Shin, 2013 ³⁵	Overall (1129)	NR	NR	NR
Schmidbauer, 2007 ³⁷	Overall (118)	NR	NR	NR
Reichelt, 2007 ³⁸	Overall (100)	NR	NR	NR
Prince, 2015, ³⁹	Overall (525)	NR	NR	NR
Richard, 2015 ⁴⁰	Overall (509)	NR	NR	NR

NR: Not Reported; SD: Standard Deviation; IQR: Inter-Quartile Range

Table D5: Outcomes Table for KQs 1 and 2

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Akdogan, 2012 ¹	Overall(Overa	450	Age(NR)	NR(NR)	N(NR)	Logistic regression	P: 0.217	OR: 0.97 95%CI: 0.58-1.62 P: 0.917
Akdogan, 2012 ¹	Overall(Overa	450	Women vs Men(NR)	NR(NR)	Y(28.2)	Logistic regression	P: <.001	OR: 3.26 95%CI: 1.93-5.51 P: <0.001
Akdogan, 2012 ¹	Overall(Overa	450	Cystic vs Solid tumor(NR)	NR(NR)	Y(30.2)	Logistic regression	P: 0.022	OR: 2.41 95%CI: 1.23-4.7 P: 0.01
Akdogan, 2012 ¹	Overall(Overa	450	Tumor size(NR)	NR(NR)	Y(NR)	Logistic regression	P: <.001	OR: 1.96 95%CI: 1.03-3.7 P: 0.39
Antonelli, 2014 ²	Overall(Overa	506	Sex Main Effect(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 2.59 95%CI: 1.66-4.03 P: <0.001	OR: 2.67 95%CI: 1.7- 4.21 P: <0.001
Antonelli, 2014 ²	Overall(Overa	506	Age Main Effect(years)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.96 95%CI: 0.77-1.2 P: 0.71	OR: 0.9 95%CI: 0.66-1.24 P: 0.52
Antonelli, 2014 ²	Overall(Overa	506	Sex-Age Interaction(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.1 95%CI: 0.69-1.75 P: 0.693
Antonelli, 2014 ²	Overall(Overa	506	E Score 1 vs 3(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.46 95%CI: 0.15-1.35	OR: 0.5 95%CI: 0.15-1.61
Antonelli, 2014 ²	Overall(Overa	506	E Score 2 vs 3(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.67 95%CI: 0.22-2.04	OR: 0.71 95%CI: 0.22-2.3
Antonelli, 2014 ²	Overall(Overa	506	N Score 2 vs 1(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 1.81 95%CI: -5.94	OR: 1.89 95%CI: 0.63-5.68

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Antonelli, 2014 ²	Overall(Overa	506	N Score 3 vs 1(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 1.95 95%CI: 0.93-4.07	OR: 2.52 95%CI: 0.94-6.77
Antonelli, 2014 ²	Overall(Overa	506	L Score 1 vs 2(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.53 95%CI: 0.32-0.87	OR: 0.56 95%CI: 0.33-0.93
Antonelli, 2014 ²	Overall(Overa	506	L Score 3 vs 2(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.61 95%CI: 0.30-1.25	OR: 0.58 95%CI: 0.28-1.23
Antonelli, 2014 ²	Overall(Overa	506	H Score Present vs Absent(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.49 95%CI: 0.14-1.66 P: 0.271	OR: 0.15 95%CI: 0.03-0.74 P: 0.024
Antonelli, 2014 ²	Overall(Overa	506	Nephrometry Score AUC(AUC)	Yes(AUC 0.57 (0.51- 0.63), p=0.031)	NR(NR)	Logistic regression	OR: 0.49 95%CI: 0.14-1.66 P: 0.271	OR: 0.15 95%CI: 0.03-0.74 P: 0.024
Antonelli, 2014 ²	Overall(Overa	506	Grade Prediction/Concor dance(Concordan ce)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.49 95%CI: 0.14-1.66 P: 0.271	OR: 0.15 95%CI: 0.03-0.74 P: 0.024
Antonelli, 2014 ²	Overall(Overa	506	Sex Main Effect(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 2.59 95%CI: 1.66-4.03 P: <0.001	OR: 2.67 95%CI: 1.7- 4.21 P: <0.001
Antonelli, 2014 ²	Overall(Overa	506	Age Main Effect(years)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.96 95%CI: 0.77-1.2 P: 0.71	OR: 0.9 95%CI: 0.66-1.24 P: 0.52
Antonelli, 2014 ²	Overall(Overa	506	Sex-Age Interaction(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.1 95%CI: 0.69-1.75 P: 0.693
Antonelli, 2014 ²	Overall(Overa	506	E Score 1 vs 3(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.46 95%CI: 0.15-1.35	OR: 0.5 95%CI: 0.15-1.61
Antonelli, 2014 ²	Overall(Overa	506	E Score 2 vs 3(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.67 95%CI: 0.22-2.04	OR: 0.71 95%CI: 0.22-2.3

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Antonelli, 2014 ²	Overall(Overa	506	N Score 2 vs 1(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 1.81 95%CI: -5.94	OR: 1.89 95%CI: 0.63-5.68
Antonelli, 2014 ²	Overall(Overa	506	N Score 3 vs 1(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 1.95 95%CI: 0.93-4.07	OR: 2.52 95%CI: 0.94-6.77
Antonelli, 2014 ²	Overall(Overa	506	L Score 1 vs 2(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.53 95%CI: 0.32-0.87	OR: 0.56 95%CI: 0.33-0.93
Antonelli, 2014 ²	Overall(Overa	506	L Score 3 vs 2(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.61 95%CI: 0.30-1.25	OR: 0.58 95%CI: 0.28-1.23
Antonelli, 2014 ²	Overall(Overa	506	H Score Present vs Absent(NA)	Yes(NR)	NR(NR)	Logistic regression	OR: 0.49 95%CI: 0.14-1.66	OR: 0.15 95%CI: 0.03-0.74
Bazzi, 2014 ³	Overall(Overa	1726	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.99 95%CI: 0.98-1 P: 0.14
Bazzi, 2014 ³	Overall(Overa	1726	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.02 95%CI: .55- 1.87 P: 0.96
Bazzi, 2014 ³	Overall(Overa	1726	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.95 95%CI: .54- 1.68 P: 0.86
Bazzi, 2014 ³	Overall(Overa	1726	Tumor Size(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.4 95%CI: 1.20-1.62 P: <0.01
Bazzi, 2014 ³	Overall(Overa	1726	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.07 95%CI: .73- 1.55 P: 0.74
Bazzi, 2014 ³	Overall(Overa	1726	Gender-Female vs male(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.44 95%CI: .34- 0.58 P: <0.01

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Bazzi, 2014 ³	Overall(Overa	1726	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.37 95%CI: 1.04-1.8 P: 0.02
Bazzi, 2014 ³	Overall(Fema le Only)	681	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.01 95%CI: 0.99-1.02 P: 0.35
Bazzi, 2014 ³	Overall(Fema le Only)	681	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.17 95%CI: 0.54-2.55 P: 0.69
Bazzi, 2014 ³	Overall(Fema le Only)	681	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.92 95%CI: 0.43-1.99 P: 0.84
Bazzi, 2014 ³	Overall(Fema le Only)	681	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.57 95%CI: 1.07-2.32 P: 0.02
Bazzi, 2014 ³	Overall(Fema le Only)	681	Tumor Size(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.46 95%CI: 1.19-1.79 P: <0.01
Bazzi, 2014 ³	Overall(Fema le Only)	681	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.15 95%CI: 0.67-2 P: 0.31
Bazzi, 2014 ³	Overall(Male Only)	1045	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.97 95%CI: 0.95-0.99 P: <0.01
Bazzi, 2014 ³	Overall(Male Only)	1045	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.79 95%CI: 0.30-2.1 P: 0.64
Bazzi, 2014 ³	Overall(Male Only)	1045	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.09 95%CI: 0.45-2.62 P: 0.85

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Bazzi, 2014 ³	Overall(Male Only)	1045	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.16 95%CI: 0.78-1.71 P: 0.46
Bazzi, 2014 ³	Overall(Male Only)	1045	Tumor Size(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.33 95%CI: 1.06-1.67 P: 0.01
Bazzi, 2014 ³	Overall(Male Only)	1045	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.01 95%CI: 0.6- 1.72 P: 0.96
Bazzi, 2014 ³	Overall(Overa II)	1726	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.99 95%CI: 0.98-1 P: 0.14
Bazzi, 2014 ³	Overall(Overa II)	1726	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.02 95%CI: .55- 1.87 P: 0.96
Bazzi, 2014 ³	Overall(Overa II)	1726	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.95 95%CI: .54- 1.68 P: 0.86
Bazzi, 2014 ³	Overall(Overa II)	1726	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.07 95%CI: .73- 1.55 P: 0.74
Bazzi, 2014 ³	Overall(Overa II)	1726	Gender-Female vs male(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.44 95%CI: .34- 0.58 P: <0.01
Bazzi, 2014 ³	Overall(Overa	1726	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.37 95%CI: 1.04-1.8 P: 0.02
Bazzi, 2014 ³	Overall(Fema le Only)	1726	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.01 95%CI: 0.99-1.02 P: 0.35

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Bazzi, 2014 ³	Overall(Fema le Only)	1726	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.17 95%CI: 0.54-2.55 P: 0.69
Bazzi, 2014 ³	Overall(Fema le Only)	1726	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.92 95%CI: 0.43-1.99 P: 0.84
Bazzi, 2014 ³	Overall(Fema le Only)	1726	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.57 95%CI: 1.07-2.32 P: 0.02
Bazzi, 2014 ³	Overall(Fema le Only)	1726	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.15 95%CI: 0.67-2 P: 0.31
Bazzi, 2014 ³	Overall(Male Only)	1726	Age at surgery(years)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.97 95%CI: 0.95-0.99 P: <0.01
Bazzi, 2014 ³	Overall(Male Only)	1726	Race-African american vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 0.79 95%CI: 0.30-2.1 P: 0.64
Bazzi, 2014 ³	Overall(Male Only)	1726	Race-Other vs Caucasian(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.09 95%CI: 0.45-2.62 P: 0.85
Bazzi, 2014 ³	Overall(Male Only)	1726	ASA class-III-IV vs I-II(NA)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.16 95%CI: 0.78-1.71 P: 0.46
Bazzi, 2014 ³	Overall(Male Only)	1726	Creatinine(mg/dl)	Yes(NR)	NR(NR)	Logistic regression	NR	OR: 1.01 95%CI: 0.6- 1.72 P: 0.96
Choi, 2012 ⁵	Overall(Overa	84	Sex(NA)	Y(NR)	Y(NR)	Logistic regression	NR	P: 0.017
Choi, 2012 ⁵	Overall(Overa	84	Enhancement pattern(NA)	Y(NR)	Y(NR)	Logistic regression	NR	P: 0.055

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Choi, 2012 ⁵	Overall(Overa	84	HU CMP(NA)	Y(NR)	Y(NR)	Logistic regression	NR	P: 0.021
Choi, 2012 ⁵	Overall(Overa	84	HU NP(NA)	Y(NR)	Y(NR)	Logistic regression	NR	P: 0.519
Chung, 2014 ⁶	Overall(Overa	111	MRI: tumor to kidney signal intensity ratio >1.09NR	Y(98)	(1.9)	NR	NR	NR
Fujita, 2013 ⁸	Overall(Overa		AgeNR	NR	NR	NR	NR	OR: 0.943 RD: 95%CI: 0.891-0.998 P: 0.0356
Fujita, 2013 ⁸	Overall(Overa		GenderNR	NR	NR	NR	NR	OR: 0.188 RD: 95%CI: 0.045-0.793 P: 0.0183
Fujita, 2013 ⁸	Overall(Overa		Tumor sizeNR	NR	NR	NR	NR	OR: 0.529 RD: 95%CI: 0.196-1.428 P: 0.2042
Fujita, 2013 ⁸	Overall(Overa		Tumor sitesNR	NR	NR		NR	OR: 3.027 RD: 95%CI: 0.668- 13.711 P: 0.1321
Fujita, 2013 ⁸	Overall(Overa	NR	PresentationNR	NR	NR	NR	NR	OR: 0.314 RD: 95%CI: 0.027-3.661 P: 0.3133
Fujita, 2013 ⁸	Overall(Overa	NR	Exophytic on imagingNR	NR	NR	NR	NR	OR: 0.033 RD: 95%CI: 0.049-0.944 P: 0.216

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Jeon, 2010 ¹¹	Overall(Overa	376	Sex(Male vs Female)(NR)	NR	NR	Logistic regression	OR: 4.57 95%CI: 2.72-7.67 P: <.001	OR: 4.91 95%CI: 2.76-8.75 P: <.001
Jeon, 2010 ¹¹	Overall(Overa	376	Age(NR)	NR	NR	Logistic regression	OR: 0.96 95%CI: 0.95-0.98 P: 0.001	OR: 0.97 95%CI: 0.95-0.99 P: 0.009
Jeon, 2010 ¹¹	Overall(Overa	376	BMI:23-25 vs. <23(NR)	NR	NR	Logistic regression	OR: 0.72 95%CI: 0.38-1.35 P: 0.309	OR: 1.19 95%CI: 0.59-2.41 P: 0.611
Jeon, 2010 ¹¹	Overall(Overa	376	BMI:>25 vs. <23(NR)	NR	NR	Logistic regression	OR: 0.46 95%CI: 0.25-0.85 P: 0.014	OR: 0.8 95%CI: 0.4- 1.59 P: 0.538
Jeon, 2010 ¹¹	Overall(Overa	376	Tumor size(NR)	NR	NR	Logistic regression	OR: 0.82 95%CI: 0.61-1.10 P: 0.193	OR: 0.84 95%CI: .59- 1.17 P: 0.311
Kava, 2012 ¹²	Overall(Overa	316	female gender(NR)	NR	NR	Logistic regression	NR	OR: 3.97 95%CI: 2.92-4.53 P: <.001
Kava, 2012 ¹²	Overall(Overa	316	peripheral tumor location(NR)	NR	NR	Logistic regression	NR	OR: 2.27 95%CI: 1.73-3.21 P: 0.014
Kava, 2012 ¹²	Overall(Overa	316	BMI(NR)	NR	NR	Logistic regression	NR	OR: 1.5 95%CI: 1.12-1.94 P: 0.015
Keehn, 2014 ¹³	Overall(Overa	125	Ct or MRI for visceral fat (NA)	(NR)	NR	NR	NR	OR: 1.01 95%CI: 1- 1.17 P: 0.017
Keehn, 2014 ¹³	Overall(Overa	125	Ct or MRI for subcutaneous fat(NA)	(NR)	NR	NR	NR	OR: 1 95%CI: 0.99-1.01 P: 0.59

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Keehn, 2014 ¹³	Overall(Overa II)	125	Race-African American(NA)	(NR)	NR	NR	NR	OR: 2.49 95%CI: 0.65-9.58 P: 0.183
Keehn, 2014 ¹³	Overall(Overa	125	Age(NA)	(NR)	NR	NR	NR	OR: 1.03 95%CI: 0.95-1.12 P: 0.461
Keehn, 2014 ¹³	Overall(Overa II)	125	Sex(NA)	(NR)	NR	NR	NR	OR: 2.22 95%CI: 0.44-11.15 P: 0.332
Keehn, 2014 ¹³	Overall(Overa II)	125	BMI(NA)	(NR)	NR	NR	NR	OR: 1.02 95%CI: 0.82-1.28 P: 0.851
Koo, 2013 ¹⁴	Arm 1(cT1)	1129	Renal nephrometry scores includes diameter of tumor, nearness of tumor to collecting system or sinus, location relative to the polar lines and presence of an abutting renal artery or veinNR	Y(0.722 (95% Cl: 0.669- 0.774))	Y(0.574 (95% CI: 0.537- 0.6121))	NR	NR	NR
Koo, 2013 ¹⁴	Arm 2(cT1a)	754	Renal nephrometry scores includes diameter of tumor, nearness of tumor to collecting system or sinus, location relative to the polar lines and presence of an abutting renal artery or veinNR	Y(0.727 (95% Cl: 0.674- 0.779))	Y(0.495 (95% CI: 0.448- 0.542))	NR	NR	NR

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Lane, 2007 ¹⁵	Overall(Overa	851	Age(years)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: <0.0001
Lane, 2007 ¹⁵	Overall(Overa	851	Sex(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: <0.0001
Lane, 2007 ¹⁵	Overall(Overa	851	age/sex interaction(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: <0.0001
Lane, 2007 ¹⁵	Overall(Overa	851	CT estimated size(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: 0.0002
Lane, 2007 ¹⁵	Overall(Overa	851	smoking history(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: 0.0277
Lane, 2007 ¹⁵	Overall(Overa	851	clinical presentation(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	P: 0.9891
Leonard, 2013 ⁴²	Overall(Overa		Scottish Index of Multiple Deprivations include scores on incomr, employment, health, education, skills, training, geographic access and housingNR	NR	NR	NR	NR	NR
Leveridge, 2011 ¹⁶	Overall(Overa		Tumor sizeNR	NR	NR	NR	NR	OR: 3.11 RD: 95%CI: 1.54-6.28 P: 0.002
Leveridge, 2011 ¹⁶	Overall(Overa		Tumor typeNR	NR	NR	NR	NR	OR: 13.9 RD: 95%CI: 3.78-50.7 P: <0.0001
Leveridge, 2011 ¹⁶	Overall(Overa		image guidance (US vs CT or US plus CTNR	NR	NR	NR	NR	OR: 1.48 RD: 95%CI: 0.54-4.09 P: 0.45
Leveridge, 2011 ¹⁶	Overall(Overa l)		Tumor locationNR	NR	NR	NR	NR	OR: 0.78 RD: 95%CI:

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
								0.24-2.47 P: 0.91
Leveridge, 2011 ¹⁶	Overall(Overa		Upper vs lower poleNR	NR	NR	NR	NR	OR: 0.91 RD: 95%CI: 0.25-3.32
Leveridge, 2011 ¹⁶	Overall(Overa		Between benign, malignant and nondiagnostic histologyNR	NR	NR	NR	NR	NR
Leveridge, 2011 ¹⁶	Overall(Overa		between RCC subtypesNR	NR	NR	NR	NR	NR
Mullins, 2012 ²⁰	Overall(cT1)	873	Male GenderNR	NR	NR	NR	NR	OR: 4.28 RD: 95%CI: 2.41-7.23 P: p<0.001
Mullins, 2012 ²⁰	Overall(cT1)	873	Intermediate RENAL scoreNR	NR	NR	NR	NR	OR: 2.79 RD: 95%CI: 1.48-5.27 P: 0.026
Mullins, 2012 ²⁰	Overall(cT1)	873	High RENAL scoreNR	NR	NR	NR	NR	OR: 11.62 RD: 95%CI: 1.80-74.92 P: 0.01
Mullins, 2012 ²⁰	Overall(cT1a)	694	Intermediate RENAL scoreNR	NR	NR	NR	NR	OR: 2.59 RD: 95%CI: 1.26-5.29 P: 0.009
Mullins, 2012 ²⁰	Overall(cT1a)	694	Male GenderNR	NR	NR	NR	NR	OR: 3.61 RD: 95%CI: 1.99-6.54 P: p<0.001
Murphy, 2009 ²¹	Overall(Overa	775	Age(NR)	NR	NR	Logistic regression	OR: 1 95%CI: 0.98-1.02 P: 0.999	OR: 0.99 95%CI:

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
								0.98-1.01 P: 0.464
Murphy, 2009 ²¹	Overall(Overa	775	Sex(NR)	NR	NR	Logistic regression	OR: 0.45 95%CI: 0.3-0.68 P: <0.001	OR: 0.42 95%CI: 0.27-0.65 P: <0.001
Murphy, 2009 ²¹	Overall(Overa	775	Race(NR)	NR	NR	Logistic regression	OR: 1.19 95%CI: 0.74-1.98 P: 0.497	OR: 1.44 95%CI: 0.87-2.47 P: 0.165
Murphy, 2009 ²¹	Overall(Overa	775	Obesity(NR)	NR	NR	Logistic regression	OR: 3 95%CI: 1.36-7.21 P: 0.001	OR: 2.35 95%CI: 1.01-5.83 P: 0.054
Nishikawa, 2014 ²³	Overall(Overa	144	Age(<60 vs.>60)(years)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 2.86 P: 0.054
Nishikawa, 2014 ²³	Overall(Overa	144	Gender(male vs. female)(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 2.62 P: 0.079
Nishikawa, 2014 ²³	Overall(Overa	144	BMI (<25 vs. >/=25)(kg/m2)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 2.78 P: 0.1
Nishikawa, 2014 ²³	Overall(Overa	144	Enhanced CT findings (group 1 vs. group 2)(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 4.19 P: <0.001
Nishikawa, 2014 ²³	Arm 1(Group 1(with an imaging pattern typical for CCRCC))	102	Age(<60 vs.>60)(years)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 3.45 P: 0.094
Nishikawa, 2014 ²³	Arm 1(Group 1(with an imaging pattern typical for CCRCC))	102	Gender(male vs. female)(NA)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 1.25 P: 0.51
Nishikawa, 2014 ²³	Arm 2(Group 2(with an imaging pattern atypical for CCRCC))	42	Age(<60 vs.>60)(years)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 9.88 P: 0.013

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Nishikawa, 2014 ²³	Arm 2(Group 2(with an imaging pattern atypical for CCRCC))	42	BMI (<25 vs. >/=25)(kg/m2)	Yes(NR)	Yes(NR)	Logistic regression	NR	HR: 14.71 P: 0.021
Park, 2011 ²⁴	Overall(Overa	1598	Age(NR)	Y(NR)	Y(NR)	Logistic regression	NR	OR: 0.994 95%CI: 0.98-1.01 P: 0.476
Park, 2011 ²⁴	Overall(Overa	1598	female gender(NR)	Y(NR)	Y(NR)	Logistic regression	NR	OR: 3.899 95%CI: 2.62-5.81 P: <0.001
Park, 2011 ²⁴	Overall(Overa	1598	tumor size(NR)	Y(NR)	Y(NR)	Logistic regression	NR	OR: 0.882 95%CI: 0.81-0.96 P: 0.002
Park, 2013 ²⁵	Overall(Overa	59	AgeNR	NR	NR	NR	NR	OR: 1.04 RD: 95%CI: 0.98-1.11 P: 0.22
Park, 2013 ²⁵	Overall(Overa	59	BMINR	NR	NR	NR	NR	OR: 1.05 RD: 95%CI: 0.85-1.30 P: 0.637
Park, 2013 ²⁵	Overall(Overa	59	Size of massNR	NR	NR	NR	NR	OR: 3.32 RD: 95%CI: 1.02-10.8 P: 0.46
Park, 2013 ²⁵	Overall(Overa	59	Upper pole massNR	NR	NR	NR	NR	OR: 4.25 RD: 95%CI: 1.07-16.8 P: 0.039
Park, 2013 ²⁵	Overall(Overa	59	Cystic massNR	NR	NR	NR	NR	OR: 13.1 RD:

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
								95%CI: 2.02-85.7 P: 0.007
Park, 2013 ²⁵	Overall(Overa	59	Number of coresNR	NR	NR	NR	NR	OR: 2.52 RD: 95%CI: 1.17-5.43 P: 0.018
Park, 2013 ²⁵	Overall(Overa	59	Biopsy distanceNR	NR	NR	NR	NR	OR: 1.01 RD: 95%CI: 0.59-1.74 P: 0.972
Park, 2013 ²⁵	Overall(Overa		Between biopsy and surgical resultsNR	NR	NR	NR	NR	NR
Park, 2013 ²⁵	Overall(Overa		RCC subtypeNR	NR	NR	NR	NR	NR
Rosenkratz, 2014 ²⁶	Overall(Overa		AgeNR	N(NR)	NR	NR	NR0.061	NR
Rosenkratz, 2014 ²⁶	Overall(Overa		Cystic or necroticNR	N(27.9)	(8.3)	NR	NR0.053	NR
Soga, 2012 ³⁰	Overall(Overa I)	411	Age(<60 years vs. >/=60 years(NR)	NR	NR	Logistic regression	OR: 3.14 95%CI: 1.1-8.98	OR: 2.96 95%CI: 1- 8.77 P: 0.051
Soga, 2012 ³⁰	Overall(Overa I)	411	Sex(female vs. male)(NR)	NR	NR	Logistic regression	OR: 3.32 95%CI: 1.28-8.61	OR: 3.68 95%CI: 1.35-10.05 P: 0.011
Soga, 2012 ³⁰	Overall(Overa I)	411	Tumor size(<2cm vs. >/=2cm)(NR)	NR	NR	Logistic regression	OR: 6.15 95%CI: 2.33-16.16	OR: 4.84 95%CI: 1.59-14.73 P: 0.005
Xiong, 2010 ³⁴	Overall(Overa I)	303	Gender(NR)	NR	NR	Logistic regression	NR	OR: 3.833 95%CI: 1.740-8.446 P: 0.001
Xiong, 2010 ³⁴	Overall(Overa	303	Tumor size(NR)	NR	NR	Logistic regression	NR	OR: 2.563 95%CI:

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
								1.180-5.565
								P: 0.017
Shin, 2013 ³⁵	Overall(Overa	NR	Age(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 1.024 95%CI: 1.007-1.041 P: 0.006
Ohio	O. (0.10)	NR	Mala asy/NIA\	Vaa(ND)	NR	Lagistia	NR	
Shin, 2013 ³⁵	Overall(Overa	NK NK	Male sex(NA)	Yes(NR)	NK	Logistic regression	NR	OR: 5.806 95%CI: 3.769-9.064 P: <0.001
Shin,	Overall(Overa	NR	Tumor size(NA)	Yes(NR)	NR	Logistic	NR	OR: 1.382
2013 ³⁵	II)	INIX	Tuttion Size(IVA)	Tes(INIX)	INIX	regression	IVIX	95%CI: 1.144-1.670 P: 0.001
Shin,	Overall(Overa	NR	Longitudinal	Yes(NR)	NR	Logistic	NR	OR: 0.962
2013 ³⁵		' ' '	location(NA)	100(1111)	' ' '	regression		95%CI:
_0.0	,					109.000.0		0.626-1.480
								P: 0.861
Shin, 2013 ³⁵	Overall(Overa II)	NR	Exophytic rate <50% relative to Exophytic rate >/=50%(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 1.522 95%CI: 0.925-2.504 P: 0.099
Shin,	Overall(Overa	NR	Endophytic rate	Yes(NR)	NR	Logistic	NR	OR: 1.489
2013 ³⁵	II)	'*'`	relative to	100(1111)	1414	regression		95%CI:
_0.0	",		Exophytic rate			109.000.0		0.816-2.716
			>/=50%(NA)					P: 0.195
Shin, 2013 ³⁵	Overall(Overa	NR	Renal rim(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 0.921 95%CI: 0.591-1.434 P: 0.715
Shin,	Overall(Overa	NR	Renal sinus or	Yes(NR)	NR	Logistic	NR	OR: 1.819
2013 ³⁵	II)		urinary collecting	, ,		regression		95%CI:
	,		system(NA)					0.964-3.434
			_ , ,					P: 0.065
Shin,	Overall(T1a)	NR	Age(NA)	Yes(NR)	NR	Logistic	NR	OR: 1.032
2013 ³⁵	, ,					regression		95%CI:
								1.011-1.053
								P: 0.003
Shin,	Overall(T1a)	NR	Male sex(NA)	Yes(NR)	NR	Logistic	NR	OR: 7.446
2013 ³⁵				1		regression		95%CI:

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
								4.440- 12.487 P: <0.001
Shin, 2013 ³⁵	Overall(T1a)	NR	Tumor size(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 2.285 95%CI: 1.666-3.135 P: <0.001
Shin, 2013 ³⁵	Overall(T1a)	NR	Longitudinal location(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 0.965 95%CI: 0.589-1.583 P: 0.889
Shin, 2013 ³⁵	Overall(T1a)	NR	Exophytic rate <50% relative to Exophytic rate >/=50%(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 1.846 95%CI: 1.070-3.432 P: 0.029
Shin, 2013 ³⁵	Overall(T1a)	NR	Endophytic rate relative to Exophytic rate >/=50%(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 2.028 95%CI: 1.033-3.979 P: 0.04
Shin, 2013 ³⁵	Overall(T1a)	NR	Renal rim(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 0.824 95%CI: 0.492-1.379 P: 0.461
Shin, 2013 ³⁵	Overall(T1a)	NR	Renal sinus or urinary collecting system(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 1.547 95%CI: 0.655-3.655 P: 0.32
Ball, 2015 ³⁶	Overall(Overa II)	1009	Tumor size(continuous)(c m)	Yes(NR)	NR	Logistic regression	NR	OR: 1.43 95%CI: 1.19-1.72 P: <0.0001
Ball, 2015 ³⁶	Overall(Overa II)	1009	Tumor size(categorical) >/=3c with reference to <3cm(cm)	Yes(NR)	NR	Logistic regression	NR	OR: 1.56 95%CI: 1.11-2.2 P: 0.003
Ball, 2015 ³⁶	Overall(Overa II)	1009	Sex(male relative to female)(NA)	Yes(NR)	NR	Logistic regression	NR	OR: 1.94 95%CI: 1.45-2.61 P: <0.0001

Author, year	Arm(name)	N for analysis	Profile definition(units)	Predict malignancy condition (% Malignancy)	Predict benign condition (% Benign)	Select the Analysis- Model	Unadjusted result	Fully adjusted result
Ball, 2015 ³⁶	Overall(Overa II)	1009	Age(continuous)(y ears)	Yes(NR)	NR	Logistic regression	NR	OR: 0.99 95%CI: 0.98-1.01 P: 0.16

N=Number; OR=Odds Ratio; NR=Not reported; RD=Risk Difference; P=p value

Table D6: Accuracy Data Table for KQs 1 and 2

D6: Accurac Author, year	Imaging	N of Biopsies (Needle size)	N of surgeries	Benign	Malignant	Non diagnostic	N with Grade on Biopsy	Number Upgraded on Pathology (from 1-2 to 3-4)	Test Results
Campbell, 1997 ⁴	CTNA	25(22)	25	N benign biopsies: 6 N with Surgical Pathology: 6 N found Malignant: 6	N malignant biopsies: 10 N with Surgical Pathology: 10 N found Malignant: 10	N non diagnostic biopsies: 9 N with Surgical Pathology: 9 N found Malignant: 9	25	1	FP: 0 TP: 10 FN: 15 TN: 0
Chyhrai, 2010 ⁷	Ultrasoun dNA	25(18 G)	21	N benign biopsies: 7 N with Surgical Pathology: 6 N found Malignant: 5	N malignant biopsies: 15 N with Surgical Pathology: 13 N found Malignant: 13	N non diagnostic biopsies: NR N with Surgical Pathology: NR N found Malignant: NR	NR	NR	NR
Halverson, 2013 ⁹	Other: specifyC T or US	133(NR)	133	N benign biopsies: NA N with Surgical Pathology: NA N found Malignant: NA	N malignant biopsies: 133 N with Surgical Pathology: 133 N found Malignant: 133	N non diagnostic biopsies: NR N with Surgical Pathology: NR N found Malignant: NR	118	NR	FP: 0 TP: 133 FN: 0 TN: 0 Sn: 100 Sp: 100
Harisinghani , 2003 ¹⁰	CTNA	28(22-G and 18- G)	16	N benign biopsies: 11 N with Surgical Pathology: 0 N found Malignant: NA	N malignant biopsies: 17 N with Surgical Pathology: 16 N found Malignant: 16	N non diagnostic biopsies: NA N with Surgical Pathology: NA N found Malignant: NA	NR	NR	NR
Leveridge, 2011 ¹⁶	Other: specifyU S, CT or MRI	345(17 G)	74	N benign biopsies: 57 N with Surgical Pathology: NR N found Malignant: NR	N malignant biopsies: 221 N with Surgical Pathology: NR N found Malignant: NR	N non diagnostic biopsies: 67 N with Surgical Pathology: 6 N found Malignant: 4	100	NR	NR

Author, year	Imaging	N of Biopsies (Needle size)	N of surgeries	Benign	Malignant	Non diagnostic	N with Grade on Biopsy	Number Upgraded on Pathology (from 1-2 to 3-4)	Test Results
Londono, 2013 ¹⁷	Other: specifyC T or ultrasoun d guided	132(14Fr to 21Fr)	63	N benign biopsies: 38 N with Surgical Pathology: NR N found Malignant: NR	N malignant biopsies: 87 N with Surgical Pathology: NR N found Malignant: NR	N non diagnostic biopsies: 7 N with Surgical Pathology: NR N found Malignant: NR	NR	NR	Sn: 75.4 Sp: 100 PPV: 100 NPV: 11.7 Acc: 76
Londono, 2013 ¹⁷	Other: specifyC T or ultrasoun d guided	60(14Fr to 21Fr)	25	N benign biopsies: 21 N with Surgical Pathology: 8 N found Malignant: 7	N malignant biopsies: 33 N with Surgical Pathology: 16 N found Malignant: 16	N non diagnostic biopsies: 6 N with Surgical Pathology: 1 N found Malignant: 1	NR	NR	Sn: 66.7 Sp: 100 PPV: 100 NPV: 11.1 Acc: 100
Londono, 2013 ¹⁷	Other: specifyC T or ultrasoun d guided	72(14Fr to 21Fr)	38	N benign biopsies: 17 N with Surgical Pathology: 7 N found Malignant: 6	N malignant biopsies: 54 N with Surgical Pathology: 30 N found Malignant: 30	N non diagnostic biopsies: 1 N with Surgical Pathology: 1 N found Malignant: 1	NR	NR	Acc: 88.2
Menogue, 2012 ¹⁸	Other: specifyult rasonogr aphy or CT guidance	268(18- G)	134 note:125 with diagnostic biopsy	N benign biopsies: 56 N with Surgical Pathology: 6 N found Malignant: 6	N malignant biopsies: 158 N with Surgical Pathology: 114 N found Malignant: 114	N non diagnostic biopsies: 54 N with Surgical Pathology: 9 N found Malignant: 8	122	17	FP: 6 TP: 114 FN: 6 TN: 0 Sn: 95 Sp: 0 PPV: 95 NPV: 0 Acc: 100
Millet, 2012 ¹⁹	CTNA	187(17G)	61	N benign biopsies: NR N with Surgical Pathology: NR N found Malignant: NR	N malignant biopsies: 145 N with Surgical Pathology: 61	N non diagnostic biopsies: NR N with Surgical Pathology: NR N	61	11	NR

Author, year	Imaging	N of Biopsies (Needle size)	N of surgeries	Benign	Malignant	Non diagnostic	N with Grade on Biopsy	Number Upgraded on Pathology (from 1-2 to 3-4)	Test Results
					N found Malignant: 61	found Malignant: NR			
Neuzillet, 2003 ²²	CTNA	88(18-G)	62	N benign biopsies: 14 N with Surgical Pathology: 1 N found Malignant: 0	N malignant biopsies: 66 N with Surgical Pathology: 56 N found Malignant: 56	N non diagnostic biopsies: 8 N with Surgical Pathology: 5 N found Malignant: 5	52	8	NR
Park, 2013 ²⁵	Ultrasoun dNA	59(18 G)	13	N benign biopsies: 11 N with Surgical Pathology: NR N found Malignant: NR	N malignant biopsies: 37 N with Surgical Pathology: 11 N found Malignant: 11	N non diagnostic biopsies: 11 N with Surgical Pathology: 2 N found Malignant: 2	4	2	NR
Salem, 2012 ²⁷	CTNA	145(16- 20 G)	94	N benign biopsies: 19 N with Surgical Pathology: 0 N found Malignant: 0	N malignant biopsies: 87 N with Surgical Pathology: 87 N found Malignant: 87	N non diagnostic biopsies: 19 N with Surgical Pathology: 6 N found Malignant: 6	47	NR	NR
Scanga, 2014 ⁴³	Other: specifyU S or CT	154(21 or smaller for FNA and 20 or larger for CB)	37	N benign biopsies: 21 N with Surgical Pathology: 6 N found Malignant: 2	N malignant biopsies: 123 N with Surgical Pathology: 29 N found Malignant: 29	N non diagnostic biopsies: 32 N with Surgical Pathology: NR N found Malignant: NR	3	1	NR
Shannon, 2008 ²⁸	Other: specifyC T or US	235(18G)	118	N benign biopsies: 46 N with Surgical Pathology: 8 N found Malignant: 0	N malignant biopsies: 138 N with Surgical Pathology: 100 N found Malignant: 100	N non diagnostic biopsies: 40 N with Surgical Pathology: 10 N found Malignant: 8	NR	NR	NR

Author, year	Imaging	N of Biopsies (Needle size)	N of surgeries	Benign	Malignant	Non diagnostic	N with Grade on Biopsy	Number Upgraded on Pathology (from 1-2 to 3-4)	Test Results
Sofikerim, 2009 ²⁹	Other: specifyU S, CT or MRI	42(18 G)	42	N benign biopsies: 6 N with Surgical Pathology: 6 N found Malignant: 3	N malignant biopsies: 34 N with Surgical Pathology: 34 N found Malignant: 34	N non diagnostic biopsies: 2 N with Surgical Pathology: 2 N found Malignant: 2	34	18	NR
Vasudevan, 2006 ³¹	Other: specifyeit her ultrasoun d or ct	100(16- G)	53	N benign biopsies: 23 N with Surgical Pathology: 4 N found Malignant: 0	N malignant biopsies: 47 N with Surgical Pathology: 44 N found Malignant: 44	N non diagnostic biopsies: 30 N with Surgical Pathology: 9 N found Malignant: 8	NR	NR	NR
Volpe, 2008 ³²	Other: specifyeit her ultrasoun d or ct	100(17- G)	21	N benign biopsies: 18 N with Surgical Pathology: 0 N found Malignant: 0	N malignant biopsies: 66 N with Surgical Pathology: 20 N found Malignant: 20	N non diagnostic biopsies: 16 N with Surgical Pathology: 3 N found Malignant: 1	12	0	NR
Wang, 2009 ³³	Other: specifyC T or US	110(17 and 18 G)	37	N benign biopsies: 35 N with Surgical Pathology: 1 N found Malignant: 0	N malignant biopsies: 65 N with Surgical Pathology: 31 N found Malignant: 31	N non diagnostic biopsies: 10 N with Surgical Pathology: 2 N found Malignant: 2	NR	NR	NR

N=Number; NR=Not reported; FP:= False Positive; TP: True Positive; FN:=False Negative; TN=True Negative; Sn=Sensitivity; Sp=Specificity; PPV=Positive Predictive value; NPV=Negative Predictive Value; Acc=Accuracy

Table D7: Harms Table for KQs 1 and 2

Author, year	Select Outcome	Patients with outcome(%)	n of EVENTS with outcomes(%)
Campbell, 1997 ⁴	Subcapsular hematoma	10(40)	NR
Campbell, 1997 ⁴	Hemorrhage	0(NR)	NR
Campbell, 1997 ⁴	Tumor seeding	0(NR)	NR
Campbell, 1997 ⁴	Pneumothorax	0(NR)	NR
Campbell, 1997 ⁴	Radiation exposure	25(100)	NR
Vasudevan, 2006 ³¹	Hemorrhage	1(1)	NR
Neuzillet, 2003 ²²	Pain	0(0)	0(0)
Neuzillet, 2003 ²²	Hemorrhage	0(0)	0(0)
Neuzillet, 2003 ²²	Tumor seeding	0(0)	0(0)
Volpe, 2008 ³²	Hemorrhage	1(NR)	NR
Volpe, 2008 ³²	Pain	1(NR)	NR
Volpe, 2008 ³²	Pneumothorax	1(NR)	NR
Volpe, 2008 ³²	Tumor seeding	0(0)	NR
Salem, 2012 ²⁷	Subcapsular hematoma	2(1.4)	NR
Salem, 2012 ²⁷	Flank ecchymosis	1(0.7)	NR
Schmit, 2010 ⁴⁴	Hemorrhage	4(NR)	4(NR)
Park, 2013 ²⁵	Pain	3(NR)	3(NR)
Sofikerim, 2009 ²⁹	Pain	0(NR)	(NR)
Sofikerim, 2009 ²⁹	Hemorrhage	0(NR)	(NR)
Sofikerim, 2009 ²⁹	Tumor seeding	0(NR)	(NR)
Leveridge, 2011 ¹⁶	Tumor seeding	0(NR)	NR
Leveridge, 2011 ¹⁶	Pneumothorax	2(NR)	NR
Leveridge, 2011 ¹⁶	Hematoma	22(NR)	NR
Leveridge, 2011 ¹⁶	Syncope	1(NR)	NR
Leveridge, 2011 ¹⁶	Hematuria	3(NR)	NR
Park, 2013 ²⁵	Hematuria	0(NR)	NR
Park, 2013 ²⁵	Hematoma	9(NR)	NR

Author, year	Select Outcome	Patients with outcome(%)	n of EVENTS with outcomes(%)
Park, 2013 ²⁵	Pain	3(NR)	NR
Shannon, 2008 ²⁸	Hemorrhage	1(NR)	NR
Shannon, 2008 ²⁸	Tumor seeding	0(NR)	NR
Shannon, 2008 ²⁸	Hematoma	1(NR)	NR
Wang, 2009 ³³	Pain	4(NR)	NR
Wang, 2009 ³³	Pneumothorax	0(NR)	NR
Wang, 2009 ³³	Hematoma	2(NR)	NR
Wang, 2009 ³³	Wound infection	1(NR)	NR
Wang, 2009 ³³	Hypotension	1(NR)	NR
Campbell, 1997 ⁴	Pain	0(NR)	NR
Campbell, 1997 ⁴	Hemorrhage	0(NR)	NR
Campbell, 1997 ⁴	Tumor seeding	0(NR)	NR
Campbell, 1997 ⁴	Pneumothorax	0(NR)	NR
Campbell, 1997 ⁴	Radiation exposure	0(NR)	NR
Chyhrai, 2010 ⁷	Pain	1(NR)	NR
Chyhrai, 2010 ⁷	Hemorrhage	1(NR)	NR

N=Number of patients; NR=Not Reported
No Study reported time point of assessment, within arm comparison or between arm comparisons

Evidence Tables for KQs 3a and 3b-Management KQs

Table D8: Study Characteristics Table for KQs 3a and 3b

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Open Partial Nephrect omy vs Open Radical Nephrect omy											
Barbalias, 1999 ⁴⁵	Retrospectiv e cohort	Multiple center Europe	1986	NR	X		X			X	X
Ficarra, 2003 ⁴⁶	Retrospectiv e cohort	Single center Europe	1985	NR	,			Х			
Indudhara, 1997 ⁴⁷	Retrospectiv e cohort	Single center North America	1989	NR	х				x	X	x
Kim, 2010 ⁴⁸	Retrospectiv e cohort	Single center Asia	1995	NR							
Mariusdott ir, 2013 ⁴⁹	Cohort with comparison	Multiple center Europe	2000	NR	X	х	x		Х		
Milonas, 2013 ⁵⁰	Retrospectiv e cohort	Single center Europe	1998	NR	X				X		
Roos, 2012 ⁵¹	Retrospectiv e cohort	Multiple center Europe	1988	NR	X	X	X		X	X	X
Shinohara , 2001 ⁵²	Retrospectiv e cohort	Single center Asia	1986	NR	Х			Х		х	Х
Xu, 2014 ⁵³	Retrospectiv e cohort	Single center Asia	2006	NR						x	X
Partial Nephrect											

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
omy (Techniqu e Unclear)											
vs Radical Nephrect omy (Techniqu e Unclear)											
Antonelli, 2011 ⁵⁴	Retrospectiv e cohort	Multiple center Europe	1995	NR	×						
Antoniewi cz, 2012 ⁵⁵	Prospective cohort	Single center Europe	NR	NR			X				
Badalato, 2011 ⁵⁶	Retrospectiv e cohort with propensity analysis	Multiple center North America SEER databas	1998	NR							
Bedke, 2008 ⁵⁷	Retrospectiv e cohort	Single center Europe	1990	NR	X				X		
Crepel, 2010 ⁵⁸	Retrospectiv e cohort	Multiple center North America	1988	NR							
Crepel, 2010 ⁵⁹	Retrospectiv e cohort	Multiple center North America	1988	NR	X						
Dash, 2006 ⁶⁰	Retrospectiv e cohort	Single center North America	1998	NR			X				

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Daugherty , 2014 ⁶¹	Retrospectiv e cohort	Single center North America	1993	NR	х				x		
Houston, 2009 ⁶²	Retrospectiv e cohort	Multiple center North America	1989	NR	X				X		
Huang, 2006 ⁶³	Retrospectiv e cohort	Single center North America	1989	Govern ment		×					
Huang, 2009 ⁶⁴	Retrospectiv e cohort	Multiple center North America	1995	NR	х				x		
Kates, 2011 ⁶⁵	Retrospectiv e cohort	Multiple center North America	1998	NR					X		
Kopp, 2014 ⁶⁶	Retrospectiv e cohort	Single center North America	2002	No funding	х				x	X	X
Kyung, 2014 ⁶⁷	Retrospectiv e cohort	Single center Asia	2000	NR	x	х	X		Х	х	
Lane, 2010 ⁶⁸	Retrospectiv e cohort	Single center North America	1983	NR	X	X	X		X	X	
Li, 2007 ⁶⁹	Retrospectiv e cohort	Single center Asia	1982	NR	X		X		X		
Li, 2010 ⁷⁰	Retrospectiv e cohort	Single center Asia	1998	Govern ment							
Lowrance, 2010 ⁷¹	Retrospectiv e cohort	Single center	2000	Multiple- specify govt,						X	

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
		North		nonprofi							
		America		t							
McKiernan , 2002 ⁷²	Retrospectiv e cohort	Single center North America	1989	NR	X	X	X				
Medina- Polo, 2011 ⁷³	Retrospectiv e cohort	Single center	1989	NR							
Meskawi, 2013 ⁷⁴	Retrospective cohort with propensity analysis	Europe Multiple center North America SEER databas e	1988	Non- profit	X	X	X		X		
Mitchell, 2006 ⁷⁵	Retrospectiv e cohort	Single center North America	1988	NR	X					X	
Miyamoto, 2012 ⁷⁶	Retrospectiv e cohort	Single center Asia	1999	NR	X	X	X	X	х	Х	X
Patard, 2004 ⁷⁷	Retrospectiv e cohort	Multiple center Multiple- specify Europe, N America	1984	NR	X						
Scosyrev, 2014 ⁷⁸	RCT Post hoc analysis	Multiple center Europe	1992	Non- profit		X	X				
Smaldone, 2012 ⁷⁹	Retrospectiv e cohort	Multiple center North America	1995	Govern ment NCI/NIH /DOD					X		
Sun, 2012 ⁸⁰	Retrospectiv e cohort	Multiple center	1998	No funding		Х				Х	

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
		North									
		America	N.D.	ND							
takagi, 2011 ⁸¹	Retrospectiv e cohort	Single center Asia	NR	NR		X			X		
Tan, 2012 ⁸²	Retrospectiv e cohort	Multiple center North America	1992	Govern ment	X				X		
Thompson, 2008 ⁸³	Retrospectiv e cohort	Single center North America	1989	NR					x		
Tomasze wski, 2014 ⁸⁴	Retrospectiv e cohort	Single center North America	2005	NR						X	X
Uchida, 2004 ⁸⁵	Retrospectiv e cohort	Single center Asia	1992	NR	x					Х	х
Uzzo, 1999 ⁸⁶	Retrospectiv e cohort	Single center North America	1991	NR	X					X	x
Van Poppel, 2011 ⁸⁷	RCT	Multiple center Europe	1992	Govern ment	х		X		X	х	X
Weight, 2010 ⁸⁸	Retrospectiv e cohort	Single center North America	1999	NR							
Weight, 2010 ⁸⁹	Retrospectiv e cohort	Single center North America	1999	NR	х				x		
Weight,20 10 ⁹⁰	Retrospectiv e cohort	Single center North America	1999	Industry	X				X		

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Woldu, 2014 ⁹¹	Retrospectiv e cohort	Single center North America	1992	NR		x	x				
Yasuda, 2012 ⁹²	Retrospectiv e cohort	Single center Asia	2005	NR			X			X	X
Zini, 2009 ⁹³	Retrospectiv e cohort	Multiple center North America	1988	NR					x		
Chung, 2014, ⁹⁴	Retrospectiv e cohort	Multiple center Asia	1999	Non profit	Х		Х	Х	X		
Chang, 2014, ⁹⁵	Retrospectiv e cohort	Single center Asia	2003	Industry		X	Х	Х	X	Х	
Van Poppel, 2006 ⁹⁶	RCT	Multiple center Europe	1992	Govern ment							
O'Malley,2 014, ⁹⁷	Retrospectiv e cohort	Multiple center North America	1988	Not Reporte d	X			Х	X		
Minimally Invasive Partial Nephrect omy vs Minimally Invasive Radical Nephrect omy											
Brewer, 2012 ⁹⁸	Retrospectiv e cohort	Single center North America	2004	NR		X	x			X	X
Deklaj, 2010 ⁹⁹	Retrospectiv e cohort	Single center	2002	NR	Х	X	X		X	Х	X

Author, year	Study design	site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
		North									
la mata ala a	Dunamanting	America	1004	NR							
Janetsche k, 2000 ¹⁰⁰	Prospective cohort	Single center	1994	INK							
K, 2000	COHOIT	Europe			X					Х	X
Kim, 2003 ¹⁰¹	Retrospectiv e cohort	Single center North	1998	NR							
		America			X		X			X	X
Snow, 2008 ¹⁰²	Retrospectiv e cohort	Single center North America	NR	Industry			x				
Zorn,	Retrospectiv	Single	2002	NR			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
2007 ¹⁰³	e cohort	center	2002								
		North America				X	X				X
Minimally Invasive Radical Nephrect omy vs Partial Nephrect omy(uncl ear technique											
Becker, 2014 ¹⁰⁴	Retrospectiv e cohort	Multiple center North America	1992	NR						x	
Minimally Invasive Radical Nephrect omy vs Open Partial											

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Nephrect omy											
Matin, 2002 ¹⁰⁵	Retrospectiv e cohort	Single center North America	1996	NR			x			х	X
Roos, 2010 ¹⁰⁶	Retrospectiv e cohort	Single center Europe	1981	NR	X	X	X		х	х	Х
Open Partial Nephrect omy vs Radical Nephrect omy(uncl ear technique)											
lizuka, 2012 ¹⁰⁷	Retrospectiv e cohort	Single center Asia	1979	NR	X		X		x		×
Minervini, 2012 ¹⁰⁸	Retrospectiv e cohort	Single center Europe	1995	NR	X				X		
Open Radical Nephrect omy vs Partial Nephrect omy(uncl ear technique)	Ratrospactiv	Single	1998	NR							
Jeon,2009 109	Retrospectiv e cohort	Single center Asia	1998	NR		X					
Minimally Invasive											

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Partial Nephrect omy vs Open/Min imally Invasive Radical Nephrect omy											
Gratzke, 2009 ¹¹⁰	Prospective cohort	Single center Europe	2001	NR	X		X		х	х	X
Minimally Invasive Partial Nephrect omy vs Minimally Invasive Thermal Ablation											
Bensalah, 2007 ¹¹¹	Retrospectiv e cohort	Single center North America	2000	NR	х				x	X	X
Desai, 2005 ¹¹²	Retrospectiv e cohort	Single center North America	1997	NR	X		x		x	X	x
Emara, 2014 ¹¹³	Prospective cohort	Single center Europe	2008	NR	X	Х	X		X	X	X
Guillotrea u, 2012 ¹¹⁴	Retrospectiv e cohort	Single center North America	1998	NR	х	x	x			X	x
Haramis, 2012 ¹¹⁵	Retrospectiv e cohort	Single center North America	2005	NR	X		X		X	X	X

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Kiriluk, 2011 ¹¹⁶	Retrospectiv e cohort	Single center North America	2002	NR			x			X	X
Pascal, 2011 ¹¹⁷	Retrospectiv e cohort	Single center North America	1998	NR	х	x	X		x	X	X
Partial Nephrect omy(Tech nique Unclear) vs Thermal Ablation (Techniqu e Unclear)											
Chang, 2014 ¹¹⁸	Retrospectiv e cohort	Single center Asia	2006	NR	Х				x	Х	
Faddegon, 2013 ¹¹⁹	Retrospectiv e cohort	Single center North America	1999	NR			x				
Mues, 2012 ¹²⁰	Retrospectiv e cohort	Multiple center North America and The Netherla nds	1998	NR	X	X	X		X	x	X
Stern, 2007 ¹²¹	Retrospectiv e cohort	Single center North America	1996	NR	x					x	
Thompson , 2014 ¹²²	Retrospectiv e cohort	Single center	2000	No funding	Х				Х		

Author, year	Study design	site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
		North									
Turna, 2009 ¹²³	Prospective cohort	America Single center North	1997	NR							
Whitson, 2012 ¹²⁴	Retrospectiv e cohort	America Multiple center North America	1998	NR	X	X	X		X	X	X
Minimally Invasive Partial Nephrect omy vs Thermal Ablation (Techniqu e Unclear)		7.11.01.00							~		
Olweny, 2012 ¹²⁵	Retrospectiv e cohort	Single center North America	1998	No funding	Х				X		
Tanagho, 2013 ¹²⁶	Retrospectiv e cohort	Single center North America	2000	Non- profit	X		x		X	x	x
Chang, 2015, ¹²⁷	Retrospectiv e cohort	Single center Asia	2005	Not Reporte d	х		X	Х	x	Х	х
Open Partial Nephrect omy vs Thermal Ablation (Techniqu e											

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Klatte, 2011 ¹²⁸	Retrospectiv e cohort	Single center North America	2004	NR	X	x	x			X	X
Mitchell, 2011 ¹²⁹	Retrospectiv e cohort	Single center North America	2003	NR		X	X				
Youn, 2013 ¹³⁰	Prospective cohort	Single center Asia	2007	NR	Х		X			Х	X
Active Surveillan ce vs Partial Nephrect omy (Techniqu e Unclear) vs Radical Nephrect omy (Techniqu e Unclear)	Datasasati	Multiple	4005	Causas							
Patel, 2014 ¹³¹	Retrospectiv e cohort	Multiple center North America	1995	Govern ment	X				X		
Patel, 2014 ¹³²	Retrospectiv e cohort	Multiple center North America	1995	Govern ment Non- Profit	X				X		
Sun, 2013 ¹³³	Retrospectiv e cohort	Multiple center North America	1988	No funding	X						

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source		Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Active Surveillan ce vs Partial Nephrect omy (Techniqu e Unclear) vs Radical Nephrect omy (Techniqu e Unclear) vs Thermal Ablation											
Danzig, 2015, ¹³⁴	Retrospectiv e cohort	Multiple center North America	2009	Govern ment			X				
Radical Nephrect omy(Tech nique Unclear) vs Thermal Ablation (Techniqu e Unclear)											
Takaki, 2014 ¹³⁵	Retrospectiv e cohort	Single center Asia	2002	No funding	х		х		х	х	
Active Surveillan ce vs											

year	Study design	Study site Study location	Start year of recruitment	Funding source		Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival		Perioperative Outcomes
Radical Nephrect omy (Techniqu e Unclear)											
Lane, 2010 ¹³⁶	Retrospectiv e cohort	Single center North America	2000	NR	X	X	X		x		
Thermal ablation vs Partial Nephrect omy (Techniqu e Unclear) vs Radical Nephrect omy (Techniqu e Unclear)											
Choueiri, 2011 ¹³⁷	Retrospectiv e cohort	Multiple center North America	2004	NR	X				x		
Lucas, 2007 ¹³⁸	Retrospectiv e cohort	Single center North America	1995	NR	X	X	X				
Permpong kosol, 2007 ¹³⁹	Retrospectiv e cohort	Single center North America	1993	NR						Х	x
Takaki, 2010 ¹⁴⁰	Retrospectiv e cohort	Single center Asia	2002	NR							

Author, year	Study design	Study site Study location	Start year of recruitment	Funding source		Renal Functional (Categorical)	Renal Functional (Continuous)	Overall Survival		Perioperative Outcomes
Cooper, 2015, ¹⁴¹	Retrospectiv e cohort	Single center North America	2008	Not Reporte d	х		x		Х	
Minimally Invasive Thermal ablation vs Minimally Invasive Partial Nephrect omy vs Minimally Invasive Radical Nephrect omy										
Deklaj,201 0 ¹⁴²	Retrospectiv e cohort	Single center North America	2002	NR		X	x		X	X
Foyil, 2008 ¹⁴³	Retrospectiv e cohort	Single center North America	2000	NR			x			
Thermal ablation vs Open/Min imally Partial Nephrect omy vs Open/Min imally Radical Nephrect omy										

Author, year	Study design	site Study location	Start year of recruitment	Funding source	Oncologic	Renal Functional (Categorical)	Renal Functional (Continuous)	Quality of life	Overall Survival	Harms	Perioperative Outcomes
Kaowalczy k, 2013 ¹⁴⁴	Retrospectiv e cohort	Multiple center North	2005	Govern ment							
A OTIVE OU	DVEU LANGE	America	OLLED STUD	FO)		X				Χ	X
	RVEILLANCE			NR	Tv	Tv	1				1
Abouassal y, 2008 ¹⁴⁵	Retrospectiv e cohort	Single center North America	2000	NK	X	X					
Crispen, 2008 ¹⁴⁶	Retrospectiv e cohort	Single center North America	2000	NR	Х						
Crispen, 2009 ¹⁴⁷	Retrospectiv e cohort	Single center North America	2000	Govern ment Industry	Х						
Jewett, 2011 ¹⁴⁸	Retrospectiv e cohort	Multiple center North America	2004	No funding	X	Х					
Kunkle, 2007 ¹⁴⁹	Other - please specify Retrospectiv e and Prospective cohort	Single center North America	NR	NR	X						
Leonard, 2013 ⁴²	Retrospectiv e cohort	Single center Europe	2007	NR	Х						
Rosales, 2010 ¹⁵⁰	Retrospectiv e cohort	Single center North America	1993	NR	Х	Х					

NR: Not reported; RCT: Randomized Control Trial

Table D9: Participant Characteristics Table for KQs 3a and 3b

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
O'Malley,2014 97	PN (1893)	Mean: NR Median : NR Unit: NR	NR	Mean: 61.7 Media n: NR Range : NR IQR: NR SD: 12.4	W: 1586(83. 8) AA: 204(10.8)) Asian: NR Others: 103(5.4)	NR	NR	NR	NR	NR	NR	NR
O'Malley,2014 97	RN (10864)	Mean: NR Median : NR Unit: NR	NR	Mean: 64.1 Media n: NR Range : NR IQR: NR SD: 12.5	W: 9306(85. 7) AA: 900(8.3) Asian: NR Others: 658(6.1)	NR	NR	NR	NR	NR	NR	NR
Cooper, 2015141	RFA (9)	Mean: NR Median : NR Unit: NR	4(45)	Mean: 51 Media n: NR Range : 40-63 IQR: NR SD: NR	W: 2(22) AA: NR Asian: NR Others: 7(78)	NR	NR	Mean: 52.4 Median: NR Range: NR IQR: NR SD: 12.4 Unit: NR	Mean: 1.14 Median: NR Range: NR IQR: NR SD: 0.57 Unit: NR	NR	NR	NR
Cooper, 2015141	PN (9)	Mean: NR Median : NR	4(45)	Mean: 53 Media n: NR Range	W: 0(0) AA: NR Asian: NR	NR	NR	Mean: 56.6 Median: NR Range: NR IQR: NR	Mean: 10.36 Median: NR Range:	NR	NR	NR

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
		Unit: NR		: 42-66 IQR: NR SD: NR	Others: 9(100)			SD: 7.7 Unit: NR	NR IQR: NR SD: 28.37 Unit: NR			
Cooper, 2015141	RN (31)	Mean: NR Median : NR Unit: NR	13(42)	Mean: 54 Media n: NR Range : 30-88 IQR: NR SD: NR	W: 7(23) AA: NR Asian: NR Others: 24(77)	NR	NR	Mean: 53.5 Median: NR Range: NR IQR: NR SD: 13.2 Unit: NR	Mean: 1.1 Median: NR Range: NR IQR: NR SD: 0.89 Unit: NR	NR	NR	NR
Danzig, 2015134	RN (15)	Mean: 15.4 Median : 10 Unit: months	NR	Mean: 66.5 Media n: 68.6 Range : NR IQR: NR SD: 11.7	W: NR(47) AA: NR(40) Asian: NR Others: NR(13)	Mean: 27.9 Media n: 26.6 Range : NR IQR: NR SD: 6.8	CS: NR H: NR(60) DM: NR(7) CVD: NR(7) CKD-3: NR(27) SK: NR(0)	Mean: 73.34 Median: 74.71 Range: NR IQR: NR SD: 18.26 Unit: ml/min/1.73 m2	NR	NR	NR	0: NR(34) 1: NR(40) 0-1: NR 2: NR(12) ≥2: NR 3: NR(9) 0-2: NR 3+: NR(16)
Danzig, 2015134	PN (65)	Mean: 18.9 Median : 16 Unit: months	NR	Mean: 60.5 Media n: 62.1 Range : NR IQR: NR SD: 10.8	W: NR(74) AA: NR(14) Asian: NR Others: NR(12)	Mean: 29.9 Media n: 28.3 Range : NR IQR: NR SD: 7	CS: NR H: NR(62) DM: NR(23) CVD: NR(2) CKD-3: NR(0)	Mean: 89.69 Median: 89.8 Range: NR IQR: NR SD: 11.68 Unit: ml/min/1.73 m2	NR	NR	NR	0: NR(53) 1: NR(26) 0-1: NR 2: NR(18) ≥2: NR 3: NR(2) 0-2: NR 3+: NR(4)

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
							SK: NR(3)					
Danzig, 2015134	AS (68)	Mean: 19.8 Median : 17 Unit: months	NR	Mean: 71.7 Media n: 73.8 Range : NR IQR: NR SD: 11.3	W: NR(71) AA: NR(21) Asian: NR Others: NR(8)	Mean: 28.7 Media n: 28.5 Range : NR IQR: NR SD: 5.5	CS: NR H: NR(62) DM: NR(32) CVD: NR(7) CKD-3: NR(2) SK: NR(0)	Mean: 81.45 Median: 81.56 Range: NR IQR: NR SD: 12.08 Unit: ml/min/1.73 m2	NR	NR	NR	0: NR(47) 1: NR(33) 0-1: NR 2: NR(13) ≥2: NR 3: NR(7) 0-2: NR 3+: NR(7)
Danzig, 2015134	Cryoablation (14)	Mean: 26.4 Median : 28.5 Unit: months	NR	Mean: 68.6 Media n: 72.3 Range : NR IQR: NR SD: 12.5	W: NR(64) AA: NR(29) Asian: NR Others: NR(7)	Mean: 29.3 Media n: 28.3 Range : NR IQR: NR SD: 5.2	CS: NR H: NR(57) DM: NR(7) CVD: NR(0) CKD-3: NR(0) SK: NR(7)	Mean: 88.55 Median: 84.91 Range: NR IQR: NR SD: 12.6 Unit: ml/min/1.73 m2	NR	NR	NR	0: NR(50) 1: NR(29) 0-1: NR 2: NR(7) ≥2: NR 3: NR(0) 0-2: NR 3+: NR(14)
Chung, 201494	RN(>/=65yea rs) (170)	Mean: 50 Median : NR Unit: months	57(33.5)	Mean: 71 Media n: 70 Range : NR IQR: 67-74 SD: 5.1	NR	Mean: 24.5 Media n: 24 Range : NR IQR: 23-26 SD: 3.2	CS: NR H: 92(54.1) DM: 42(24.7) CVD: NR CKD-3: NR SK: 0(0)	Mean: 72.4 Median: 71 Range: NR IQR: 59-80 SD: 13.1 Unit: ml/min/1.73 m2	Mean: 1 Median: 1 Range: NR IQR: 0.9- 1.1 SD: 0.2 Unit: mg/dl	NR	NR	NR
Chung, 201494	PN(>/=65year s) (170)	Mean: 41	44(25.9)	Mean: 70.7	NR	Mean: 24.4	CS: NR H:	Mean: 72.1 Median: 70	Mean:	NR	NR	NR

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
		Median : NR Unit: months		Media n: 70 Range : NR IQR: 67-74 SD: 4.2		Media n: 24 Range : NR IQR: 22-26 SD: 3.2	98(57.6) DM: 45(26.5) CVD: NR CKD-3: NR SK: 0(0)	Range: NR IQR: 58.9- 79.3 SD: 14.7 Unit: ml/min/1.73 m2	Median: 1 Range: NR IQR: 0.9- 1.2 SD: 0.3 Unit: mg/dl			
Chung, 201494	RN(<65years) (452)	Mean: 48 Median : NR Unit: months	125(27.7)	Mean: 50 Media n: 51 Range: NR IQR: 44-57 SD: 9.1	NR	Mean: 24.4 Media n: 24.3 Range : NR IQR: 22.3- 26.3 SD: 3.3	CS: NR H: 127(28. 1) DM: 44(9.7) CVD: NR CKD-3: NR SK: 0(0)	Mean: 83.4 Median: 80.6 Range: NR IQR: 71.6- 92.1 SD: 14.1 Unit: ml/min/1.73 m2	Mean: 1 Median: 1 Range: NR IQR: 0.8- 1.1 SD: 0.2 Unit: mg/dl	NR	NR	NR
Chung, 201494	PN(<65years) (452)	Mean: 41 Median : NR Unit: months	136(30.1)	Mean: 50 Media n: 51 Range: NR IQR: 44-57 SD: 8.9	NR	Mean: 24.7 Media n: 24.6 Range: NR IQR: 22.5- 26.7 SD: 3.2	CS: NR H: 112(24. 8) DM: 36(8) CVD: NR CKD-3: NR SK: 0(0)	Mean: 83 Median: 81.1 Range: NR IQR: 70.4- 92.4 SD: 13.2 Unit: ml/min/1.73 m2	Mean: 1 Median: 1 Range: NR IQR: 0.8- 1.1 SD: 0.2 Unit: mg/dl	NR	NR	NR
Chang, 201495	RN (339)	Mean: 3 Median : NR	NR	Mean: 61 Media n: NR Range	NR	Mean: 24.4 Media n: NR Range	CS: 78(23) H: 139(40.	Mean: 80.1 Median: NR Range: NR IQR: NR SD: 17.6	Mean: 0.97 Median: NR Range:	NR	NR	NR

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
		Unit: years		: NR IQR: NR SD: 12.8		: NR IQR: NR SD: 3.1	DM: 55(16.1) CVD: NR CKD-3: NR SK: NR	Unit: ml/min/1.73 m2	NR IQR: NR SD: 0.25 Unit: mg/dl			
Chang, 201495	PN (218)	Mean: 3 Median : NR Unit: years	NR	Mean: 60.3 Media n: NR Range : NR IQR: NR SD: 11.4	NR	Mean: 24.3 Media n: NR Range : NR IQR: NR SD: 3	CS: 33(15.1) H: 81(37.3) DM: 34(15.7) CVD: NR CKD-3: NR SK: NR	Mean: 83.9 Median: NR Range: NR IQR: NR SD: 15.1 Unit: ml/min/1.73 m2	Mean: 0.93 Median: NR Range: NR IQR: NR SD: 0.18 Unit: mg/dl	NR	NR	NR
Van Poppel, 200696	RN (273)	Mean: NR Median : NR Unit: NR	91(33.3)	NR	NR	NR	CS: NR H: NR DM: NR CVD: 61(22.3) CKD-3: NR SK: NR	NR	NR	NR	NR	NR
Van Poppel, 200696	PN (268)	Mean: NR Median : NR Unit: NR	87(32.5)	NR	NR	NR	CS: NR H: NR DM: NR CVD: 57(21.3) CKD-3: NR SK: NR	NR	NR	NR	NR	NR
Parker, 2012151	LP (20)	NR	NR	NR	NR	NR	NR	Mean: 77.8 Median:	Mean: 0.97	NR	NR	NR

Author, year, refID	Arm (n)	Actual length of follow-up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
								77.5 Range: 51- 106 IQR: NR SD: 16.2 Unit: ml/min/1.73 m2	Median: NR Range: NR IQR: NR SD: 0.25 Unit: mg/dl			
Parker, 2012151	LR (55)	NR	NR	NR	NR	NR	NR	Mean: 77.6 Median: 78 Range: 35- 110 IQR: NR SD: 16.3 Unit: ml/min/1.73 m2	Mean: 0.93 Median: NR Range: NR IQR: NR SD: 0.18 Unit: mg/dl	NR	NR	NR
Parker, 2012151	OP (72)	NR	NR	NR	NR	NR	NR	Mean: 76.5 Median: 76 Range: 37- 130 IQR: NR SD: 17.8 Unit: ml/min/1.73 m2	NR	NR	NR	NR
Parker, 2012151	OR (25)	NR	NR	NR	NR	NR	NR	Mean: 74 Median: 67 Range: 46- 115 IQR: NR SD: 18.8 Unit: ml/min/1.73 m2	NR	NR	NR	NR

Author, year, refID	Arm (n)	Actual length of follow- up (mean, media n)	Women:n(%)	Age (years)	Race, n(%)	BMI: Mean(Current smoker s, n(%)	GFR	Creatini ne	ASA	ASA score	CCI
	EILLANCE UNC	UNIKULL	ED STUDIES	1	T			1			T	Abougged
Abouassaly, 2008145												Abouassal y, 2008145
Active Surveillance (110)	Median: 24 Unit: months	NR	Median: 81 Range: 76- 79	NR	NR	SK: 9(8)	NR	Median: 1.2 Range: 0.5- 5.0 Unit: mg/dl	Median: 1.2 Range: 0.5-5.0 Unit: mg/dl	NR	0: 16(15) 1: 20(18) 2: 33(30) ≥2: NR(63) 3: 19(17) 3+: 36(33)	Active Surveillanc e (110)
Crispen, 2008146												Crispen, 2008146
Active Surveillance (109)	Median: 26 Unit: months	NR(28)	Mean: 69.8 Median: 73 Range: 35- 87	NR	NR	NR	NR	NR	NR	NR	NR	Active Surveillanc e (109)
Crispen, 2009147												Crispen, 2009147
Active Surveillance (173)	Mean: 31 Median: 24 Unit: months	43(28)	Mean: 69 Median: 71 Range: 35- 88	NR	NR	NR	NR	NR	NR	NR	NR	Active Surveillanc e (173)
Jewett, 2011148			-									Jewett, 2011148

AA: African American; ASA: American Society of Anethesiologists; CCI: Charlson Comorbidity Index; CKD: Chronic Kidney Disease; CS: Current smoker; CVD: Cardiovascular Disease; DM: Diabetes Mellitus; GFR: Glomerular Filtration Rate; H: Hypertension; IQR: Interquartile range; LPN: Laparoscopic partial nephrectomy; LTA: Laparoscopic Thermal Ablation; NA: Not Applicable; NR: Not reported; NSM: Non surgical Management; NSS: Nephron-sparing surgery; OPN: Open partial nephrectomy; ORN: Open Radical Nephrectomy; PN: Partial Nephrectomy; RFA: Radio frequency ablation; RN Radical nephrectomy; SD: Standard deviation; SK: Solitary kidney; W: White

Table D10: Tumor Characteristics Table for KQs 3a and 3b

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Antonelli, 2011 ⁵⁴	RN-cT1a (919)	T1a: 919(100) T1b: 0(0)	NR	Mean: 3.3 SD: 0.7	NR	NR	NR	8(0.9)
Antonelli, 2011 ⁵⁴	PN-cT1a (1068)	T1a: 1068(100) T1b: 0(0)	NR	Mean: 2.8 SD: 0.7	NR	NR	NR	18(1.7)
Antonelli, 2011 ⁵⁴	RN-cT1b (1426)	T1a: 0(0) T1b: 1426(100)	NR	Mean: 5.7 SD: 0.8	NR	NR	NR	3(0.2)
Antonelli, 2011 ⁵⁴	PN-cT1b (198)	T1a: 0(0) T1b: 198(100)	NR	Mean: 5.1 SD: 0.7	NR	NR	NR	5(2.5)
Antoniewicz, 2011 ⁵⁵	RN (33)	T1: 19(NR) T1a: 2(NR) T1b: 17(NR) T2: 10(NR)	NR	NR	NR	NR	NR	NR
Antoniewicz, 2011 ⁵⁵	PN (18)	T1 and T2: NR	NR	NR	NR	NR	NR	NR
Badalato, 2011 ⁵⁶	PN pre- propensity (1047)	T1: 1047(100) T1a: 0(0) T1b: 1047(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 4.86 SD: 8.3	NR	NR	NR	NR
Badalato, 2011 ⁵⁶	RN pre- propensity (10209)	T1: 10209(100) T1a: 0(0) T1b: 10209(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.27 SD: 9.5	NR	NR	NR	NR
Barbalias, 1999 ⁴⁵	Partial nephrectomy (41)	T1: 10(24.4)	NR	Mean: 3.5 Range: 1.2-4.5	BIL: 8(19.5)	Hilar: 13(31.7)	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
		T2: 28(68.3)						
Barbalias, 1999 ⁴⁵	Radical nephrectomy (48)	T1: 9(18.7) T2: 35(72.9)	NR	Mean: 3.8 Range: 1.6-4.8	BIL: 0(0)	Hilar: 17(35.4)	NR	NR
Becker, 2014 ¹⁰⁴	PN (1251)	T1: 1251(100)	CC: 938(75) Others: 313(25)	Mean: 2.9 Range: 0.1-7 IQR: 2.0-3.5 SD: 2.5	NR	NR	NR	NR
Becker, 2014 ¹⁰⁴	Overall (2277)	T1: 2277(100)	CC: 1721(75.6) Others: 556(24.4)	Mean: 3.3 Range: 0.1-7 IQR: 2.2-4.1 SD: 3	NR	NR	NR	NR
Becker, 2014 ¹⁰⁴	LRN (1066)	T1: 1066(100)	CC: 783(76.3) Others: 243(23.7)	Mean: 3.8 Range: 0.1-7 IQR: 2.7-5.0 SD: 3.7	NR	NR	NR	NR
Bedke, 2008 ⁵⁷	RN (398)	T1: 331(83.2) T2: 67(16.8) T1 and T2: 398(100)	CC: 318(82.4) Pap: 47(12.2) Chro: 21(5.4)	NR	NR	NR	NR	NR
Bedke, 2008 ⁵⁷	PN (66)	NR	CC: 53(80.3) Pap: 9(13.6) Chro: 4(6.1)	NR	NR	NR	NR	NR
Bensalah, 2007 ¹¹¹	LPN (50)	NR	NR	Mean: 2.6 SD: 0.9	NR	NR	NR	NR
Bensalah, 2007 ¹¹¹	LRFA (38)	NR	NR	Mean: 2.3 SD: 0.7	NR	NR	NR	NR
Brewer, 2012 ⁹⁸	MPN (45)	T1 and T2: 45(100)	CC: 29(64.4) Others: 16(35.5)	Mean: 5.3 SD: 1.3	RT: 21(46.7) BIL: 0(0)	NR	Mean: 23.6	2(4.4)
Brewer, 2012 ⁹⁸	MRN (108)	T1 and T2: 108(100)	CC: 91(84.3) Others: 17(15.7)	Mean: 6.8 SD: 1.7	RT: 51(47.2) BIL: 0(0)	NR	NR	1(0.9)
Chang, 2014 ¹¹⁸	RFA (27)	T1a: 0(0) T1b: 27(100) T2: 0(0)	CC: 24(88.9) Pap: 1(3.7) Chro: 1(3.7) Others: 1(3.7)	NR	RT: 14(51.9) LT: 13(48.1)	NR	NR	NR
Chang, 2014 ¹¹⁸	PN (29)	T1a: 0(0) T1b:	CC: 24(82.8) Pap: 2(6.9)	NR	RT: 17(58.6) LT: 12(41.4)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
		29(100) T2: 0(0)	Chro: 3(10.3) Others: 0(0)					
Choueiri, 2011 ¹³⁷	TA (578)	T1: 578(100) T1a: 537(93.4) T1b: 38(6.6)	CC: 246(42.6) Pap: 76(13.2) Chro: 15(2.6) Others: 241(41.7)	NR	NR	NR	NR	NR
Choueiri, 2011 ¹³⁷	PN (4402)	T1: 4402(100) T1a: 3763(85.9) T1b: 618(14.1)	CC: 2409(54.7) Pap: 789(17.9) Chro: 301(6.8) Others: 903(20.5)	NR	NR	NR	NR	NR
Choueiri, 2011 ¹³⁷	RN (10165)	T1: 10165(100) T1a: 5453(53.8) T1b: 4693(46.3)	CC: 6322(62.2) Pap: 1050(10.3) Chro: 560(5.5) Others: 2233(22)	NR	NR	NR	NR	NR
Crepel, 2010 ⁵⁸	PN-Matched for Age,Tumor Size, and Year of Surgery (1564)	T1a: 1564(100)	CC: 1282(82) Pap: 192(12.3) Chro: 58(3.7) Others: 32(2)	Mean: 2.5 Median: 2.5	NR	NR	NR	NR
Crepel, 2010 ⁵⁸	RN-Matched for Age,Tumor Size, and Year of Surgery (3955)	T1a: 3955(100)	CC: 3273(87.8) Pap: 331(8.4) Chro: 106(2.7) Others: 45(1.1)	Mean: 2.8 Median: 2.8	NR	NR	NR	NR
Crepel, 2010 ⁵⁸	PN-Matched for Age,Tumor Size, Year of Surgery,and Furhman Grade (961)	T1a: 961(100)	CC: 806(83.9) Pap: 107(11.1) Chro: 35(3.6) Others: 13(1.4)	Mean: 2.5 Median: 2.5	NR	NR	NR	NR
Crepel, 2010 ⁵⁸	RN-Matched for Age,Tumor Size, Year of Surgery,and	T1a: 2341(100)	CC: 2058(87.9) Pap: 210(9) Chro: 53(2.3) Others: 20(0.9)	Mean: 2.8 Median: 3	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
	Furhman Grade (2341)							
Crepel, 2010 ⁵⁹	PN (275)	T1b: 275(100)	CC: 214(77.8) Pap: 46(16.7) Chro: 11(4)	Mean: 5.2 Median: 5	NR	NR	NR	NR
Crepel, 2010 ⁵⁹	RN (1100)	T1b: 1100(100)	CC: 1001(91) Pap: 60(5.5) Chro: 24(2.2)	Mean: 5.2 Median: 5	NR	NR	NR	NR
Dash, 2006 ⁶⁰	PN (45)	T1b: 45(100) T2: 0(0) T1 and T2: 0(0)	CC: 45(100)	Mean: 4.85 SD: 0.94	NR	NR	NR	0(0)
Dash, 2006 ⁶⁰	RN (151)	T1b: 151(100) T2: 0(0) T1 and T2: 0(0)	CC: 151(100)	Mean: 5.42 SD: 0.89	NR	NR	NR	NR
Daugherty, 2014 ⁶¹	Radical Nephrectomy (494)	T1a: 494(100)	CC: 211(42.7) Pap: 21(4.3) Chro: 13(2.6) Sac: 0(0) RC: 249(50.4) Others: 0(0)	NR	NR	NR	NR	NR
Daugherty, 2014 ⁶¹	Partial Nephrectomy (222)	T1a: 222(100)	CC: 95(42.8) Pap: 19(8.6) Chro: 5(2.3) Sac: 0(0) RC: 102(45) Others: 0(0)	NR	NR	NR	NR	NR
Deklaj, 2010 ⁹⁹	Partial nephrectomy (33)	T1a: 8(NR) T1b: 12(NR) T2: 2(NR)	CC: 13(NR) Pap: 9(NR) Chro: 3(NR)	Mean: 4.8 Range: 4.1-7	NR	NR	Mean: 34 Range: IQR: 28.7-38.2	NR
Deklaj, 2010 ⁹⁹	Radical nephrectomy (52)	T1a: 6(NR) T1b: 31(NR) T2: 1(NR)	CC: 35(NR) Pap: 9(NR) Chro: 3(NR)	Mean: 5.2 Range: 4.1-7	NR	NR	NR	NR
Deklaj,2010 ¹	LRN (19)	T1a: 19(100)	NR	Mean: 3.3 SD: 0.6	RT: 13(68.4)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Deklaj,2010 ¹	LPN (28)	T1a: 28(100)	NR	Mean: 2.4 SD: 0.8	RT: 18(64.3)	NR	Mean: 28	0(0)
Deklaj,2010 ¹	LAT (19)	T1a: 19(100)	NR	Mean: 2.7 SD: 0.9	RT: 11(57.9)	NR	NR	NR
Desai, 2005 ¹¹²	Laparascopic PN (153)	T1a: 153(100) T1b: 0(0)	CC: 0.7(64) Pap: 61(32) Chro: 31(NR) RC: NR(104) Others: 68(NR)	Mean: 2.25 Range: 0.7 - 3 SD: 0.67	RT: NR(93) LT: 61(NR)	Hilar: NR(0) Exophytic: 0(NR)	Mean: 30.2	8.5(1)
Desai, 2005 ¹¹²	Cryoablation (89)	T1a: 89(100) T1b: 0(0)	CC: 0(28) Pap: 56(19) Chro: 38(NR) RC: NR(50) Others: 56(NR)	Mean: 2.05 Range: 0.6 - 3 SD: 0.56	RT: NR(45) LT: 51(NR)	Hilar: NR(0) Exophytic: 0(NR)	Mean: 0	NR(0)
Emara, 2014 ¹¹³	Cryoablation (56)	NR	CC: 27(48.2) Pap: 7(12.5) Chro: 5(8.9) Sac: 0(0) RC: 39(69) Others: 17(30.4)	Mean: 2.56	RT: 21(NR) LT: 35(NR)	NR	NR	NR
Emara, 2014 ¹¹³	Robot assisted partial nephrectomy (47)	NR	CC: 19(40.42553191 48936) Pap: 9(19.148936170 2128) Chro: 3(6.3829787234 0426) Sac: 0(0) RC: 33(70.21276595 74468) Others: 14(29.78723404 25532)	Mean: 3.28	RT: 24(NR) LT: 23(NR)	NR	NR	NR
Faddegon, 2013 ¹¹⁹	PN (142)	NR	NR	Median: 2.31 SD: 0.78	NR	NR	NR	NR
Faddegon, 2013 ¹¹⁹	RFA (205)	NR	NR	Median: 3.1 SD: 2.8	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Ficarra, 2003 ⁴⁶	RN (88)	T1: 88(100)	NR	NR	NR	NR	NR	NR
Ficarra, 2003 ⁴⁶	NSS (56)	T1: 56(100)	NR	NR	NR	NR	NR	NR
Foyil, 2008 ¹⁴³	LPN-Non (55)	NR	NR	Mean: 2.4 Range: 0.7-9.0	NR	NR	NR	NR
Foyil, 2008 ¹⁴³	LPN-Warm ischemia (37)	NR	NR	Mean: 3.1 Range: 1.4-7.0	NR	NR	Mean: 27	NR
Foyil, 2008 ¹⁴³	LPN-Cold ischemia (6)	NR	NR	Mean: 2.9 Range: 2.0-3.6	NR	NR		NR
Foyil, 2008 ¹⁴³	LRN (50)	NR	NR	Mean: 5.9 Range: 1.7-15.9	NR	NR	NR	NR
Foyil, 2008 ¹⁴³	Cryo (49)	NR	NR	Mean: 2.5 Range: 1.3-6.0	NR	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Retroperitoneos copic radical nephrectomy (36)	T1a: 15(NR) T1b: 21(NR) T2: 0(NR)	NR	NR	NR	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Open radical nephrectomy (37)	T1a: 9(NR) T1b: 20(NR) T2: 8(NR)	NR	NR	NR	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Nephron- sparing surgery (44)	T1a: 35(NR) T1b: 6(NR) T2: 1(NR)	NR	NR	NR	NR	NR	NR
Guillotreau, 2012 ¹¹⁴	RPN (210)	T1a: 210(100) T1b: 0(0)	NR	Mean: 2.4 SD: 0.8	RT: 108(51)	NR	Median: 17 IQR:100- 300	3(1.9)
Guillotreau, 2012 ¹¹⁴	LCA (226)	T1a: 226(100) T1b: 0(0)	NR	Mean: 2.2 SD: 0.9	RT: 119(51)	NR	NR	NR
Haramis, 2012 ¹¹⁵	LCA (75)	T1a: 75(100)	CC: 33(NR) Pap: 16(NR) Chro: 2(NR)	Mean: 2 Range: 0.4-7.5	RT: 36(39.6) LT: 55(60.4)	Hilar: 5(5.5) Exophytic: 42(46.1) Endophytic: 16(17.6)	NR	0(NR)

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Haramis, 2012 ¹¹⁵	LPN (92)	T1a: 92(100)	CC: 40(NR) Pap: 15(NR) Chro: 11(NR)	Mean: 1.9 Range: 0.3-4.5	RT: 46(48.4) LT: 49(51.6)	Hilar: 5(5.3) Exophytic: 48(50.5) Endophytic: 15(15.8)	Mean: 24.5 Range: 11-40	2(NR)
Houston, 2009 ⁶²	RN (873)	T1b: 873(100)	CC: 629(72) Pap: 100(12) Chro: 50(6) Others: 94(11)	NR	NR	NR	NR	NR
Houston, 2009 ⁶²	PN (286)	T1b: 286(100)	CC: 155(54) Pap: 60(21) Chro: 32(11) Others: 39(13.4)	NR	NR	NR	NR	NR
Huang, 2006 ⁶³	GFR>60 radical (204)	NR	CC: 127(62) Chro: 16(8) Others: 61(29)	Median: 3 IQR: 2.5-3.5	NR	NR	NR	NR
Huang, 2006 ⁶³	GFR>60 partial (287)	NR	CC: 160(56) Chro: 32(11) Others: 95(33)	Median: 2.4 IQR: 1.8-3	NR	NR	NR	NR
Huang, 2006 ⁶³	GFR>45 partial (385)	NR	CC: 206(54) Chro: 44(11) Others: 135(35)	Median: 2.5 IQR: 1.8-3	NR	NR	NR	NR
Huang, 2006 ⁶³	GFR>45 radical (262)	NR	CC: 161(61) Chro: 19(7) Others: 82(32)	Median: 3 IQR: 2.5-3.5	NR	NR	NR	NR
Huang, 2009 ⁶⁴	PN (556)	T1a: 556(100)	NR	NR	NR	NR	NR	NR
Huang, 2009 ⁶⁴	RN (2435)	T1a: 2435(100)	NR	NR	NR	NR	NR	NR
lizuka, 2012 ¹⁰⁷	T1b-Partial Nephrectomy (67)	T1a: 0(0) T1b: 67(100) T2: 0(0)	NR	Mean: 48.9 Median: 47 Range: 41-68	NR	NR	NR	NR
lizuka, 2012 ¹⁰⁷	T1b-Radical Nephrectomy (195)	T1a: 0(0) T1b: 195(100) T2: 0(0)	NR	Mean: 52.7 Median: 50 Range: 41-70	NR	NR	NR	NR
lizuka, 2012 ¹⁰⁷	T1a-Partial Nephrectomy (324)	T1a: 324(100) T1b: 0(0) T2: 0(0)	NR	Mean: 24.8 Median: 24 Range: 8-40	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Indudhara,19 97 ⁴⁷	nephron sparing surgery (35)	T1 and T2: 35(100)	RC: 31(88.57142857 14286) Others: 4(11.428571428 5714)	NR	BIL: 3(8.57142857142857) MUL: 3(8.57142857142857)	NR	NR	NR
Indudhara,19 97 ⁴⁷	radical nephrectomy (72)	T1 and T2: 71(100)	RC: 68(95.77464788 73239) Others: 3(4.2253521126 7606)	NR	BIL: 2(2.8169014084507) MUL: 3(4.22535211267606)	NR	NR	NR
Janetschek, 2000 ¹⁰⁰	Partial nephrectomy (25)	T1: 18(NR)	NR	Mean: 1.9 Range: 1-5	RT: 10(NR) LT: 15(NR)	NR	NR	NR
Janetschek, 2000 ¹⁰⁰	Radical nephrectomy (73)	T1: 59(NR)	NR	Mean: 3.8 Range: 3-6	RT: 39(NR) LT: 34(NR)	NR	NR	NR
Jeon,2009 ¹⁰⁹	PN (96)	NR	NR	Mean: 2.2 Median: 2.2 Range: 0.7-4.0 SD: 0.08	NR	NR	NR	NR
Jeon,2009 ¹⁰⁹	RN (129)	NR	NR	Mean: 2.9 Median: 3 Range: 1.0-4.0 SD: 0.08	NR	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Ablation (211)	T1a: 211(100)	CC: 71(33.7) Others: 110(52.1)	NR	NR	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	MIPN (160)	T1a: 160(100)	CC: 74(46.3) Pap: 32(20) Chro: 13(8.1) Others: 41(25.6)	NR	NR	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	OPN (330)	T1a: 330(100)	CC: 156(47.3) Pap: 54(16.4) Chro: 29(8.8) Others: 91(27.6)	NR	NR	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	MIRN (535)	T1a: 535(100)	CC: 311(58.1) Pap: 62(11.6) Chro: 31(5.8)	NR	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
			Others: 131(24.5)					
Kaowalczyk, 2013 ¹⁴⁴	ORN (404)	T1a: 404(100)	CC: 227(56.2) Pap: 51(12.6) Chro: 25(6.2) Others: 101(25)	NR	NR	NR	NR	NR
Kates, 2011 ⁶⁵	PN (2301)	T1a: 2301(100)	NR	Mean: 1.57	NR	NR	NR	NR
Kates, 2011 ⁶⁵	RN (1915)	T1a: 1915(100)	NR	Mean: 1.61	NR	NR	NR	NR
Kim, 2003 ¹⁰¹	Partial nephrectomy (79)	T1: 56(94.9) T2: 0(0)	CC: 44(74.6) Pap: 10(16.9) Chro: 3(5.1) RC: 59(NR) Others: 2(3.4)	Mean: 2.58 Median: Range: 1.1-4.5 IQR: SD: 0.9	BIL: 0(0) MUL: 0(0)	NR	Mean: 26.7 Range: 13-42	2(4.7)
Kim, 2003 ¹⁰¹	Radical nephrectomy (35)	T1: 23(79.3) T2: 4(13.8)	CC: 21(72.4) Pap: 5(17.2) Chro: 2(6.9) RC: 29(NR) Others: 1(3.4)	Mean: 2.78 Range: 0.9-4.5 SD: 1.2	BIL: 0(0) MUL: 0(0)	NR	NR	0(0)
Kim, 2010 ⁴⁸	PN (18)	T1a: 0(0) T1b: 18(100) T2: 0(0)	CC: 13(72.2) Pap: 3(16.7) Others: 2(11.1)	NR	NR	NR	NR	NR
Kim, 2010 ⁴⁸	RN (52)	T1a: 0(0) T1b: 52(100) T2: 0(0)	CC: 43(82.7) Pap: 6(11.5) Others: 3(5.8)	NR	NR	NR	NR	NR
Kiriluk, 2011 ¹¹⁶	LPN (51)	T1: 51(100)	CC: 31(NR) Pap: 6(NR) Chro: 3(NR) RC: 40(NR) Others: 11(NR)	Mean: 2.27 Range: 0.80-5.10	RT: 24(47.1)	Hilar: 4(7.8) Exophytic: 39(76.5) Endophytic: 6(11)	Mean: 29.3 Range: 13-55	NR
Kiriluk, 2011 ¹¹⁶	LAT (51)	T1: 51(100)	CC: 11(NR) Pap: 10(NR) Chro: 2(NR) RC: 23(NR) Others: 28(NR)	Mean: 2.35 Range: 0.99-4.90	RT: 26(53)	Hilar: 2(4) Exophytic: 45(88.2) Endophytic: 0(0)	NR	NR
Klatte, 2011 ¹²⁸	Cryoablation (41)	T1a: 41(100)	CC: 27(77) Pap: 3(9) Chro: 5(14)	Median: 2.5 Range: 1-4	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Klatte, 2011 ¹²⁸	PN (82)	T1a: 82(100)	CC: 50(72) Pap: 11(16) Chro: 8(12)	Median: 2.5 Range: 1-4	NR	NR	NR	NR
Kopp, 2014 ⁶⁶	RN (122)	T1: 0(0) T2: 122(100)	CC: 94(79.7) Pap: 18(15.3) Chro: 6(5.1) Sac: 7(5.9)	Mean: 10.2 SD: 2.7	NR	NR	NR	NR
Kopp, 2014 ⁶⁶	PN (80)	T1: 0(0) T2: 80(100)	CC: 57(82.6) Pap: 11(15.9) Chro: 1(1.4) Sac: 4(5.8)	Mean: 8.8 SD: 1.6	NR	NR	NR	NR
Kyung, 2014 ⁶⁷	Radical Nephrectomy (82)	T1: 82(100) T1a: 33(40.2) T1b: 49(59.8)	CC: 72(87.8) Pap: 4(4.9) Others: 6(7.3)	Mean: 4.44 SD: 1.3	NR	NR	NR	NR
Kyung, 2014 ⁶⁷	Partial Nephrectomy (53)	T1: 53(100) T1a: 51(96.2) T1b: 2(3.8)	CC: 44(84.9) Pap: 6(9.4) Others: 3(4.7)	Mean: 2.42 SD: 0.89	NR	NR	NR	NR
Lane, 2010 ⁶⁸	PN Limited ischemia (804)	T1: 804(NR) T1b: 154(19)	NR	Median: 2.8 IQR: 2-3.7	NR	NR	Range: 0- 30	NR
Lane, 2010 ⁶⁸	PN Unknown ischemia (546)	T1: 546(NR) T1b: 143(26)	NR	Median: 3 IQR: 2.2-4.2	NR	NR	NR	NR
Lane, 2010 ⁶⁸	PN Extended ischemia (483)	T1: 483(NR) T1b: 72(15)	NR	Median: 2.9 IQR: 2.2-3.6	NR	NR	Range: >=30	NR
Lane, 2010 ⁶⁸	RN (569)	T1: 569(NR) T1b: 362(64)	NR	Median: 4.7 IQR: 3.6-5.9	NR	NR	NR	NR
Lane, 2010 ¹³⁶	Active surveillance (105)	T1: 105(100) T1a:	RC: 2(1.9) Others: 103(97.8)	Median: 2.3 IQR: 1.6-3.3	BIL: 5(5)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
		90(86) T1b: 15(14) T2: 0(0) T1 and T2: 105(100)						
Lane, 2010 ¹³⁶	Radical Nephrectomy (146)	T1: 146(100) T1a: 60(41) T1b: 86(59) T2: 0(0) T1 and T2: 146(100)	RC: 88(60) Others: 58(39)	Median: 4.6 IQR: 3.5-5.8	BIL: 9(6)	NR	NR	NR
Li, 2007 ⁶⁹	PN (35)	T1a: 16(NR) T1b: 17(NR) T2: 2(NR)	CC: 28(79.5) Pap: 3(8.8) Chro: 2(5.9) Others: 2(5.8)	Mean: 3.8 Range: 1.5-7 SD: 1.3	NR	NR	NR	NR
Li, 2007 ⁶⁹	RN (128)	T1: 128(100)	CC: 109(85.1) Pap: 6(4.7) Chro: 10(7.8) Others: 3(2.4)	Mean: 4.5 Range: 1-6.5 SD: 1.4	NR	NR	NR	NR
Li, 2010 ⁷⁰	mm-NSS (135)	T1a: 135(100)	CC: 105(77.8) Pap: 18(13.3) Chro: 9(6.7) Others: 3(2.2)	Mean: 3.3 Median: 3.5 Range: 1-4	BIL: 0(0) MUL: 0(0)	NR	Mean: 16	0(0)
Li, 2010 ⁷⁰	1cm-NSS (98)	T1a: 98(100)	CC: 78(79.6) Pap: 15(15.3) Chro: 4(4.1) Others: 1(1)	Mean: 2.9 Median: 3.2 Range: 1-4	BIL: 0(0) MUL: 0(0)	NR	NR	0(0)
Li, 2010 ⁷⁰	RN (156)	T1a: 156(100)	CC: 125(80.1) Pap: 23(14.7) Chro: 8(5.1)	Mean: 3 Median: 3.3 Range: 1.5-4	BIL: 0(0) MUL: 0(0)	NR	NR	NR
Lowrance, 2010 ⁷¹	PN (61)	NR	NR	Median: 2.8 IQR: 2.0,3.8	NR	NR	NR	NR
Lowrance, 2010 ⁷¹	RN (63)	NR	NR	Median: 5.7 IQR: 4.0,7.5	NR	NR	NR	NR
Lucas, 2007 ¹³⁸	RFA (86)	T1a: 86(100)	CC: 36(73.5) Pap: 6(12.2)	Mean: 2.34	BIL: 0(0)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
		T1b: 0(0) T2: 0(0)	Chro: 7(14.3) Others: 0(0)					
Lucas, 2007 ¹³⁸	PN (85)	T1a: 85(100) T1b: 0(0) T2: 0(0)	CC: 44(68.8) Pap: 12(18.8) Chro: 4(6.3) Others: 4(6.3)	Mean: 2.63	BIL: 0(0)	NR	NR	7(8.2)
Lucas, 2007 ¹³⁸	RN (71)	T1a: 71(100) T1b: 0(0) T2: 0(0)	CC: 48(77.3) Pap: 6(9.7) Chro: 4(6.5) Others: 4(6.5)	Mean: 3.16	BIL: 0(0)	NR	NR	NR
Mariusdottir, 2013 ⁴⁹	Partial nephrectomy (44)	T1: 39(87) T2: 2(4)	CC: 37(84) Pap: 5(11) Chro: 2(5)	Mean: 3 Range: 0.8-7.0	NR	NR	NR	NR
Mariusdottir, 2013 ⁴⁹	Radical nephrectomy (44)	T1: 41(93) T2: 0(0)	CC: 37(84) Pap: 4(9) Chro: 3(7)	Mean: 3.3 Range: 1.8-5.0	NR	NR	NR	NR
Matin, 2002 ¹⁰⁵	Nephron sparing surgery (82)	T1a: 82(100)	NR	Mean: 2.6	RT: (52.5) LT: (47.5)	NR	NR	NR
Matin, 2002 ¹⁰⁵	Laparoscopic radical nephrectomy (35)	T1a: 35(100)	CC: NR Pap: NR Chro: NR Sac: NR RC: NR Others: NR	Mean: 3.1	RT: (62.9) LT: (37.1)	NR	NR	NR
McKiernan, 2002 ⁷²	Partial nephrectomy (117)	T1a: 117(100)	CC: 72(0.615384615 384615) Pap: 21(0.179487179 487179) Chro: 14(0.119658119 65812) Others: 10(0.085470085 4700855)	Mean: 2.3 Range: 0.9-4.0	NR	NR	NR	NR
McKiernan, 2002 ⁷²	Radical nephrectomy (173)	T1a: 173(100)	CC: 106(0.61271676 300578) Pap:	Mean: 2.9 Range: 1.1-4.0	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
			27(0.156069364 16185) Chro: 10(0.057803468 2080925) Others: 30(0.173410404 624277)					
Medina-Polo, 2011 ⁷³	NSS (116)	T1a: (59) T1b: (41)	CC: (53) Pap: (8) Chro: (10) Others: (29)	Mean: 36.8 SD: 18.3	NR	NR	NR	(3.4)
Medina-Polo, 2011 ⁷³	Radical nephrectomy (174)	T1a: (51) T1b: (49)	CC: (56) Pap: (14) Chro: (9) Others: (21)	Mean: 42.9 SD: 14.2	NR	NR	Mean: 19.7	NR
Meskawi, 2013 ⁷⁴	PN pre- propensity (1526)	T1: 1526(100) T1a: 0(0) T1b: 1526(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.14 Median: 5 IQR: 4.5-5.5	NR	NR	NR	NR
Meskawi, 2013 ⁷⁴	RN pre- propensity (14807)	T1: 14807(100) T1a: 0(0) T1b: 14807(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.48 Median: 5.5 IQR: 4.8-6	NR	NR	NR	NR
Meskawi, 2013 ⁷⁴	PN post- propensity (1525)	T1: 1525(100) T1a: 0(0) T1b: 1525(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.14 Median: 5 IQR: 4.5-5.5	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Meskawi, 2013 ⁷⁴	RN post- propensity (6104)	T1: 6104(100) T1a: 0(0) T1b: 6104(100) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.15 Median: 5 IQR: 4.5-5.5	NR	NR	NR	NR
Milonas, 2013 ⁵⁰	NSS (34)	T1: 34(100) T1b: 34(100)	CC: NR(85.3) Pap: NR(11.8) Chro: NR(2.9)	Mean: 4.67 SD: 0.72	BIL: 0(0) MUL: 0(0)	NR	NR	NR
Milonas, 2013 ⁵⁰	RN (317)	T1: 317(100) T1b: 317(100)	CC: NR(86.8) Pap: NR(4.7) Chro: NR(1.3) Others: NR(7.3)	Mean: 5.25 SD: 0.95	BIL: 0(0) MUL: 0(0)	NR	NR	NR
Minervini, 2012 ¹⁰⁸	RN (143)	T1: 143(100)	CC: 124(86.7) Pap: 7(4.9) Chro: 11(7.7) Others: 1(0.7)	Mean: 4.9 SD: 1.4	NR	NR	NR	NR
Minervini, 2012 ¹⁰⁸	TE (332)	T1: 332(100) NR	CC: 261(78.6) Pap: 39(11.8) Chro: 27(8.1) Others: 5(1.5)	Mean: 3.2 SD: 1.1	NR	NR	NR	NR
Mitchell, 2006 ⁷⁵	PN (33)	NR	CC: 24(72.7) Pap: 6(18.2) Chro: 3(9.1)	Mean: 5.2 Range: 4.0-15 SD: 2.2	NR	NR	NR	2(6.1)
Mitchell, 2006 ⁷⁵	RN (66)	NR	CC: 58(87.8) Pap: 4(6.1) Chro: 4(6.1)	Mean: 5.2 Range: 4.0-15 SD: 2.2	NR	NR	NR	5(7.6)
Mitchell, 2011 ¹²⁹	Ablation (50)	NR	NR	Median: 3.5 Range: 0.7-13	NR	NR	NR	NR
Mitchell, 2011 ¹²⁹	PN (62)	NR	NR	Median: 2.5 Range: 1.2-7.3	NR	NR	Mean: 18 Range: 13-22	NR
Miyamoto, 2012 ⁷⁶	RN (152)	NR	NR	Mean: 4.56 SD: 2.29	BIL: NR(0) MUL: 0(NR)	NR	NR	NR
Miyamoto, 2012 ⁷⁶	PN (59)	NR	NR	Mean: 2.22 SD: 0.59	BIL: NR(0) MUL: 0(NR)	NR	NR	NR
Miyamoto, 2012 ⁷⁶	RN (152)	NR	NR	Mean: 4.56 SD: 2.29	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Miyamoto, 2012 ⁷⁶	PN (59)	NR	NR	Mean: 2.22 SD: 0.59	NR	NR	NR	NR
Mues, 2012 ¹²⁰	Thermal Ablation (98)	NR	CC: 51(48.6) Pap: 5(4.8) Chro: 0(0) RC: 56(53.3) Others: 49(46.7)	Mean: 2.5 Range: 1-4.4	RT: 50(48) LT: 48(46) BIL: 0(0)	NR	NR	NR
Mues, 2012 ¹²⁰	Partial nephrectomy (PN) (100)	NR	CC: 70(70) Pap: 18(18) Chro: 3(3) RC: 94(94) Others: 6(6)	Mean: 3.9 Range: 1.0-10.0	RT: 56(56) LT: 42(42) BIL: 0(0)	NR	Mean: 28.5 Range: 0- 91	9(18)
Olweny, 2012 ¹²⁵	RFA (37)	T1a: 37(100)	CC: 25(67.6) Pap: 9(24.3) Chro: 1(2.7) Others: 2(5.6)	Median: 2.1 IQR: 1.8-2.8	NR	NR	NR	NR
Olweny, 2012 ¹²⁵	PN (37)	T1a: 37(100)	CC: 28(77.8) Pap: 3(8.3) Chro: 3(8.3) Others: 2(5.6)	Median: 2.5 IQR: 1.7-3.1	NR	NR	NR	NR
Pascal, 2011 ¹¹⁷	LPN (48)	T1: 47(98) T1a: 38(79) T1b: 9(19) T2: 1(2) T1 and T2: 48(100)	CC: 30(62.5) Pap: 4(8.3) Chro: 2(4.2) Sac: 0(0) RC: 36(75) Others: 12(25)	Mean: 3.2 SD: 1.33	RT: 26(54.2) LT: 22(45.8) BIL: 0(0) MUL: 0(0)	Hilar: 5(10.7)	Mean: 24	2(4.2)
Pascal, 2011 ¹¹⁷	Laparoscopic Renal cryoablation (30)	T1: 30(100) T1a: 24(80) T1b: 6(20) T2: 0(0) T1 and T2: 30(100)	CC: 20(66.7) Pap: 2(6.7) Chro: 0(0) Sac: 0(0) RC: 25(83.3) Others: 5(16.7)	Mean: 2.6 SD: 1.08	RT: 14(46.7) LT: 16(53.3) BIL: 0(0) MUL: 5(16.7)	Hilar: 2(6.7)	Mean: 0	0(0)
Patard, 2004 ⁷⁷	PN (379)	T1: 379(100) T2: 0(0) T1 and T2: 0(0)	CC: 310(82.7) Pap: 46(12.3) Chro: 19(5) RC: 379(100) Others: 0(0)	NR	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Patard, 2004 ⁷⁷	RN (1075)	T1: 1075(100) T2: 0(0) T1 and T2: 0(0)	CC: 909(85.8) Pap: 123(11.6) Chro: 27(2.6) RC: 1075(100) Others: 0(0)	NR	NR	NR	NR	NR
Patard, 2004 ⁷⁷	PN-T1a (314)	T1: NR T1a: 314(21.6) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 2.5 SD: 0.8	NR	NR	NR	NR
Patard, 2004 ⁷⁷	RN T1a (499)	T1a: 499(78.4) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 3.2 SD: 0.8	NR	NR	NR	NR
Patard, 2004 ⁷⁷	PN-T1b (65)	T1a: 0(0) T1b: 65(10.1) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.3 SD: 0.8	NR	NR	NR	NR
Patard, 2004 ⁷⁷	RN T1b (576)	T1a: 0(0) T1b: 576(89.9) T2: 0(0) T1 and T2: 0(0)	NR	Mean: 5.6 SD: 0.8	NR	NR	NR	NR
Patel, 2014 ¹³²	DT(Deferred Treatmet) (754)	T1a: 754(100)	NR	NR	BIL: 0(0)	NR	NR	NR
Patel, 2014 ¹³²	PN (1849)	T1a: 1849(100)	NR	NR	BIL: 0(0)	NR	NR	NR
Patel, 2014 ¹³²	RN (4574)	T1a: 4574(100)	NR	NR	BIL: 0(0)	NR	NR	NR
Patel, 2014 ¹³¹	Non Surgical Management (754)	T1a: 754(100)	NR	NR	BIL: 0(0)	NR	NR	NR
Patel, 2014 ¹³¹	PN (1849)	T1a: 1849(100)	NR	NR	BIL: 0(0)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Patel, 2014 ¹³¹	RN (4574)	T1a: 4574(100)	NR	NR	BIL: 0(0)	NR	NR	NR
Permpongko sol, 2007 ¹³⁹	laproscopic radical nephrectomy (549)	NR	NR	NR	NR	NR	NR	NR
Permpongko sol, 2007 ¹³⁹	laproscopic partial nephrectomy (345)	NR	NR	NR	NR	NR	NR	NR
Permpongko sol, 2007 ¹³⁹	laproscopic tumor ablation (81)	NR	NR	NR	NR	NR	NR	NR
Roos, 2010 ¹⁰⁶	Partial nephrectomy (NSS), for young (<55 years old) (36)	NR	NR	Median: 5.7 Range: 4.2-11.0	NR	NR	Median: 20 IQR: 10- 28	NR
Roos, 2010 ¹⁰⁶	Radical nephrectomy (NSS), for young (<55 years old) (45)	NR	NR	Median: 6 Range: 4.3-140	NR	NR	NR	NR
Roos, 2010 ¹⁰⁶	Partial nephrectomy, for old (>65 years old) (33)	NR	NR	Median: 4.8 Range: 4.2-16.0	NR	NR	Median: 14	NR
Roos, 2010 ¹⁰⁶	Radical nephrectomy, for old (>65 years old) (52)	NR	NR	Median: 5 Range: 4.3-11.0	NR	NR	NR	NR
Roos, 2012 ⁵¹	NSS (101)	T1b: 85(NR) T2: 16(NR) T1 and T2: 101(100)	NR	Mean: 5.7 Median: 5 Range: 4.2 - 16	NR	NR	NR	NR
Roos, 2012 ⁵¹	RN (146)	T1b: 118(NR) T2: 28(NR)	NR	Mean: 6.1 Median: 5.5 Range: 4.3 - 14	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
		T1 and T2: 146(100)						
Scosyrev, 2014 ⁷⁸	RN (259)	T1: 259(100)	NR	NR	NR	NR	NR	NR
Scosyrev, 2014 ⁷⁸	NSS (255)	T1: 255(100)	NR	NR	NR	NR	NR	NR
Shinohara, 2001 ⁵²	NSS (15)	T1: 15(100)	NR	NR	NR	NR	NR	NR
Shinohara, 2001 ⁵²	RN (51)	T1: 51(100)	NR	NR	NR	NR	NR	NR
Smaldone, 2012 ⁷⁹	Overall (5496)	T1a: 5496(100)	CC: NR(83)	Median: 2.8 SD: 0.9	NR	NR	NR	NR
Smaldone, 2012 ⁷⁹	PN (1665)	T1a: 1665(100)	NR	NR	NR	NR	NR	NR
Smaldone, 2012 ⁷⁹	RN (3831)	T1a: 3831(100)	NR	NR	NR	NR	NR	NR
Snow, 2008 ¹⁰²	LPN (48)	T1a: 48(100) T1b: 0(0) T2: 0(0)	NR	Mean: 2.8 SD: 0.8	NR	NR	Mean: 26	NR
Snow, 2008 ¹⁰²	LRN (37)	T1a: 37(100) T1b: 0(0) T2: 0(0)	NR	Mean: 2 SD: 1	NR	NR	Mean: 26	NR
Stern, 2007 ¹²¹	RFA (40)	T1a: 40(100)	CC: 24(NR) Pap: 5(NR) Chro: 1(NR) Others: 10(NR)	Mean: 2.41 SD: 0.7	NR	NR	NR	NR
Stern, 2007 ¹²¹	PN (37)	T1a: 37(100)	CC: 23(NR) Pap: 3(NR) Chro: 4(NR) Others: 7(NR)	Mean: 2.43 SD: 0.8	NR	NR	NR	NR
Sun, 2012 ¹⁵²	PN (924)	T1: 924(100) T1a: 784(85) T1b: 140(15) T2: 0(0) T1 and T2: 924(100)	RC: 924(100) Others: 0(0)	Mean: 2.9 Median: 2.7 IQR: 2.0-3.5	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Sun, 2012 ¹⁵²	RN (6600)	T1: 6600(100) T1a: 3752(57) T1b: 2848(43) T2: 0(0) T1 and T2: 6600(100)	RC: 6600(100) Others: 0(0)	Mean: 4 Median: 4 IQR: 3.0-5.0	NR	NR	NR	NR
Sun, 2012 ¹⁵²	post-propensity RN (924)	T1: 924(100) T1a: 775(84) T1b: 149(16) T2: 0(0) T1 and T2: 924(100)	RC: 924(100) Others: 0(0)	Mean: 2.9 Median: 2.8 IQR: 2.0-3.6	NR	NR	NR	NR
Sun, 2012 ⁸⁰	PN (840)	NR	NR	Mean: 2.4 Median: 2.5 IQR: 1.8-3	NR	NR	NR	NR
Sun, 2012 ⁸⁰	RN (840)	NR	NR	Mean: 2.5 Median: 2.5 IQR: 2-3	NR	NR	NR	NR
Sun, 2013 ¹³³	NSM (3271)	T1: 3271(100)	CC: 1033(31.6) Pap: 179(5.5) Chro: 98(3) Others: 77(2.4)	Mean: 3.8 Median: 3.5 IQR: 2.6-5	NR	NR	NR	NR
Sun, 2013 ¹³³	PN (1051)	T1: 1051(100)	CC: 394(37.5) Pap: 154(14.7) Chro: 68(6.5) Others: 42(4)	Mean: 2.9 Median: 2.7 IQR: 2-3.5	NR	NR	NR	NR
Sun, 2013 ¹³³	RN (6273)	T1: 6273(100)	CC: 2289(36.5) Pap: 372(5.9) Chro: 189(3) Others: 202(3.2)	Mean: 4.1 Median: 4 IQR: 3-5	NR	NR	NR	NR
takagi, 2011 ⁸¹	PN-eGFR 45 - 59 (30)	T1 and T2: 30(100)	NR	Mean: 2.88 Median: 2.5 Range: 10-60 SD: 1.2	BIL: 0(0)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
takagi, 2011 ⁸¹	RN-eGFR 45 - 59 (38)	T1 and T2: 38(100)	NR	Mean: 6.12 Median: 6 Range: 20-224 SD: 3.55	BIL: 0(0)	NR	NR	NR
takagi, 2011 ⁸¹	PN-eGFR 30 - 44 (14)	T1 and T2: 14(100)	NR	Mean: 3.04 Median: 2.9 Range: 17-44 SD: 0.87	BIL: 0(0)	NR	NR	NR
takagi, 2011 ⁸¹	RN-eGFR 30 - 44 (13)	T1 and T2: 13(100)	NR	Mean: 5.84 Median: 5.7 Range: 36-110 SD: 2.42	BIL: 0(0)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	RFA (51)	T1a: 51(100)	NR	Mean: 2.4 SD: 0.7	RT: 31(60.8) LT: 20(39.2)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	RN (54)	T1a: 54(100)	NR	Mean: 2.8 SD: 0.7	RT: 20(37) LT: 34(63)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	PN (10)	T1a: 10(100)	NR	Mean: 1.9 SD: 0.7	RT: 7(70) LT: 3(30)	NR	NR	NR
Takaki, 2014 ¹³⁵	RFA (21)	T1b: 25(100)	NR	Mean: 4.6 Range: 4.1 - 6.5 SD: 0.5	RT: 8(38) LT: 13(62) BIL: 0(0) MUL: 0(0)	Hilar: 19(90)	NR	NR
Takaki, 2014 ¹³⁵	RN (39)	T1b: 39(100)	NR	Mean: 5.2 Range: 4.1 - 7 SD: 0.9	RT: 23(59) LT: 16(41) BIL: 0(0) MUL: 0(0)	Hilar: 33(85)	NR	NR
Tan, 2012 ⁸²	PN (1925)	T1a: 1925(100) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	CC: 1421(73.8) Pap: 282(14.7) Chro: 126(6.5) Others: 96(5)	NR	BIL: 0(0) MUL: 0(0)	NR	NR	NR
Tan, 2012 ⁸²	RN (5213)	T1a: 5213(100) T1b: 0(0) T2: 0(0) T1 and T2: 0(0)	CC: 4391(84.2) Pap: 404(7.7) Chro: 192(3.7) Others: 226(4.4)	NR	BIL: 0(0) MUL: 0(0)	NR	NR	NR
Tanagho, 2013 ¹²⁶	Cryoablation (267)	NR	NR	Mean: 2.5 SD: 1	RT: 138(51.7) LT: 127(47.6) BIL: 2(0.7)	Hilar: 36(13.5) Exophytic:	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
					MUL: 23(8.6)	133(49.8) Endophytic: 41(267)		
Tanagho, 2013 ¹²⁶	Robot assisted partial nephrectomy (233)	NR	NR	Mean: 2.9 SD: 1.5	RT: 116(48.3) LT: 116(51.7) BIL: 0(0) MUL: 4(1.7)	Hilar: 26(13.3) Exophytic: 80(36) Endophytic: 142(64)	NR	NR
Thompson, 2008 ⁸³	PN (358)	T1a: 358(100)	CC: 186(52) Pap: 75(21) Chro: 16(4.5) Others: 81(22.4)	Median: 2.5 Range: 0.2-4	NR	NR	NR	NR
Thompson, 2008 ⁸³	RN (290)	T1a: 290(100)	CC: 191(65.9) Pap: 41(14.1) Chro: 10(3.5) Others: 48(16.5)	Median: 3 Range: 0.2-4	NR	NR	NR	NR
Thompson, 2008 ⁸³	PN-<65years (187)	T1a: 187(100)	CC: 111(59.4) Pap: 30(16) Chro: 11(5.9) Others: 35(18.1)	Median: 2.5 Range: 0.6-4	NR	NR	NR	NR
Thompson, 2008 ⁸³	RN-<65years (140)	T1a: 140(100)	CC: 102(72.9) Pap: 19(13.6) Chro: 4(2.9) Others: 15(10.7)	Median: 3 Range: 0.2-4	NR	NR	NR	NR
Thompson, 2014 ¹²²	cT1a-Partial Nephrectomy (1057)	T1a: 1057(100) T1b: 0(0) T2: 0(0)	NR	Mean: 2.5 Median: 2.4 IQR: 1.8-3.1	NR	NR	NR	NR
Thompson, 2014 ¹²²	cT1a- Radiofrequency Ablation (180)	T1a: 180(100) T1b: 0(0) T2: 0(0)	NR	Mean: 2.1 Median: 1.9 IQR: 1.5-2.5	NR	NR	NR	NR
Thompson, 2014 ¹²²	cT1a- Cryoablation (187)	T1a: 187(100) T1b: 0(0) T2: 0(0)	NR	Mean: 2.9 Median: 2.8 IQR: 2.4-3.4	NR	NR	NR	NR
Thompson, 2014 ¹²²	cT1b-Partial Nephrectomy (326)	T1a: 0(0) T1b: 326(100) T2: 0(0)	NR	Mean: 5.1 Median: 5 IQR: 4.5-5.5	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Thompson, 2014 ¹²²	cT1b- Cryoablation (53)	T1a: 0(0) T1b: 53(100) T2: 0(0)	NR	Mean: 5 Median: 4.8 IQR: 4.4-5.4	NR	NR	NR	NR
Tomaszewsk i, 2014 ⁸⁴	Overall (1092)	T1: 967(88.6) T2: 125(11.5)	NR	Mean: 4.2 SD: 2.9	BIL: 126(11.5)	Hilar: 149(13.6)	NR	NR
Turna, 2009 ¹²³	Laparoscopic partial nephrectomy (36)	T1a: 36(100)	CC: (19) Pap: (4)	Mean: 3.7 Range: 1.4-10.7 SD: 1.9	NR	NR	Mean: 31.3 Range: 14-55	2(5.5)
Turna, 2009 ¹²³	Cryoablation (36)	T1a: 36(100)	NR	Mean: 2.5 Range: 1.1-5.0 SD: 1.1	NR	NR	Mean: 17.5 Median: Range: 9- 45	NR
Turna, 2009 ¹²³	Radiofrequency ablation (29)	NR	NR	Mean: 2.6 Median: Range: 0.9-42 SD: 1	RT: 20NR LT: 12(NR)	NR	Mean: 33.5 Median: Range: 8- 67	NR
Uchida, 2004 ⁸⁵	PN (54)	T1a: 54(NR) T1b: 0(NR) T2: 0(0)	NR	NR	BIL: 8(14.8)	NR	NR	NR
Uchida, 2004 ⁸⁵	RN (51)	T1a: 51(NR) T1b: 0(NR) T2: 0(0)	NR	NR	NR	NR	NR	NR
Uzzo, 1999 ⁸⁶	RN (28)	T1: NR T1a: 28(100)	NR	Median: 3.1 Range: 1.5 - 3.8	BIL: NR(0) MUL: 0(0)	Hilar: 0(NR)	NR	NR
Uzzo, 1999 ⁸⁶	NSS (52)	T1a: 52(100)	NR	Median: 2.4 Range: 0.6 - 3.8	BIL: NR(0) MUL: 0(0)	Hilar: 0(NR)	NR	NR
Van Poppel, 2011 ⁸⁷	NSS (268)	T1: 127(47.4) T2: 137(51.1)	CC: 177(66) RC: 50(18.7) Others: 37(13.8)	Median: 3 Range: 1-9	NR	NR	Median: 20	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Van Poppel, 2011 ⁸⁷	Radical nephrectomy (273)	T1: 139(50.9) T2: 130(47.6)	CC: 163(59.7) RC: 69(25.3) Others: 34(12.5)	Median: 3 Range: 0.8-7.5	NR	NR	NR	NR
Weight, 2010 ⁸⁹	PN-High Grade cohort (52)	T1: 52(100)	NR	Mean: 3.5 Range: 2.9-4.7	RT: 27(52) LT: 25(48)	NR	NR	NR
Weight, 2010 ⁸⁹	RN-Upstaged Cohort (117)	T1: 117(100)	NR	Mean: 6 Range: 5-6	RT: 58(50) LT: 59(50)	NR	NR	NR
Weight, 2010 ⁸⁹	PN-Upstaged Cohort (96)	T1: 96(100)	NR	Mean: 4 Range: 2.6-5.2	RT: 50(52) LT: 46(48)	NR	NR	NR
Weight, 2010 ⁸⁹	RN-High Grade cohort (43)	T1: 43(100)	NR	Mean: 5.8 Range: 5-6	RT: 22(51) LT: 21(49)	NR	NR	NR
Weight, 2010 ⁸⁸	RN (298)	T1b: 298(100)	CC: 211(79) Pap: 32(12) Chro: 14(5.2) Others: 11(4.1)	Median: 5.6 IQR: 4.8-6.3	NR	NR	NR	NR
Weight, 2010 ⁸⁸	PN (212)	T1b: 212(100)	CC: 126(75) Pap: 28(17) Chro: 14(8.2) Others: 1(0.1)	Median: 4.8 IQR: 4.4-5.5	NR	NR	NR	NR
Weight,2010 90	RN (480)	T1b: 480(100)	CC: 340(79.2) Pap: 53(12.4) Chro: 17(4) Others: 19(4.4)	Mean: 5.6 IQR: 5.0-6.4	NR	NR	NR	NR
Weight,2010 90	PN (524)	T1b: 524(100)	CC: 327(74.5) Pap: 77(17.6) Chro: 24(5.4) Others: 10(3.1)	Mean: 5 IQR: 4.5-5.6	NR	NR	NR	NR
Whitson, 2012 ¹²⁴	NSS (7704)	T1: 7704(100) T2: 0(0) T1 and T2: 7704(100)	CC: 3794(71) Pap: 1141(21) Chro: 419(8) Sac: 25(0.5) RC: 7704(100) Others: 0(0)	Mean: 2.4 SD: 0.8	NR	NR	NR	NR
Whitson, 2012 ¹²⁴	Ablation (1114)	T1: 1114(100) T2: 0(0) T1 and T2: 1114(100)	CC: 421(72) Pap: 124(21) Chro: 36(6) Sac: 1(0.2) RC: 1114(100) Others: 0(0)	Mean: 2.6 SD: 0.8	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Woldu, 2014 ⁹¹	CKD 1 NSS (185)	T1: NR(84.5) T2: NR(1.6)	NR	Mean: 2.7 SD: 1.6	NR	NR	Mean: 23.1	NR
Woldu, 2014 ⁹¹	CKD 1 RN (179)	T1: NR(41.5) T2: NR(13.1)	NR	Mean: 6.8 SD: 4	NR	NR	NR	NR
Woldu, 2014 ⁹¹	CKD 2 NSS (261)	T1: NR(82.9) T2: NR(0.5)	NR	Mean: 2.9 SD: 1.6	NR	NR	Mean: 21	NR
Woldu, 2014 ⁹¹	CKD 2 RN (419)	T1: NR(44.5) T2: NR(15.8)	NR	Mean: 6.2 SD: 3.9	NR	NR	NR	NR
Woldu, 2014 ⁹¹	CKD 3 NSS (94)	T1: NR(80) T2: NR(3.8)	NR	Mean: 3.8 SD: 2.2	NR	NR	Mean: 24.1	NR
Woldu, 2014 ⁹¹	CKD 3 RN (168)	T1: NR(37.9) T2: NR(14.5)	NR	Mean: 6.7 SD: 4.2	NR	NR	NR	NR
Woldu, 2014 ⁹¹	Cohort (1306)	NR	NR	NR	NR	NR	NR	NR
Xu, 2014 ⁵³	LRN (88)	NR	CC: 67(76.14) Pap: 5(5.68) Chro: 4(4.55) Sac: 0(0) RC: 5(5.68) Others: see table 2(see table 2)	Mean: 4.6 SD: 1.9	RT: 49(NR) LT: 39(NR)	NR	NR	NR
Xu, 2014 ⁵³	ORN (526)	NR	CC: 399(75.86) Pap: 19(3.61) Chro: 13(2.47) Sac: 1(0.19) RC: 33(6.27) Others: see table 2(see table 2)	Mean: 5.3 SD: 2.3	RT: 263(NR) LT: 263(NR)	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Xu, 2014 ⁵³	LPN (42)	NR	CC: 21(50) Pap: 3(7.14) Chro: 0(0) Sac: 0(0) RC: 0(0) Others: see table 2(see table 2)	Mean: 3.3 SD: 2.2	RT: 21(NR) LT: 21(NR)	NR	NR	NR
Xu, 2014 ⁵³	OPN (187)	NR	CC: 110(58.82) Pap: 8(8) Chro: 5(2.67) Sac: 1(0.53) RC: 6(3.21) Others: see table 2(see table 2)	Mean: 3.6 Median: NR SD: 1.4	RT: 89(NR) LT: 98(NR)	NR	NR	NR
Yasuda, 2012 ⁹²	NSS (97)	T1: 97(100)	NR	Median: 2.5 IQR: 1.8-3.2 SD: NR	NR	Endophytic: 7(NR)	NR	NR
Yasuda, 2012 ⁹²	RN (103)	T1: 103(100)	NR	Median: 4.4 IQR: 3.5-5.3	NR	Endophytic: 18(NR)	NR	NR
Youn, 2013 ¹³⁰	Open PN (14)	NR	RC: 12(85.71) Others: 2(14.29)	Mean: 2.3 IQR: 1.27	RT: 10(NR) LT: 4(NR) BIL: 0(0) MUL: 0(0)	Hilar: 10(NR) Exophytic: 14(100)	NR	NR
Youn, 2013 ¹³⁰	Laparascopic RFA (41)	NR	RC: 13(75.61) Others: 10(24.39)	Mean: 2.4 IQR: 0.79	RT: 27(NR) LT: 14(NR) BIL: 0(0) MUL: 0(0)	Hilar: 26(NR) Exophytic: 41(100)	NR	NR
Zini, 2009 ⁹³	Partial nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade) (2153)	T1a: 2153(100)	CC: 1719(79.8) Pap: 199(9.2) Others: 235(10.9)	Mean: 2.4	NR	NR	NR	NR
Zini, 2009 ⁹³	Radical nephrectomy (matched for age, tumor size, year of surgery,	T1a: 5616(100)	CC: 4749(84.6) Pap: 295(5.3) Others: 572(10.2)	Mean: 2.7	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
	not by Furhman grade) (5616)							
Zini, 2009 ⁹³	Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade) (1283)	T1a: 1283(100)	CC: 1047(81.6) Pap: 104(8.1) Others: 132(10.3)	Mean: 2.5	NR	NR	NR	NR
Zini, 2009 ⁹³	Radical nephrectomy (matched for age, tumor size, year of surgery, Furhman grade) (3166)	T1a: 3166(100)	CC: 2699(85.2) Pap: 152(4.8) Others: 315(9.9)	Mean: 2.8	NR	NR	NR	NR
Zorn, 2007 ¹⁰³	LPN (42)	T1: 42(100)	RC: 30(71)	Mean: 2.4 Range: 1-6	RT: 20(48) LT: 22(52)	NR	Mean: 37 Range: 15-43	NR
Zorn, 2007 ¹⁰³	LRN (55)	T1: 55(100)	RC: 55(83)	Mean: 5.4 Range: 3.2-9	RT: 28(51) LT: 27(49)	NR	NR	NR
ACTIVE SURV	EILLANCE (UNC	ONTROLLED	STUDIES)			•	•	•
Abouassaly, 2008 ¹⁴⁵	Active Surveillance (110)	NR	NR	Median: 2.5 Range: 0.9-11.2	MUL: 22(20)	NR	NR	NR
Crispen, 2008 ¹⁴⁶	Active Surveillance (109)	NR	CC: 24(NR) Pap: 9(NR) Chro: 1(NR)	Mean: 2.61 Median: 2 Range: 0.4-12	NR	NR	NR	NR
Crispen, 2009 ¹⁴⁷	Active Surveillance (173)	NR	CC: 39(68) Pap: 15(26) Chro: 2(4)	Mean: 2.45 Median: 2 Range: 0.4-12	NR	NR	NR	NR
Jewett, 2011 ¹⁴⁸	Active Surveillance (178)	T1a: 179(100)	NR	Mean: 2.1 Median: 2.1 Range: 0.4-4	NR	NR	NR	NR
Kunkle, 2007 ¹⁴⁹	Active Surveillance (89)	NR	NR	Median: 2 Range: 0.0-12	MUL: 11(12)	NR	NR	NR
Leonard, 2013 ⁴²	Active surveillance (133)	T1a: 133(100)	NR	Mean: 2.36 Range: 0.6-4 SD: 1.19	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Rosales, 2010 ¹⁵⁰	Active Surveillance (212)	NR	Pap: 4(NR) Chro: 1(NR) RC: 32(NR)	Median: 2.8 Range: 0.5-13.1	RT: 137(59) BIL: 5(2)	NR	NR	NR
O'Malley,201 4 ⁹⁷	PN (1893)	NR	CC: 1404(10.1) Pap: 345(18.2) Chro: 129(6.8) Sac: 9(0.5) RC: NR Others: 6(0.4)	Mean: 3.2 Median: NR Range: NR IQR: NR SD: 1.36	NR	NR	NR	NR
O'Malley,201 4 ⁹⁷	RN (10864)	NR	CC: 9698(26.6) Pap: 703(6.5) Chro: 310(2.9) Sac: 84(0.8) RC: NR Others: 69(0.7)	Mean: 4.7 Median: NR Range: NR IQR: NR SD: 1.53	NR	NR	NR	NR
Cooper, 2015 ¹⁴¹	RFA (9)	T1: 9(NR) T1a: NR T1b: NR T2: NR T1 and T2: NR	CC: 8(88.9) Pap: 0(0) Chro: NR Sac: 1(11.1) RC: NR Others: NR	NR	NR	Hilar: NR Exophytic: 9(100) Endophytic: NR	NR	NR
Cooper, 2015 ¹⁴¹	PN (9)	T1: 9(NR) T1a: NR T1b: NR T2: NR T1 and T2: NR	CC: 9(100) Pap: 0(0) Chro: NR Sac: 0(0) RC: NR Others: NR	NR	NR	Hilar: NR Exophytic: 9(100) Endophytic: NR	NR	NR
Cooper, 2015 ¹⁴¹	RN (31)	T1: 31(NR) T1a: NR T1b: NR T2: NR T1 and T2: NR	CC: 30(96.8) Pap: 1(3.2) Chro: NR Sac: 0(0) RC: NR Others: NR	NR	NR	Hilar: NR Exophytic: 24(77) Endophytic: NR	NR	NR
Chang, 2015 ¹²⁷	RFA (27)	T1: NR T1a: NR T1b: 27(100) T2: NA(NA) T1 and T2: NA(NA)	CC: 24(88.9) Pap: 1(3.7) Chro: 1(3.7) Sac: NR RC: NR Others: NR	Mean: 4.7 Median: NR Range: NR IQR: NR SD: 0.5	RT: 14(51.9) LT: 13(48.1) BIL: NR MUL: NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size		Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Chang, 2015 ¹²⁷	PN (29)	T1: NR T1a: NR T1b: 29(100) T2: NA(NA) T1 and T2: NA(NA)	CC: 24(82.8) Pap: 2(6.9) Chro: 3(10.3) Sac: NR RC: NR Others: NR	0.6	SD:	RT: 17(58.6) LT: 12(41.4) BIL: NR MUL: NR	NR	NR	NR
Danzig, 2015 ¹³⁴	RN (15)	T1: NR T1a: 15(100) T1b: 0(0) T2: NA(NA) T1 and T2: NA(NA)	CC: NR(79) Pap: NR(14) Chro: NR(0) Sac: NR RC: NR Others: NR(7)	Mean: 3.1 Median: 3.1 Range: NR IQR: NR 0.58	SD:	NR	NR	NR	NR
Danzig, 2015 ¹³⁴	PN (65)	T1: NR T1a: 65(100) T1b: 0(0) T2: NA(NA) T1 and T2: NA(NA)	CC: NR(49) Pap: NR(25) Chro: NR(9) Sac: NR RC: NR Others: NR(5)	Mean: 2.48 Median: 2.3 Range: NR IQR: NR 0.88	SD:	NR	NR	NR	NR
Danzig, 2015 ¹³⁴	AS (68)	T1: NR T1a: 68(100) T1b: 0(0) T2: NA(NA) T1 and T2: NA(NA)	CC: NR(NA) Pap: NR(NA) Chro: NR(NA) Sac: NR RC: NR Others: NR(NA)	Mean: 2.04 Median: 2 Range: NR IQR: NR 0.87	SD:	NR	NR	NR	NR
Danzig, 2015 ¹³⁴	Cryoablation (14)	T1: NR T1a: 14(100) T1b: 0(0) T2: NA(NA) T1 and T2: NA(NA)	CC: NR(50) Pap: NR(7) Chro: NR(0) Sac: NR RC: NR Others: NR(7)	Mean: 2.08 Median: 2 Range: NR IQR: NR 0.5	SD:	NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Chung, 2014 ⁹⁴	RN(>/=65years) (170)	NR	CC: 160(94.1) Pap: 3(1.8) Chro: 5(2.9) Sac: NR RC: NR Others: 2(1.2)	Mean: 3 Median: 2.9 Range: NR IQR: 2.2-3.8 SD: 1.2	NR	NR	NR	NR
Chung, 2014 ⁹⁴	PN(>/=65years) (170)	NR	CC: 158(92.9) Pap: 3(1.8) Chro: 5(2.9) Sac: NR RC: NR Others: 4(2.4)	Mean: 3 Median: 2.8 Range: NR IQR: 2.1-3.7 SD: 1.2	NR	NR	NR	NR
Chung, 2014 ⁹⁴	RN(<65years) (452)	NR	CC: 386(85.4) Pap: 8(1.8) Chro: 38(8.4) Sac: NR RC: NR Others: 20(4.4)	Mean: 3.2 Median: 3 Range: NR IQR: 2.4-3.8 SD: 1.2	NR	NR	NR	NR
Chung, 2014 ⁹⁴	PN(<65years) (452)	NR	CC: 384(85) Pap: 10(2.2) Chro: 38(8.4) Sac: NR RC: NR Others: 20(4.4)	Mean: 3.2 Median: 3 Range: NR IQR: 2.3-3.9 SD: 1.3	NR	NR	NR	NR
Chang, 2014 ⁹⁵	RN (339)	T1: 339(100) T1a: NR T1b: NR T2: NA(NA) T1 and T2: NA(NA)	CC: 270(79.9) Pap: 20(5.9) Chro: 29(8.6) Sac: NR RC: NR Others: 19(5.6)	NR	RT: 174(51.3) LT: 165(48.7) BIL: 0(0) MUL: NR	NR	NR	NR
Chang, 2014 ⁹⁵	PN (218)	T1: 218(100) T1a: NR T1b: NR T2: NA(NA) T1 and T2: NA(NA)	CC: 167(77.5) Pap: 27(12.4) Chro: 14(6.5) Sac: NR RC: NR Others: 8(3.7)	NR	RT: 111(50.9) LT: 107(49.1) BIL: 0(0) MUL: NR	NR	NR	NR

Author, year	Arm (n)	Clinical stage: n(%)	Tumor type:n(%)	Tumor size	Tumor side:N(%)	Tumor location	Warm Ischemia time	Positive margins
Van Poppel, 2006 ⁹⁶	RN (273)	T1: 138(50.5) T1a: NR T1b: NR T2: 130(47.6) T1 and T2: 265(49)	CC: 174(63.7) Pap: NR Chro: 13(4.8) Sac: 2(0.7) RC: NR Others: 39(14.3)	NR	RT: 142(52) LT: 125(45.8) BIL: 2(0.7) MUL: 4(1.5)	Hilar: 107(39.2) Exophytic: NR Endophytic: NR	NR	NR
Van Poppel, 2006 ⁹⁶	PN (268)	T1: 127(47.4) T1a: NR T1b: NR T2: 136(50.7) T1 and T2: 266(49.2)	CC: 193(72) Pap: NR Chro: 7(2.6) Sac: 2(0.7) RC: NR Others: 25(9.3)	NR	RT: 131(48.9) LT: 134(50) BIL: 0(0) MUL: 3(1.1)	Hilar: 104(38.8) Exophytic: NR Endophytic: NR	NR	NR

IQR= Interquartile range; LPN= Laparoscopic partial nephrectomy; LTA= Laparoscopic Thermal Ablation; NA= Not Applicable; NR= Not reported; NSM= Non surgical Management; NSS= Nephron-sparing surgery; OPN= Open partial nephrectomy; ORN= Open Radical Nephrectomy; PN= Partial Nephrectomy; RFA= Radio frequency ablation; RN Radical nephrectomy; SD= Standard deviation; RT=Right; LT= Left; BIL= Bilateral; MUL= Multiple; RC= Renal Cell; Sac= Sarcomatoid; Chro= Chromophobe; CC=Clear Cell

Table D11: Tumor Scores Table for KQs 3a and 3b

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Antonelli, 2011 ⁵⁴	RN-cT1a (919)	1-2: 392(77.8) 3-4: 199(22.2)	NR	NR
Antonelli, 2011 ⁵⁴	PN-cT1a (1068)	1-2: 877(85) 3- 4: 154(15)	NR	NR
Antonelli, 2011 ⁵⁴	RN-cT1b (1426)	1-2: 920(65.7) 3-4: 478(34.2)	NR	NR
Antonelli, 2011 ⁵⁴	PN-cT1b (198)	1-2: 148(80) 3- 4: 37(20)	NR	NR
Antoniewicz, 2011 ⁵⁵	RN (33)	NR	NR	NR
Antoniewicz, 2011 ⁵⁵	PN (18)	NR	NR	NR
Badalato, 2011 ⁵⁶	PN pre-propensity (1047)	NR	NR	NR
Badalato, 2011 ⁵⁶	RN pre-propensity (10209)	NR	NR	NR
Barbalias, 1999 ⁴⁵	Partial nephrectomy (41)	NR	NR	NR
Barbalias, 1999 ⁴⁵	Radical nephrectomy (48)	NR	NR	NR
Becker, 2014 ¹⁰⁴	PN (1251)	1-2: 713(57) 3- 4: 170(13.6)	NR	NR
Becker, 2014 ¹⁰⁴	Overall (2277)	1-2: 1305(57.3) 3-4: 341(15)	NR	NR
Becker, 2014 ¹⁰⁴	LRN (1066)	1-2: 592(57.7) 3-4: 171(16.7)	NR	NR
Bedke, 2008 ⁵⁷	RN (398)	1-2: 375(94.9) 3-4: 20(5.1)	NR	NR
Bedke, 2008 ⁵⁷	PN (66)	1-2: 64(97) 3-4: 2(3)	NR	NR
Bensalah, 2007 ¹¹¹	LPN (50)	1-2: 37(90) 3-4: 4(10)	NR	NR
Bensalah, 2007 ¹¹¹	LRFA (38)	1-2: 20(95) 3-4: 1(5)	NR	NR
Brewer, 2012 ⁹⁸	MIPN (45)	3-4: 16(42.1)	Mean: 9.3 SD: 1.4	NR
Brewer, 2012 ⁹⁸	MIRN (108)	3-4: 47(46.1)	Mean: 9.7 SD: 1.2	NR
Chang, 2014 ¹¹⁸	RFA (27)	NR	Mean: 8.5 Range: 6-11 SD: 1.1	NR
Chang, 2014 ¹¹⁸	PN (29)	NR	Mean: 7.8 Range: 5-11 SD: 1.2	NR
Choueiri, 2011 ¹³⁷	TA (578)	1-2: 257(44.5) 3-4: 31(5.4)	NR	NR
Choueiri, 2011 ¹³⁷	PN (4402)	1-2: 3159(71.8) 3-4: 697(15.8)	NR	NR
Choueiri, 2011 ¹³⁷	RN (10165)	1-2: 6736(66.3) 3-4: 2196(21.6)	NR	NR
Crepel, 2010 ⁵⁸	PN-Matched for Age,Tumor Size, and Year of Surgery (1564)	1-2: 842(53.8) 3-4: 150(9.6)	NR	NR
Crepel, 2010 ⁵⁸	RN-Matched for Age,Tumor Size, and Year of Surgery (3955)	1-2: 1931(48.8) 3-4: 341(8.7)	NR	NR
Crepel, 2010 ⁵⁸	PN-Matched for Age,Tumor Size, Year of Surgery,and Furhman Grade (961)	1-2: 813(84.6) 3-4: 148(15.4)	NR	NR
Crepel, 2010 ⁵⁸	RN-Matched for Age,Tumor Size, Year of Surgery,and Furhman Grade (2341)	1-2: 2002(85.5) 3-4: 339(14.5)	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Crepel, 2010 ⁵⁹	PN (275)	1-2: 124(45.1) 3-4: 39(14.2)	NR	NR
Crepel, 2010 ⁵⁹	RN (1100)	1-2: 517(47) 3- 4: 165(15)	NR	NR
Dash, 2006 ⁶⁰	PN (45)	1-2: 35(78) 3-4: 9(20)	NR	NR
Dash, 2006 ⁶⁰	RN (151)	1-2: 107(71) 3- 4: 43(28)	NR	NR
Daugherty, 2014 ⁶¹	Radical Nephrectomy (494)	NR	NR	NR
Daugherty, 2014 ⁶¹	Partial Nephrectomy (222)	NR	NR	NR
Deklaj, 2010 ⁹⁹	Partial nephrectomy (33)	1-2: 12 3-4: 9	NR	NR
Deklaj, 2010 ⁹⁹	Radical nephrectomy (52)	1-2: 36 3-4: 11	NR	NR
Deklaj,2010 ¹⁴²	LRN (19)	NR	NR	NR
Deklaj,2010 ¹⁴²	LPN (28)	NR	NR	NR
Deklaj,2010 ¹⁴²	LTA (19)	NR	NR	NR
Desai, 2005 ¹¹²	Laparascopic PN (153)	NR	NR	NR
Desai, 2005 ¹¹²	Cryoablation (89)	NR	NR	NR
Emara, 2014 ¹¹³	Cryoablation (56)	NR	Mean: 5.75	NR
Emara, 2014 ¹¹³	Robot assisted partial nephrectomy (47)	NR	Mean: 5.77	NR
Faddegon, 2013 ¹¹⁹	PN (142)	NR	NR	NR
Faddegon, 2013 ¹¹⁹	RFA (205)	NR	NR	NR
Ficarra, 2003 ⁴⁶	RN (88)	NR	NR	NR
Ficarra, 2003 ⁴⁶	NSS (56)	NR	NR	NR
Foyil, 2008 ¹⁴³	LPN-Non (55)	NR	NR	NR
Foyil, 2008 ¹⁴³	LPN-Warm ischemia (37)	NR	NR	NR
Foyil, 2008 ¹⁴³	LPN-Cold ischemia (6)	NR	NR	NR
Foyil, 2008 ¹⁴³	LRN (50)	NR	NR	NR
Foyil, 2008 ¹⁴³	Cryo (49)	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Retroperitoneoscopic radical nephrectomy (36)	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Open radical nephrectomy (37)	NR	NR	NR
Gratzke, 2009 ¹¹⁰	Nephron-sparing surgery (44)	NR	NR	NR
Guillotreau, 2012 ¹¹⁴	RPN (210)	NR	NR	NR
Guillotreau, 2012 ¹¹⁴	LCA (226)	NR	NR	NR
Haramis, 2012 ¹¹⁵	LCA (75)	NR	NR	NR
Haramis, 2012 ¹¹⁵	LPN (92)	NR	NR	NR
Houston, 2009 ⁶²	RN (873)	NR	NR	NR
Houston, 2009 ⁶²	PN (286)	NR	NR	NR
Huang, 2006 ⁶³	GFR>60 radical (204)	NR	NR	NR
Huang, 2006 ⁶³	GFR>60 partial (287)	NR	NR	NR
Huang, 2006 ⁶³	GFR>45 partial (385)	NR	NR	NR
Huang, 2006 ⁶³	GFR>45 radical (262)	NR	NR	NR
Huang, 2009 ⁶⁴	PN (556)	NR	NR	NR
Huang, 2009 ⁶⁴	RN (2435)	NR	NR Magazi 0.0	NR
lizuka, 2012 ¹⁰⁷	T1b-Partial Nephrectomy (67)	NR	Mean: 8.9 Median: 9 Range: 5-11	NR
lizuka, 2012 ¹⁰⁷	T1b-Radical Nephrectomy (195)	NR	Mean: 8.8 Median: 9 Range: 6-11	NR
lizuka, 2012 ¹⁰⁷	T1a-Partial Nephrectomy (324)	NR	Mean: 7.3 Median: 7 Range: 4-10	NR
Indudhara,199747	nephron sparing surgery (35)	NR	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Indudhara,1997 ⁴⁷	radical nephrectomy (72)	NR	NR	NR
Janetschek, 2000 ¹⁰⁰	Partial nephrectomy (25)	NR	NR	NR
Janetschek, 2000 ¹⁰⁰	Radical nephrectomy (73)	NR	NR	NR
Jeon,2009 ¹⁰⁹	PN (96)	NR	NR	NR
Jeon,2009 ¹⁰⁹	RN (129)	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Ablation (211)	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	MIPN (160)	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	OPN (330)	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	MIRN (535)	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	ORN (404)	NR	NR	NR
Kates, 2011 ⁶⁵	PN (2301)	NR	NR	NR
Kates, 2011 ⁶⁵	·	NR	NR	NR
	RN (1915)			
Kim, 2003 ¹⁰¹	Partial nephrectomy (79)	NR	NR	NR
Kim, 2003 ¹⁰¹	Radical nephrectomy (35)	NR	NR	NR
Kim, 2010 ⁴⁸	PN (18)	1-2: 11(61.1) 3- 4: 7(38.9)	NR	NR
Kim, 2010 ⁴⁸	RN (52)	1-2: 25(48.1) 3- 4: 27(51.9)	NR	NR
Kiriluk, 2011 ¹¹⁶	LPN (51)	NR	NR	NR
Kiriluk, 2011 ¹¹⁶	LAT (51)	NR	NR	NR
Klatte, 2011 ¹²⁸	Cryoablation (41)	1-2: 30(85)	NR	Median: 7 Range: 0- 10
Klatte, 2011 ¹²⁸	PN (82)	1-2: 61(88)	NR	Median: 7 Range: 0- 10
Kopp, 2014 ⁶⁶	RN (122)	1-2: 83(70.3) 3- 4: 35(29.7)	Mean: 9.9 SD: 1.3	NR
Kopp, 2014 ⁶⁶	PN (80)	1-2: 49(70.9) 3- 4: 20(29)	Mean: 9.7 SD: 1.3	NR
Kyung, 2014 ⁶⁷	Radical Nephrectomy (82)	1-2: 42(51.2) 3- 4: 40(48.8)	NR	NR
Kyung, 2014 ⁶⁷	Partial Nephrectomy (53)	1-2: 35(66) 3-4: 18(34)	NR	NR
Lane, 2010 ⁶⁸	PN Limited ischemia (804)	3-4: 157(27)	NR	NR
Lane, 2010 ⁶⁸	PN Unknown ischemia (546)	1-2: NR 3-4: 129(33)	NR	NR
Lane, 2010 ⁶⁸	PN Extended ischemia (483)	3-4: 109(30)	NR	NR
Lane, 2010 ⁶⁸	RN (569)	3-4: 221(48)	NR	NR
Lane, 2010 ¹³⁶	Active surveillance (105)	NR	NR	NR
Lane, 2010 ¹³⁶	Radical Nephrectomy (146)	NR	NR	NR
Li, 2007 ⁶⁹	PN (35)	NR	NR	NR
Li, 2007 ⁶⁹	RN (128)	NR	NR NR	NR
Li, 2010 ⁷⁰	mm-NSS (135)	1-2: 130(96.3)	NR NR	NR NR
Li, 2010 ⁷⁰	1cm-NSS (98)	3-4: 5(4.3) 1-2: 96(98) 3-4: 3(3.1)	NR	NR
Li, 2010 ⁷⁰	RN (156)	1-2: 151(96.8) 3-4: 5(4.3)	NR	NR
Lowrance, 2010 ⁷¹	PN (61)	NR	NR	NR
		NR	NR	NR
Lowrance, 2010 ⁷¹	RN (63)			
Lucas, 2007 ¹³⁸	RFA (86)	NR	NR	NR
Lucas, 2007 ¹³⁸	PN (85)	NR	NR	NR
Lucas, 2007 ¹³⁸	RN (71)	NR	NR	NR
Mariusdottir, 2013 ⁴⁹	Partial nephrectomy (44)	NR	NR	NR
Mariusdottir, 2013 ⁴⁹	Radical nephrectomy (44)	NR	NR	NR
Matin, 2002 ¹⁰⁵	Nephron sparing surgery (82)	1-2: (71.7)	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
		3-4: (28.3)		
Matin, 2002 ¹⁰⁵	Laparoscopic radical nephrectomy (35)	1-2: (75) 3-4: (25)	NR	NR
McKiernan, 2002 ⁷²	Partial nephrectomy (117)	NR	NR	NR
McKiernan, 2002 ⁷²	Radical nephrectomy (173)	NR	NR	NR
Medina-Polo, 2011 ⁷³	NSS (116)	1-2: (80) 3-4: (20)	NR	NR
Medina-Polo, 2011 ⁷³	Radical nephrectomy (174)	1-2: (74) 3-4: (26)	NR	NR
Meskawi, 2013 ⁷⁴	PN pre-propensity (1526)	1-2: 876(57.4) 3-4: 352(23)	NR	NR
Meskawi, 2013 ⁷⁴	RN pre-propensity (14807)	1-2: 8186(55.3) 3-4: 2910(19.7)	NR	NR
Meskawi, 2013 ⁷⁴	PN post-propensity (1525)	1-2: 876(57.4) 3-4: 351(23)	NR	NR
Meskawi, 2013 ⁷⁴	RN post-propensity (6104)	1-2: 3506(57.4) 3-4: 1393(22.8)	NR	NR
Milonas, 2013 ⁵⁰	NSS (34)	1-2: NR(85.3) 3- 4: NR(11.8)	NR	NR
Milonas, 2013 ⁵⁰	RN (317)	1-2: NR(75.4) 3- 4: NR(17.3)	NR	NR
Minervini, 2012 ¹⁰⁸	RN (143)	1-2: 104(73.3) 3-4: 38(26.7)	NR	NR
Minervini, 2012 ¹⁰⁸	TE (332)	1-2: 283(87.6) 3-4: 40(12.4)	NR	NR
Mitchell, 2006 ⁷⁵	PN (33)	1-2: 25(75.8) 3- 4: 7(21.2)	NR	NR
Mitchell, 2006 ⁷⁵	RN (66)	1-2: 39(59.1) 3- 4: 19(28.8)	NR	NR
Mitchell, 2011 ¹²⁹	Ablation (50)	NR	Median: 7 Range: 4-11	NR
Mitchell, 2011 ¹²⁹	PN (62)	NR	Median: 9 Range: 4-11	NR
Miyamoto, 2012 ⁷⁶	RN (152)	NR	NR	NR
Miyamoto, 2012 ⁷⁶	PN (59)	NR	NR	NR
Miyamoto, 2012 ⁷⁶	RN (152)	NR	NR	NR
Miyamoto, 2012 ⁷⁶	PN (59)	NR	NR	NR
Mues, 2012 ¹²⁰	Thermal Ablation (98)	NR	NR	NR
Mues, 2012 ¹²⁰	Partial nephrectomy (PN) (100)	NR	NR	NR
Olweny, 2012 ¹²⁵	RFA (37)	NR	NR	NR
Olweny, 2012 ¹²⁵	PN (37)	NR	NR	NR
Pascal, 2011 ¹¹⁷	LPN (48)	NR	NR	NR
Pascal, 2011 ¹¹⁷	Laparoscopic Renal cryoablation (30)	NR	NR	NR
Patard, 2004 ⁷⁷	PN (379)	1-2: 287(91.7) 3-4: 26(8.3)	NR	NR
Patard, 2004 ⁷⁷	RN (1075)	1-2: 439(88) 3- 4: 60(12)	NR	NR
Patard, 2004 ⁷⁷	PN-T1a (314)	1-2: 287(91.7) 3-4: 26(8.3)	NR	NR
Patard, 2004 ⁷⁷	RN T1a (499)	1-2: 439(88) 3- 4: 60(12)	NR	NR
Patard, 2004 ⁷⁷	PN-T1b (65)	1-2: 57(89.1) 3- 4: 7(10.9)	NR	NR
Patard, 2004 ⁷⁷	RN T1b (576)	1-2: 470(81.9) 3-4: 104(18.1)	NR	NR
Patel, 2014 ¹³²	DT(Deferred Treatmet) (754)	NR	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Patel, 2014 ¹³²	PN (1849)	NR	NR	NR
Patel, 2014 ¹³²	RN (4574)	NR	NR	NR
Patel, 2014 ¹³¹	Non Surgical Management (754)	NR	NR	NR
Patel, 2014 ¹³¹	PN (1849)	NR	NR	NR
Patel, 2014 ¹³¹	RN (4574)	NR	NR	NR
Permpongkosol, 2007 ¹³⁹	laproscopic radical nephrectomy (549)	NR	NR	NR
Permpongkosol, 2007 ¹³⁹	laproscopic partial nephrectomy (345)	NR	NR	NR
Permpongkosol, 2007 ¹³⁹	laproscopic tumor ablation (81)	NR	NR	NR
Roos, 2010 ¹⁰⁶	Partial nephrectomy (NSS), for young (<55 years old) (36)	3-4: 4(11.1)	NR	NR
Roos, 2010 ¹⁰⁶	Radical nephrectomy (NSS), for young (<55 years old) (45)	3-4: 6(13.3)	NR	NR
Roos, 2010 ¹⁰⁶	Partial nephrectomy, for old (>65 years old) (33)	3-4: 3(9.1)	NR	NR
Roos, 2010 ¹⁰⁶	Radical nephrectomy, for old (>65 years old) (52)	3-4: 13(23.6)	NR	NR
Roos, 2012 ⁵¹	NSS (101)	NR	NR	NR
Roos, 2012 ⁵¹	RN (146)	NR	NR	NR
Scosyrev, 2014 ⁷⁸	RN (259)	NR	NR	NR
Scosyrev, 2014 ⁷⁸	NSS (255)	NR	NR	NR
Shinohara, 2001 ⁵²	NSS (15)	NR	NR	NR
Shinohara, 2001 ⁵²	RN (51)	NR	NR	NR
Smaldone, 2012 ⁷⁹	Overall (5496)	1-2: NR(82) 3-4: NR	NR	NR
Smaldone, 2012 ⁷⁹	PN (1665)	NR	NR	NR
Smaldone, 2012 ⁷⁹	RN (3831)	NR	NR	NR
Snow, 2008 ¹⁰²	LPN (48)	NR	NR	NR
Snow, 2008 ¹⁰²	LRN (37)	NR	NR	NR
Stern, 2007 ¹²¹	RFA (40)	NR	NR	NR
Stern, 2007 ¹²¹	PN (37)	NR	NR	NR
Sun, 2012 ¹⁵²	PN (924)	NR	NR	NR
Sun, 2012 ¹⁵²	RN (6600)	NR	NR	NR
Sun, 2012 ¹⁵²	post-propensity RN (924)	NR	NR	NR
Sun, 2012 ⁸⁰	PN (840)	NR	NR	NR
Sun, 2012 ⁸⁰	RN (840)	NR	NR	NR
Sun, 2013 ¹³³	NSM (3271)	1-2: 1354(41.4) 3-4: 1578(10.4)	NR	NR
Sun, 2013 ¹³³	PN (1051)	1-2: 611(58.1) 3-4: 306(12.7)	NR	NR
Sun, 2013 ¹³³	RN (6273)	1-2: 3241(51.7) 3-4: 2256(12.4)	NR	NR
takagi, 2011 ⁸¹	PN-eGFR 45 - 59 (30)	NR	NR	NR
takagi, 2011 ⁸¹	RN-eGFR 45 - 59 (38)	NR	NR	NR
takagi, 2011 ⁸¹	PN-eGFR 30 - 44 (14)	NR	NR	NR
takagi, 2011 ⁸¹	RN-eGFR 30 - 44 (13)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	RFA (51)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	RN (54)	NR	NR	NR
Takaki, 2010 ¹⁴⁰	PN (10)	NR	NR	NR
Takaki, 2014 ¹³⁵	RFA (21)	NR NR	NR	NR
Takaki, 2014 ¹³⁵	akaki, 2014 ¹³⁵ RN (39)		NR	NR
Tan, 2012 ⁸²	PN (1925)	1-2: 1067(60.6) 3-4: 245(12.7)	NR	NR
Tan, 2012 ⁸²	RN (5213)	1-2: 2948(56.6) 3-4: 647(12.4)	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Tanagho, 2013 ¹²⁶	Cryoablation (267)	NR	Mean: 6.4 SD: 1.7	NR
Tanagho, 2013 ¹²⁶	Robot assisted partial nephrectomy (233)	NR	Mean: 7.3 SD: 1.9	NR
Thompson, 2008 ⁸³	PN (358)	NR	NR	NR
Thompson, 200883	RN (290)	NR	NR	NR
Thompson, 200883	PN-<65years (187)	NR	NR	NR
Thompson, 200883	RN-<65years (140)	NR	NR	NR
Thompson, 2014 ¹²²	cT1a-Partial Nephrectomy (1057)	NR	NR	NR
Thompson, 2014 ¹²²	cT1a-Radiofrequency Ablation (180)	NR	NR	NR
Thompson, 2014 ¹²²	cT1a-Cryoablation (187)	NR	NR	NR
Thompson, 2014 ¹²²	cT1b-Partial Nephrectomy (326)	NR	NR	NR
Thompson, 2014 ¹²²	cT1b-Cryoablation (53)	NR	NR	NR
Tomaszewski, 2014 ⁸⁴	Overall (1092)	NR	Mean: 7.8 SD: 2	NR
Turna, 2009 ¹²³	Laparoscopic partial nephrectomy (36)	NR	NR	NR
Turna, 2009 ¹²³	Cryoablation (36)	NR	NR	NR
Turna, 2009 ¹²³	Radiofrequency ablation (29)	NR	NR	NR
Uchida, 2004 ⁸⁵	PN (54)	1-2: 52(NR) 3-4: 2(NR)	NR	NR
Uchida, 2004 ⁸⁵	RN (51)	1-2: 49(NR) 3-4: 2(NR)	NR	NR
Uzzo, 1999 ⁸⁶	RN (28)	NR	NR	NR
Uzzo, 1999 ⁸⁶	NSS (52)	NR	NR	NR
Van Poppel, 2011 ⁸⁷	NSS (268)	1-2: 197(77.5) 3-4: 19(7.1)	NR	NR
Van Poppel, 2011 ⁸⁷	Radical nephrectomy (273)	1-2: 194(71) 3- 4: 30(11)	NR	NR
Weight, 201089	PN-High Grade cohort (52)	NR	NR	NR
Weight, 201089	RN-Upstaged Cohort (117)	NR	NR	NR
Weight, 201089	PN-Upstaged Cohort (96)	NR	NR	NR
Weight, 201089	RN-High Grade cohort (43)	NR	NR	NR
Weight, 2010 ⁸⁸	RN (298)	1-2: 122(48) 3- 4: 131(52)	NR	NR
Weight, 2010 ⁸⁸	PN (212)	1-2: 112(67) 3- 4: 54(33)	NR	NR
Weight,2010 ⁹⁰	RN (480)	3-4: 213(52.5)	NR	NR
Weight,2010 ⁹⁰	PN (524)	3-4: 170(40.2)	NR	NR
Whitson, 2012 ¹²⁴	NSS (7704)	1-2: 5108(83) 3- 4: 989(16)	NR	NR
Whitson, 2012 ¹²⁴	Ablation (1114)	1-2: 463(90) 3- 4: 47(9)	NR	NR
Woldu, 2014 ⁹¹	CKD 1 NSS (185)	NR	NR	NR
Woldu, 2014 ⁹¹	CKD 1 RN (179)	NR	NR	NR
Woldu, 2014 ⁹¹	CKD 2 NSS (261)	NR	NR	NR
Woldu, 2014 ⁹¹	CKD 2 RN (419)	NR	NR	NR
	CKD 3 NSS (94)	NR	NR	NR
Woldu, 2014 ⁹¹		LAID	NR	NR
Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹	CKD 3 RN (168)	NR		
Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹	Cohort (1306)	NR	NR	NR
Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Xu, 2014 ⁵³	Cohort (1306) LRN (88)	NR NR	NR NR	NR NR
Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Xu, 2014 ⁵³ Xu, 2014 ⁵³	Cohort (1306) LRN (88) ORN (526)	NR NR NR	NR NR NR	NR NR NR
Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Woldu, 2014 ⁹¹ Xu, 2014 ⁵³	Cohort (1306) LRN (88)	NR NR	NR NR	NR NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
			Range: 4.0- 10.0	
Yasuda, 2012 ⁹²	RN (103)	NR	Median: 8 Range: 4.0- 11.0	NR
Youn, 2013 ¹³⁰	Open PN (14)	NR	NR	NR
Youn, 2013 ¹³⁰	Laparascopic RFA (41)	NR	NR	NR
Zini, 2009 ⁹³	Partial nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade) (2153)	1-2: 1137(52.8) 3-4: 205(9.5)	NR	NR
Zini, 2009 ⁹³	Radical nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade) (5616)	1-2: 2662(47.4) 3-4: 488(8.7)	NR	NR
Zini, 2009 ⁹³	Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade) (1283)	1-2: 1087(84.7) 3-4: 196(15.2)	NR	NR
Zini, 2009 ⁹³	Radical nephrectomy (matched for age, tumor size, year of surgery, Furhman grade) (3166)	1-2: 2722(86) 3- 4: 444(14)	NR	NR
Zorn, 2007 ¹⁰³	LPN (42)	NR	NR	NR
Zorn, 2007 ¹⁰³	LRN (55)	NR	NR	NR
O'Malley,201497	PN (1893)	NR	NR	NR
O'Malley,2014 ⁹⁷	RN (10864)	NR	NR	NR
Cooper, 2015 ¹⁴¹	RFA (9)	NR	NR	NR
Cooper, 2015 ¹⁴¹	PN (9)	NR	NR	NR
Cooper, 2015 ¹⁴¹	RN (31)	NR	NR	NR
Chang, 2015 ¹²⁷	RFA (27)	NR	Mean: 8.5 Median: NR Range: 6-11 IQR: NR SD: NR	NR
Chang, 2015 ¹²⁷	PN (29)	NR	Mean: 7.8 Median: NR Range: 5-11 IQR: NR SD: NR	NR
Danzig, 2015 ¹³⁴	RN (15)	1-2: NR(83) 3-4: NR(16)	NR	NR
Danzig, 2015 ¹³⁴	PN (65)	1-2: NR(70) 3-4: NR(30)	NR	NR
Danzig, 2015 ¹³⁴	AS (68)	1-2: NR(NA) 3- 4: NR(NA)	NR	NR
Danzig, 2015 ¹³⁴	Cryoablation (14)	1-2: NR(80) 3-4: NR(20)	NR	NR
Chung, 2014 ⁹⁴	RN(>/=65years) (170)	1-2: 105(61.8) 3-4: 65(38.2)	NR	NR
Chung, 2014 ⁹⁴	PN(>/=65years) (170)	1-2: 103(60.6) 3-4: 67(39.4)	NR	NR
Chung, 2014 ⁹⁴	RN(<65years) (452)	1-2: 304(57.3) 3-4: 148(32.7)	NR	NR
Chung, 2014 ⁹⁴	PN(<65years) (452)	1-2: 290(54.2) 3-4: 162(35.8)	NR	NR
Chang, 2014 ⁹⁵	RN (339)	1-2: 246(75.5) 3-4: 76(22.5)	NR	NR
Chang, 2014 ⁹⁵	PN (218)	1-2: 170(78) 3- 4: 45(20.7)	NR	NR

Author, year	Arm (n)	Fuhrman Grade	Nephrometry (R.E.N.A.L.) score	PADUA score
Van Poppel, 2006 ⁹⁶	RN (273)	NR	NR	NR
Van Poppel, 2006 ⁹⁶	PN (268)	NR	NR	NR
ACTIVE SURVEILLANCE	(UNCONTROLLED STUDIES)			
Abouassaly, 2008 ¹⁴⁵	Active Surveillance (110)	NR	NR	NR
Crispen, 2008 ¹⁴⁶	Active Surveillance (109)	NR	NR	NR
Crispen, 2009 ¹⁴⁷	Active Surveillance (173)	NR	NR	NR
Jewett, 2011 ¹⁴⁸	Active Surveillance (178)	NR	NR	NR
Kunkle, 2007 ¹⁴⁹	Active Surveillance (89)	NR	NR	NR
Leonard, 2013 ⁴²	Active surveillance (133)	NR	NR	NR
Rosales, 2010 ¹⁵⁰	Active Surveillance (212)	NR	NR	NR

CKD: Chronic Kidney Disease; DT: Deferred Treatment; GFR: Glomerular Filtration Rate; LCA: Laparoscopic Cryoablation LPN: Laparoscopic partial nephrectomy; LRFA: Laparoscopic Radio Frequency Ablation; LTA: Laparoscopic Thermal Ablation; MIPN: Minimally Invasive Partial Nephrectomy; MIRN: Minimally Invasive Radical Nephrectomy; NA: Not Applicable; NR: Not reported; NSM: Non surgical Management; NSS: Nephron-sparing surgery; OPN: Open partial nephrectomy; ORN: Open Radical Nephrectomy; PN: Partial Nephrectomy; RFA: Radio frequency ablation; RN: Radical nephrectomy; SD: Standard deviation; TE: Tumor Enucleation

Table D12: Outcomes Table for KQs 3a and 3b

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
			Oncolog	ic efficacy				
Antonelli, 2011 ⁵⁴	Arm 1(RN-cT1a)	Local recurrence-free survival: n(%)	NA	NR	919	914(99.5)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 2(PN-cT1a)	Local recurrence-free survival: n(%)	NA	NR	1068	1063(99.5)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 3(RN-cT1b)	Local recurrence-free survival: n(%)	NA	NR	1426	1419(99.5)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 4(PN-cT1b)	Local recurrence-free survival: n(%)	NA	NR	198	196(99)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 1(RN-cT1a)	Cancer-specific survival: n(%)	NA	5years	919	NR(94.7)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 2(PN-cT1a)	Cancer-specific survival: n(%)	NA	5years	1068	NR(96.1)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 3(RN-cT1b)	Cancer-specific survival: n(%)	NA	5years	1426	NR(92.6)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 4(PN-cT1b)	Cancer-specific survival: n(%)	NA	5years	198	NR(90)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 1(RN-cT1a)	Cancer-specific survival: n(%)	NA	10years	919	NR(90.4)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 2(PN-cT1a)	Cancer-specific survival: n(%)	NA	10years	1068	NR(94.9)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 3(RN-cT1b)	Cancer-specific survival: n(%)	NA	10years	1426	NR(87)	NA	NR
Antonelli, 2011 ⁵⁴	Arm 4(PN-cT1b)	Cancer-specific survival: n(%)	NA	10years	198	NR(90)	NA	NR
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.65- 1.27
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.49- 1.41
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.60- 1.85
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.44- 1.70
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.42- 1.43

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Badalato, 1997 ⁵⁶	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NANA	11256		NA	Comp. Arm: RN 95%CI: 0.66- 1.48
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Cancer-specific survival: n(%)	NA	5	41	(97.5)	NA	NR>0.1
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Cancer-specific survival: n(%)	NA	5	48	(98.4)	NA	NR>0.1
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	5	41	38(92.7)	NA	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	5	48	48(100)	NA	NR
Bedke, 2008 ⁵⁷	Arm 1(RN)	Cancer-specific survival: n(%)	NA	NR	398	361(90.7)	NA	NR
Bedke, 2008 ⁵⁷	Arm 2(PN)	Cancer-specific survival: n(%)	NA	NR	66	64(97)	NA	NR
Bedke, 2008 ⁵⁷	Overall(7cm or less)	Cancer-specific survival: n(%)	NA	5years	464	(94.1)	NA	NR
Bedke, 2008 ⁵⁷	Overall(7cm or less)	Cancer-specific survival: n(%)	NA	10years	464	(88.7)	NA	NR
Bedke, 2008 ⁵⁷	Overall(7cm or more)	Cancer-specific survival: n(%)	NA	5years	464	(78.4)	NA	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Local recurrence-free survival: n(%)	NA	15mont hs	50	50(100)	NA	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Local recurrence-free survival: n(%)	NA	25.2mo nths	38	37(97.4)	NA	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Local recurrence-free survival: n(%)	NA	15mont hs	50	50(100)	NA	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Local recurrence-free survival: n(%)	NA	25.2mo nths	38	37(97.4)	NA	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Incidence of chronic kidney disease : NR	NA	NR	45	NR(58)	NR	Comp. Arm: Arm 2 P: 0.591
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Incidence of chronic kidney disease : NR	NA	NR	108	NR(31)	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	5	27	NR(92.6)	NA	Comp. Arm: Arm 2 P: 0.493
Chang, 2014 ¹¹⁸	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5	29	NR(96.6)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Cancer-specific survival: n(%)	NA	1years	578	NR(99.4)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 2(PN)	Cancer-specific survival: n(%)	NA	1years	4402	NR(99.6)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Choueiri, 2011 ¹³⁷	Arm 3(RN)	Cancer-specific survival: n(%)	NA	1years	10165	NR(98.9)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Cancer-specific survival: n(%)	NA	2years	578	NR(98)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 2(PN)	Cancer-specific survival: n(%)	NA	2years	4402	NR(99.3)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 3(RN)	Cancer-specific survival: n(%)	NA	2years	10165	NR(98)	NA	NR
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Cancer-specific survival: n(%)	NA	2years	578	NR	NA	Comp. Arm: PN HR: 0.6 95%CI: 0.28 - 1.28 P: 0.2
Crepel, 2010 ⁵⁹	Arm 1(PN)	Cancer-specific survival: n(%)	NA	5years	275	NR(91.4)	NA	Comp. Arm: Arm 2 P: 0.3
Crepel, 2010 ⁵⁹	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5years	1100	NR(95.3)	NA	NR
Daugherty, 2014 ⁶¹	(Radical Nephrectomy)	Cancer-specific survival: n(%)	NA	5	494	NR(99.6)	NA	Comp. Arm: Arm 2 HR: 0.23 95%CI: 0.012- 4.66 P: 0.34
Daugherty, 2014 ⁶¹	(Partial Nephrectomy)	Cancer-specific survival: n(%)	NA	5	222	NR(100)	NA	NR
Daugherty, 2014 ⁶¹	(Radical Nephrectomy)	Cancer-specific survival: n(%)	NA	10	494	NR(98.3)	NA	Comp. Arm: Arm 2 HR: 0.25 95%CI: 0.047- 1.32 P: 0.1
Daugherty, 2014 ⁶¹	(Partial Nephrectomy)	Cancer-specific survival: n(%)	NA	10	222	NR(100)	NA	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	33	33(100)	NA	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	52	52(100)	NA	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Metastasis-free survival: n(%)	NA	NR	33	33(NR)	NA	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Metastasis-free survival: n(%)	NA	NR	52	51(NR)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Incidence of chronic kidney disease : eGFR <60 ml/min	NA	15mont hs	33	(30.3)	NR	NR0.04
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease : eGFR <60 ml/min	NA	21mont hs	52	(55.7)	NR	NR0.04
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Incidence of end-stage renal disease: end stage renal disease requiring dialysis	NA	15mont hs	33	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Incidence of end-stage renal disease: end stage renal disease requiring dialysis	NA	21mont hs	52	1	NR	NR
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Creatinine measure: final eCrCl <60	NA	16.1mo nths	11	NR(100)	NR	Comp. Arm: Arm 2 and 3 P: <0.0005
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Creatinine measure: final eCrCl <60	NA	28.9mo nths	17	NR(25)	NR	P: <0.0005
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Creatinine measure: final eCrCl <60	NA	19.3mo nths	11	NR(18.2)	NR	P: <0.0005
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Local recurrence-free survival: n(%)	NA	NR	153	152(99.4)	NA	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Local recurrence-free survival: n(%)	NA	NR	89	87(97)	NA	NR
Emara, 2014 ¹¹³	(Cryoablation)	Local recurrence-free survival: n(%)	NA	mean 31.3m	56	54(96)	NA	NR
Emara, 2014 ¹¹³	(Robot assisted partial nephrectomy)	Local recurrence-free survival: n(%)	NA	mean 16.5m	47	47(100)	NA	NR
Emara, 2014 ¹¹³	(Cryoablation)	Incidence of chronic kidney disease : GFR<60	NA	6 weeks	56	10(21.3)	NR	NR
Emara, 2014 ¹¹³	(Robot assisted partial nephrectomy)	Incidence of chronic kidney disease : GFR<60	NA	6 weeks	47	25(44.6)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Cancer-specific survival: n(%)	NA	Mean followup :	36	35(97)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
				22mont hs				
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Cancer-specific survival: n(%)	NA	Mean followup : 22mont hs	37	36(97)	NA	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Cancer-specific survival: n(%)	NA	Mean followup : 22mont hs	44	43(98)	NA	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Metastasis-free survival: n(%)	NA	Mean followup : 22mont hs	36	36(100)	NA	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Metastasis-free survival: n(%)	NA	Mean followup : 22mont hs	37	34(92)	NA	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Metastasis-free survival: n(%)	NA	Mean followup : 22mont hs	44	43(98)	NA	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Local recurrence-free survival: n(%)	NA	NR	210	210(100)	NA	Comp. Arm: Arm 2 P: <0.0001
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Local recurrence-free survival: n(%)	NA	NR	226	201(88.9)	NA	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Metastasis-free survival: n(%)	NA	NR	210	209(99.5)	NA	Comp. Arm: Arm 2 P: 0.0021
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Metastasis-free survival: n(%)	NA	NR	226	213(94.2)	NA	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Incidence of chronic kidney disease : NR	NA	Last follow upNR	210	26(12.2)	NR	Comp. Arm: Arm 2 P: 0.0002

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Incidence of chronic kidney disease : NR	NA	Last follow upNR	226	38(16.2)	NR	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Incidence of end-stage renal disease: NR	NA	Last follow upNR	210	0(0)	NR	Comp. Arm: Arm 2 P: 0.0009
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Incidence of end-stage renal disease: NR	NA	Last follow upNR	226	11(4.7)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Local recurrence-free survival: n(%)	NA	NR	75	74(98.7)	NA	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Local recurrence-free survival: n(%)	NA	NR	92	90(97.8)	NA	NR
Houston, 2009 ⁶²	Arm 1(RN)	Cancer-specific survival: n(%)	NA	NR	873	583(66.8)	NA	NR
Houston, 2009 ⁶²	Arm 2(PN)	Cancer-specific survival: n(%)	NA	NR	286	231(80.8)	NA	NR
Huang, 2006 ⁶³	Arm 1(GFR>60 partial)	Incidence of chronic kidney disease: freedom from new onset	NA	3year	287	NR(80)	95%CI: 73-85 P: NR	NR
Huang, 2006 ⁶³	Arm 1(GFR>60 partial)	Incidence of chronic kidney disease : freedom from new onset	NA	5year	287	NR(67)	95%CI: 57-75 P: NR	NR
Huang, 2006 ⁶³	Arm 2(GFR>60 radical)	Incidence of chronic kidney disease : freedom from new onset	NA	3year	204	NR(35)	95%CI: 28-43 P: NR	NR
Huang, 2006 ⁶³	Arm 2(GFR>60 radical)	Incidence of chronic kidney disease : freedom from new onset	NA	5year	204	NR(23)	95%CI: 16-30 P: NR	Comp. Arm: Arm 1 HR: 3.82 95%CI: 2.75- 5.32 P: <0.0001
Huang, 2006 ⁶³	Arm 3(GFR>45 partial)	Incidence of chronic kidney disease : freedom from new onset	NA	3year	385	NR(95)	95%CI: 91-98 P: NR	NR
Huang, 2006 ⁶³	Arm 3(GFR>45 partial)	Incidence of chronic kidney disease :	NA	5year	385	NR(93)	95%CI: 87-96 P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		freedom from new onset						
Huang, 2006 ⁶³	Arm 4(GFR>45 radical)	Incidence of chronic kidney disease : freedom from new onset	NA	3year	262	NR(64)	95%CI: 56-70 P: NR	NR
Huang, 2006 ⁶³	Arm 4(GFR>45 radical)	Incidence of chronic kidney disease : freedom from new onset	NA	5year	262	NR(57)	95%CI: 50-64 P: NR	Comp. Arm: Arm 3 HR: 11.8 95%CI: 6.24- 22.4 P: <0.0001
Huang, 2009 ⁶⁴	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NR	556	548(98.6)	NA	NR
Huang, 2009 ⁶⁴	Arm 2(RN)	Cancer-specific survival: n(%)	NA	NR	2435	2336(96)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	67	NR(95)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	195	NR(100)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	324	NR(99)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Metastasis-free survival: n(%)	NA	NR	67	NR(93)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Metastasis-free survival: n(%)	NA	NR	195	NR(86)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Metastasis-free survival: n(%)	NA	NR	324	NR(98)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Cancer-specific survival: n(%)	NA	NR	67	NR(99)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Cancer-specific survival: n(%)	NA	NR	195	NR(92)	NA	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Cancer-specific survival: n(%)	NA	NR	324	NR(99)	NA	NR
Indudhara, 1997 ⁴⁷	Arm 1(nephron sparing surgery)	Metastasis-free survival: n(%)	NA	3.1	35	34	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								SE: NA SD: NA P: NA
Indudhara, 1997 ⁴⁷	Arm 2(radical nephrectomy)	Metastasis-free survival: n(%)	NA	3.9	71	71(1)	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara, 1997 ⁴⁷	Arm 1(nephron sparing surgery)	Cancer-specific survival: n(%)	NA	3.1	35	35(1)	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara, 1997 ⁴⁷	Arm 2(radical nephrectomy)	Cancer-specific survival: n(%)	NA	3.9	71	71(1)	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara, 1997 ⁴⁷	Arm 1(nephron sparing surgery)	Local recurrence-free survival: n(%)	NA	3.1	35	34(0.971428571 428571)	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara, 1997 ⁴⁷	Arm 2(radical nephrectomy)	Local recurrence-free survival: n(%)	NA	3.9	71	71(1)	NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								SE: NA SD: NA P: NA
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	Local recurrence-free survival: n(%)	NA	1	25	0(0)	NA	NR
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic radical nephrectomy)	Local recurrence-free survival: n(%)	NA	1	73	0(0)	NA	NR
Jeon, 2009 ¹⁰⁹	Arm 1(PN)	Incidence of chronic kidney disease : CKD	NA	35mont hs	96	11(11.5)	NR	Comp. Arm: Arm 2 HR: 0.11 95%CI: 0.06- 0.22 P: <0.001
Jeon, 2009 ¹⁰⁹	Arm 2(RN)	Incidence of chronic kidney disease : CKD	NA	35mont hs	129	86(66.7)	NR	NR
Jeon, 2009 ¹⁰⁹	Arm 1(PN)	Incidence of chronic kidney disease : freedom from CKD	NA	2years	96	NR(95.7)	NR	Comp. Arm: Arm 2 P: <0.01
Jeon, 2009 ¹⁰⁹	Arm 2(RN)	Incidence of chronic kidney disease : freedom from CKD	NA	2years	129	NR(58.3)	NR	Comp. Arm: Arm 1 P: <0.01
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Incidence of chronic kidney disease : NR	NA	NR	211	40(19)	NR	Comp. Arm: Arms 2 - 5 P: <0.001
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Incidence of chronic kidney disease : NR	NA	NR	160	28(17.5)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Incidence of chronic kidney disease : NR	NA	NR	330	74(23)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Incidence of chronic kidney disease : NR	NA	NR	535	191(35.6)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Incidence of chronic kidney disease : NR	NA	NR	404	138(33.9)	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	59	59(100)	NA	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	59	59(100)	NA	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Metastasis-free survival: n(%)	NA	NR	59	59(100)	NA	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Metastasis-free survival: n(%)	NA	NR	59	59(100)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Local recurrence-free survival: n(%)	NA	NR	NR	NR(83)	NA	Comp. Arm: Arm 2 P: 0.015
Klatte, 2011 ¹²⁸	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	NR	NR	NR(100)	NA	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Metastasis-free survival: n(%)	NA	NR	NR	0(100)	NA	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Metastasis-free survival: n(%)	NA	NR	NR	0(100)	NA	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Cancer-specific survival: n(%)	NA	NR	NR	0(100)	NA	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Cancer-specific survival: n(%)	NA	NR	NR	0(100)	NA	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Incidence of chronic kidney disease : NR	NA	3month s	41	4(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Incidence of chronic kidney disease : NR	NA	3month s	82	2(NR)	NR	NR
Kopp, 2014 ⁶⁶	Arm 1(RN)	Cancer-specific survival: n(%)	NA	5	122	NR(82.5)	NA	Comp. Arm: Arm 2 P: 0.407
Kopp, 2014 ⁶⁶	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5	80	NR(86.7)	NA	NR
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Cancer-specific survival: n(%)	NA		82	3(3.7)	NA	NR0.279
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Cancer-specific survival: n(%)	NA		53	0(0)	NA	NR
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Metastasis-free survival: n(%)	NA		82	5(6.1)	NA	NR0.403
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Metastasis-free survival: n(%)	NA		53	1(1.9)	NA	NR
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Incidence of chronic kidney disease : Newly diagnosed CKD after surgery	NA	NR	82	23(28.3)	NR	NR
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Incidence of chronic kidney disease : Newly diagnosed CKD after surgery	NA	NR	53	10(18.4)	NR	NR
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Incidence of chronic kidney disease : CKD>3	NA	NR	82	58(70.7)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Incidence of chronic kidney disease : CKD>3	NA	NR	53	23(43.4)	NR	NR
Lane, 2010 ⁶⁸	Arm 1(PN Limited ischemia)	Cancer-specific survival: n(%)	NA	5years	804	NR(98.7)	NA	NR
Lane, 2010 ⁶⁸	Arm 2(PN Unknown ischemia)	Cancer-specific survival: n(%)	NA	5years	546	NR(99)	NA	NR
Lane, 2010 ⁶⁸	Arm 3(PN Extended ischemia)	Cancer-specific survival: n(%)	NA	5years	483	NR(99.1)	NA	NR
Lane, 2010 ⁶⁸	Arm 4(RN)	Cancer-specific survival: n(%)	NA	5years	569	NR(93.8)	NA	Comp. Arm: all PN P: <0.001
Lane, 2010 ⁶⁸	Arm 1(PN Limited ischemia)	Incidence of end-stage renal disease: eGFR<15ml/min/1.73 m2	NA	last follow upNA	804	NR(0.3)	NR	NR
Lane, 2010 ⁶⁸	Arm 2(PN Unknown ischemia)	Incidence of end-stage renal disease: eGFR<15ml/min/1.73 m2	NA	last follow upNA	546	NR(0.9)	NR	NR
Lane, 2010 ⁶⁸	Arm 3(PN Extended ischemia)	Incidence of end-stage renal disease: eGFR<15ml/min/1.73 m2	NA	last follow upNA	483	NR(1.1)	NR	NR
Lane, 2010 ⁶⁸	Arm 4(RN)	Incidence of end-stage renal disease: eGFR<15ml/min/1.73 m2	NA	last follow upNA	569	NR(1.8)	NR	NR
Lane, 2010 ⁶⁸	Arm 1(PN Limited ischemia)	Incidence of chronic kidney disease : <45	NA	last follow up	804	(11)	NR	NR
Lane, 2010 ⁶⁸	Arm 2(PN Unknown ischemia)	Incidence of chronic kidney disease : <45	NA	last follow up	546	(15)	NR	NR
Lane, 2010 ⁶⁸	Arm 3(PN Extended ischemia)	Incidence of chronic kidney disease : <45	NA	last follow up	483	(19)	NR	NR
Lane, 2010 ⁶⁸	Arm 4(RN)	Incidence of chronic kidney disease : <45	NA	last follow up	569	(35)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Cancer-specific survival: n(%)	NA	5years	105	NR(94.2)	NA	Comp. Arm: Arm 2 P: 0.33
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Cancer-specific survival: n(%)	NA	5years	146	NR(90.7)	NA	NR
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Local recurrence-free survival: n(%)	NA	NRyear s	105	64(61)	NA	NR
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Local recurrence-free survival: n(%)	NA	NRyear s	146	105(72)	NA	NR
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Metastasis-free survival: n(%)	NA	NRyear s	105	64(61)	NA	NR
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Metastasis-free survival: n(%)	NA	NRyear s	146	104(71.3)	NA	NR
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Incidence of chronic kidney disease : CKD stage >/=3	NA	NR	52	3(5.8)	NR	NR
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Incidence of chronic kidney disease : CKD stage >/=3	NA	NR	89	68(76.4)	NR	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Local recurrence-free survival: n(%)	NA	NR	35	35(100)	NA	NR
Li, 2007 ⁶⁹	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	NR	128	NR	NA	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Metastasis-free survival: n(%)	NA	NR	35	35(100)	NA	NR
Li, 2007 ⁶⁹	Arm 2(RN)	Metastasis-free survival: n(%)	NA	NR	128	NR	NA	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NR	35	35(100)	NA	NR
Li, 2007 ⁶⁹	Arm 2(RN)	Cancer-specific survival: n(%)	NA	NR	128	115(89.8)	NA	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	40mont hs	86	80	NA	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	44mont hs	85	83	NA	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Local recurrence-free survival: n(%)	NA	26mont hs	71	71	NA	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Metastasis-free survival: n(%)	NA	40mont	86	86	NA	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Metastasis-free survival: n(%)	NA	44mont hs	85	85	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Lucas, 2007 ¹³⁸	Arm 3(RN)	Metastasis-free survival: n(%)	NA	26mont hs	71	69	NA	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	40mont hs	86	80	NA	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	44mont hs	85	83	NA	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Local recurrence-free survival: n(%)	NA	26mont hs	71	71	NA	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Metastasis-free survival: n(%)	NA	40mont hs	86	86	NA	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Metastasis-free survival: n(%)	NA	44mont hs	85	85	NA	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Metastasis-free survival: n(%)	NA	26mont hs	71	69	NA	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Incidence of chronic kidney disease : CKD-3	NA	22mont hs	36	18(NR)	NR	Comp. Arm: 2 and 3 P: <0.001
Lucas, 2007 ¹³⁸	Arm 2(PN)	Incidence of chronic kidney disease : CKD-3	NA	24mont hs	48	9(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Incidence of chronic kidney disease : CKD-3	NA	45.5mo nths	50	1(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	86	1(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	85	1(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	71	2(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Incidence of chronic kidney disease : CKD-3	NA	22mont hs	36	18(NR)	NR	Comp. Arm: 2 and 3 P: <0.001
Lucas, 2007 ¹³⁸	Arm 2(PN)	Incidence of chronic kidney disease : CKD-3	NA	24mont hs	48	9(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Incidence of chronic kidney disease : CKD-3	NA	45.5mo nths	50	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Lucas, 2007 ¹³⁸	Arm 1(RFA)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	86	1(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 2(PN)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	85	1(NR)	NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN)	Incidence of end-stage renal disease: Need for dialysis	NA	NR	71	2(NR)	NR	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Metastasis-free survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Metastasis-free survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Cancer-specific survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Cancer-specific survival: n(%)	NA	NR	44	44(100)	NA	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Incidence of chronic kidney disease: Development of newonset CKD	NA	6 months	44	9(20)	NR	NR
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease : Development of newonset CKD	NA	6 months	44	20(43)	NR	NR
McKiernan, 2002 ⁷²	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	5	117	1(96.4)	NA	NR>0.05
McKiernan, 2002 ⁷²	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	5	173	2(98.6)	NA	NR>0.05
McKiernan, 2002 ⁷²	Arm 1(Partial nephrectomy)	Incidence of chronic kidney disease : Renal Failure	NA	3 years	117	NR(0)	NR	NR
McKiernan, 2002 ⁷²	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease : Renal Failure	NA	3 years	173	NR(0.1)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
McKiernan, 2002 ⁷²	Arm 1(Partial nephrectomy)	Incidence of chronic kidney disease : Renal Failure	NA	5 years	117	0(0)	NR	NR
McKiernan, 2002 ⁷²	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease : Renal Failure	NA	5 years	173	16(0.15)	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(Radical nephrectomy)	Cancer-specific survival: n(%)	NA	48mont hs	174	120	NA	NR
Medina-Polo, 2011 ⁷³	Overall(Overall)	Local recurrence-free survival: n(%)	NA	48mont hs	245	239	NA	NR
Medina-Polo, 2011 ⁷³	Overall(Overall)	Metastasis-free survival: n(%)	NA	48mont hs	245	224	NA	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	48mont hs	116	98	NA	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS)	Incidence of chronic kidney disease: mild renal failure (<60 ml/min/1.73m^2)	NA	4years	86	28(32.6)	NR	NR0.002
Medina-Polo, 2011 ⁷³	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease: mild renal failure (<60 ml/min/1.73m^2)	NA	4years	132	75(56.8)	NR	NR0.002
Medina-Polo, 2011 ⁷³	Arm 1(NSS)	Incidence of chronic kidney disease : moderate renal failure (<40 ml/min/1.73m^2)	NA	4years	86	3(14.4)	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease: moderate renal failure (<40 ml/min/1.73m^2)	NA	4years	132	19(3.4)	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS)	Incidence of chronic kidney disease : periodical dialysis	NA	4years	86	1(NR)	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(Radical nephrectomy)	Incidence of chronic kidney disease : periodical dialysis	NA	4years	132	4(NR)	NR	NR
Meskawi, 2014 ⁷⁴	Arm 1(PN)	Cancer-specific survival: n(%)	NA	5year	6104	(4.4)	NA	NR
Meskawi, 2014 ⁷⁴	Arm 1(RN)	Cancer-specific survival: n(%)	NA	10year	6104	(6.1)	NA	NR0.03

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Meskawi, 2014 ⁷⁴	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5year	1526	(6)	NA	NR
Meskawi, 2014 ⁷⁴	Arm 2(RN)	Cancer-specific survival: n(%)	NA	10year	1526	(10.4)	NA	Comp. Arm: PN 95%CI: 0.65- 1.26 P: 0.6
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	5	34	NR(97.1)	NA	NR
Milonas, 2013 ⁵⁰	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5	317	NR(80.9)	NA	NR
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	7	34	NR(80.6)	NA	NR
Milonas, 2013 ⁵⁰	Arm 2(RN)	Cancer-specific survival: n(%)	NA	7	317	NR(76.4)	NA	NR
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	12	34	NR(80.6)	NA	Comp. Arm: Arm 2 P: 0.198
Milonas, 2013 ⁵⁰	Arm 2(RN)	Cancer-specific survival: n(%)	NA	12	317	NR(69.6)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN)	Local recurrence-free survival: n(%)	NA	NR	143	143(100)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 2(TE)	Local recurrence-free survival: n(%)	NA	NR	332	329(99.1)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN)	Cancer-specific survival: n(%)	NA	5years	143	NR(92.1)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE)	Cancer-specific survival: n(%)	NA	5years	332	NR(94.4)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN)	Cancer-specific survival: n(%)	NA	10years	143	NR(89.4)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE)	Cancer-specific survival: n(%)	NA	10years	332	NR(94.4)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN- Fuhrman Grade 1- 2)	Cancer-specific survival: n(%)	NA	6years	NR	NR(98.5)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE- Fuhrman Grade 1- 2)	Cancer-specific survival: n(%)	NA	6years	NR	NR(96.8)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN- Fuhrman Grade 3)	Cancer-specific survival: n(%)	NA	6years	NR	NR(84.8)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE- Fuhrman Grade 3)	Cancer-specific survival: n(%)	NA	6years	NR	NR(83.1)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN- Fuhrman Grade 4)	Cancer-specific survival: n(%)	NA	6years	NR	NR(20.8)	NA	Comp. Arm: Arm 2 P: NS

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Minervini, 2012 ¹⁰⁸	Arm 2(TE- Fuhrman Grade 4)	Cancer-specific survival: n(%)	NA	6years	NR	NR(0)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN-pT1a)	Cancer-specific survival: n(%)	NA	10years	NR	NR(92.2)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE-pT1a)	Cancer-specific survival: n(%)	NA	10years	NR	NR(95.1)	NA	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN-pT1b)	Cancer-specific survival: n(%)	NA	10years	NR	NR(87.6)	NA	Comp. Arm: Arm 2 P: NS
Minervini, 2012 ¹⁰⁸	Arm 2(TE-pT1a)	Cancer-specific survival: n(%)	NA	10years	NR	NR(90.5)	NA	NR
Mitchell, 2005 ⁷⁵	Arm 1(PN)	Local recurrence-free survival: n(%)	NA	5year	33	NR(93.5)	NA	P: 0.471
Mitchell, 2005 ⁷⁵	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	5year	66	NR(83.3)	NA	NR
Mitchell, 2005 ⁷⁵	Arm 1(PN)	Cancer-specific survival: n(%)	NA	5year	33	NR(96.2)	NA	P: 0.893
Mitchell, 2005 ⁷⁵	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5year	66	NR(97.8)	NA	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Incidence of chronic kidney disease : Stage 1	NA	3month s	50	1(2)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Incidence of chronic kidney disease : Stage 1	NA	3month s	62	1(2)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Incidence of chronic kidney disease : Stage 2	NA	3month s	50	10(20)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Incidence of chronic kidney disease : Stage 2	NA	3month s	62	14(23)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Incidence of chronic kidney disease : Stage 2	NA	3month s	50	36(72)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Incidence of chronic kidney disease : Stage 3	NA	3month s	62	40(65)	NR	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Incidence of chronic kidney disease : Stage 4	NA	3month s	50	3(6)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Incidence of chronic kidney disease : Stage 4	NA	3month s	62	7(11)	NR	NR
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Incidence of end-stage renal disease: Chronic renal failure	NA	60 months	152	1(0.0065789473 6842105)	NR	NR
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Incidence of end-stage renal disease: Chronic renal failure	NA	60 months	59	0(0)	NR	NR
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Glomerular filtration rate decline: GFR<60	NA	NR	152	117(77)	NR	Comp. Arm: PN 0.068 RD: 95%CI: 0.029- 0.158 <0.001
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Glomerular filtration rate decline: GFR<60	NA	NR	59	35(23)	NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Local recurrence-free survival: n(%)	NA	31mont hs	98	3(3.1)	NA	Comp. Arm: Partial Nephrectomy P: 0.25
Mues, 2012 ¹²⁰	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	24mont hs	100	0(0)	NA	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Local recurrence-free survival: n(%)	NA	31mont hs	98	7(7.1)	NA	Comp. Arm: Partial Nephrectomy P: 0.04
Mues, 2012 ¹²⁰	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	24mont hs	100	3(3)	NA	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Local recurrence-free survival: n(%)	NA	31mont hs	98	10(10.2)	NA	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	24mont hs	100	3(3)	NA	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Metastasis-free survival: n(%)	NA	31mont hs	98	2(2)	NA	P: 0.33
Mues, 2012 ¹²⁰	Arm 2(PN)	Metastasis-free survival: n(%)	NA	24mont hs	100	1(1)	NA	NR
Mues, 2012 ¹²⁰	Overall(Ablation + PN)	Incidence of chronic kidney disease : eGFR<60 ml/min/1.73 m2	NA	3month s	84	19(23)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Mues, 2012 ¹²⁰	Overall(Ablation + PN)	Incidence of end-stage renal disease: eGFR<15 ml/min/1.73 m2	NA	NR	84	1(1.2)	NR	NR
Mues, 2012 ¹²⁰	Overall(Ablation + PN)	Incidence of chronic kidney disease : eGFR<60 ml/min/1.73 m2	NA	12mont hs	84	15(18)	NR	NR
Olweny, 2012 ¹²⁵	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	5years	37	NR(91.7)	NA	NR
Olweny, 2012 ¹²⁵	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	5years	37	NR(94.6)	NA	NR
Olweny, 2012 ¹²⁵	Arm 1(RFA)	Metastasis-free survival: n(%)	NA	5years	37	NR(97.2)	NA	NR
Olweny, 2012 ¹²⁵	Arm 2(PN)	Metastasis-free survival: n(%)	NA	5years	37	NR(91.8)	NA	NR
Olweny, 2012 ¹²⁵	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	5years	37	NR(97.2)	NA	NR
Olweny, 2012 ¹²⁵	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5years	37	NR(100)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Cancer-specific survival: n(%)	NA	3years	48	48(100)	NA	Comp. Arm: Arm 2 P: <0.05
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Cancer-specific survival: n(%)	NA	3years	30	NR(93)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Cancer-specific survival: n(%)	NA	5years	48	48(100)	NA	Comp. Arm: Arm 2 P: <0.05
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Cancer-specific survival: n(%)	NA	5years	30	NR(88)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Local recurrence-free survival: n(%)	NA	3years	48	48(100)	NA	Comp. Arm: Arm 2 P: <0.05
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Local recurrence-free survival: n(%)	NA	3years	30	NR(92)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Local recurrence-free survival: n(%)	NA	5years	48	48(100)	NA	Comp. Arm: Arm 2 P: <0.05

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Local recurrence-free survival: n(%)	NA	5years	30	NR(86)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Metastasis-free survival: n(%)	NA	NRyear s	48	47(97.9)	NA	Comp. Arm: Arm 2 P: 0.05
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Metastasis-free survival: n(%)	NA	NRyear s	30	26(96.7)	NA	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Incidence of end-stage renal disease: Permanent dialysis	NA	NR	48	2(4.2)	NR	Comp. Arm: Arm 2 P: 0.263
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic cryoablation)	Incidence of end-stage renal disease: Permanent dialysis	NA	NR	30	0(0)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Incidence of chronic kidney disease : CKD Stage Increase	NA	NR	48	19(39.5)	NR	Comp. Arm: Arm 2 P: 0.01
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic cryoablation)	Incidence of chronic kidney disease : CKD Stage Increase	NA	NR	30	4(13.3)	NR	NR
Patard, 2004 ⁷⁷	Arm 1(PN-T1a)	Local recurrence-free survival: n(%)	NA	42mont hs	544	NR(99.2)	NA	Comp. Arm: PNT1b P: 0.2
Patard, 2004 ⁷⁷	Arm 2(RN T1a)	Local recurrence-free survival: n(%)	NA	42mont hs	544	NR(99.4)	NA	Comp. Arm: RNT1b P: 0.001
Patard, 2004 ⁷⁷	Arm 3(PN-T1b)	Local recurrence-free survival: n(%)	NA	42mont hs	544	NR(96.4)	NA	NR
Patard, 2004 ⁷⁷	Arm 4(RN T1b)	Local recurrence-free survival: n(%)	NA	42mont hs	544	NR(97.7)	NA	NR
Patard, 2004 ⁷⁷	Arm 1(PN-T1a)	Cancer-specific survival: n(%)	NA	51mont hs	314	307(97.8)	NA	Comp. Arm: All T1a: PN v RN P: 0.7
Patard, 2004 ⁷⁷	Arm 2(RN T1a)	Cancer-specific survival: n(%)	NA	51mont hs	499	486(97.4)	NA	NR
Patard, 2004 ⁷⁷	Arm 3(PN-T1b)	Cancer-specific survival: n(%)	NA	51mont hs	65	61(93.8)	NA	Comp. Arm: All T1b: PN v RN P: 0.8
Patard, 2004 ⁷⁷	Arm 4(RN T1b)	Cancer-specific survival: n(%)	NA	51mont hs	576	524(91)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Cancer-specific survival: n(%)	NA	1	754	NR(95.9)	NA	NR
Patel, 2014 ¹³¹	Arm 2(PN)	Cancer-specific survival: n(%)	NA	1	1849	NR(99.6)	NA	NR
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management <75 years)	Cancer-specific survival: n(%)	NA	5	754	NR	NA	Comp. Arm: Arm 2 HR: 0.64 95%CI: 0.28 to - 1.46 P: 0.29
Patel, 2014 ¹³¹	Arm 2(PN<75 years)	Cancer-specific survival: n(%)	NA	5	1849	NR	NA	Comp. Arm: Arm 3 HR: 0.75 95%CI: 0.45 - 1.26 P: 0.28
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management 75- <80years)	Cancer-specific survival: n(%)	NA	5	754	NR	NA	Comp. Arm: Arm 2 HR: 0.27 95%CI: 0.12 to - 0.58 P: <0.01
Patel, 2014 ¹³¹	Arm 3(RN>/=80years)	Cancer-specific survival: n(%)	NA	5	4574	NR	NA	Comp. Arm: Arm 1 HR: 0.68 95%CI: 0.45 - 1.04 P: 0.08
Patel, 2014 132	Arm 1(DT(Deferred Treatmet)-Low Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	754	NR(78)	NA	NR
Patel, 2014 132	Arm 3(RN-Low Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	4574	NR(91)	NA	Comp. Arm: Arm 2 HR: 0.55 95%CI: 0.39 - 0.79 P: <0.01

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Patel, 2014 ¹³²	Arm 2(PN-High Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	1849	NR(87)	NA	Comp. Arm: Arm 1 HR: 0.59 95%CI: 0.25 - 1.41 P: 0.23
Patel, 2014 ¹³²	Arm 2(PN-Low Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	1849	NR(94)	NA	Comp. Arm: Arm 1 HR: 0.33 95%CI: 0.2 - 0.53 P: <0.01
Patel, 2014 ¹³²	Arm 1(DT(Deferred Treatmet)-High Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	754	NR(78)	NA	NR
Patel, 2014 ¹³²	Arm 3(RN-High Cardiovascular risk)	Cancer-specific survival: n(%)	NA	100 months	4574	NR(78)	NA	Comp. Arm: Arm 2 HR: 0.42 95%CI: 0.46 - 1.43 P: 0.47
Patel, 2014 ¹³¹	Arm 3(RN)	Cancer-specific survival: n(%)	NA	1	4574	NR(99.2)	NA	NR
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Cancer-specific survival: n(%)	NA	3	754	NR(89.4)	NA	NR
Patel, 2014 ¹³¹	Arm 2(PN)	Cancer-specific survival: n(%)	NA	3	1849	NR(98.1)	NA	NR
Patel, 2014 ¹³¹	Arm 3(RN)	Cancer-specific survival: n(%)	NA	3	4574	NR(96.5)	NA	NR
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Cancer-specific survival: n(%)	NA	5	754	NR(82.5)	NA	Comp. Arm: Arm 2 HR: 0.42 95%CI: 0.27 - 0.64 P: <0.01
Patel, 2014 ¹³¹	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5	1849	NR(96.7)	NA	Comp. Arm: Arm 3 HR: 0.67

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								95%CI: 0.47 - 0.95 P: 0.03
Patel, 2014 ¹³¹	Arm 3(RN)	Cancer-specific survival: n(%)	NA	5	4574	NR(93.5)	NA	Comp. Arm: Arm 1 HR: 0.62 95%CI: 0.46 - 0.85 P: <0.01
Patel, 2014 ¹³¹	Arm 3(RN<75 years)	Cancer-specific survival: n(%)	NA	5	4574	NR	NA	Comp. Arm: Arm 1 HR: 0.86 95%CI: 0.42 - 1.74 P: 0.67
Patel, 2014 ¹³¹	Arm 2(PN75- <80years)	Cancer-specific survival: n(%)	NA	5	1849	NR	NA	Comp. Arm: Arm 3 HR: 0.66 95%CI: 0.34 - 1.30 P: 0.23
Patel, 2014 ¹³¹	Arm 3(RN75- <80years)	Cancer-specific survival: n(%)	NA	5	4574	NR	NA	Comp. Arm: Arm 1 HR: 0.4 95%CI: 0.22 - 0.73 P: <0.01
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management>/=80 years)	Cancer-specific survival: n(%)	NA	5	754	NR	NA	Comp. Arm: Arm 2 HR: 0.41 95%CI: 0.19 to - 0.91 P: 0.03
Patel, 2014 ¹³¹	Arm 2(PN>/=80years)	Cancer-specific survival: n(%)	NA	5	1849	NR	NA	Comp. Arm: Arm 3 HR: 0.6 95%CI: 0.29 - 1.26 P: 0.18
O'Malley,2014 97	Arm 1(PN)	Cancer-specific survival: n(%)	NA	5Years	1893	NR(93)	NA	P: <0.001
O'Malley,2014 97	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5Years	10864	NR(86)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Cooper, 2015 ¹⁴¹	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	NR	9	7(78)	NA	NR
Cooper, 2015 ¹⁴¹	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	NR	9	8(89)	NA	NR
Cooper, 2015 ¹⁴¹	Arm 3(RN)	Local recurrence-free survival: n(%)	NA	NR	31	31(100)	NA	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	5years	27	NR(92.6)	NA	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5years	29	NR(96.6)	NA	NR
Chung, 2014 ⁹⁴	Arm 1(RN(>/=65years))	Cancer-specific survival: n(%)	NA	5years	170	NR(96.6)	NA	NR
Chung, 2014 ⁹⁴	Arm 2(PN(>/=65years))	Cancer-specific survival: n(%)	NA	5years	170	NR(99.6)	NA	NR
Chung, 2014 ⁹⁴	Arm 3(RN(<65years))	Cancer-specific survival: n(%)	NA	5years	452	NR(99)	NA	NR
Chung, 2014 ⁹⁴	Arm 4(PN(<65years))	Cancer-specific survival: n(%)	NA	5years	452	NR(100)	NA	NR
Chung, 2014 ⁹⁴	Arm 1(RN(>/=65years))	Local recurrence-free survival: n(%)	NA	5years	170	NR(93)	NA	NR
Chung, 2014 ⁹⁴	Arm 2(PN(>/=65years))	Local recurrence-free survival: n(%)	NA	5years	170	NR(94)	NA	NR
Chung, 2014 ⁹⁴	Arm 3(RN(<65years))	Local recurrence-free survival: n(%)	NA	5years	452	NR(97)	NA	NR
Chung, 2014 ⁹⁴	Arm 4(PN(<65years))	Local recurrence-free survival: n(%)	NA	5years	452	NR(95.7)	NA	NR
Renal Functional Outcomes Categorical								
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Cancer-specific survival: n(%)	NA	Median 4.18Yea rs	32	31	NA	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Cancer-specific survival: n(%)	NA	Median 4.8 yearsYe ars	36	34	NA	NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy	Cancer-specific survival: n(%)	NA	Median 7.81Yea rs	37	35	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	(NSS), for young (<55 years old))							
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Cancer-specific survival: n(%)	NA	NRYear s	39	38	NA	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Incidence of chronic kidney disease : eGFR <60 ml/min/1.73m^2	NA	>30 days	36	2(5.6)	NR	Between arm1 and arm2, p=0.009, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Incidence of chronic kidney disease : eGFR <60 ml/min/1.73m^2	NA	>30 days	45	14(31.1)	NR	Between arm1 and arm2, p=0.009, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Incidence of chronic kidney disease : eGFR <60 ml/min/1.73m^2	NA	>30 days	33	8(24.2)	NR	Between arm3 and arm4, p<0.001, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Incidence of chronic kidney disease : eGFR <60 ml/min/1.73m^2	NA	>30 days	55	28(50.9)	NR	Between arm3 and arm4, p<0.001, between young and old, p=NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Local recurrence-free survival: n(%)	NA	NR	101	99(98)	NA	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	NR	146	145(99.3)	NA	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Metastasis-free survival: n(%)	NA	NR	101	94(93.1)	NA	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Metastasis-free survival: n(%)	NA	NR	146	136(93.8)	NA	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	5years	101	NR(94)	NA	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5years	146	NR(97)	NA	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	10years	101	NR(91)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2012 ⁵¹	Arm 2(RN)	Cancer-specific survival: n(%)	NA	10years	146	NR(95)	NA	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Cancer-specific survival: n(%)	NA	4.7year s	16	16(100)	NA	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Cancer-specific survival: n(%)	NA	2.3year s	28	2(92.9)	NA	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Incidence of chronic kidney disease : stage 3 ckd	NA	4.86 years	101	14(13.8)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Incidence of chronic kidney disease : stage 3 ckd	NA	6.48 years	146	62(42.5)	NR	NR
Scosyrev, 2014 ⁷⁸	Arm 1(RN)	Incidence of chronic kidney disease : eGFR<60	NA	6.7year s	259	222(85.7)	NR	Comp. Arm: NSS RD: 21 95%CI: 13.8- 28.3 P: <0.001
Scosyrev, 2014 ⁷⁸	Arm 2(NSS)	Incidence of chronic kidney disease : eGFR<60	NA	6.7year s	255	165(64.7)	NR	NR
Scosyrev, 2014 ⁷⁸	Arm 1(RN)	Incidence of chronic kidney disease : eGFR<45	NA	6.7year s	259	127(49)	NR	Comp. Arm: RD: 21.9 95%CI: 13.8- 30.2
Scosyrev, 2014 ⁷⁸	Arm 2(NSS)	Incidence of chronic kidney disease : eGFR<45	NA	6.7year s	255	69(27.1)	NR	NR
Scosyrev, 2014 ⁷⁸	Arm 1(RN)	Incidence of chronic kidney disease : eGFR<30	NA	6.7year s	259	26(10)	NR	Comp. Arm: RD: 3.7 95%CI: (-1.0- 8.5)
Scosyrev, 2014 ⁷⁸	Arm 2(NSS)	Incidence of chronic kidney disease : eGFR<30	NA	6.7year s	255	16(6.3)	NR	NR
Scosyrev, 2014 ⁷⁸	Arm 1(RN)	Incidence of chronic kidney disease : eGFR<15	NA	6.7year s	259	4(1.5)	NR	Comp. Arm: RD: -0.1 95%CI: (-2.2- 2.1)
Scosyrev, 2014 ⁷⁸	Arm 2(NSS)	Incidence of chronic kidney disease : eGFR<15	NA	6.7year s	255	4(1.6)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Shinohara, 2001 ⁵²	Arm 1(NSS)	Metastasis-free survival: n(%)	NA	NR	15	15(NR)	NA	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Metastasis-free survival: n(%)	NA	1.16, 1.25, and 3.58	51	48(NR)	NA	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Local recurrence-free survival: n(%)	NA	NR	15	15(NR)	NA	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	1.16, 1.25, and 3.58	51	48(NR)	NA	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	1years	40	NR(97.4)	NA	Comp. Arm: Arm 2 P: NR
Stern, 2007 ¹²¹	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	1years	37	NR(100)	NA	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	3years	40	NR(93.4)	NA	Comp. Arm: Arm 2 P: 0.67
Stern, 2007 ¹²¹	Arm 2(PN)	Local recurrence-free survival: n(%)	NA	3years	37	NR(95.8)	NA	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	NR	40	NR(100)	NA	NR
Stern, 2007 ¹²¹	Arm 2(PN)	Cancer-specific survival: n(%)	NA	NR	37	NR(100)	NA	NR
Sun, 2012 ⁸⁰	Arm 1(PN)	Incidence of chronic kidney disease : stage >/=3	NA	NR	840	96(11.4)	NR	Comp. Arm: Arm 2 HR: 1.9 95%CI: 1.48- 2.45 P: <0.001
Sun, 2012 ⁸⁰	Arm 2(RN)	Incidence of chronic kidney disease : stage >/=3	NA	NR	840	169(20.1)	NR	NR
Sun, 2012 ⁸⁰	Arm 1(PN)	Incidence of end-stage renal disease: NR	NA	NR	840	18(2.1)	NR	Comp. Arm: Arm 2 HR: 1.83 95%CI: 1.03- 3.27 P: 0.04
Sun, 2012 ⁸⁰	Arm 2(RN)	Incidence of end-stage renal disease: NR	NA	NR	840	32(3.8)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Sun, 2013 ¹³³	Arm 1(NSM)	Cancer-specific survival: n(%)	NA	5years	3271	NR(89.8)	NA	NR
Sun, 2013 ¹³³	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5years	1051	NR(96.9)	NA	NR
Sun, 2013 ¹³³	Arm 3(RN)	Cancer-specific survival: n(%)	NA	5years	6273	NR(93.3)	NA	NR
Sun, 2013 ¹³³	Arm 1(NSM-cT1a)	Cancer-specific survival: n(%)	NA	5years	3271	NR(92.6)	NA	NR
Sun, 2013 ¹³³	Arm 2(PN-cT1a)	Cancer-specific survival: n(%)	NA	5years	1051	NR(95.3)	NA	NR
Sun, 2013 ¹³³	Arm 3(RN-cT1a)	Cancer-specific survival: n(%)	NA	5years	6273	NR(95.5)	NA	NR
Sun, 2013 ¹³³	Arm 1(NSM- >/=75years)	Cancer-specific survival: n(%)	NA	5years	3271	NR(85.3)	NA	NR
Sun, 2013 ¹³³	Arm 2(PN- >/=75years)	Cancer-specific survival: n(%)	NA	5years	1051	NR(95.7)	NA	NR
Sun, 2013 ¹³³	Arm 3(RN- >/=75years)	Cancer-specific survival: n(%)	NA	5years	6273	NR(91.9)	NA	NR
Sun, 2013 ¹³³	Arm 1(NSM- >/=75years-cT1a)	Cancer-specific survival: n(%)	NA	5years	3271	NR(89.4)	NA	NR
Sun, 2013 ¹³³	Arm 2(PN- >/=75years-cT1a)	Cancer-specific survival: n(%)	NA	5years	1051	NR(95.6)	NA	NR
Sun, 2013 ¹³³	Arm 3(RN- >/=75years-cT1a)	Cancer-specific survival: n(%)	NA	5years	6273	NR(94.1)	NA	NR
Takagi, 2011 ⁸¹	Arm 1(PN-eGFR 45 - 59)	Incidence of end-stage renal disease: NR	NA	100mon ths	30	1(NR)	NR	NR
Takagi, 2011 ⁸¹	Arm 2(RN-eGFR 45 - 59)	Incidence of end-stage renal disease: NR	NA	100mon ths	38	0(NR)	NR	NR
Takagi, 2011 ⁸¹	Arm 3(PN-eGFR 30 - 44)	Incidence of end-stage renal disease: NR	NA	48mont hs	14	2(NR)	NR	NR
Takagi, 2011 ⁸¹	Arm 4(RN-eGFR 30 - 44)	Incidence of end-stage renal disease: NR	NA	72mont hs	13	1(NR)	NR	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	5	21	NR(94)	NA	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Cancer-specific survival: n(%)	NA	5	39	NR(100)	NA	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Cancer-specific survival: n(%)	NA	10	21	NR(94)	NA	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Cancer-specific survival: n(%)	NA	10	39	NR(100)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	1week	21	14(NR)	NA	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	1week	39	39(NR)	NA	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	5 years	21	88(NR)	NA	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	5 years	39	88(NR)	NA	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Local recurrence-free survival: n(%)	NA	10 years	21	84(NR)	NA	Comp. Arm: Arm 2 P: 0.99
Takaki, 2014 ¹³⁵	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	10 years	39	84(NR)	NA	NR
Tan, 2012 ⁸²	Arm 1(PN)	Cancer-specific survival: n(%)	NA	NR	1925	1888(98.1)	NA	NR
Tan, 2012 ⁸²	Arm 2(RN)	Metastasis-free survival: n(%)	NA	NR	5213	4991(95.7)	NA	NR
Tanagho, 2013 ¹²⁶	(Cryoablation)	Cancer-specific survival: n(%)	NA	5	267	NR(96.4)	NA	NR
Tanagho, 2013 ¹²⁶	(Robot assisted partial nephrectomy)	Cancer-specific survival: n(%)	NA	5	233	NR(100)	NA	NR
Tanagho, 2013 ¹²⁶	(Cryoablation)	Metastasis-free survival: n(%)	NA		267	10(12.7)	NA	Comp. Arm: Arm 2 HR: 11.41 OR: RD: 95%CI: 1.90- 68.67 0.01
Tanagho, 2013 ¹²⁶	(Robot assisted partial nephrectomy)	Metastasis-free survival: n(%)	NA		233	0(0)	NA	NR
Thompson, 2014 ¹²²	Arm 1(cT1a-Partial Nephrectomy)	Local recurrence-free survival: n(%)	NA	3	1057	NR(98)	NA	Comp. Arm: Arm2 and 3 P: 0.49
Thompson, 2014 ¹²²	Arm 2(cT1a- Radiofrequency Ablation)	Local recurrence-free survival: n(%)	NA	3	166	NR(98)	NA	NR
Thompson, 2014 ¹²²	Arm 3(cT1a- Cryoablation)	Local recurrence-free survival: n(%)	NA	3	174	NR(98)	NA	Comp. Arm: Arm 5 P: 0.81
Thompson, 2014 ¹²²	Arm 4(cT1b-Partial Nephrectomy)	Local recurrence-free survival: n(%)	NA	3	326	NR(96)	NA	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Thompson, 2014 ¹²²	Arm 5(cT1b- Cryoablation)	Local recurrence-free survival: n(%)	NA	3	48	NR(97)	NA	NR
Thompson, 2014 ¹²²	Arm 1(cT1a-Partial Nephrectomy)	Metastasis-free survival: n(%)	NA	3	836	NR(99)	NA	Comp. Arm: Arm 3 P: 0.31
Thompson, 2014 ¹²²	Arm 2(cT1a- Radiofrequency Ablation)	Metastasis-free survival: n(%)	NA	3	73	NR(93)	NA	NR
Thompson, 2014 ¹²²	Arm 3(cT1a- Cryoablation)	Metastasis-free survival: n(%)	NA	3	108	NR(100)	NA	NR
Thompson, 2014 ¹²²	Arm 4(cT1b-Partial Nephrectomy)	Metastasis-free survival: n(%)	NA	3	274	NR(96)	NA	Comp. Arm: Arm 5 P: 0.45
Thompson, 2014 ¹²²	Arm 5(cT1b- Cryoablation)	Metastasis-free survival: n(%)	NA	3	36	NR(92)	NA	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Cancer-specific survival: n(%)	NA	2years	36	(100)	NA	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Cancer-specific survival: n(%)	NA	2years	36	(88.5)	NA	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Cancer-specific survival: n(%)	NA	2years	29	(83.9)	NA	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Local recurrence-free survival: n(%)	NA	Mean followup : 42.5mo nths	36	36	NA	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Local recurrence-free survival: n(%)	NA	Mean followup : 24mont hs	36	30	NA	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Local recurrence-free survival: n(%)	NA	Mean followup : 14mont hs	29	16	NA	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	36	32(89)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	36	26(72.2)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	29	16(55.2)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	36	2(5.5)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	36	7(19.5)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	29	7(24.1)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had decrease in serum creatinine	NA	Postop NR	36	2(5.5)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had decrease in serum creatinine	NA	Postop NR	36	3(8.3)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had decrease in serum creatinine	NA	Postop NR	29	6(20.7)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	36	2(5.5)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	36	7(19.5)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had no change in serum creatinine	NA	Postop NR	29	7(24.1)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	36	32(89)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	36	26(72.2)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had increase in serum creatinine	NA	Postop NR	29	16(55.2)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had increase in GFR	NA	Postop NR	36	2(5.5)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had increase in GFR	NA	Postop NR	36	4(11.1)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had increase in GFR	NA	Postop NR	29	4(13.8)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had no change in GFR	NA	Postop NR	36	3(8.3)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had no change in GFR	NA	Postop NR	36	5(13.9)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had no change in GFR	NA	Postop NR	29	5(17.3)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: Had decrease in GFR	NA	Postop NR	36	31(86.2)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: Had decrease in GFR	NA	Postop NR	36	27(75)	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: Had decrease in GFR	NA	Postop NR	29	20(68.9)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Incidence of end-stage renal disease: permanent dialysis	NA	Postop NR	36	2(5.6)	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Incidence of end-stage renal disease: permanent dialysis	NA	Postop NR	36	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Incidence of end-stage renal disease: permanent dialysis	NA	Postop NR	29	0(0)	NR	NR
Uchida, 2004 ⁸⁵	Arm 1(PN)	Cancer-specific survival: n(%)	NA	44mont hs	54	44(100)	NA	NR
Uchida, 2004 ⁸⁵	Arm 2(RN)	Cancer-specific survival: n(%)	NA	54mont hs	51	54(100)	NA	NR
Uchida, 2004 ⁸⁵	Arm 1(PN)	Metastasis-free survival: n(%)	NA	44mont hs	54	52(96.3)	NA	NR
Uchida, 2004 ⁸⁵	Arm 2(RN)	Metastasis-free survival: n(%)	NA	54mont hs	51	51(100)	NA	NR
Uchida, 2004 ⁸⁵	Arm 1(PN)	Local recurrence-free survival: n(%)	NA	44mont hs	54	54(100)	NA	NR
Uchida, 200485	Arm 2(RN)	Local recurrence-free survival: n(%)	NA	54mont hs	51	50(98)	NA	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Local recurrence-free survival: n(%)	NA	NR	28	26(93)	NA	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Local recurrence-free survival: n(%)	NA	NR	52	49(94.2)	NA	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Cancer-specific survival: n(%)	NA	NR	28	NR(96.5)	NA	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Cancer-specific survival: n(%)	NA	NR	52	NR(100)	NA	NR
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Local recurrence-free survival: n(%)	NA	10years	268	262	NA	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	10years	273	272	NA	NR
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Metastasis-free survival: n(%)	NA	10years	268	261	NA	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Metastasis-free survival: n(%)	NA	10years	273	263	NA	NR
Weight, 2010 ⁸⁹	Arm 1(RN- Upstaged Cohort)	Cancer-specific survival: n(%)	NA	5years	117	NR(73)	NA	NR
Weight, 2010 ⁸⁹	Arm 2(PN- Upstaged Cohort)	Cancer-specific survival: n(%)	NA	5years	96	NR(94)	NA	Comp. Arm: Arm 1 P: 0.01
Weight, 2010 ⁸⁹	Arm 3(RN-High Grade cohort)	Cancer-specific survival: n(%)	NA	5years	43	NR(37)	NA	NR
Weight, 2010 ⁸⁹	Arm 4(PN-High Grade cohort)	Cancer-specific survival: n(%)	NA	5years	52	NR(88)	NA	Comp. Arm: Arm 1 P: <0.01
Weight,2010 ⁹⁰	Arm 1(RN)	Cancer-specific survival: n(%)	NA	5years	480	NR(94.3)	NA	Comp. Arm: Arm 2 P: NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Weight,2010 ⁹⁰	Arm 2(PN)	Cancer-specific survival: n(%)	NA	5years	524	NR(89.2)	NA	HR: 0.77 95%CI: 0.41- 1.42 P: 0.4
Whitson, 2012 ¹²⁴	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	5years	7560	NR	NA	NR
Whitson, 2012 ¹²⁴	Arm 2(Ablation)	Cancer-specific survival: n(%)	NA	5years	1076	NR	NA	NR
Whitson, 2012 ¹²⁴	Arm 1(NSS)	Cancer-specific survival: n(%)	NA	10years	7560	NR	NA	NR
Whitson, 2012 ¹²⁴	Arm 2(Ablation)	Cancer-specific survival: n(%)	NA	10years	1076	NR	NA	NR
Whitson, 2012 ¹²⁴	Overall(NR)	Cancer-specific survival: n(%)	NA	NR	NR	NR	NA	HR: 2.6 95%CI: 1.6-4.2 P: <0.001
Whitson, 2012 ¹²⁴	Overall(NR)	Cancer-specific survival: n(%)	NA	NR	NR	NR	NA	Comp. Arm: NSS HR: 1.9 95%CI: 1.1-3.3 P: 0.02
Whitson, 2012 ¹²⁴	Overall(NR)	Cancer-specific survival: n(%)	NA	NR	NR	NR	NA	0.93
Woldu, 2014 ⁹¹	Arm 1(NSS)	Glomerular filtration rate decline: new-onset GFR <30	NA	60	539	19(3.5)	Comp. Arm: 93 P: NR	NR
Woldu, 2014 ⁹¹	Arm 2(RN)	Glomerular filtration rate decline: new- onset GFR <30	NA	60	767	46(6)	Comp. Arm: 93 P: NR	NR
Woldu, 2014 ⁹¹	Overall(Cohort)	Glomerular filtration rate decline: new-onset GFR <30	NA	60	1306	65(5)	P: 0.395	NR
Woldu, 2014 ⁹¹	Arm 1(NSS)	Glomerular filtration rate decline: new onset GFR <45	NA	60	506	35(6.9)	Comp. Arm: 87 P: NR	NR
Woldu, 2014 ⁹¹	Arm 2(RN)	Glomerular filtration rate decline: new onset GFR <45	NA	60	726	150(20.7)	Comp. Arm: 74 P: NR	NR
Woldu, 2014 ⁹¹	Overall(Cohort)	Glomerular filtration rate decline: new onset GFR <45	NA	60	1232	185(15)	HR: 2.3 95%CI: 1.6- 3.3 P: 0.001	HR: 2.3 95%CI: 1.6-3.3 P: <0.001

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Woldu, 2014 ⁹¹	Arm 1(NSS)	Glomerular filtration rate decline: annual rate of decline	NA	60	539	NR	Comp. Arm: - 1.17 95%CI:	NR
Woldu, 2014 ⁹¹	Arm 2(RN)	Glomerular filtration rate decline: annual rate of decline	NA	60	767	NR	Comp. Arm: - 1.89 95%CI:	NR
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Local recurrence-free survival: n(%)	NA	Median 37 month Months	75	75	NA	NR
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Local recurrence-free survival: n(%)	NA	Median 45 month Months	341	297	NA	NR
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Metastasis-free survival: n(%)	NA	Median 37 month Months	75	74	NA	NR
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Metastasis-free survival: n(%)	NA	Median 45 month Months	341	341	NA	NR
Yokoyama, 2011 ¹⁵³	Overall	: n(%)	NA				NA	NR
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Glomerular filtration rate decline: Freedom from new onset eGFR < 60 ml/min/1.73m^2	NA	3years	75	(89)	NR	NR<0.001
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Glomerular filtration rate decline: Freedom from new onset eGFR < 60 ml/min/1.73m^2	NA	3years	341	(63)	NR	NR<0.001
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Glomerular filtration rate decline: Freedom from new onset eGFR < 45 ml/min/1.73m^2	NA	3years	75	(95)	NR	NR0.247
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Glomerular filtration rate decline: Freedom from new onset eGFR < 45 ml/min/1.73m^2	NA	3years	341	(89)	NR	NR0.247

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Incidence of end-stage renal disease: Incidence of end-stage renal disease requiring dialysis	NA	NR	75	0	NR	NR
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Incidence of end-stage renal disease: Incidence of end-stage renal disease requiring dialysis	NA	NR	341	2	NR	NR
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Local recurrence-free survival: n(%)	NA	50	14	14(NR)	NA	NR
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Local recurrence-free survival: n(%)	NA	50	41	40(NR)	NA	NR
Youn, 2013, ¹³⁰	Arm 2(Laparascopic RFA)	Metastasis-free survival: n(%)	NA	50	41	41(NR)	NA	NR
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Metastasis-free survival: n(%)	NA	50	14	14(NR)	NA	NR
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Creatinine measure: >1.5	NA	6month s	42	0	NR	NR
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Creatinine measure: >1.5	NA	6month s	55	24(36.4)	NR	NR
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Creatinine measure: >2	NA	6month s	55	3(5.5)	NR	NR
Chang, 2014, 95	Arm 1(RN)	Incidence of chronic kidney disease : NR	NA	3years	339	177(55.7)	NR	Comp. Arm: Arm 2 P: <0.001
Chang, 2014, 95	Arm 2(PN)	Incidence of chronic kidney disease : NR	NA	3years	218	13(6.2)	NR	NR
		Renal	Functional O	utcomes C	Continuous			
Antoniewicz, 2012 ⁵⁵	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.8 SD: 18.4	3 months	33	Mean: 47.1 SD: 9.5	NR	NR
Antoniewicz, 2012 ⁵⁵	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 74 SD: 21.1	3 months	18	Mean: 69.6 SD: 18.4	NR	Comp. Arm: Arm 1 P: <0.01
Antoniewicz, 2012 ⁵⁵	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.8 SD: 18.4	12 months	33	Mean: 48.1 SD: 10.2	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Antoniewicz, 2012 ⁵⁵	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 74 SD: 21.1	12 months	18	Mean: 70.5 SD: 22.8	NR	Comp. Arm: Arm 1 P: <0.01
Antoniewicz, 2012 ⁵⁵	Arm 1(RN)	Creatinine measure: mmol/l	Mean: 90.5 SD: 19.5	3 months	33	Mean: 128.1 SD: 25	NR	NR
Antoniewicz, 2012 ⁵⁵	Arm 2(PN)	Creatinine measure: mmol/l	Mean: 89.4 SD: 23.3	3 months	18	Mean: 94.9 SD: 27.3	NR	Comp. Arm: Arm 1 P: <0.01
Antoniewicz, 2012 ⁵⁵	Arm 1(RN)	Creatinine measure: mmol/l	Mean: 90.5 SD: 19.5	12 months	33	Mean: 126.4 SD: 24.7	NR	NR
Antoniewicz, 2012 ⁵⁵	Arm 2(PN)	Creatinine measure: mmol/l	Mean: 89.4 SD: 23.3	12 months	18	Mean: 95.1 SD: 34.9	NR	Comp. Arm: Arm 1 P: <0.01
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Creatinine measure: ml/min	Mean: 105 SD:	4 years	41	Mean: 90 SD:	NR	NR>0.01
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Creatinine measure: ml/min	Mean: 107 SD:	4 years	48	Mean: 80 SD:	NR	NR>0.01
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Glomerular filtration rate decline: ML/MIN	Mean: 74.9 SD: NR	NR	45	Mean: 65.3 SD: NR	Comp. Arm: 21.1 SD: 12.9 P: NR	Comp. Arm: Arm 2 P: <0.001
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Glomerular filtration rate decline: ML/MIN	Mean: 69.5 SD: NR	NR	108	Mean: 48.8 SD: NR	Comp. Arm: 12 SD: 13.2 P: NR	NR
Dash, 2006 ⁶⁰	Arm 1(PN)	Creatinine measure: mg/dL	Mean: 1.16 SD: 0.33	>3 months	45	Mean: 1.39 SD: 0.6	NR	Comp. Arm: Arm 2 95%CI: 0.23-0.48 P: <0.001
Dash, 2006 ⁶⁰	Arm 2(RN)	Creatinine measure: mg/dL	Mean: 1.09 SD: 0.36	>3 months	151	Mean: 1.6 SD: 0.76	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Creatinine measure: ml/min	Mean: 87.39 SD:	15 months	33	Mean: 85.8 SD:	NR	NR0.002
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Creatinine measure: ml/min	Mean: 101.35 SD:	21 months	52	Mean: 62.3 SD:	NR	NR0.002
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Glomerular filtration rate decline: percent	Mean: NR SD:	15 months	33	Mean: 12.5 SD:	NR	NR0.002

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Glomerular filtration rate decline: percent	Mean: NR SD:	21 months	52	Mean: 29.3 SD:	NR	NR0.002
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Creatinine measure: mL/min	Mean: 63.3 SD: 16.2	16.1	19	Mean: 43.4 SD: 9.3	Comp. Arm: - 19.5 P: NR	Comp. Arm: Arm 2 and 3 P: 0.049
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Creatinine measure: mL/min	Mean: 63.2 SD: 17.7	28.9	28	Mean: 61.4 SD: 18.8	Comp. Arm: - 6 P: NR	NR
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Creatinine measure: mL/min	Mean: 65.2 SD: 26.4	19.3	19	Mean: 59.2 SD: 27.1	Comp. Arm: - 6.1 P: NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Creatinine measure: mg/dl	Mean: 1.02 SD: 0.32	NR	153	Mean: 1.27 SD: 0.92	Comp. Arm: 16.4 P: NR	Comp. Arm: Arm 2 P: 0.31
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Creatinine measure: mg/dl	Mean: 1.19 SD: 0.57	NR	89	Mean: 1.41 SD: 0.65	Comp. Arm: 13.7 P: NR	NR
Emara, 2014 ¹¹³	(Cryoablation)	Creatinine measure: mmol/L	Mean: NR SD: NR	6 weeks	56	Mean: NR SD: NR	Comp. Arm: 9.214 P: NR	Comp. Arm: Arm 2 RR: 0.66 P:
Emara, 2014 ¹¹³	(Robot assisted partial nephrectomy)	Creatinine measure: mmol/L	Mean: NR SD: NR	6 weeks	47	Mean: NR SD: NR	Comp. Arm: 5.4 P: NR	NR
Faddegon, 2013 ¹¹⁹	Arm 1(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 75 SD: 22.5	NR	142	Mean: NR SD: NR	Comp. Arm: - 7.97 SD: 15.3 P: NR	NR
Faddegon, 2013 ¹¹⁹	Arm 2(RFA)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 80.7 SD: 21.8	NR	205	Mean: NR SD: NR	Comp. Arm: - 8.01 SD: 15 P: NR	NR
Ficarra, 2003 ⁴⁶	Arm 1(RN)	Quality of life: Hospital Anxiety and Depression Scale (H.A.D.S.)-Assessing Anxiety	NR	NR	88	Mean: 2.77 SD: 2.77	NR	Comp. Arm: Arm 2 P: 0.003
Ficarra, 2003 ⁴⁶	Arm 2(NSS)	Quality of life: Hospital Anxiety and Depression Scale (H.A.D.S.)-Assessing Anxiety	NR	NR	56	Mean: 1.79 SD: 2.47	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Ficarra, 2003 ⁴⁶	Arm 1(RN)	Quality of life: Hospital Anxiety and Depression Scale (H.A.D.S.)-Assessing Depression	NR	NR	88	Mean: 2.08 SD: 2.32	NR	Comp. Arm: Arm 2 P: 0.015
Ficarra, 2003 ⁴⁶	Arm 2(NSS)	Quality of life: Hospital Anxiety and Depression Scale (H.A.D.S.)-Assessing Depression	NR	NR	56	Mean: 1.7 SD: 2.8	NR	NR
Ficarra, 2003 ⁴⁶	Arm 1(RN)	Quality of life: Social Problem Questionnaire	NR	NR	88	Mean: 0.31 SD: 0.79	NR	Comp. Arm: Arm 2 P: NS
Ficarra, 2003 ⁴⁶	Arm 2(NSS)	Quality of life: Social Problem Questionnaire	NR	NR	56	Mean: 0.46 SD: 1.15	NR	NR
Ficarra, 2003 ⁴⁶	Arm 1(RN)	Quality of life: General Health Questionnaire	NR	NR	88	Mean: 0.78 SD: 1.88	NR	Comp. Arm: Arm 2 P: NS
Ficarra, 2003 ⁴⁶	Arm 2(NSS)	Quality of life: General Health Questionnaire	NR	NR	56	Mean: 0.5 SD: 1.46	NR	NR
Foyil, 2008 ¹⁴³	Arm 1(LPN-Non)	Creatinine Clearance: ml/min	Mean: 63.2 SD: NR	12 months	55	Mean: NR SD: NR	Comp. Arm: 3.74 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 2(LPN-Warm ischemia)	Creatinine Clearance: ml/min	Mean: 71.97 SD: NR	12 months	37	Mean: NR SD: NR	Comp. Arm: 4.12 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 3(LPN-Cold ischemia)	Creatinine Clearance: ml/min	Mean: 63.34 SD: NR	12 months	6	Mean: NR SD: NR	Comp. Arm: 7.81 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 4(LRN)	Creatinine Clearance: ml/min	Mean: 56.11 SD: NR	12 months	50	Mean: NR SD: NR	Comp. Arm: - 13.24 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 5(Cryo)	Creatinine Clearance: ml/min	Mean: 56.21 SD: NR	12 months	49	Mean: NR SD: NR	Comp. Arm: - 1.95 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 1(LPN-Non)	Creatinine Clearance: ml/min	Mean: 63.2 SD: NR	12 months	55	Mean: NR SD: NR	Comp. Arm: 3.74 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 2(LPN-Warm ischemia)	Creatinine Clearance: ml/min	Mean: 71.97 SD: NR	12 months	37	Mean: NR SD: NR	Comp. Arm: 4.12 P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Foyil, 2008 ¹⁴³	Arm 3(LPN-Cold ischemia)	Creatinine Clearance: ml/min	Mean: 63.34 SD: NR	12 months	6	Mean: NR SD: NR	Comp. Arm: 7.81 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 4(LRN)	Creatinine Clearance: ml/min	Mean: 56.11 SD: NR	12 months	50	Mean: NR SD: NR	Comp. Arm: - 13.24 P: NR	NR
Foyil, 2008 ¹⁴³	Arm 5(Cryo)	Creatinine Clearance: ml/min	Mean: 56.21 SD: NR	12 months	49	Mean: NR SD: NR	Comp. Arm: - 1.95 P: NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Creatinine measure: Percent change	Mean: SD:	6 months	36	Mean: +34 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Creatinine measure: Percent change	Mean: SD:	6 months	37	Mean: +18 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Creatinine measure: Percent change	Mean: SD:	6 months	44	Mean: 0 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Creatinine measure: Percent change	Mean: SD:	6 months	36	Mean: +34 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Creatinine measure: Percent change	Mean: SD:	6 months	37	Mean: +18 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Creatinine measure: Percent change	Mean: SD:	6 months	44	Mean: 0 SD: NR	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Quality of life: SF-36	NR	NR	36	Mean: 48 SD:	NR	NR0.503
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Quality of life: SF-36	NR	NR	37	Mean: 48.3 SD:	NR	NR0.503
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Quality of life: SF-36	NR	NR	44	Mean: 44.5 SD:	NR	NR0.503
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Quality of life: SF-36	NR	NR	36	Mean: 47.4 SD:	NR	NR0.968

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Quality of life: SF-36	NR	NR	37	Mean: 48 SD:	NR	NR0.968
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Quality of life: SF-36	NR	NR	44	Mean: 47.2 SD:	NR	NR0.968
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Glomerular filtration rate decline: ml/min	Mean: 86.3 SD: 36	6 months	210	Mean: 76 SD: 21.2	Comp. Arm: - 11.2 P: NR	Comp. Arm: Arm 2 P: 0.4
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Glomerular filtration rate decline: ml/min	Mean: 65.8 SD: 28.6	6 months	226	Mean: 60.1 SD: 31.4	Comp. Arm: - 8.9 P: NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Creatinine measure: mg/dl	Mean: 1.1 SD: NR	NR	75	Mean: 1 SD: NR	NR	Comp. Arm: Arm 2 P: 0.101
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Creatinine measure: mg/dl	Mean: 0.9 SD: NR	NR	92	Mean: 1.2 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.6 SD: NR	1 year	67	Mean: 59.5 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.3 SD: NR	1 year	195	Mean: 47.1 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.1 SD: NR	1 year	324	Mean: 63.8 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.6 SD: NR	3 year	67	Mean: 58.5 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.3 SD: NR	3 year	195	Mean: 49.8 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.1 SD: NR	3 year	324	Mean: 61.9 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.6 SD: NR	5 year	67	Mean: 65.3 SD: NR	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 70.3 SD: NR	5 year	195	Mean: 51.9 SD: NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.1 SD: NR	5 year	324	Mean: 62.3 SD: NR	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Creatinine measure: mg/dl	Mean: 1.02 SD: 0.44	NR	79	Mean: 1.03 SD: 0.45	NR	NR0.02
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Creatinine measure: mg/dl	Mean: 1.18 SD: 0.37	NR	35	Mean: 1.51 SD: 0.22	NR	NR0.02
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Glomerular filtration rate decline: ML/MIN	Mean: 87 SD: NR	12mont hs	51	Mean: 82.5 SD: NR	Comp. Arm: 5.17 P: <0.01	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Glomerular filtration rate decline: ML/MIN	Mean: 88 SD: NR	12mont hs	51	Mean: 80.7 SD: NR	Comp. Arm: 8.29 P: <0.01	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN-Preop CKD1)	Glomerular filtration rate decline: ML/MIN	Mean: 117.9 SD: NR	12mont hs	21	Mean: 106.7 SD: NR	Comp. Arm: 9.49 P: <0.01	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT-Preop CKD1)	Glomerular filtration rate decline: ML/MIN	Mean: 116.2 SD: NR	12mont hs	23	Mean: 102.1 SD: NR	Comp. Arm: 12.13 P: <0.01	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN-Preop CKD2)	Glomerular filtration rate decline: ML/MIN	Mean: 72.3 SD: NR	12mont hs	23	Mean: 72 SD: NR	Comp. Arm: 0.4 P: 0.44	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT-Preop CKD2)	Glomerular filtration rate decline: ML/MIN	Mean: 76.4 SD: NR	12mont hs	18	Mean: 7.6 SD: NR	Comp. Arm: 1.57 P: 0.67	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN-Preop CKD3 - 5)	Glomerular filtration rate decline: ML/MIN	Mean: 45.4 SD: NR	12mont hs	7	Mean: 44.1 SD: NR	Comp. Arm: 2.86 P: 0.47	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT-Preop CKD3 - 5)	Glomerular filtration rate decline: ML/MIN	Mean: 42.5 SD: NR	12mont hs	10	Mean: 39.5 SD: NR	Comp. Arm: 7.05 P: 0.03	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 63.6 SD: NR	3 months	41	Mean: NR SD: NR	Comp. Arm: - 5.3 SE: 2.4 P: 0.049	Comp. Arm: Arm 2 P: NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 63.6 SD: NR	3 months	82	Mean: NR SD: NR	Comp. Arm: - 6.4 SE: 1.5 P: <0.001	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Glomerular filtration rate decline: mL/min/1.73m2	Mean: 67.77 SD: 22.9	1	82	Mean: 47.54 SD: 14.7	NR	Comp. Arm: Arm 2 P: <0.001
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Glomerular filtration rate decline: mL/min/1.73m2	Mean: 69.42 SD: 22.1	1	53	Mean: 61.98 SD: 20.3	NR	NR
Lane, 2010 ⁶⁸	Arm 1(PN Limited ischemia)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 82 SD: NR	last follow up	804	Mean: 72 SD: NR	Comp. Arm: 12 P: NR	Comp. Arm: Arms 2,3 and 4 P: <0.001
Lane, 2010 ⁶⁸	Arm 2(PN Unknown ischemia)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 84 SD: NR	last follow up	546	Mean: 74 SD: NR	Comp. Arm: 12 P: NR	NR
Lane, 2010 ⁶⁸	Arm 3(PN Extended ischemia)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 84 SD: NR	last follow up	483	Mean: 68 SD: NR	Comp. Arm: 19 P: NR	NR
Lane, 2010 ⁶⁸	Arm 4(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 83 SD: NR	last follow up	569	Mean: 52 SD: NR	Comp. Arm: 35 P: NR	NR
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 54 SD: NR	NR	105	Mean: 51 SD: NR	NR	NR
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 64 SD: NR	NR	146	Mean: 41 SD: NR	NR	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Creatinine measure: mg/dl	Mean: 1.3 SD: 0.6	12 months	35	Mean: 1.7 SD: 1.2	NR	Comp. Arm: Arm 2 P: 0.103
Li, 2007 ⁶⁹	Arm 2(RN)	Creatinine measure: mg/dl	Mean: 1.2 SD: 0.6	12 months	86	Mean: 1.7 SD: 1.1	NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	19	Mean: NR SD: NR	Comp. Arm: - 1.7 SD: 13.7 P: NR	Comp. Arm: Arms 2 and 3 P: 0.46
Lucas, 2007 ¹³⁸	Arm 2(PN with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	18	Mean: NR SD: NR	Comp. Arm: - 5.2 SD: 9.7 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	6	Mean: NR SD: NR	Comp. Arm: - 8.9 SD: 17.3 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: 3.1 SD: 17.3 P: NR	Comp. Arm: Arms 2 and 3 P: 0.46

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Lucas, 2007 ¹³⁸	Arm 2(PN with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: - 5.3 SD: 7.2 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: - 10 SD: 10 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	19	Mean: NR SD: NR	Comp. Arm: - 1.7 SD: 13.7 P: NR	Comp. Arm: Arms 2 and 3 P: 0.46
Lucas, 2007 ¹³⁸	Arm 2(PN with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	18	Mean: NR SD: NR	Comp. Arm: - 5.2 SD: 9.7 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN with prexisting CKD 3)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	6	Mean: NR SD: NR	Comp. Arm: - 8.9 SD: 17.3 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 1(RFA with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: 3.1 SD: 17.3 P: NR	Comp. Arm: Arms 2 and 3 P: 0.46
Lucas, 2007 ¹³⁸	Arm 2(PN with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: - 5.3 SD: 7.2 P: NR	NR
Lucas, 2007 ¹³⁸	Arm 3(RN with prexisting CKD 3b)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: NR SD: NR	NR	NR	Mean: NR SD: NR	Comp. Arm: - 10 SD: 10 P: NR	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Glomerular filtration rate decline: ml/min	Mean: 69 SD: 69	6 months	44	Mean: 59 SD:	Comp. Arm: - 0.12 95%CI:	NR<0.001
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Glomerular filtration rate decline: ml/min	Mean: 65 SD: 65	6 months	44	Mean: 45 SD:	Comp. Arm: - 0.3 95%CI:	NR<0.001
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Creatinine measure: mg/dl	Mean: 0.91 SD:	4 months	82	Mean: 1.01 SD:	NR	NR0.001
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Creatinine measure: mg/dl	Mean: 0.97 SD:	4 months	35	Mean: 1.41 SD:	NR	NR0.001
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Creatinine measure: mg/dl	Mean: 0.91 SD:	6 months	82	Mean: 1.01 SD:	NR	NR<0.001

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Creatinine measure: mg/dl	Mean: 0.97 SD:	6 months	35	Mean: 1.41 SD:	NR	NR<0.001
McKiernan, 2002 ⁷²	Arm 1(Partial nephrectomy)	Creatinine measure: mg/dl	Mean: 0.98 SD:	NR	117	Mean: 1 SD:	NR	NR<0.001
McKiernan, 2002 ⁷²	Arm 2(Radical nephrectomy)	Creatinine measure: mg/dl	Mean: 1 SD:	NR	173	Mean: 1.5 SD:	NR	NR<0.001
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.3 SD: 18.63	6 months	86	Mean: 75.83 SD: 19.51	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.97 SD: 15.49	6 months	132	Mean: 57.08 SD: 12.62	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.3 SD: 18.63	12 months	86	Mean: 74.13 SD: 17.39	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.97 SD: 15.49	12 months	132	Mean: 59.1 SD: 13.67	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.3 SD: 18.63	24 months	86	Mean: 75.98 SD: 19.19	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.97 SD: 15.49	24 months	132	Mean: 59.64 SD: 17.1	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.3 SD: 18.63	36 months	86	Mean: 74.86 SD: 19.82	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.97 SD: 15.49	36 months	132	Mean: 63.41 SD: 19.96	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.3 SD: 18.63	48 months	86	Mean: 75.38 SD: 24.82	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR>60)	Creatinine measure: ml/min/1.73m^2	Mean: 84.97 SD: 15.49	48 months	132	Mean: 63.45 SD: 18.26	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 50.13 SD: 6.99	6 months	30	Mean: 47.07 SD: 13.54	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 54.02 SD: 11.54	6 months	42	Mean: 37.33 SD: 12.48	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 50.13 SD: 6.99	12 months	30	Mean: 46.74 SD: 12.45	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 54.02 SD: 11.54	12 months	42	Mean: 38.72 SD: 13.08	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 50.13 SD: 6.99	24 months	30	Mean: 47.76 SD: 13.45	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 54.02 SD: 11.54	24 months	42	Mean: 39.89 SD: 13.06	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 50.13 SD: 6.99	36 months	30	Mean: 49.02 SD: 13.74	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 54.02 SD: 11.54	36 months	42	Mean: 39.86 SD: 13.05	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 50.13 SD: 6.99	48 months	30	Mean: 48.84 SD: 13.99	NR	NR
Medina-Polo, 2011 ⁷³	Arm 2(RN - GFR<60)	Creatinine measure: ml/min/1.73m^2	Mean: 54.02 SD: 11.54	48 months	42	Mean: 41.92 SD: 16.11	NR	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Creatinine measure: mg/dl	Mean: 1.3 SD: NR	3 months	50	Mean: 1.4 SD: NR	Comp. Arm: 0.1 P: NR	Comp. Arm: Arm 2 P: 0.596
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Creatinine measure: mg/dl	Mean: 1.5 SD: NR	3 months	62	Mean: 1.5 SD: NR	Comp. Arm: 0.1 P: NR	NR
Mitchell, 2011 ¹²⁹	Arm 1(Ablation)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 53.4 SD: NR	3 months	50	Mean: 49.3 SD: NR	Comp. Arm: - 1.5 P: NR	Comp. Arm: Arm 2 P: 0.767
Mitchell, 2011 ¹²⁹	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 53.5 SD: NR	3 months	62	Mean: 50.3 SD: NR	Comp. Arm: - 3.3 P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.3 SD: 16	60 months	152	Mean: 46.2 SD: 12.6	Comp. Arm: 25.1 SD: 11.3 P: NR	Comp. Arm: Arm 2 P: <0.001
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.4 SD: 20.1	60 months	59	Mean: 60.8 SD: 18.3	Comp. Arm: 9.27 SD: 13.5 P: NR	NR
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Creatinine measure: mg/dl	Mean: 0.82 SD: 0.18	60 months	152	Mean: 1.24 SD: 0.38	NR	Comp. Arm: Arm 2 P: <0.001
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Creatinine measure: mg/dl	Mean: 0.83 SD: 0.22	60 months	59	Mean: 0.96 SD: 0.32	NR	NR
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.3 SD: 16	Not Specifie d	152	Mean: 46.2 SD: 12.6	Comp. Arm: - 25.1 SD: 11.3 P: NR	Comp. Arm: Arm 2 P: <0.001
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 71.4 SD: 20.1	Not Specifie d	59	Mean: 60.8 SD: 18.3	Comp. Arm: - 9.27 SD: 13.5 P: NR	NR
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Creatinine measure: mg/dl	Mean: 0.82 SD: 0.18	Not Specifie d	152	Mean: 1.24 SD: 0.38	NR	Comp. Arm: Arm 2 P: <0.001
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Creatinine measure: mg/dl	Mean: 0.83 SD: 0.22	Not Specifie d	59	Mean: 0.96 SD: 0.32	NR	NR
Mues, 2012 ¹²⁰	Arm 1(ablation)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: 59 SD: NR	3 months	98	Mean: 52 SD: NR	NR	P:
Mues, 2012 ¹²⁰	Arm 2(PN)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: 59 SD: NR	3 months	100	Mean: 53 SD: NR	NR	P: 0.76
Mues, 2012 ¹²⁰	Arm 1(ablation)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: 59 SD: NR	12 months	98	Mean: 51 SD: NR	NR	P:
Mues, 2012 ¹²⁰	Arm 2(PN)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: 59 SD: NR	12 months	100	Mean: 52 SD: NR	NR	P: 0.78

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 61.6 SD: 18.6	NR	48	Mean: 47.5 SD: 18.4	Comp. Arm: - 14.5 SD: 16.4 P: NR	Comp. Arm: Arm 2 P: 0.02
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 53.8 SD: 19	NR	30	Mean: 47.5 SD: 14.8	Comp. Arm: - 7.3 SD: 12.2 P: NR	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Creatinine measure: mg/dl	Mean: 1.2 SD: 0.3	NR	48	Mean: 1.7 SD: 0.9	Comp. Arm: 0.4 SD: 0.5 P: NR	Comp. Arm: Arm 2 P: 0.04
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Creatinine measure: mg/dl	Mean: 1.5 SD: 0.5	NR	30	Mean: 1.7 SD: 0.6	Comp. Arm: 0.2 SD: 0.3 P: NR	NR
QUALITY OF LIFE								
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Creatinine measure: ml/min/1.73m^2	Mean: 81.28 SD:	>30 days	36	Mean: 93.06 SD:	NR	NRBetween arm1 and arm2, p<0.001, between young and old, p<0.001
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Creatinine measure: ml/min/1.73m^2	Mean: 79.9 SD:	>30 days	45	Mean: 62.84 SD:	NR	NRBetween arm1 and arm2, p<0.001, between young and old, p<0.001
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Creatinine measure: ml/min/1.73m^2	Mean: 81.87 SD:	>30 days	33	Mean: 62.66 SD:	NR	NRBetween arm3 and arm4, p=0.015, between young and old, p<0.001
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Creatinine measure: ml/min/1.73m^2	Mean: 75.41 SD:	>30 days	55	Mean: 47.28 SD:	NR	NRBetween arm3 and arm4, p=0.015, between young and old, p<0.001

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Glomerular filtration rate decline: ml/min/1.73m^2	Mean: NR SD:	>30 days	36	Mean: 12.87 SD:	NR	NRBetween arm1 and arm2, p<0.001, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Glomerular filtration rate decline: ml/min/1.73m^2	Mean: NR SD:	>30 days	45	Mean: 23.6 SD:	NR	NRBetween arm1 and arm2, p<0.001, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Glomerular filtration rate decline: ml/min/1.73m^2	Mean: NR SD:	>30 days	33	Mean: 13.48 SD:	NR	NRBetween arm3 and arm4, p=0.095, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Glomerular filtration rate decline: ml/min/1.73m^2	Mean: NR SD:	>30 days	55	Mean: 21.37 SD:	NR	NRBetween arm3 and arm4, p=0.095, between young and old, p=NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 78.72 SD: NR	Last follow up	85	Mean: 72.52 SD: NR	NR	Comp. Arm: Arm 2 P: <0.001
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 76.02 SD: NR	Last follow up	118	Mean: 56.65 SD: NR	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 79.13 SD: NR	Last follow up	16	Mean: 81.02 SD: NR	NR	Comp. Arm: Arm 2 P: 0.006
Roos, 2012 ⁵¹	Arm 2(RN(tumor > 7cm))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 85.72 SD: NR	Last follow up	28	Mean: 64.67 SD: NR	NR	NR
Scosyrev, 2014 ⁷⁸	Arm 1(RN)	Glomerular filtration rate decline: mg/dl/1.73m2	Mean: NR SD:	1 year	259	Mean: 52.7 SD:	NR	Comp. Arm: NSS RD: 14.1 95%CI:
Scosyrev, 2014 ⁷⁸	Arm 2(NSS)	Glomerular filtration rate decline: mg/dl/1.73m2	Mean: NR SD:	1 year	255	Mean: 66.8 SD:	NR	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Quality of life: ORTC Quality of Life	NR	NR	15	Mean: 77.1 SD: NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Questionnaire C30 (EORTC QLQ-C30)						
Shinohara, 2001 ⁵²	Arm 2(RN)	Quality of life: ORTC Quality of Life Questionnaire C30 (EORTC QLQ-C30)	NR	NR	51	Mean: 66.9 SD: NR	NR	NR
Snow, 2008 ¹⁰²	Arm 1(LPN)	Creatinine measure: mL/dL	Mean: 0.9 SD: 0.2	7 months	48	Mean: 1.03 SD: 0.34	NR	Comp. Arm: Arm 2 P: 0.0002
Snow, 2008 ¹⁰²	Arm 2(LRN)	Creatinine measure: mL/dL	Mean: 0.9 SD: 0.2	7.8mont hs	37	Mean: 1.4 SD: 0.32	NR	NR
Snow, 2008 ¹⁰²	Arm 1(LPN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 89.5 SD: 22.1	7 months	48	Mean: 79 SD: 22	NR	Comp. Arm: Arm 2 P: 0.000001
Snow, 2008 ¹⁰²	Arm 2(LRN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 90 SD: 16.7	7.8mont hs	37	Mean: 55 SD: 14	NR	NR
Snow, 2008 ¹⁰²	Arm 1(LPN)	Creatinine measure: mL/dL	Mean: 0.9 SD: 0.2	7 months	48	Mean: 1.03 SD: 0.34	NR	Comp. Arm: Arm 2 P: 0.0002
Snow, 2008 ¹⁰²	Arm 2(LRN)	Creatinine measure: mL/dL	Mean: 0.9 SD: 0.2	7.8mont hs	37	Mean: 1.4 SD: 0.32	NR	NR
Snow, 2008 ¹⁰²	Arm 1(LPN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 89.5 SD: 22.1	7 months	48	Mean: 79 SD: 22	NR	Comp. Arm: Arm 2 P: 0.000001
Snow, 2008 ¹⁰²	Arm 2(LRN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 90 SD: 16.7	7.8mont hs	37	Mean: 55 SD: 14	NR	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 63.2 SD: 27.8	1 month	21	Mean: 55.7 SD: 26.3	NR	Comp. Arm: Arm 2 P: <0.001
Takaki, 2014 ¹³⁵	Arm 2(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 88.4 SD: 22	1 month	39	Mean: 55.5 SD: 13.5	NR	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 63.2 SD: 27.8	Last follow up	21	Mean: 56.8 SD: 31.4	NR	Comp. Arm: Arm 2 P: 0.08
Takaki, 2014 ¹³⁵	Arm 2(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 88.4 SD: 22	Last follow up	39	Mean: 59.6 SD: 17.8	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Tanagho, 2013 ¹²⁶	(Cryoablation)	Glomerular filtration rate decline: mL/min/1.73m2	Mean: 66.3 SD: 24.7	mean 35.8m	267	Mean: 61.3 SD: 27	P: <0.01	P: =0.01</td
Tanagho, 2013 ¹²⁶	(Robot assisted partial nephrectomy)	Glomerular filtration rate decline: mL/min/1.73m2	Mean: 84.5 SD: 20.9	mean 11.8m	233	Mean: 73.4 SD: 22.4	P: <0.01	NR
Tanagho, 2013 ¹²⁶	(Cryoablation)	Creatinine measure: mg/dl	Mean: 1.2 SD: 0.9	mean 35.8m	267	Mean: 1.4 SD: 1.1	NR	P: =0.01</td
Tanagho, 2013 ¹²⁶	(Robot assisted partial nephrectomy)	Creatinine measure: mg/dl	Mean: 0.9 SD: 0.3	mean 11.8m	233	Mean: 1.1 SD: 0.5	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: mg/dl	Mean: 1.2 SD: 0.4	Postop	36	Mean: 1.6 SD: 0.6	NR	NR0.766
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: mg/dl	Mean: 1.4 SD: 0.5	Postop	36	Mean: 1.6 SD: 0.7	NR	NR0.766
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: mg/dl	Mean: 1.4 SD: 0.5	Postop	29	Mean: 1.5 SD: 0.8	NR	NR0.766
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: mg/dl	Mean: SD:	Postop	36	Mean: 0.4 SD: 0.5	NR	NR0.028
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: mg/dl	Mean: SD:	Postop	36	Mean: 0.2 SD: 0.3	NR	NR0.028
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: mg/dl	Mean: SD:	Postop	29	Mean: 0.1 SD: 0.4	NR	NR0.028
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Creatinine measure: m/min/1.73m^2	Mean: 65 SD: 23.5	Postop	36	Mean: 48 SD: 17	NR	NR0.705
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: m/min/1.73m^2	Mean: 52.3 SD: 19.7	Postop	36	Mean: 51 SD: 27	NR	NR0.705
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: m/min/1.73m^2	Mean: 53.2 SD: 16.2	Postop	29	Mean: 52 SD: 15	NR	NR0.705
Turna, 2009 ¹²³	Arm 1(Laparoscopic	Creatinine measure: m/min/1.73m^2	Mean: SD:	Postop	36	Mean: 18 SD: 17	NR	NR0.0025

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	partial nephrectomy)							
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Creatinine measure: m/min/1.73m^2	Mean: SD:	Postop	36	Mean: 3 SD: 17	NR	NR0.0025
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Creatinine measure: m/min/1.73m^2	Mean: SD:	Postop	29	Mean: 7 SD: 15	NR	NR0.0025
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Creatinine measure: mg/dl	Mean: NR SD: NR	9.3 years	268	Mean: 1.3 SD:	NR	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Creatinine measure: mg/dl	Mean: NR SD: NR	9.3 years	273	Mean: 1.5 SD:	NR	NR
Woldu, 2014 ⁹¹	Arm 1(NSS)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: NR SD: NR	60	539	Mean: NR SD: NR	Comp. Arm: - 1.17 P: NR	NR
Woldu, 2014 ⁹¹	Arm 2(RN)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: NR SD: NR	60	767	Mean: NR SD: NR	Comp. Arm: - 1.89 P: NR	NR
Yasuda, 2012 ⁹²	Arm 1(NSS)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: NR SD: NR	3	97	Mean: NR SD: NR	Comp. Arm: - 8.9 P: NR	NR
Yasuda, 2012 ⁹²	Arm 2(RN)	Glomerular filtration rate decline: mL/min/1.73 m2	Mean: NR SD: NR	3	103	Mean: NR SD: NR	Comp. Arm: - 38.1 P: NR	NR
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Creatinine measure: ml/min/1.73m^2	Mean: 99 SD:	5 years	75	Mean: 76 SD:	NR	NR
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Creatinine measure: ml/min/1.73m^2	Mean: 99 SD:	5 years	341	Mean: 64 SD:	NR	NR
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Creatinine measure: mg/dL	Mean: 0.82 SD: 0.17	NR	14	Mean: 0.89 SD: 0.32	NR	Comp. Arm: Arm 2 P: 0.87
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Creatinine measure: mg/dL	Mean: 0.83 SD: 0.22	NR	41	Mean: 0.88 SD: 0.29	NR	NR
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Creatinine measure: mg/dl	Mean: 0.91 SD: NR	6 months	42	Mean: 1 SD: NR	NR	Comp. Arm: Arm 2 P: 0.006
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Creatinine measure: mg/dl	Mean: 0.91 SD: NR	6 months	55	Mean: 1.4 SD: NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Creatinine Clearance: NR	Mean: 94.3 SD: NR	6 months	42	Mean: 88.7 SD: NR	NR	Comp. Arm: Arm 2 P: <0.001
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Creatinine Clearance: NR	Mean: 100.8 SD: NR	6 months	55	Mean: 64.2 SD: NR	NR	NR
Cooper, 2015 ¹⁴¹	Arm 1(RFA)	Glomerular filtration rate decline: NR	Mean: 52.4 SD: 12.41	NR	9	Mean: 50.8 SD: 17.13	NR	NR
Cooper, 2015 ¹⁴¹	Arm 2(PN)	Glomerular filtration rate decline: NR	Mean: 56.7 SD: 7.7	NR	9	Mean: 55.3 SD: 10.3	NR	NR
Cooper, 2015 ¹⁴¹	Arm 3(RN)	Glomerular filtration rate decline: NR	Mean: 53.6 SD: 13.2	NR	31	Mean: 53.5 SD: 11.2	NR	NR
Cooper, 2015 ¹⁴¹	Arm 1(RFA)	Creatinine measure: NR	Mean: 1.1 SD: 0.6	NR	9	Mean: 1.4 SD: 1.29	NR	NR
Cooper, 2015 ¹⁴¹	Arm 2(PN)	Creatinine measure: NR	Mean: 10.4 SD: 28.4	NR	9	Mean: 0.99 SD: 0.55	NR	NR
Cooper, 2015 ¹⁴¹	Arm 3(RN)	Creatinine measure: NR	Mean: 1.1 SD: 0.9	NR	31	Mean: 1.63 SD: 1.73	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 78.8 SD: 28.9	NR	27	Mean: 71.6 SD: 25.4	NR	Comp. Arm: Arm 2 P: 0.437
Chang, 2015 ¹²⁷	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 86.4 SD: 29.3	NR	29	Mean: 76.9 SD: 25	NR	NR
Danzig, 2015 ¹³⁴	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 73.34 SD: 18.26	NR	15	Mean: 64.15 SD: 10.81	Comp. Arm: - 9.19 RR: NR HR: NR OR: NR RD: NR 95%CI: NR SE: NR SD: 10.65 P: NR	Comp. Arm: Arms 2, 3 and 4 P: 0.001
Danzig, 2015 ¹³⁴	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 89.69 SD: 11.68	NR	65	Mean: 87.77 SD: 11.95	Comp. Arm: - 1.92 RR: NR HR: NR OR: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
							RD: NR 95%CI: NR SE: NR SD: 6.24 P: NR	
Danzig, 2015 ¹³⁴	Arm 3(AS)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 81.45 SD: 12.08	NR	68	Mean: 80.9 SD: 13.07	Comp. Arm: - 0.55 RR: NR HR: NR OR: NR RD: NR 95%CI: NR SE: NR SD: 8 P: NR	NR
Danzig, 2015 ¹³⁴	Arm 4(Cryoablation)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 88.55 SD: 12.6	NR	14	Mean: 85.67 SD: 12.75	Comp. Arm: - 2.88 RR: NR HR: NR OR: NR RD: NR 95%CI: NR SE: NR SD: 5.53 P: NR	NR
Chung, 2014 ⁹⁴	Arm 1(RN(>/=65years))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 72.4 SD: 13.1	5 years	170	Mean: 47.8 SD: NR	NR	NR
Chung, 2014 ⁹⁴	Arm 2(PN(>/=65years))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 72.1 SD: 14.7	5 years	170	Mean: 65.5 SD: NR	NR	NR
Chung, 2014 ⁹⁴	Arm 3(RN(<65years))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 83.4 SD: 14.1	5 years	452	Mean: 64.3 SD: NR	NR	NR
Chung, 2014 ⁹⁴	Arm 4(PN(<65years))	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 83 SD: 13.2	5 years	452	Mean: 79.9 SD: NR	NR	NR
Chang, 2014 ⁹⁵	Arm 1(RN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 80.1 SD: 17.6	3years	339	Mean: 58.7 SD: NR	NR	NR
Chang, 2014 ⁹⁵	Arm 2(PN)	Glomerular filtration rate decline: ml/min/1.73m2	Mean: 83.9 SD: 15.1	3years	218	Mean: 78.4 SD: NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
			OVERALI					
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA	5	1047	(82.5)	NR	NR
Badalato, 1997 ⁵⁶	Arm 2(RN)	Overall survival	NA	5	10209	(85)	NR	NR
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA	10	1047	(From KM)	NR	NR
Badalato, 1997 ⁵⁶	Arm 2(RN)	Overall survival	NA	10	10209	(From KM)	NR	NR0.161
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.91- 1.36
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.76- 1.35
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.76- 1.55
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.87- 1.91
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.76- 1.60
Badalato, 1997 ⁵⁶	Arm 1(PN)	Overall survival	NA		11256		NR	Comp. Arm: RN 95%CI: 0.89- 1.40
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Overall survival	NA	NR	50	49(98)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Overall survival	NA	NR	38	32(84.2)	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Overall survival	NA	5	27	NR(85.5)	NR	Comp. Arm: Arm 2 P: 0.14
Chang, 2014 ¹¹⁸	Arm 2(PN)	Overall survival	NA	5	29	NR(96.6)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Overall survival	NA	1	578	NR(96.4)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 2(PN)	Overall survival	NA	1	4402	NR(98.8)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 3(RN)	Overall survival	NA	1	10165	NR(97.2)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Overall survival	NA	2	578	NR(92.5)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 2(PN)	Overall survival	NA	2	4402	NR(97.6)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 3(RN)	Overall survival	NA	2	10165	NR(94.6)	NR	NR
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Overall survival	NA	2	578	NR	NR	Comp. Arm: PN P: 0.32
Choueiri, 2011 ¹³⁷	Arm 1(TA)	Overall survival	NA	2	578	NR	NR	Comp. Arm: RN P: 0.73
Daugherty, 2014 ⁶¹	(Radical Nephrectomy)	Overall survival	NA	5	494	NR(95.5)	NR	Comp. Arm: Arm 2 HR: 0.46 95%CI: 0.21- 1.05 P: 0.07
Daugherty, 2014 ⁶¹	(Partial Nephrectomy)	Overall survival	NA	10	222	NR(98.2)	NR	NR
Daugherty, 2014 ⁶¹	(Radical Nephrectomy)	Overall survival	NA	5	494	NR(89.7)	NR	Comp. Arm: Arm2 HR: 0.5 95%CI: 0.28- 0.92 P: 0.025
Daugherty, 2014 ⁶¹	(Partial Nephrectomy)	Overall survival	NA	10	222	NR(94)	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Overall survival	NA	NR	33	33(100)	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Overall survival	NA	NR	52	52(100)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Overall survival	NA	NR	153	153(100)	NR	Comp. Arm: Arm 2 P: 0.09
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Overall survival	NA	NR	89	86(96.6)	NR	NR
Emara, 2014 ¹¹³	(Cryoablation)	Overall survival	NA	31.3m	56	53(94.6)	NR	NR
Emara, 2014 ¹¹³	(Robot assisted partial nephrectomy)	Overall survival	NA	16.5m	47	47(100)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos	Overall survival	NA	1	36	33(91.7)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	copic radical nephrectomy)							
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Overall survival	NA	1	37	36(97.3)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Overall survival	NA	1	44	43(97.7)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Overall survival	NA	NR	75	74(98.7)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Overall survival	NA	NR	92	92(100)	NR	NR
Houston, 2009 ⁶²	Arm 1(RN)	Overall survival	NA	NR	704	630(89.5)	NR	NR
Houston, 2009 ⁶²	Arm 2(PN)	Overall survival	NA	NR	239	231(96.7)	NR	NR
Huang, 2009 ⁶⁴	Arm 1(PN)	Overall survival	NA	3	556	NR(87)	NR	NR
Huang, 2009 ⁶⁴	Arm 2(RN)	Overall survival	NA	3	2435	NR(80)	NR	NR
Huang, 2009 ⁶⁴	Arm 1(PN)	Overall survival	NA	5	556	NR(74)	NR	NR
Huang, 2009 ⁶⁴	Arm 2(RN)	Overall survival	NA	5	2435	NR(68)	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Overall survival	NA	5	67	NR(100)	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Overall survival	NA	5	195	NR(86.5)	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Overall survival	NA	5	324	NR(95.2)	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Overall survival	NA	10	67	NR(100)	NR	Comp. Arm: Arm 2 P: 0.84
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Overall survival	NA	10	195	NR(67.2)	NR	NR
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Overall survival	NA	10	324	NR(81.1)	NR	Comp. Arm: Arm 2 P: <0.01
Indudhara, 1997 ⁴⁷	Arm 1(nephron sparing surgery)	Overall survival	NA	3.1	35	33(0.91)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Indudhara, 1997 ⁴⁷	Arm 2(radical nephrectomy)	Overall survival	NA	3.6	71	67(0.943661971 830986)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Kates, 2011, 65	Arm 1(PN)	Overall survival	NA	10	2301	2201(95.7)	NR	NR
Kates, 2011, 65	Arm 2(RN)	Overall survival	NA	10	1915	1677(87.6)	NR	NR
Kopp, 2014 ⁶⁶	Arm 1(RN)	Overall survival	NA	5	122	NR(80)	NR	Comp. Arm: Arm 2 P: 0.291
Kopp, 2014 ⁶⁶	Arm 2(PN)	Overall survival	NA	5	80	NR(83.3)	NR	NR
Kyung, 2014 ⁶⁷	(Radical Nephrectomy)	Overall survival	NA	5	82	NR(90.7)	95%CI: 77-91 P: NR	NR
Kyung, 2014 ⁶⁷	(Partial Nephrectomy)	Overall survival	NA	5	53	NR(93.8)	95%CI: 80-98 P: NR	NR
Lane, 2010 ⁶⁸	Arm 1(PN Limited ischemia)	Overall survival	NA	5	804	NR(95.7)	NR	NR
Lane, 2010 ⁶⁸	Arm 2(PN Unknown ischemia)	Overall survival	NA	5	546	NR(93.9)	NR	NR
Lane, 2010 ⁶⁸	Arm 3(PN Extended ischemia)	Overall survival	NA	5	483	NR(94)	NR	NR
Lane, 2010 ⁶⁸	Arm 4(RN)	Overall survival	NA	5	569	NR(84.3)	NR	NR
Lane, 2010 ¹³⁶	Arm 1(Active surveillance)	Overall survival	NA	5	105	NR(58)	NR	NR
Lane, 2010 ¹³⁶	Arm 2(Radical Nephrectomy)	Overall survival	NA	5	146	NR(72)	NR	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Overall survival	NA	NR	35	26(74.3)	NR	NR
Li, 2007 ⁶⁹	Arm 2(RN)	Overall survival	NA	NR	128	104(81.3)	NR	NR
Li, 2007 ⁶⁹	Arm 1(PN)	Overall survival	NA	5	35	NR(85)	NR	P: 0.126
Li, 2007 ⁶⁹	Arm 2(RN)	Overall survival	NA	5	128	NR(91.4)	NR	NR
Mariusdottir, 2013 ⁴⁹	Arm 2(Radical nephrectomy)	Overall survival	NA	5	44	34(65)	NR	NR
Mariusdottir, 2013 ⁴⁹	Arm 1(Partial nephrectomy)	Overall survival	NA	5	44	44(100)	NR	NR
Medina-Polo, 2011 ⁷³	Arm 1(NSS)	Overall survival	NA	4	116	105(90.6)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Medina-Polo, 2011 ⁷³	Arm 2(Radical nephrectomy)	Overall survival	NA	4	174	140(80.5)	NR	NR
Meskawi, 2014 ⁷⁴	Arm 1(PN)	Overall survival	NA	5	6104	NR(7)	NR	NR
Meskawi, 2014 ⁷⁴	Arm 1(RN)	Overall survival	NA	10	6104	NR(23.8)	NR	NR
Meskawi, 2014 ⁷⁴	Arm 2(PN)	Overall survival	NA	5	1526	NR(9.1)	NR	NR
Meskawi, 2014 ⁷⁴	Arm 2(RN)	Overall survival	NA	10	1526	NR(20.3)	NR	P: 0.3
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Overall survival	NA	5	34	NR(83.1)	NR	NR
Milonas, 2013 ⁵⁰	Arm 2(RN)	Overall survival	NA	5	317	NR(71.2)	NR	NR
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Overall survival	NA	7	34	NR(64.4)	NR	NR
Milonas, 2013 ⁵⁰	Arm 2(RN)	Overall survival	NA	7	317	NR(63.1)	NR	NR
Milonas, 2013 ⁵⁰	Arm 1(NSS)	Overall survival	NA	12	34	NR(55.2)	NR	P: 0.437
Milonas, 2013 ⁵⁰	Arm 2(RN)	Overall survival	NA	12	317	NR(53.7)	NR	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN)	Overall survival	NA	5	143	NR(81.3)	NR	NR
Minervini, 2012 ¹⁰⁸	Arm 2(TE)	Overall survival	NA	5	332	NR(82.9)	NR	NR
Minervini, 2012 ¹⁰⁸	Arm 1(RN)	Overall survival	NA	10	143	NR(71.5)	NR	NR
Minervini, 2012 ¹⁰⁸	Arm 2(TE)	Overall survival	NA	10	332	NR(71.9)	NR	NR
Mues, 2012 ¹²⁰	Arm 1(ablation)	Overall survival	NA	31	98	0(0)	NR	Comp. Arm: Arm 2 P: 0.5
Mues, 2012 ¹²⁰	Arm 2(PN)	Overall survival	NA	24	100	1(1)	NR	NR
Olweny, 2012 ¹²⁵	Arm 1(RFA)	Overall survival	NA	5	37	NR(97.2)	NR	NR
Olweny, 2012 ¹²⁵	Arm 2(PN)	Overall survival	NA	5	37	NR(100)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Overall survival	NA	3	48	NR(93)	NR	Comp. Arm: Arm 2 P: 0.74
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic	Overall survival	NA	3	30	NR(93)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	Renal cryoablation)							
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Overall survival	NA	5	48	NR(93)	NR	Comp. Arm: Arm 2 P: 0.74
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Overall survival	NA	5	30	NR(88)	NR	NR
Patel, 2014 ¹³²	Arm 1(DT(Deferred Treatmet)-Low Cardiovascular risk)	Overall survival	NA	100 months	754	NR(34)	NR	NR
Patel, 2014 ¹³²	Arm 2(PN-Low Cardiovascular risk)	Overall survival	NA	100 months	1849	NR(71)	NR	Comp. Arm: Arm 1 HR: 0.35 95%CI: 0.29 - 0.41 P: <0.01
Patel, 2014 ¹³²	Arm 3(RN-Low Cardiovascular risk)	Overall survival	NA	100 months	4574	NR(63)	NR	Comp. Arm: Arm 2 HR: 0.47 95%CI: 0.41 - 0.54 P: <0.01
Patel, 2014 ¹³²	Arm 1(DT(Deferred Treatmet)-High Cardiovascular risk)	Overall survival	NA	100 months	754	NR(78)	NR	NR
Patel, 2014 ¹³²	Arm 2(PN-High Cardiovascular risk)	Overall survival	NA	100 months	1849	NR(87)	NR	Comp. Arm: Arm 1 HR: 0.48 95%CI: 0.36 - 0.65 P: <0.01
Patel, 2014 ¹³²	Arm 3(RN-High Cardiovascular risk)	Overall survival	NA	100 months	4574	NR(78)	NR	Comp. Arm: Arm 2 HR: 0.65 95%CI: 0.52 -

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								0.80 P: <0.01
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Overall survival	NA	1	754	NR(88.1)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 2(PN)	Overall survival	NA	1	1849	NR(98.3)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 3(RN)	Overall survival	NA	1	4574	NR(96.8)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Overall survival	NA	3	754	NR(63.3)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 2(PN)	Overall survival	NA	3	1849	NR(91.8)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 3(RN)	Overall survival	NA	3	4574	NR(86.7)	NR	95%CI:
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management)	Overall survival	NA	5	754	NR(46.4)	NR	Comp. Arm: Arm 2 HR: 0.4 95%CI: 0.34 to - 0.46' P: <0.01
Patel, 2014 ¹³¹	Arm 2(PN)	Overall survival	NA	5	1849	NR(83.1)	NR	Comp. Arm: Arm 3 HR: 0.8 95%CI: 0.71 to 0.90 P: <0.01
Patel, 2014 ¹³¹	Arm 3(RN)	Overall survival	NA	5	4574	NR(76.1)	NR	Comp. Arm: Arm 1 HR: 0.5 95%CI: 0.45 to 0.56 P: <0.01
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management <75 years)	Overall survival	NA	5	754	NR	NR	Comp. Arm: Arm 2 HR: 0.44 95%CI: 0.35 to - 0.56 P: <0.01
Patel, 2014 ¹³¹	Arm 2(PN<75 years)	Overall survival	NA	5	1849	NR	NR	Comp. Arm: Arm 3 HR: 0.87 95%CI: 0.73 - 1.02 P: 0.09
Patel, 2014 ¹³¹	Arm 3(RN<75 years)	Overall survival	NA	5	4574	NR	NR	Comp. Arm: Arm 1 HR:

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								0.51 95%CI: 0.42 - 0.63 P: <0.01
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management 75- <80years)	Overall survival	NA	5	754	NR	NR	Comp. Arm: Arm 2 HR: 0.33 95%CI: 0.25 to - 0.43 P: <0.01
Patel, 2014 ¹³¹	Arm 2(PN75- <80years)	Overall survival	NA	5	1849	NR	NR	Comp. Arm: Arm 3 HR: 0.86 95%CI: 0.7 - 1.07 P: 0.8
Patel, 2014 ¹³¹	Arm 3(RN75- <80years)	Overall survival	NA	5	4574	NR	NR	Comp. Arm: Arm 1 HR: 0.38 95%CI: 0.3 - 0.48 P: <0.01
Patel, 2014 ¹³¹	Arm 1(Non Surgical Management>/=80 years)	Overall survival	NA	5	754	NR	NR	Comp. Arm: Arm 2 HR: 0.36 95%CI: 0.27 to - 0.48 P: <0.01
Patel, 2014 ¹³¹	Arm 2(PN>/=80years)	Overall survival	NA	5	1849	NR	NR	Comp. Arm: Arm 3 HR: 0.65 95%CI: 0.5 - 0.84 P: <0.01
Patel, 2014 ¹³¹	Arm 3(RN>/=80years)	Overall survival	NA	5	4574	NR	NR	Comp. Arm: Arm 1 HR: 0.55 95%CI: 0.46 - 0.66 P: <0.01

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	Median 4.8 years	36	33	NR	NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	Median 7.81	37	31	NR	NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Overall survival	NA	Median 4.18	32	20	NR	NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Overall survival	NA	NR	39	29	NR	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	5	36	(92)	NR	Comp. Arm: RN young 95%CI: 0.655
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	5	37	(91)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Overall survival	NA	5	32	(72)	NR	Comp. Arm: RN old 95%CI: 0.058
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Overall survival	NA	5	39	(89)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	10	36	(84)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Overall survival	NA	10	37	(86)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Overall survival	NA	10	32	(36)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Overall survival	NA	10	39	(68)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Overall survival	NA	5	101	NR(83)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Overall survival	NA	5	146	NR(86)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Overall survival	NA	10	101	NR(64)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Overall survival	NA	10	146	NR(76)	NR	NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.6 95%CI: 1.03-2.3 P: NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.5 95%CI: 1.1-1.9 P: NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.7 95%CI: 1.1-2.5 P: NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.4 95%CI: 1.04-2.0 P: NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.3 95%CI: 1.1-1.6 P: NR
Smaldone, 2012 ⁷⁹	Overall(Overall)	Overall survival	NA	13.7	5496	NR	NR	HR: 1.5 95%CI: 1.02-2.3 P: NR
Smaldone, 2012 ⁷⁹	Arm 1(PN)	Overall survival	NA	13.7	1665	NR(35)	NR	NR
Smaldone, 2012 ⁷⁹	Arm 2(RN)	Overall survival	NA	13.6	3831	NR(25)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN)	Overall survival	NA	2	924	NR(7.1)	NR	NR
Sun, 2012 ¹⁵²	Arm 2(RN)	Overall survival	NA	2	924	NR(7.9)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN)	Overall survival	NA	5	924	NR(20.5)	NR	Comp. Arm: Arm 2 HR: 0.84 95%CI: 0.7-0.99 P: 0.043

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Sun, 2012 ¹⁵²	Arm 2(RN)	Overall survival	NA	5	924	NR(24.1)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN age >/=75)	Overall survival	NA	2	414	NR(8.9)	NR	NR
Sun, 2012 ¹⁵²	Arm 2(RN age >/=75)	Overall survival	NA	2	405	NR(10.1)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN age >/=75)	Overall survival	NA	5	414	NR(26)	NR	Comp. Arm: Arm 2 HR: 0.79 95%CI: 0.62- 1.01 P: 0.05
Sun, 2012 ¹⁵²	Arm 2(RN age >/= 75)	Overall survival	NA	5	405	NR(28.5)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN >/= 2 comorbidities)	Overall survival	NA	2	612	NR(7.9)	NR	NR
Sun, 2012 ¹⁵²	Arm 2(RN >/= 2 comorbidities)	Overall survival	NA	2	619	NR(8.6)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN >/= 2 comorbidities)	Overall survival	NA	5	612	NR(22.2)	NR	Comp. Arm: Arm 2 HR: 0.84 95%CI: 0.68- 1.04 P: 0.1
Sun, 2012 ¹⁵²	Arm 2(RN >/= 2 comorbidities)	Overall survival	NA	5	619	NR(26.1)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN age >/=75 and >/= 2 comorbidities)	Overall survival	NA	2	215	NR(10)	NR	NR
Sun, 2012 ¹⁵²	Arm 2(RN age >/=75 and >/= 2 comorbidities)	Overall survival	NA	2	215	NR(12.4)	NR	NR
Sun, 2012 ¹⁵²	Arm 1(PN age >/=75 and >/= 2 comorbidities)	Overall survival	NA	5	215	NR(28.4)	NR	Comp. Arm: Arm 2 HR: 0.71 OR: 95%CI: 0.52- 0.97 P: 0.03
Sun, 2012 ¹⁵²	Arm 2(RN age >/= 75 and >/= 2 comorbidities)	Overall survival	NA	5	215	NR(32.6)	NR	NR
takagi, 2011 ⁸¹	Arm 1(PN-eGFR 45 - 59)	Overall survival	NA	5	30	26(86)	NR	P: 0.0835

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
takagi, 2011 ⁸¹	Arm 2(RN-eGFR 45 - 59)	Overall survival	NA	5	38	36(94)	NR	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Overall survival	NA	5	21	NR(63)	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Overall survival	NA	5	39	NR(97)	NR	NR
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Overall survival	NA	10	21	NR(48)	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Overall survival	NA	10	39	NR(97)	NR	P: <0.009
Tan, 2012 ⁸²	Arm 1(PN)	Overall survival	NA	NR	1925	1438(74.7)	NR	NR
Tan, 2012 ⁸²	Arm 2(RN)	Overall survival	NA	NR	5213	3049(58.5)	NR	NR
Tanagho, 2013 ¹²⁶	(Cryoablation)	Overall survival	NA	5	267	NR(77.1)	NR	NR
Tanagho, 2013 ¹²⁶	(Robot assisted partial nephrectomy)	Overall survival	NA	5	233	NR(91.7)	NR	NR
Thompson, 2008 ⁸³	Arm 1(PN)	Overall survival	NA	NR	358	296(82.7)	NR	NR
Thompson, 2008 ⁸³	Arm 2(RN)	Overall survival	NA	NR	290	206(71)	NR	NR
Thompson, 2008 ⁸³	Arm 3(PN- <65years)	Overall survival	NA	10	187	NR(82)	NR	NR
Thompson, 2008 ⁸³	Arm 4(RN- <65years)	Overall survival	NA	10	140	NR(93)	NR	NR
Thompson, 2014 ¹²²	Arm 1(cT1a-Partial Nephrectomy)	Overall survival	NA	3	1057	NR(95)	NR	Comp. Arm: Arm 2 P: <0.001
Thompson, 2014 ¹²²	Arm 2(cT1a- Radiofrequency Ablation)	Overall survival	NA	3	180	NR(82)	NR	Comp. Arm: Arm 3 P: 0.42
Thompson, 2014 ¹²²	Arm 3(cT1a- Cryoablation)	Overall survival	NA	3	187	NR(88)	NR	NR
Thompson, 2014 ¹²²	Arm 4(cT1b-Partial Nephrectomy)	Overall survival	NA	3	326	NR(93)	NR	Comp. Arm: Arm 5 P: 0.45
Thompson, 2014 ¹²²	Arm 5(cT1b- Cryoablation)	Overall survival	NA	3	53	NR(74)	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Overall survival	NA	2	36	(91.2)	NR	NR0.785

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Overall survival	NA	2	36	(88.5)	NR	NR0.785
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Overall survival	NA	2	29	(83.9)	NR	NR0.785
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Overall survival	NA	2	36	(100)	NR	NR0.0009
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Overall survival	NA	2	36	(69.6)	NR	NR0.0009
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Overall survival	NA	2	29	(33.2)	NR	NR0.0009
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Overall survival	NA	10	268	201(75.7)	NR	Comp. Arm: RR: HR: 1.5 OR: RD: 95%CI: 1.03- 2.16 noninferiority, 0.77;superiority, 0.03
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Overall survival	NA	10	273	223(81.1)	NR	Comp. Arm: RR: HR: 1.5 OR: RD: 95%CI: 1.03- 2.16 noninferiority, 0.77;superiority, 0.03
Weight, 2010 ⁸⁹	Arm 1(RN- Upstaged Cohort)	Overall survival	NA	6	117	NR(46)	NR	NR
Weight, 2010 ⁸⁹	Arm 2(PN- Upstaged Cohort)	Overall survival	NA	6	96	NR(65)	NR	Comp. Arm: Arm 1 P: 0.01
Weight, 2010 ⁸⁹	Arm 3(RN-High Grade cohort)	Overall survival	NA	6	43	NR(29)	NR	NR
Weight, 2010 ⁸⁹	Arm 4(PN-High Grade cohort)	Overall survival	NA	6	52	NR(73)	NR	Comp. Arm: Arm 1 P: <0.0001

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Weight, 2010 ⁹⁰	Arm 1(RN)	Overall survival	NA	NR	480	NR(78)	NR	NR
Weight, 2010 ⁹⁰	Arm 2(PN)	Overall survival	NA	NR	524	NR(85)	NR	Comp. Arm: Arm 1 HR: 0.903 95%CI: 0.56-1.5 P: 0.68
Whitson, 2012 ¹²⁴	Overall	Overall survival	NA	NR	8818	716(8.1)	NR	NR
Yokoyama, 2011 ¹⁵³	Arm 1(Partial nephrectomy)	Overall survival	NA	Median 37 month	75	72	NR	NR
Yokoyama, 2011 ¹⁵³	Arm 2(Radical nephrectomy)	Overall survival	NA	Median 45 month	341	318	NR	NR
Zini, 2009 ⁹³	Arm 1(Partial nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	5	2153	(89.3)	NR	Comp. Arm: Arm1 RR: HR: Reference OR: RD: 95%CI: 0.001
Zini, 2009 ⁹³	Arm 2(Radical nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	5	5616	(84.4)	NR	Comp. Arm: Arm1 RR: HR: 1.23 OR: RD: 95%CI: 0.001
Zini, 2009 ⁹³	Arm 3(Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	5	1283	(88.9)	NR	Comp. Arm: Arm3 RR: HR: Reference OR: RD: 95%CI: 0.048
Zini, 2009 ⁹³	Arm 4(Radical nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	5	3166	(85.5)	NR	Comp. Arm: Arm3 RR: HR: 1.19 OR: RD: 95%CI: 0.048
Zini, 2009 ⁹³	Arm 1(Partial nephrectomy (matched for age,	Overall survival	NA	10	2153	(71.3)	NR	Comp. Arm: Arm1 RR: HR: Reference

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	tumor size, year of surgery, not by Furhman grade))							OR: RD: 95%CI: 0.001
Zini, 2009 ⁹³	Arm 2(Radical nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	10	5616	(68.2)	NR	Comp. Arm: Arm1 RR: HR: 1.23 OR: RD: 95%CI: 0.001
Zini, 2009 ⁹³	Arm 3(Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	10	1283	(70.9)	NR	Comp. Arm: Arm3 RR: HR: Reference OR: RD: 95%CI: 0.048
Zini, 2009 ⁹³	Arm 4(Radical nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	10	3166	(68.8)	NR	Comp. Arm: Arm3 RR: HR: 1.19 OR: RD: 95%CI: 0.048
Zini, 2009 ⁹³	Arm 1(Partial nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	5	2153	(88.3)	NR	NR<0.001
Zini, 2009 ⁹³	Arm 2(Radical nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	5	5616	(83.7)	NR	NR<0.001
Zini, 2009 ⁹³	Arm 3(Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	5	1283	(87.6)	NR	NR0.02
Zini, 2009 ⁹³	Arm 4(Radical nephrectomy	Overall survival	NA	5	3166	(84.4)	NR	NR0.02

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	(matched for age, tumor size, year of surgery, Furhman grade))							
Zini, 2009 ⁹³	Arm 1(Partial nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	10	2153	(72.9)	NR	NR<0.001
Zini, 2009 ⁹³	Arm 2(Radical nephrectomy (matched for age, tumor size, year of surgery, not by Furhman grade))	Overall survival	NA	10	5616	(68.4)	NR	NR<0.001
Zini, 2009 ⁹³	Arm 3(Partial nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	10	1283	(72.9)	NR	NR0.02
Zini, 2009 ⁹³	Arm 4(Radical nephrectomy (matched for age, tumor size, year of surgery, Furhman grade))	Overall survival	NA	10	3166	(69.4)	NR	NR0.02
O'Malley,2014 97	Arm 1(PN)	Overall survival	NA	5	1893	NR(79.5)	NR	Comp. Arm: Arm 2 P: <0.001
O'Malley,2014 97	Arm 2(RN)	Overall survival	NA	5	10864	NR(70.1)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Overall survival	NA	5	27	NR(85.5)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Overall survival	NA	5	29	NR(96.6)	NR	NR
Chung, 2014 ⁹⁴	Arm 1(RN(>/=65years))	Overall survival	NA	5	170	NR(91.9)	NR	P:

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Chung, 2014 ⁹⁴	Arm 2(PN(>/=65years))	Overall survival	NA	5	170	NR(94.7)	NR	Comp. Arm: Arm 1 P: 0.698
Chung, 2014 ⁹⁴	Arm 3(RN(<65years))	Overall survival	NA	5	452	NR(96.3)	NR	P:
Chung, 2014 ⁹⁴	Arm 4(PN(<65years))	Overall survival	NA	5	452	NR(99.7)	NR	Comp. Arm: Arm 3 P: 0.015
Chang, 2014 ⁹⁵	Arm 1(RN)	Overall survival	NA	3	339	305(89.97)	NR	NR
Chang, 2014 ⁹⁵	Arm 2(PN)	Overall survival	NA	3	218	201(92.2)	NR	NR
			HA	RMS				
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	48	2	NR	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Harm Name: Other- define Define: Thrombophlebitis If Clavien,report grade:	NA	NR	48	0	NR	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Harm Name: Wound complications (hernia, dehiscence) Define: Minor flank protrusion If Clavien, report grade:	NA	NR	48	1	NR	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Harm Name: Acute kidney injury Define: Hemodialysis If Clavien,report grade:	NA	NR	48	0(0)	NR	NR
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	41	1	NR	NR
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Harm Name: Other- define Define: Thrombophlebitis If Clavien,report grade:	NA	NR	41	1	NR	NR
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Harm Name: Wound complications (hernia, dehiscence) Define: Minor flank protrusion If Clavien,report grade:	NA	NR	41	2	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Harm Name: Acute kidney injury Define: Hemodialysis If Clavien, report grade:	NA	NR	41	0(0)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Other- define Define: Genitourinary If Clavien,report grade: NA	NA	30mont hs	1066	NR(13)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Hemorrhage Define: Bleeding If Clavien,report grade: NA	NA	30mont hs	1066	NR(4)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Wound complications (hernia, dehiscence) Define: Wound If Clavien,report grade: NA	NA	30mont hs	1066	NR(2)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Respiratory Define: respiratory failure If Clavien,report grade: NA	NA	30mont hs	1066	NR(12)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Infectious disease Define: infection If Clavien,report grade: NA	NA	30mont hs	1066	NR(10)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Gastrointestinal Define: gastrointestinal If Clavien,report grade: NA	NA	30mont hs	1066	NR(10)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Cardiovascular Define: cardiac If Clavien,report grade: NA	NA	30mont hs	1066	NR(3)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Other- define Define: renal failure If Clavien,report grade: NA	NA	30mont hs	1066	NR(2)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade: NA	NA	30mont hs	1066	NR(2)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Hematologic (thromboembolic) Define: E/DVT If Clavien,report grade: NA	NA	30mont hs	1066	NR(1)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 1(LapRN)	Harm Name: Neurologic Define: neurological If Clavien,report grade: NA	NA	30mont hs	1066	NR(0)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Other- define Define: Genitourinary If Clavien,report grade: NA	NA	30mont hs	157	NR(20)	NR	Comp. Arm: Arm 1 OR: 1.7 P: NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Hemorrhage Define: Bleeding If Clavien,report grade: NA	NA	30mont hs	157	NR(8)	NR	Comp. Arm: Arm 1 OR: 2.2 P: NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Wound complications (hernia, dehiscence) Define: Wound If Clavien,report grade: NA	NA	30mont hs	157	NR(1)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Respiratory Define: respiratory failure If	NA	30mont hs	157	NR(15)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Infectious disease Define: infection If Clavien,report grade: NA	NA	30mont hs	157	NR(15)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Gastrointestinal Define: gastrointestinal If Clavien,report grade: NA	NA	30mont hs	157	NR(9)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Cardiovascular Define: cardiac If Clavien,report grade: NA	NA	30mont hs	157	NR(4)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Other- define Define: renal failure If Clavien,report grade: NA	NA	30mont hs	157	NR(5)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade: NA	NA	30mont hs	157	NR(2)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Hematologic (thromboembolic) Define: E/DVT If Clavien,report grade: NA	NA	30mont hs	157	NR(1)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 3(LPN)	Harm Name: Neurologic Define: neurological If Clavien,report grade: NA	NA	30mont hs	157	NR(0)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Other- define Define: Genitourinary If	NA	30mont hs	1094	NR(20)	NR	Comp. Arm: Arm 1 OR: 1.7 P: NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Hemorrhage Define: Bleeding If Clavien,report grade: NA	NA	30mont hs	1094	NR(5)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Wound complications (hernia, dehiscence) Define: Wound If Clavien,report grade: NA	NA	30mont hs	1094	NR(1)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Respiratory Define: respiratory failure If Clavien,report grade: NA	NA	30mont hs	1094	NR(13)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Infectious disease Define: infection If Clavien,report grade: NA	NA	30mont hs	1094	NR(10)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Gastrointestinal Define: gastrointestinal If Clavien,report grade: NA	NA	30mont hs	1094	NR(9)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Cardiovascular Define: cardiac If Clavien,report grade: NA	NA	30mont hs	1094	NR(3)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Other- define Define: renal failure If Clavien,report grade: NA	NA	30mont hs	1094	NR(4)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Infectious disease Define: sepsis If	NA	30mont hs	1094	NR(2)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Hematologic (thromboembolic) Define: E/DVT If Clavien,report grade: NA	NA	30mont hs	1094	NR(1)	NR	NR
Becker, 2014 ¹⁰⁴	Arm 2(OPN)	Harm Name: Neurologic Define: neurological If Clavien,report grade: NA	NA	30mont hs	1094	NR(0)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	50	2(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	50	1(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Need for subsequent intervention Define: NA If Clavien,report grade: NA	NA	NR	50	3(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Loss of kidney Define: NA If Clavien,report grade: NA	NA	NR	50	0(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	50	2(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If	NA	NR	50	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Need for subsequent intervention Define: NA If Clavien,report grade: NA	NA	NR	50	3(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Harm Name: Loss of kidney Define: NA If Clavien,report grade: NA	NA	NR	50	0(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	38	0(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	38	1(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Need for subsequent intervention Define: NA If Clavien,report grade: NA	NA	NR	38	1(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Loss of kidney Define: NA If Clavien,report grade: NA	NA	1year	38	1(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	38	0(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	38	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Need for subsequent intervention Define: NA If Clavien,report grade: NA	NA	NR	38	1(NR)	NR	NR
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Harm Name: Loss of kidney Define: NA If Clavien,report grade: NA	NA	1year	38	1(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	108	6(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	108	4(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	108	3(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	108	6(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	108	2(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	108	4(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	NR	108	4(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	108	1(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	108	0(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: V	NA	NR	108	O(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	45	5(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	45	2(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	45	2(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	45	1(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	45	0(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Respiratory Define:	NA	NR	45	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		NA If Clavien,report grade: NA						
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	NR	45	O(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	45	0(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	45	1(NR)	NR	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: V	NA	NR	45	O(NR)	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR0	27	0(NR)	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR1	27	NR	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR1	27	NR	NR	NR
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Listed by severity of complications (using	NA	NR2	27	NR	NR	SD: 0.44 P:

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		the Clavien Grading System if available) Define: NA If Clavien,report grade: I						
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR2	27	NR	NR	SD: 0.949 P:
Chang, 2014 ¹¹⁸	Arm 1(RFA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIa	NA	NR3	27	NR	NR	SD: 0.933 P:
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR0	29	0(NR)	NR	NR
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR0	29	0(NR)	NR	NR
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR1	29	NR	NR	NR
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR0	29	NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR1	29	NR	NR	NR
Chang, 2014 ¹¹⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIa	NA	NR2	29	NR	NR	NR
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Harm Name: Other- define Define: Intraoperative complication If Clavien,report grade: NA	NA	NR	19	NR(5.3)	NR	P: 0.38
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Harm Name: Other- define Define: postoperative complication If Clavien,report grade: NA	NA	NR	19	NR(21.1)	NR	P: 0.87
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Harm Name: Other- define Define: Intraoperative complication If Clavien,report grade: NA	NA	NR	28	NR(10.7)	NR	P: 0.38
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Harm Name: Other- define Define: postoperative complication If Clavien,report grade: NA	NA	NR	28	NR(21.4)	NR	P: 0.87
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Harm Name: Other- define Define:	NA	NR	19	NR(5.3)	NR	P: 0.38

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Intraoperative complication If Clavien,report grade: NA						
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Harm Name: Other- define Define: postoperative complication If Clavien,report grade: NA	NA	NR	19	NR(15.8)	NR	P: 0.87
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Urine leak Define: If Clavien, report grade:	NA	NR	52	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	52	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade:	NA	NR	52	2	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Cardiovascular Define: vascular injury If Clavien,report grade:	NA	NR	52	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: bowel injury If Clavien,report grade:	NA	NR	52	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Cardiovascular Define: non-surgical cardiovascular complication If Clavien,report grade:	NA	NR	52	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Neurologic Define: post-op delirium If Clavien,report grade:	NA	NR	52	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Other- define Define:	NA	NR	52	1	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		liver/splenic injury If Clavien,report grade:						
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Harm Name: Positive Surgical Margin Define: If Clavien,report grade:	NA	NR	52	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	33	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	33	4	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade:	NA	NR	33	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Cardiovascular Define: vascular injury If Clavien,report grade:	NA	NR	33	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: bowel injury If Clavien,report grade:	NA	NR	33	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Cardiovascular Define: non-surgical cardiovascular complication If Clavien,report grade:	NA	NR	33	1	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Neurologic Define: post-op delirium If Clavien,report grade:	NA	NR	33	0	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Other- define Define: liver/splenic injury If Clavien,report grade:	NA	NR	33	3	NR	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Harm Name: Positive Surgical Margin	NA	NR	33	1	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: If Clavien,report grade:						
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	153	15(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	153	1(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: abscess Define: NA If Clavien,report grade: NA	NA	NR	153	1(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	153	4(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Gastrointestinal Define: Prolonged ileus If Clavien,report grade: NA	NA	NR	153	2(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Respiratory Define: Atelectasis, pleural effusion, pneumonia, If Clavien,report grade: NA	NA	NR	153	7(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Hematologic (thromboembolic) Define: Pulmonary embolism,Internal jugular vein thrombus,deep vein thrombus If Clavien,report grade: NA	NA	NR	153	6(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Cardiovascular Define: Atrial fibrillation, congestive heart failure If Clavien,report grade: NA	NA	NR	153	3(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Harm Name: Wound complications (hernia, dehiscence) Define: dehiscence, hernia If Clavien,report grade: NA	NA	NR	153	4(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	78	1(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	78	O(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: abscess Define: NA If Clavien,report grade: NA	NA	NR	78	0(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	78	0(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Gastrointestinal Define: Prolonged ileus If Clavien,report grade: NA	NA	NR	78	1(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Respiratory Define: Atelectasis, pneumothorax, pneumonia, pleural	NA	NR	78	4(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		injury If Clavien,report grade: NA						
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Hematologic (thromboembolic) Define: Pulmonary embolism,Internal jugular vein thrombus,deep vein thrombus If Clavien,report grade: NA	NA	NR	78	O(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Cardiovascular Define: Atrial fibrillation, congestive heart failure If Clavien,report grade: NA	NA	NR	78	O(NR)	NR	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Harm Name: Wound complications (hernia, dehiscence) Define: dehiscence, hernia If Clavien,report grade: NA	NA	NR	78	O(NR)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	47	2(4.3)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	47	0(0)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	47	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	NR	47	0(0)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	47	2(4.3)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	47	0(0)	NR	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIB	NA	NR	47	1(1.8)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	56	3(5.4)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	56	1(1.8)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien, report grade: NA	NA	NR	56	1(1.8)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	NR	56	1(1.8)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	56	3(5.4)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	56	1(1.8)	NR	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIB	NA	NR	56	2(4.3)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Cardiovascular Define: Deep Vein Thrombosis If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Cardiovascular Define: Pulmonary Embolism If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Cardiovascular Define: Myocardial	NA	NR	36	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Infarction If Clavien,report grade:						
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Other- define Define: Pneumothorax If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Infectious disease Define: Sepsis If Clavien, report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Infectious disease Define: Pneumonia If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Acute kidney injury Define: Acute renal failure If Clavien, report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien, report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	36	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	36	2(5.6)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneos copic radical nephrectomy)	Harm Name: Wound complications (hernia, dehiscence) Define: Secondary wound healing If Clavien,report grade:	NA	NR	36	1(2.8)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Cardiovascular Define: Deep Vein Thrombosis If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Cardiovascular Define: Pulmonary Embolism If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Cardiovascular Define: Myocardial Infarction If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Other- define Define: Pneumothorax If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Infectious disease Define: Sepsis If Clavien,report grade:	NA	NR	37	1(2.7)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Infectious disease Define: Pneumonia If Clavien,report grade:	NA	NR	37	1(2.7)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Acute kidney injury Define: Acute renal failure If Clavien,report grade:	NA	NR	37	1(2.7)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	37	1(2.7)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	37	2(5.4)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Harm Name: Wound complications (hernia, dehiscence) Define: Secondary wound healing If Clavien,report grade:	NA	NR	37	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Cardiovascular Define: Deep Vein Thrombosis If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Cardiovascular Define: Pulmonary Embolism If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Cardiovascular Define: Myocardial Infarction If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Other- define Define: Pneumothorax If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Infectious disease Define: Sepsis If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Infectious disease Define:	NA	NR	44	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Pneumonia If Clavien,report grade:						
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Acute kidney injury Define: Acute renal failure If Clavien,report grade:	NA	NR	44	2(4.6)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	44	0(0)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	44	2(4.6)	NR	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Harm Name: Wound complications (hernia, dehiscence) Define: Secondary wound healing If Clavien,report grade:	NA	NR	44	1(2.3)	NR	NR
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	226	19(8)	NR	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	210	36(17)	NR	Comp. Arm: Arm 2 P: 0.004
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	210	6(3)	NR	Comp. Arm: Arm 2 P: 0.71
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	226	8(3)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Hemorrhage Define:	NA	NR	92	5(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		NA If Clavien,report grade: NA						
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade: NA	NA	NR	92	2(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Respiratory Define: pneumonia, pneumothorax, atelectasia If Clavien,report grade: NA	NA	NR	92	3(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Need for subsequent intervention Define: stent If Clavien,report grade: NA	NA	NR	92	0(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	92	3(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	92	7(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade:	NA	NR	92	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	75	3(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade: NA	NA	NR	75	1(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Respiratory Define: pneumonia, pneumothorax, atelectasia If Clavien,report grade: NA	NA	NR	75	O(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Need for subsequent intervention Define: stent If Clavien,report grade: NA	NA	NR	75	1(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	75	2(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	75	3(NR)	NR	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If	NA	NR	75	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade:						
Indudhara,199 7 ⁴⁷	Arm 2(radical nephrectomy)	Harm Name: urine leak Define: NR If Clavien,report grade: NR	NA	1year	71	0(0)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara,199 7 ⁴⁷	Arm 2(radical nephrectomy)	Harm Name: wound infection Define: NR If Clavien,report grade: NR	NA	1year	71	0(0)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara,199 7 ⁴⁷	Arm 1(nephron sparing surgery)	Harm Name: urine leak Define: NR If Clavien,report grade: NR	NA	1year	35	2(0.0571428571 428571)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Indudhara,199 7 ⁴⁷	Arm 1(nephron sparing surgery)	Harm Name: wound infection Define: NR If Clavien,report grade: NR	NA	1year	35	1(0.0285714285 714286)	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA	Comp. Arm: NA RR: NA HR: NA OR: NA RD: NA 95%CI: NA SE: NA SD: NA P: NA
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic	Harm Name: Minor vs. major Define: Minor	NA	NR	73		NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
	radical nephrectomy)	complications If Clavien,report grade:						
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic radical nephrectomy)	Harm Name: Minor vs. major Define: Major complications If Clavien, report grade:	NA	NR	73		NR	NR
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	Harm Name: Minor vs. major Define: Minor complications If Clavien, report grade:	NA	NR	25		NR	NR
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	Harm Name: Minor vs. major Define: Major complications If Clavien, report grade:	NA	NR	25		NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	30 days	535	56(10.5)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	31 - 365 days	535	51(9.5)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	30 days	535	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	30 days	535	108(20.3)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	30 days	535	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Harm Name: Need for subsequent intervention Define: Stent Placement If	NA	30 days	535	NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	30 days	160	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	31 - 365 days	160	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	30 days	160	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	30 days	160	30(18.3)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	30 days	160	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Harm Name: Need for subsequent intervention Define: Stent Placement If Clavien,report grade: NA	NA	30 days	160	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	30 days	404	52(12.8)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	31 - 365 days	404	37(9)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Cardiovascular Define: NA If	NA	30 days	404	12(3)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	30 days	404	102(25.1)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	30 days	404	14(3.4)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Harm Name: Need for subsequent intervention Define: Stent Placement If Clavien,report grade: NA	NA	30 days	404	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	30 days	330	23(7)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	31 - 365 days	330	27(8.5)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	30 days	330	NR	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	30 days	330	92(28.8)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	30 days	330	12(3.7)	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Harm Name: Need for subsequent	NA	30 days	330	12(3.8)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		intervention Define: Stent Placement If Clavien,report grade: NA						
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	30 days	211	NR	NR	Comp. Arm: Arms 2 - 5 P: <0.001
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	31 - 365 days	211	12(5.8)	NR	Comp. Arm: Arms 2 - 5 P: <0.001
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	30 days	211	NR	NR	Comp. Arm: Arms 2 - 5 P: 0.121
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	30 days	211	27(12.8)	NR	Comp. Arm: Arms 2 - 5 P: <0.001
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Wound complications (hernia, dehiscence) Define: NA If Clavien,report grade: NA	NA	30 days	211	NR	NR	Comp. Arm: Arms 2 - 5 P: 0.077
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Harm Name: Need for subsequent intervention Define: Stent Placement If Clavien,report grade: NA	NA	30 days	211	NR	NR	Comp. Arm: Arms 2 - 5 P: <0.001
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	35	1	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Acute kidney injury Define: Acute renal failure If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Respiratory Define: Atelectasis If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	35	2	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: Serosal tear If Clavien,report grade:	NA	NR	35	2	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Other- define Define: Foley catheter clot If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Hemorrhage Define: bleeding requiring transfusion If Clavien,report grade:	NA	NR	35	2	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Hematologic (thromboembolic) Define: lumbar vein tear If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: splenic capsule tear If Clavien,report grade:	NA	NR	35	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal	NA	NR	35	1	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: liver injury If Clavien,report grade:						
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Gastrointestinal Define: mesenteric injury If Clavien,report grade:	NA	NR	35	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Harm Name: Respiratory Define: pleural effusion If Clavien,report grade:	NA	NR	35	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: If Clavien,report grade:	NA	NR	79	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Infectious disease Define: Wound infection If Clavien,report grade:	NA	NR	79	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	79	2	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Acute kidney injury Define: Acute renal failure If Clavien, report grade:	NA	NR	79	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Respiratory Define: Atelectasis If Clavien,report grade:	NA	NR	79	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	79	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: Serosal tear If Clavien,report grade:	NA	NR	79	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Other- define Define: Foley	NA	NR	79	1	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		catheter clot If Clavien,report grade:						
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Hemorrhage Define: bleeding requiring transfusion If Clavien,report grade:	NA	NR	79	4	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Hematologic (thromboembolic) Define: lumbar vein tear If Clavien,report grade:	NA	NR	79	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: splenic capsule tear If Clavien,report grade:	NA	NR	79	1	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: liver injury If Clavien,report grade:	NA	NR	79	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Gastrointestinal Define: mesenteric injury If Clavien,report grade:	NA	NR	79	0	NR	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Harm Name: Respiratory Define: pleural effusion If Clavien,report grade:	NA	NR	79	0	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	51	6(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Urinary tract infection Define: NA If Clavien,report grade: NA	NA	NR	51	0(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Hematologic	NA	NR	51	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		(thromboembolic) Define: DVT If Clavien,report grade: NA						
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Wound complications (hernia, dehiscence) Define: Incisional hernia If Clavien,report grade: NA	NA	NR	51	0(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	51	1(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	51	5(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	51	5(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Urinary tract infection Define: NA If Clavien,report grade: NA	NA	NR	51	1(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Hematologic (thromboembolic) Define: DVT If Clavien,report grade: NA	NA	NR	51	0(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Wound complications (hernia, dehiscence) Define:	NA	NR	51	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Incisional hernia If Clavien,report grade: NA						
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	51	3(NR)	NR	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	51	9(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	41	1(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Acute kidney injury Define: ARF If Clavien,report grade: NA	NA	NR	41	1(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	41	1(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	41	0(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Respiratory Define: pneumonia, pneumothorax If Clavien,report grade: NA	NA	NR	41	0(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Need for subsequent	NA	NR	41	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		intervention Define: Stent If Clavien,report grade:						
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	41	3(7)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	41	3(7)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade:	NA	NR	41	0(0)	NR	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IV	NA	NR	41	2(5)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	82	3(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Acute kidney injury Define: ARF If Clavien,report grade: NA	NA	NR	82	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	82	0(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	82	2(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Respiratory Define: pneumonia, pneumothorax If Clavien,report grade: NA	NA	NR	82	2(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Need for subsequent intervention Define: stent If Clavien,report grade:	NA	NR	82	0(NR)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	82	5(6)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	82	4(5)	NR	NR
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade:	NA	NR	82	4(5)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Klatte, 2011 ¹²⁸	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IV	NA	NR	82	1(1)	NR	NR
Kopp, 2014 ⁶⁶	Arm 1(RN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR0	122	0(NR)	NR	SD: <0.001 P:
Kopp, 2014 ⁶⁶	Arm 1(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: NA	NA	NR3	122	NR	NR	NR
Kopp, 2014 ⁶⁶	Arm 2(PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR8	80	10(NR)	NR	NR
Kopp, 2014 ⁶⁶	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: NA	NA	NR14	80	NR	NR	SD: <0.001 P:
Kyung, 2014 ⁶⁷	NA(Radical Nephrectomy)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	82	24(29.3)	NR	Comp. Arm: Arm 2 HR: 1.137 P: 0.718
Kyung, 2014 ⁶⁷	NA(Partial Nephrectomy)	Harm Name: Cardiovascular Define: NA If	NA	NR	53	12(22.6)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Lane, 2010 ⁶⁸	Arm 4(RN)	Harm Name: Acute kidney injury Define: If Clavien,report grade:	NA		569	8(1.4)	NR	NR
Lane, 2010 ⁶⁸	Arm 1(PN, ALL)	Harm Name: Acute kidney injury Define: If Clavien,report grade:	NA		1833	14(0.8)	NR	NR
Lowrance, 2010 ⁷¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: low grade 1-2 If Clavien,report grade: NA	NA	NR	651	73(11)	NR	NR
Lowrance, 2010 ⁷¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: high grade 3-4 If Clavien,report grade: NA	NA	NR	651	17(3)	NR	NR
Lowrance, 2010 ⁷¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: death 5 If Clavien,report grade: NA	NA	NR	651	3(0.5)	NR	NR
Lowrance, 2010 ⁷¹	Arm 1(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: low grade 1-2 If Clavien,report grade: NA	NA	NR	1061	151(14)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Lowrance, 2010 ⁷¹	Arm 1(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: high grade 3-4 If Clavien,report grade: NA	NA	NR	1061	61(6)	NR	NR
Lowrance, 2010 ⁷¹	Arm 1(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: death 5 If Clavien,report grade: NA	NA	NR	1061	0(0)	NR	NR
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	35	0	NR	NR
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	35	0	NR	NR
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Harm Name: Cardiovascular Define: Arrythmia If Clavien,report grade:	NA	NR	35	1	NR	NR
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	35	3	NR	NR
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	82	1	NR	NR
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	82	2	NR	NR
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Harm Name: Cardiovascular	NA	NR	82	3	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: Arrythmia If Clavien, report grade:						
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Harm Name: Gastrointestinal Define: Ileus If Clavien,report grade:	NA	NR	82	7	NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Positive Surgical Margin Define: If Clavien,report grade:	NA	NR	66	5(7.6)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Hematologic (thromboembolic) Define: deep venous thrombosis If Clavien,report grade:	NA	NR	66	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	NR	66	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Other- define Define: prolonged intubation If Clavien,report grade:	NA	NR	66	3(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Other- define Define: symptomatic pneumothorax If Clavien,report grade:	NA	NR	66	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Wound complications (hernia, dehiscence) Define: seroma If Clavien,report grade:	NA	NR	66	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 2(RN)	Harm Name: Other- define Define: prolonged ilius If Clavien,report grade:	NA	NR	66	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 1(PN)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	periopN R	33	2(NR)	Comp. Arm: P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Mitchell, 2006 ⁷⁵	Arm 1(PN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	periopN R	33	1(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 1(PN)	Harm Name: Hemorrhage Define: bleeding If Clavien,report grade:	NA	periopN R	33	2(NR)	Comp. Arm: P: NR	NR
Mitchell, 2006 ⁷⁵	Arm 1(PN)	Harm Name: Positive Surgical Margin Define: If Clavien,report grade:	NA	NR	33	2(6.1)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Other- define Define: Intraoperative complications If Clavien,report grade:	NA	NR	100	6(6)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Other- define Define: Postoperative complications If Clavien,report grade:	NA	NR	100	18(18)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Other- define Define: Renal artery Injury If Clavien, report grade:	NA	NR	100	1(1)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Respiratory Define: Pleural injury If Clavien,report grade:	NA	NR	100	1(1)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade: I	NA	NR	100	10(10)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading	NA	NR	100	2(2)	Comp. Arm: P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		System if available) Define: If Clavien,report grade: II						
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade: Illa	NA	NR	100	0(0)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade:	NA	NR	100	6(6)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Other- define Define: Intraoperative complications If Clavien,report grade:	NA	NR	98	1(1)	Comp. Arm: P: NR	Comp. Arm: Arm 2 P: 0.16
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Other- define Define: Postoperative complications If Clavien,report grade:	NA	NR	98	9(9.2)	Comp. Arm: P: NR	Comp. Arm: Arm 2 P: 0.05
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Other- define Define: Renal artery Injury If Clavien,report grade:	NA	NR	98	0(0)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Respiratory Define: Pleural injury If Clavien,report grade:	NA	NR	98	0(0)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Listed by severity of complications (using the Clavien Grading	NA	NR	98	5(5.1)	Comp. Arm: P: NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		System if available) Define: If Clavien,report grade: I						
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade: II	NA	NR	98	1(1)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade: IIIa	NA	NR	98	1(1)	Comp. Arm: P: NR	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: If Clavien,report grade:	NA	NR	98	2(2)	Comp. Arm: P: NR	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	3month s	48	2(4.2)	NR	Comp. Arm: Arm 2 P: 0.5
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	3month s	48	7(14.5)	NR	Comp. Arm: Arm 2 P: NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	3month s	48	1(2.1)	NR	Comp. Arm: Arm 2 P: 0.43

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	1month	48	3(6.3)	NR	Comp. Arm: Arm 2 P: 0.28
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	1month	48	1(2.1)	NR	Comp. Arm: Arm 2 P: 1
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Cardiovascular Define: MI If Clavien,report grade: NA	NA	1month	48	1(2.1)	NR	Comp. Arm: Arm 2 P: 1
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	1month	48	0(0)	NR	Comp. Arm: Arm 2 P: 0.4
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	1month	48	1(2.1)	Comp. Arm: P: NR	Comp. Arm: Arm 2 P: 0.432
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	3month s	30	0(0)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	3month s	30	1(3.3)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	3month s	30	0(0)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Hematologic (thromboembolic) Define: NA If	NA	1month	30	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	1month	30	1(3.3)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Cardiovascular Define: MI If Clavien,report grade: NA	NA	1month	30	0(0)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	1month	30	1(3.3)	NR	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	1month	30	0(0)	Comp. Arm: P: NR	NR
Permpongkos ol, 2007 ¹³⁹	Arm 1(LRN)	Harm Name: Minor vs. major Define: NA If Clavien,report grade: NA	NA	intraop and postopN R	549	110(20)	Comp. Arm: RR: 0.9 95%CI: 0.7- 1.1 P: NR	NR
Permpongkos ol, 2007 ¹³⁹	Arm 2(LPN)	Harm Name: Minor vs. major Define: NA If Clavien,report grade: NA	NA	intraop and postopN R	345	97(28)	Comp. Arm: RR: 1.3 95%CI: 1.1- 1.6 P: NR	NR
Permpongkos ol, 2007 ¹³⁹	Arm 3(LRA)	Harm Name: Minor vs. major Define: NA If Clavien,report grade: NA	NA	intraop and postopN R	81	23(18.6)	Comp. Arm: RR: 1.3 95%CI: 0.9- 1.8 P: NR	NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Harm Name: Cardiovascular Define: Pulmonary If Clavien,report grade:	NA	NR	45	3(6.6)	NR	NRBetween arm1 and arm2, p=0.479, between young and old, p=0.541
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Harm Name: Cardiovascular Define: Cardiovascular If Clavien,report grade:	NA	NR	45	19(NR)	NR	NRBetween arm1 and arm2, p=0.021,

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
								between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Urinary fistula If Clavien,report grade:	NA	NR	45	0(0)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Harm Name: Cardiovascular Define: Pulmonary If Clavien,report grade:	NA	NR	55	6(11.5)	NR	NRBetween arm3 and arm4, p=0.399, between young and old, p=0.541
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Harm Name: Cardiovascular Define: Cardiovascular If Clavien,report grade:	NA	NR	55	0(0)	NR	NRBetween arm3 and arm4, p=0.314, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Urinary fistula If Clavien,report grade:	NA	NR	55	0(0)	NR	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Harm Name: Cardiovascular Define: Pulmonary If Clavien,report grade:	NA	NR	36	4(11.1)	NR	NRBetween arm1 and arm2, p=0.479, between young and old, p=0.541
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Harm Name: Cardiovascular Define: Cardiovascular If Clavien,report grade:	NA	NR	36	1(3.3)	NR	NRBetween arm1 and arm2, p=0.021, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define:	NA	NR	36	4(11.1)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Urinary fistula If Clavien,report grade:						
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Harm Name: Cardiovascular Define: Pulmonary If Clavien,report grade:	NA	NR	33	2(6.1)	NR	NRBetween arm3 and arm4, p=0.399, between young and old, p=0.541
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Harm Name: Cardiovascular Define: Cardiovascular If Clavien,report grade:	NA	NR	33	0(0)	NR	NRBetween arm3 and arm4, p=0.314, between young and old, p=NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Urinary fistula If Clavien, report grade:	NA	NR	33	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Respiratory insufficiency, analgesic s, diuretics If Clavien, report grade: I	NA	NR	146	38(26)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Perioperative blood transfusions If Clavien,report grade: II	NA	NR	146	18(12.3)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading	NA	NR	146	5(3.4)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		System if available) Define: Transurethral or suprapubic catheter or DJ- insertion, thoracal drain If Clavien,report grade: IIIa						
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Open revision or intraoperative complications If Clavien, report grade: IIIb	NA	NR	146	3(2.1)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Acute renal failure If Clavien,report grade: IV	NA	NR	146	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Death If Clavien,report grade: V	NA	NR	146	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Fistula If Clavien,report grade: NA	NA	NR	28	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	28	5(45.5)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	28	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	28	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Fistula If Clavien, report grade: NA	NA	NR	118	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	118	12(34.3)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	118	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	118	2(5.7)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Respiratory insufficiency, analgesis, diuretics If Clavien, report grade: I	NA	NR	101	17(16.8)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Perioperative blood transfusions If Clavien,report grade: II	NA	NR	101	27(26.7)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Transurethral or suprapubic catheter or DJ-insertion, thoracal drain If Clavien,report grade: IIIa	NA	NR	101	5(5)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Open revision or intraoperative complications If Clavien, report grade: IIIb	NA	NR	101	1(1)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Acute renal failure If Clavien,report grade:	NA	NR	101	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2012 ⁵¹	Arm 1(NSS)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: Death If Clavien,report grade: V	NA	NR	101	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Fistula If Clavien,report grade: NA	NA	NR	16	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	16	1(NR)	NR	Comp. Arm: Arm 2 P: 0.28
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	16	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	16	0(0)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: Fistula If Clavien,report grade: NA	NA	NR	85	5(16.1)	NR	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	85	7(22.5)	NR	Comp. Arm: Arm 2 P: 0.641
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	85	2(6.5)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Harm Name: Neurologic Define: NA If Clavien,report grade: NA	NA	NR	85	3(9.7)	NR	Comp. Arm: Arm 2 P: 0.349
Shinohara, 2001 ⁵²	Arm 2(RN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	51	4(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Harm Name: Hemorrhage Define: retroperitoneal hemorrhage If Clavien,report grade: NA	NA	NR	51	0(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Harm Name: Gastrointestinal Define: including subileus or ileus If Clavien,report grade: NA	NA	NR	51	9(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Harm Name: Neurologic Define: Anorexia If Clavien,report grade: NA	NA	NR	51	1(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Harm Name: Respiratory Define: Atelectasis If Clavien,report grade: NA	NA	NR	51	1(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	15	0(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Harm Name: Hemorrhage Define: retroperitoneal hemorrhage If Clavien,report grade: NA	NA	NR	15	1(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Shinohara, 2001 ⁵²	Arm 1(NSS)	Harm Name: Gastrointestinal Define: including subileus or ileus If Clavien,report grade: NA	NA	NR	15	O(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Harm Name: Neurologic Define: Cerebral bleeding If Clavien,report grade: NA	NA	NR	15	1(NR)	NR	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Harm Name: Respiratory Define: Atelectasis If Clavien,report grade: NA	NA	NR	15	0(NR)	NR	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade: NA	NA	NR	40	2(NR)	NR	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Harm Name: Wound complications (hernia, dehiscence) Define: hernia If Clavien,report grade: NA	NA	NR	40	1(NR)	NR	NR
Stern, 2007 ¹²¹	Arm 1(RFA)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade: NA	NA	NR	40	0(NR)	NR	NR
Stern, 2007 ¹²¹	Arm 2(PN)	Harm Name: Gastrointestinal Define: ileus If Clavien,report grade: NA	NA	NR	37	0(NR)	NR	NR
Stern, 2007 ¹²¹	Arm 2(PN)	Harm Name: Wound complications (hernia, dehiscence) Define: hernia If	NA	NR	37	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Stern, 2007 ¹²¹	Arm 2(PN)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade: NA	NA	NR	37	1(NR)	NR	NR
Sun, 2012 ⁸⁰	Arm 2(RN)	Harm Name: Acute kidney injury Define: ARF If Clavien,report grade: NA	NA	NR	840	169(20.1)	NR	NR
Sun, 2012 ⁸⁰	Arm 1(PN)	Harm Name: Acute kidney injury Define: ARF If Clavien,report grade: NA	NA	NR	840	123(14.6)	NR	Comp. Arm: Arm 2 HR: 1.83 95%CI: 1.16- 1.86 P: 0.001
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: 0.12
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Acute kidney injury Define: Dialysis If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: >.99
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Gastrointestinal Define: Bowel Ischemia If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: >.99
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Respiratory Define: Pneumothorax If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: 0.35
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Hemorrhage Define: hematoma or bleeding	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: 0.12

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		If Clavien,report grade: NA						
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Infectious disease Define: infection or abscess If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: >.99
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: 0.61
Takaki, 2014 ¹³⁵	Arm 1(RFA)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	21	NR	NR	Comp. Arm: Arm 2 P: 0.12
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Acute kidney injury Define: Dialysis If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Gastrointestinal Define: Bowel Ischemia If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Respiratory Define: Pneumothorax If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Hemorrhage Define: hematoma or bleeding If Clavien,report grade: NA	NA	NR	39	NR	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Infectious disease Define: infection or abscess If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Takaki, 2014 ¹³⁵	Arm 2(RN)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	39	NR	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	233	1(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	233	1(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	233	1(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	233	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	233	0(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	233	2(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	233	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	233	4(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	233	5(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIA	NA	NR	233	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IVA	NA	NR	233	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	267	0(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Hemorrhage Define:	NA	NR	267	3(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		NA If Clavien,report grade: NA						
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	267	0(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	267	3(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	267	1(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	267	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	267	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	267	1(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	267	2(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IIIA	NA	NR	267	2(NR)	NR	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: IVA	NA	NR	267	2(NR)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	307	0(0)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	307	6(7.7)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	307	14(18)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	307	18(23.1)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	307	6(7.7)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Cardiovascular Define: NA If	NA	NR	307	7(9)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Clavien,report grade: NA						
Tomaszewski, 2014 ⁸⁴	Arm 2(RN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	307	4(5.1)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN-cT1b- T2)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	187	17(9.1)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN-cT1b- T2)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	187	3(1.6)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN-cT1b- T2)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	187	36(19.3)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 2(RN-cT1b- T2)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	187	16(8.6)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	785	43(20.5)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	785	4(1.9)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	785	30(14.3)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Gastrointestinal Define: NA If Clavien,report grade: NA	NA	NR	785	30(14.3)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Respiratory Define: NA If Clavien,report grade: NA	NA	NR	785	20(9.5)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Cardiovascular Define: NA If Clavien,report grade: NA	NA	NR	785	16(7.6)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	785	8(3.8)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN-cT1b- T2)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	154	0(0)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN-cT1b- T2)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	NR	154	5(3.2)	NR	NR
Tomaszewski, 2014 ⁸⁴	Arm 1(PN-cT1b- T2)	Harm Name: Minor vs. major Define: Minor If Clavien,report grade: NA	NA	NR	154	24(15.6)	NR	Comp. Arm: Arm 2 P: 0.059
Tomaszewski, 2014 ⁸⁴	Arm 1(PN-cT1b- T2)	Harm Name: Minor vs. major Define: Major If Clavien,report grade: NA	NA	NR	154	9(5.8)	NR	Comp. Arm: Arm 2 P: 0.618
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Harm Name: Other- define Define: All urological complications If Clavien,report grade:	NA	NR	36	9	NR	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Harm Name: Other- define Define: All non-urological complications If Clavien,report grade:	NA	NR	36	12	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Harm Name: Acute kidney injury Define: Requiring hemodialysis (temporary and permanent) If Clavien,report grade:	NA	NR	36	5	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Harm Name: Other- define Define: All urological complications If Clavien, report grade:	NA	NR	29	1	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Harm Name: Other- define Define: All non-urological complications If Clavien,report grade:	NA	NR	29	1	NR	NR
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Harm Name: Acute kidney injury Define: Requiring hemodialysis (temporary and permanent) If Clavien,report grade:	NA	NR	29	0	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Harm Name: Other- define Define: All urological complications If Clavien,report grade:	NA	NR	36	3	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Harm Name: Other- define Define: All non-urological complications If Clavien,report grade:	NA	NR	36	2	NR	NR
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Harm Name: Acute kidney injury Define: Requiring hemodialysis (temporary and permanent) If Clavien,report grade:	NA	NR	36	0	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Uchida, 2004 ⁸⁵	Arm 2(RN)	Harm Name: Gastrointestinal Define: If Clavien,report grade:	NA	NR	54	2(NR)	NR	NR
Uchida, 2004 ⁸⁵	Arm 2(RN)	Harm Name: Infectious disease Define: If Clavien,report grade:	NA	NR	51	1(NR)	NR	NR
Uchida, 2004 ⁸⁵	Arm 2(RN)	Harm Name: Hemorrhage Define: If Clavien,report grade:	NA	NR	51	1(NR)	NR	NR
Uchida, 2004 ⁸⁵	Arm 1(PN)	Harm Name: Urine leak Define: If Clavien,report grade:	NA	NR	54	2(NR)	NR	NR
Uchida, 2004 ⁸⁵	Arm 1(PN)	Harm Name: Other- define Define: renal hypertension If Clavien,report grade:	NA	NR	54	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Harm Name: Hematologic (thromboembolic) Define: Pulmonary embolism If Clavien,report grade: NA	NA	NR	28	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Harm Name: Gastrointestinal Define: Post operative ileus If Clavien,report grade: NA	NA	NR	28	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Harm Name: Respiratory Define: Pneumonia If Clavien,report grade: NA	NA	NR	28	0(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Harm Name: Hemorrhage Define: Perinephric hematoma If Clavien,report grade: NA	NA	NR	28	0(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Harm Name: abscess Define: Perinephric	NA	NR	28	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		abscess If Clavien,report grade: NA						
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Harm Name: Hematologic (thromboembolic) Define: Pulmonary embolism If Clavien,report grade: NA	NA	NR	52	0(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Harm Name: Gastrointestinal Define: Post operative ileus If Clavien,report grade: NA	NA	NR	52	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Harm Name: Respiratory Define: Pneumonia If Clavien,report grade: NA	NA	NR	52	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Harm Name: Hemorrhage Define: Perinephric hematoma If Clavien,report grade: NA	NA	NR	52	1(NR)	NR	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Harm Name: abscess Define: Perinephric abscess If Clavien,report grade: NA	NA	NR	52	1(NR)	NR	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Harm Name: Urine leak Define: Urinary fistula If Clavien,report grade:	NA	NR	290	0(0)	NR	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Harm Name: Respiratory Define: If Clavien,report grade:	NA	NR	290	25(8.6)	NR	NR
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Harm Name: Urine leak Define: Urinary fistula If Clavien,report grade:	NA	NR	242	9(4)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Harm Name: Respiratory Define: If Clavien,report grade:	NA	NR	242	27(11.2)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: non- complication If Clavien,report grade:	NA	NR	88	71(80.68)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: total genitourinary If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Acute kidney injury Define: acute renal failure If Clavien, report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Wound complications (hernia, dehiscence) Define: total wound If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Wound complications (hernia, dehiscence) Define: infection If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Wound complications (hernia, dehiscence) Define: subcutaneous hydrops If Clavien, report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Infectious disease Define: total infectious If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Infectious disease Define: urinary tract infection If Clavien, report grade:	NA	NR	88	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Infectious disease Define: fever of unknow origin If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: total gastrointestinal If Clavien,report grade:	NA	NR	88	6(6.82)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: hiccup If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: stress ulcer If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: small bowel obstruction If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: constipation If Clavien,report grade:	NA	NR	88	3(3.41)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: gastrointestinal bleeding If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: emesis If Clavien,report grade:	NA	NR	88	3(3.41)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal	NA	NR	88	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: biliary colic If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: pancreatitis If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Gastrointestinal Define: pancreatic fistula If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Cardiovascular Define: total cardiac If Clavien,report grade:	NA	NR	88	4(4.55)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Cardiovascular Define: myocardial infarction If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Cardiovascular Define: congestive heart failure If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Cardiovascular Define: hypertension If Clavien, report grade:	NA	NR	88	3(3.41)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: total pulmonary If Clavien,report grade:	NA	NR	88	2(2.27)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade:	NA	NR	88	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: pneumothorax If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: respiratory distress If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: pleaural effusion If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Respiratory Define: atelectasis If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hematologic (thromboembolic) Define: total thromboembolic If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hematologic (thromboembolic) Define: deep vein thrombosis If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hemorrhage Define: total bleeding If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hemorrhage Define: perinephric hematoma If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hemorrhage Define: other postoperative hemorrhage If Clavien,report grade:	NA	NR	88	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Hematologic (thromboembolic) Define: anemia If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Neurologic Define: total neurologic If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Neurologic Define: cerebrovascular event If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Neurologic Define: neuropathy If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Neurologic Define: syncope If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: total miscellaneous If Clavien,report grade:	NA	NR	88	2(2.27)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: anaphylaxis If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: Chylous leak If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: gout If Clavien, report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: hyponatremia If Clavien,report grade:	NA	NR	88	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: shock If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: hypoalbuminemia If Clavien,report grade:	NA	NR	88	1(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Other- define Define: death If Clavien,report grade:	NA	NR	88	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: I	NA	NR	88	10	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: II	NA	NR	88	6	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: Illa	NA	NR	88	0	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: IIIb	NA	NR	88	0	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: IV a	NA	NR	88	1	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: IV b	NA	NR	88	0	NR	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Harm Name: Define: If Clavien,report grade: V	NA	NR	88	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: non- complication If Clavien,report grade:	NA	NR	42	27(64.29)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: total genitourinary If Clavien,report grade:	NA	NR	42	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Acute kidney injury Define: acute renal failure If Clavien, report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Wound complications (hernia, dehiscence) Define: total wound If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Wound complications (hernia, dehiscence) Define: infection If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Wound complications (hernia, dehiscence) Define: subcutaneous hydrops If Clavien, report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Infectious disease Define: total infectious If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Infectious disease Define: urinary tract infection If Clavien, report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Infectious disease Define: fever of unknow origin If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: total gastrointestinal If Clavien,report grade:	NA	NR	42	5(11.9)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: hiccup If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: stress ulcer If Clavien,report grade:	NA	NR	42	2(4.76)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: small bowel obstruction If Clavien,report grade:	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: constipation If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: gastrointestinal bleeding If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: emesis If Clavien,report grade:	NA	NR	42	2(4.76)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: biliary colic If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: pancreatitis If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Gastrointestinal Define: pancreatic fistula If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Cardiovascular	NA	NR	42	1(2.38)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: total cardiac If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Cardiovascular Define: myocardial infarction If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Cardiovascular Define: congestive heart failure If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Cardiovascular Define: hypertension If Clavien, report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: total pulmonary If Clavien,report grade:	NA	NR	42	4(9.52)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade:	NA	NR	42	2(4.76)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: pneumothorax If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: respiratory distress If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: pleaural effusion If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Respiratory Define: atelectasis If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hematologic (thromboembolic) Define: total thromboembolic If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hematologic (thromboembolic) Define: deep vein thrombosis If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hemorrhage Define: total bleeding If Clavien,report grade:	NA	NR	42	3(7.14)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hemorrhage Define: perinephric hematoma If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hemorrhage Define: other postoperative hemorrhage If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Hematologic (thromboembolic) Define: anemia If Clavien,report grade:	NA	NR	42	2(4.76)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Neurologic Define: total neurologic If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Neurologic Define:	NA	NR	42	1(2.38)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		cerebrovascular event If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Neurologic Define: neuropathy If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Neurologic Define: syncope If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: total miscellaneous If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: anaphylaxis If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: Chylous leak If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: gout If Clavien, report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: hyponatremia If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: shock If Clavien,report grade:	NA	NR	42	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: hypoalbuminemia If Clavien,report grade:	NA	NR	42	1(2.38)	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Other- define Define: death If Clavien,report grade:	NA	NR	42	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: I	NA	NR	42	4	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: II	NA	NR	42	11	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: Illa	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: IIIb	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: IV a	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: IV b	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 3(LPN)	Harm Name: Define: If Clavien,report grade: V	NA	NR	42	0	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: non- complication If Clavien,report grade:	NA	NR	526	368(69.96)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: total genitourinary If Clavien,report grade:	NA	NR	526	7(1.33)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Acute kidney injury Define: acute renal failure If Clavien, report grade:	NA	NR	526	7(1.33)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Wound complications (hernia, dehiscence) Define: total wound If Clavien,report grade:	NA	NR	526	7(1.33)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Wound complications (hernia, dehiscence) Define: infection If Clavien, report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Wound complications (hernia, dehiscence) Define: subcutaneous hydrops If Clavien, report grade:	NA	NR	526	6(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Infectious disease Define: total infectious If Clavien,report grade:	NA	NR	526	13(2.47)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Infectious disease Define: urinary tract infection If Clavien, report grade:	NA	NR	526	3(0.57)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Infectious disease Define: fever of unknow origin If Clavien,report grade:	NA	NR	526	8(1.52)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade:	NA	NR	526	2(0.38)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: total gastrointestinal If Clavien,report grade:	NA	NR	526	53(10.8)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: hiccup If Clavien,report grade:	NA	NR	526	2(0.38)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: stress ulcer If Clavien,report grade:	NA	NR	526	14(2.66)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal	NA	NR	526	3(0.57)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: small bowel obstruction If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: constipation If Clavien,report grade:	NA	NR	526	15(2.85)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: gastrointestinal bleeding If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: emesis If Clavien,report grade:	NA	NR	526	13(2.47)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: biliary colic If Clavien,report grade:	NA	NR	526	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: pancreatitis If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Gastrointestinal Define: pancreatic fistula If Clavien,report grade:	NA	NR	526	4(0.76)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Cardiovascular Define: total cardiac If Clavien,report grade:	NA	NR	526	20(3.8)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	NR	526	6(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Cardiovascular Define: myocardial	NA	NR	526	2(0.38)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		infarction If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Cardiovascular Define: congestive heart failure If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Cardiovascular Define: hypertension If Clavien,report grade:	NA	NR	526	11(2.09)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: total pulmonary If Clavien,report grade:	NA	NR	526	10(1.9)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade:	NA	NR	526	4(0.76)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: pneumothorax If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: respiratory distress If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: pleaural effusion If Clavien,report grade:	NA	NR	526	1(0.38)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Respiratory Define: atelectasis If Clavien,report grade:	NA	NR	526	2(0.38)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Hematologic (thromboembolic) Define: total thromboembolic If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Hematologic (thromboembolic) Define: deep vein thrombosis If Clavien,report grade:	NA	NR	526	0(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Hemorrhage Define: total bleeding If Clavien,report grade:	NA	NR	526	11(2.09)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Hemorrhage Define: perinephric hematoma If Clavien,report grade:	NA	NR	526	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Hemorrhage Define: other postoperative hemorrhage If Clavien,report grade:	NA	NR	526	7(1.33)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: anemia If Clavien,report grade:	NA	NR	526	4(0.76)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Neurologic Define: total neurologic If Clavien,report grade:	NA	NR	526	3(0.57)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Neurologic Define: cerebrovascular event If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Neurologic Define: neuropathy If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Neurologic Define: syncope If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: total	NA	NR	526	33(6.27)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		miscellaneous If						
Xu, 2014 ⁵³	Arm 2(ORN)	Clavien,report grade: Harm Name: Otherdefine Define: anaphylaxis If Clavien,report grade:	NA	NR	526	9(1.71)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: Chylous leak If Clavien,report grade:	NA	NR	526	6(1.14)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: gout If Clavien,report grade:	NA	NR	526	1(0.19)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: hyponatremia If Clavien,report grade:	NA	NR	526	2(0.34)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: shock If Clavien,report grade:	NA	NR	526	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: hypoalbuminemia If Clavien,report grade:	NA	NR	526	15(2.85)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Other- define Define: death If Clavien, report grade:	NA	NR	526	2(0.38)	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade:	NA	NR	526	50	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade:	NA	NR	526	93	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade:	NA	NR	526	6	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade: IIIb	NA	NR	526	0	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade: IV a	NA	NR	536	7	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade: IV b	NA	NR	526	0	NR	NR
Xu, 2014 ⁵³	Arm 2(ORN)	Harm Name: Define: If Clavien,report grade: V	NA	NR	526	2	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: non- complication If Clavien,report grade:	NA	NR	187	119(63.64)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Acute kidney injury Define: total genitourinary If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Acute kidney injury Define: acute renal failure If Clavien, report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Wound complications (hernia, dehiscence) Define: total wound If Clavien,report grade:	NA	NR	187	6(3.21)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Wound complications (hernia, dehiscence) Define: infection If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Wound complications (hernia, dehiscence) Define: subcutaneous hydrops If Clavien, report grade:	NA	NR	187	5(2.67)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Infectious disease Define: total infectious If Clavien,report grade:	NA	NR	187	3(3)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Infectious disease Define: urinary tract infection If Clavien, report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Infectious disease Define: fever of unknow origin If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Infectious disease Define: sepsis If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: total gastrointestinal If Clavien,report grade:	NA	NR	187	26(13.9)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: hiccup If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: stress ulcer If Clavien,report grade:	NA	NR	187	7(3.74)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: small bowel obstruction If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: constipation If Clavien,report grade:	NA	NR	187	5(2.67)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: gastrointestinal bleeding If Clavien,report grade:	NA	NR	187	4(2.41)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal	NA	NR	187	6(3.21)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		Define: emesis If Clavien,report grade:						
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: biliary colic If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: pancreatitis If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Gastrointestinal Define: pancreatic fistula If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Cardiovascular Define: total cardiac If Clavien,report grade:	NA	NR	187	9(4.81)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Cardiovascular Define: arrhythmia If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Cardiovascular Define: myocardial infarction If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Cardiovascular Define: congestive heart failure If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Cardiovascular Define: hypertension If Clavien,report grade:	NA	NR	187	7(3.74)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: total pulmonary If Clavien,report grade:	NA	NR	187	8(4.28)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: pneumonia If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: pneumothorax If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: respiratory distress If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: pleaural effusion If Clavien,report grade:	NA	NR	187	3(1.6)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Respiratory Define: atelectasis If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hematologic (thromboembolic) Define: total thromboembolic If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hematologic (thromboembolic) Define: deep vein thrombosis If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hemorrhage Define: total bleeding If Clavien,report grade:	NA	NR	187	7(3.74)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hemorrhage Define: perinephric hematoma If Clavien,report grade:	NA	NR	187	0(0)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hemorrhage Define: other postoperative hemorrhage If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Hematologic (thromboembolic) Define: anemia If Clavien,report grade:	NA	NR	187	3(1.6)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Neurologic Define: total neurologic If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Neurologic Define: cerebrovascular event If Clavien,report grade:	NA	NR	187	4(2.41)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Neurologic Define: neuropathy If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Neurologic Define: syncope If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: total miscellaneous If Clavien,report grade:	NA	NR	187	8(4.28)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: anaphylaxis If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: Chylous leak If Clavien,report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: gout If Clavien,report grade:	NA	NR	187	2(1.07)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: hyponatremia If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: shock If Clavien,report grade:	NA	NR	187	1(0.53)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: hypoalbuminemia If Clavien,report grade:	NA	NR	187	4(2.14)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Other- define Define: death If Clavien, report grade:	NA	NR	187	0(0)	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade:	NA	NR	187	20	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade:	NA	NR	187	41	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade: Illa	NA	NR	187	6	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade: IIIb	NA	NR	187	1	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade: IV a	NA	NR	187	0	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade: IV b	NA	NR	187	0	NR	NR
Xu, 2014 ⁵³	Arm 4(OPN)	Harm Name: Define: If Clavien,report grade: V	NA	NR	187	0	NR	NR
Yasuda, 2013 ⁹²	Arm 2(RN)	Harm Name: Other-define Define: complications If Clavien,report grade: I	NA	NR	103	10(9.7)	NR	NR
Yasuda, 2013 ⁹²	Arm 2(RN)	Harm Name: Other- define Define:	NA	NR	103	5(4.9)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		complications If Clavien,report grade: II						
Yasuda, 2013 ⁹²	Arm 2(RN)	Harm Name: Other- define Define: complications If Clavien,report grade: Illa	NA	NR	103	1(1)	NR	NR
Yasuda, 2013 ⁹²	Arm 1(NSS)	Harm Name: Other- define Define: complications If Clavien,report grade: I	NA	NR	97	7(7.2)	NR	NR
Yasuda, 2013 ⁹²	Arm 1(NSS)	Harm Name: Other- define Define: complications If Clavien,report grade: II	NA	NR	97	6(6.2)	NR	NR
Yasuda, 2013 ⁹²	Arm 1(NSS)	Harm Name: Other- define Define: complications If Clavien,report grade: IIIa	NA	NR	97	6(6.2)	NR	NR
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	41	1(NR)	NR	NR
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	41	0(NR)	NR	NR
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Harm Name: Ureteral injury (any injury of collecting system and ureter) Define: NA If Clavien,report grade: NA	NA	NR	14	0(NR)	NR	NR
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Harm Name: Infectious disease Define: NA If Clavien,report grade: NA	NA	NR	14	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Cooper, 2015 ¹⁴¹	Arm 1(RFA)	Harm Name: Kidney Injury Define: NA If Clavien,report grade: NA	NA	NR	9	O(NR)	NR	NR
Cooper, 2015 ¹⁴¹	Arm 2(PN)	Harm Name: Kidney Injury Define: NA If Clavien,report grade: NA	NA	NR	9	0(NR)	NR	NR
Cooper, 2015 ¹⁴¹	Arm 3(RN)	Harm Name: Kidney Injury Define: NA If Clavien,report grade: NA	NA	NR	31	4(NR)	NR	NR
Cooper, 2015 ¹⁴¹	Arm 1(RFA)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	9	0(NR)	NR	NR
Cooper, 2015 ¹⁴¹	Arm 2(PN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	9	1(NR)	NR	NR
Cooper, 2015 ¹⁴¹	Arm 3(RN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	31	12(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	27	0(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Hematuria Define: NA If Clavien,report grade: NA	NA	NR	29	0(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	27	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Hemorrhage Define: NA If Clavien,report grade: NA	NA	NR	29	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	27	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Hematologic (thromboembolic) Define: NA If Clavien,report grade: NA	NA	NR	29	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	27	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Urine leak Define: NA If Clavien,report grade: NA	NA	NR	29	0(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Need for subsequent intervention Define: Drainage If Clavien,report grade: NA	NA	NR	27	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Need for subsequent intervention Define: Drainage If Clavien,report grade: NA	NA	NR	29	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I	NA	NR	27	0(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Listed by severity of	NA	NR	29	0(NR)	NR	NR

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
		complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: I						
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	27	1(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: II	NA	NR	29	O(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 1(RFA)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: Illa	NA	NR	27	3(NR)	NR	NR
Chang, 2015 ¹²⁷	Arm 2(PN)	Harm Name: Listed by severity of complications (using the Clavien Grading System if available) Define: NA If Clavien,report grade: Illa	NA	NR	29	2(NR)	NR	NR
Chang, 2014 ⁹⁵	Arm 1(RN)	Harm Name: Acute kidney injury Define: NA If Clavien,report grade: NA	NA	3years	339	237(70.1)	NR	Comp. Arm: Arm 2 P: <0.001
Chang, 2014 ⁹⁵	Arm 2(PN)	Harm Name: Acute kidney injury Define:	NA	3years	218	53(24.3)	NR	NR

NA If Clavien, report grade: NA NR NR NR NR NR NR NR	Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Van Poppel, 2006 ³⁶ Arm 1(RN) Harm Name: Urine leak Define: NA If Clavien, report grade: NA NA NR 287 0(0) NR NR Van Poppel, 2006 ³⁶ Arm 2(PN) Harm Name: Urine leak Define: NA If Clavien, report grade: NA NA NR 242 10(NR) NR NR Van Poppel, 2006 ³⁶ Arm 1(RN) Harm Name: Hemorrhage Define: NA If Clavien, report grade: NA NA NR 242 49(NR) NR NR Van Poppel, 2006 ³⁶ Arm 2(PN) Harm Name: Hemorrhage Define: NA If Clavien, report grade: NA NA NR 242 68(NR) NR NR Van Poppel, 2006 ³⁶ Arm 1(RN) Harm Name: Other-define Define: Spleen damage If Clavien, report grade: NA NA NR 287 2(NR) NR NR Van Poppel, 2006 ³⁶ Arm 2(PN) Harm Name: Other-define Define: Spleen damage If Clavien, report grade: NA NA NR 242 1(NR) NR NR Van Poppel, 2006 ³⁶ Arm 1(RN) Harm Name: Other-define Define: Pleura damage If Clavien, report grade: NA NA NR 287 25(NR) NR NR							()		
Leak Define: NA If Clavien,report grade: NA NR NR NR NR NR NR NR	Van Poppel, 2006 ⁹⁶	Arm 1(RN)	Harm Name: Urine leak Define: NA If Clavien,report grade:	NA	NR	287	0(0)	NR	NR
Hemorrhage Define: NA If Clavien,report grade: NA NR Clavien,report grade: NA NR NR NR NR NR NR NR	Van Poppel, 2006 ⁹⁶	Arm 2(PN)	leak Define: NA If Clavien,report grade:	NA	NR	242	10(NR)	NR	NR
Hemorrhage Define: NA If Clavien,report grade: NA NR NR NR NR NR NR NR	Van Poppel, 2006 ⁹⁶	Arm 1(RN)	Hemorrhage Define: NA If Clavien,report	NA	NR	287	49(NR)	NR	NR
Van Poppel, 200696Arm 1(RN)Harm Name: Other- define Define: Spleen damage If Clavien, report grade: NANANR2872(NR)NRNRVan Poppel, 200696Arm 2(PN)Harm Name: Other- define Define: Spleen damage If Clavien, report grade: NANANR2421(NR)NRNRVan Poppel, 200696Arm 1(RN)Harm Name: Other- define Define: Pleura damage If Clavien, report grade: NANANR28725(NR)NRNRVan Poppel, 200696Arm 2(PN)Harm Name: Other- define Define: Pleura damage IfNANR24227(NR)NRNR	Van Poppel, 2006 ⁹⁶	Arm 2(PN)	Harm Name: Hemorrhage Define: NA If Clavien,report	NA	NR	242	68(NR)	NR	NR
2006 ⁹⁶ define Define: Spleen damage If Clavien,report grade: NA Van Poppel, 2006 ⁹⁶ Arm 1(RN) Harm Name: Other-define Define: Pleura damage If Clavien,report grade: NA Van Poppel, Arm 2(PN) Harm Name: Other-define Define: Pleura damage If Clavien,report grade: NA NR 287 25(NR) NR NR NR NR NR NR NR NR NR	Van Poppel, 2006 ⁹⁶	Arm 1(RN)	Harm Name: Other- define Define: Spleen damage If Clavien,report grade:	NA	NR	287	2(NR)	NR	NR
2006 ⁹⁶ define Define: Pleura damage If Clavien,report grade: NA Van Poppel, 2006 ⁹⁶ Arm 2(PN) Harm Name: Otherdefine Define: Pleura damage If NA NR 242 27(NR) NR NR	Van Poppel, 2006 ⁹⁶	Arm 2(PN)	define Define: Spleen damage If Clavien,report grade:	NA	NR	242	1(NR)	NR	NR
2006 ⁹⁶ define Define: Pleura damage If	Van Poppel, 2006 ⁹⁶	Arm 1(RN)	define Define: Pleura damage If Clavien,report grade:	NA	NR	287	25(NR)	NR	NR
NA NA INA	2006 ⁹⁶		Harm Name: Other- define Define: Pleura damage If Clavien,report grade: NA	NA	NR	242	27(NR)	NR	NR
ACTIVE SURVEILLANCE(UNCONTROLLED STUDIES) Oncologic efficacy	ACTIVE SURV	EILLANCE(UNCO	NTROLLED STUDIES)						

D-261

Author, year	Arm(name)	Outcome and Units	Baseline Outcome	Time point	N for analysis	Outcome at Timepoint(s): n(%)	Within Arm	Between Arm Comparisons
Rosales, 2010 ¹⁵⁰	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	NR	212	NR(98.1)	NR	NR
Rosales, 2010 ¹⁵⁰	Overall(Active Surveillance)	Cancer-specific survival: n(%)	NA	NR	212	NR(99.5)	NR	NR
Crispen, 2009 ¹⁴⁷	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	mean of 31 months	173	172(99.4)	NR	NR
Crispen, 2008 ¹⁴⁶	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	mean of 33.4mo nths	70	69(98.6)	NR	NR
Abouassaly, 2008 ¹⁴⁵	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	median of 24mont hs	110	NR(98.2)	NR	NR
Abouassaly, 2008 ¹⁴⁵	Overall(Active Surveillance)	Cancer-specific survival: n(%)	NA	median of 24mont hs	110	NR(100)	NR	NR
Kunkle, 2007 ¹⁴⁹	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	median of 29mont hs	89	88(98.9)	NR	NR
Jewett, 2011 ¹⁴⁸	Overall(Active Surveillance)	Cancer-specific survival: n(%)	NA	>12 months	178	176(98.9)	NR	NR
Jewett, 2011 ¹⁴⁸	Overall(Active Surveillance)	Metastasis-free survival: n(%)	NA	>12 months	178	178(100)	NR	NR
Leonard, 2013 ⁴²	Overall(Active surveillance)	Metastasis-free survival: n(%)	NA	Mean of 27.86 months months	133	132(99.2)	NR	NR
				I Survival				
Rosales, 2010 ¹⁵⁰	Overall(Active Surveillance)	Overall survival	NA	NR	212	NR(93)	NR	NR
Abouassaly, 2008 ¹⁴⁵	Overall(Active Surveillance)	Overall survival	NA	median 2 years	110	NR(69)	NR	NR
Jewett, 2011 ¹⁴⁸	Overall(Active Surveillance)	Overall survival	NA	>1	178	168(94.4)	NR	NR

N=Number; GFR: Glomerular Filtration Rate; H: Hypertension; IQR: Interquartile range; LPN: Laparoscopic partial nephrectomy; LTA: Laparoscopic Thermal Ablation; NA: Not Applicable; NR: Not reported; NSM: Non surgical Management; NSS: Nephron-sparing surgery; OPN: Open partial nephrectomy; ORN: Open Radical Nephrectomy; PN: Partial Nephrectomy; RFA: Radio frequency ablation; RN Radical nephrectomy; SD: Standard deviation; OR=Odds Ratio; RD=Risk Difference; P=p value

Table D13: Perioperative Outcomes Table for KQs 3a and 3b

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Length of stay: days	41	NR	7.3	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Length of stay: days	48	NR	8.1	NR
Barbalias, 1999 ⁴⁵	Arm 1(Partial nephrectomy)	Blood Transfusion:	41	5 years	0.8	NR
Barbalias, 1999 ⁴⁵	Arm 2(Radical nephrectomy)	Blood Transfusion:	48	5 years	1.1	NR
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Blood loss: cc or mls	50	NR	217	SD: 178
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Blood loss: cc or mls	38	NR	24	SD: 24
Bensalah, 2007 ¹¹¹	Arm 1(LPN)	Length of stay: days	50	NR	2.9	SD: 1.6
Bensalah, 2007 ¹¹¹	Arm 2(LRFA)	Length of stay: days	38	NR	0.7	SD: 0.7
Brewer, 201298	Arm 1(MPN)	Blood loss: cc or mls	45	NR	401.8	SD: 412.7
Brewer, 201298	Arm 2(MRN)	Blood loss: cc or mls	108	NR	157.6	SD: 166.8
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Blood Transfusion: patients	45	NR	8	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Blood Transfusion: patients	108	NR	8	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	Conversion to radical nephrectomy: patients	45	NR	2	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	Conversion to radical nephrectomy: patients	108	NR	NA	NR
Brewer, 2012 ⁹⁸	Arm 1(MPN)	conversion to open surgery: patients	45	NR	2	NR
Brewer, 2012 ⁹⁸	Arm 2(MRN)	conversion to open surgery: patients	108	NR	1	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Blood loss: cc or mls	33	NR	233	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Blood loss: cc or mls	52	NR	112	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Blood Transfusion: cc or mls	33	NR	9.1	NR

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Blood Transfusion: cc or mls	52	NR	5.8	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	conversion to open surgery: patients	33	NR	3	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	conversion to open surgery: patients	52	NR	1	NR
Deklaj, 2010 ⁹⁹	Arm 1(Partial nephrectomy)	Length of stay: days	33	NR	2.12	NR
Deklaj, 2010 ⁹⁹	Arm 2(Radical nephrectomy)	Length of stay: days	52	NR	2.02	NR
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Blood Transfusion: patients	19	NR	5.3	NR
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Blood Transfusion: patients	28	NR	7.1	NR
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Blood Transfusion: patients	19	NR	5.3	NR
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	Length of stay: days	19	NR	5.3	NR
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	Length of stay: days	28	NR	7.1	NR
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	Length of stay: days	19	NR	5.3	NR
Deklaj, 2010 ¹⁴²	Arm 1(LRN)	conversion to open surgery: patients	19	NR	0	NR
Deklaj, 2010 ¹⁴²	Arm 2(LPN)	conversion to open surgery: patients	28	NR	1	NR
Deklaj, 2010 ¹⁴²	Arm 3(LAT)	conversion to open surgery: patients	19	NR	0	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	Blood Transfusion: patients	153	NR	7	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	Blood Transfusion: patients	78	NR	0	NR
Desai, 2005 ¹¹²	Arm 1(Laparascopic PN)	conversion to open surgery: patients	153	NR	1	NR
Desai, 2005 ¹¹²	Arm 2(Cryoablation)	conversion to open surgery: patients	78	NR	0	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Conversion to radical nephrectomy: patients	56	NR	0	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Conversion to radical nephrectomy: patients	47	NR	2	NR
Emara, 2014 ¹¹³	NA(Cryoablation)	Blood loss: cc or mls	56	NR	47.1	SD: 16.24

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Blood loss: cc or mls	47	NR	94.3	SD: 40.1
Emara, 2014 ¹¹³	NA(Cryoablation)	Length of stay: days	56	NR	1.679	SD: 0.175
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Length of stay: days	47	NR	1.383	SD: 0.1237
Emara, 2014 ¹¹³	NA(Cryoablation)	Blood Transfusion: patients	56	NR	0	NR
Emara, 2014 ¹¹³	NA(Robot assisted partial nephrectomy)	Blood Transfusion: patients	47	NR	0	NR
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneosc opic radical nephrectomy)	Blood loss: cc or mls	36	NR	231	SD: 153
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Blood loss: cc or mls	37	NR	424	SD: 361
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Blood loss: cc or mls	44	NR	361	SD: 360
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneosc opic radical nephrectomy)	Length of stay: days	36	NR	7.2	SD: 2.9
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Length of stay: days	37	NR	9.1	SD: 3.5
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Length of stay: days	44	NR	9.6	IQR: Range: SD: 3.1
Gratzke, 2009 ¹¹⁰	Arm 1(Retroperitoneosc opic radical nephrectomy)	Blood Transfusion: patients	36	NR	4	NR
Gratzke, 2009 ¹¹⁰	Arm 2(Open radical nephrectomy)	Blood Transfusion: patients	37	NR	10	NR
Gratzke, 2009 ¹¹⁰	Arm 3(Nephron- sparing surgery)	Blood Transfusion: patients	44	NR	9	NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Blood loss: cc or mls	210	NR	200	IQR: 100-300

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Blood loss: cc or mls	226	NR	75	IQR: 50-100
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	Length of stay: days	210	NR	72	IQR: 72-96 SD: NR
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	Length of stay: days	226	NR	48	IQR: 24-72 Range: NR SD: NR
Guillotreau, 2012 ¹¹⁴	Arm 1(RPN)	conversion to open surgery: patients	210	NR	NS	IQR: NS Range: NR SD: NR
Guillotreau, 2012 ¹¹⁴	Arm 2(LCA)	conversion to open surgery: patients	226	NR	0	IQR: 0 Range: NR SD: NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Blood loss: cc or mls	75	NR	66	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Blood loss: cc or mls	92	NR	168.4	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Blood Transfusion: patients	75	NR	3	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Blood Transfusion: patients	92	NR	5	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Length of stay: days	75	NR	1.6	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Length of stay: days	92	NR	2	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	Conversion to radical nephrectomy: patients	75	NR	NA	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	Conversion to radical nephrectomy: patients	92	NR	3	NR
Haramis, 2012 ¹¹⁵	Arm 1(LCA)	conversion to open surgery: patients	75	NR	0	NR
Haramis, 2012 ¹¹⁵	Arm 2(LPN)	conversion to open surgery: patients	92	NR	1	NR
lizuka, 2012 ¹⁰⁷	Arm 1(T1b-Partial Nephrectomy)	Blood loss: cc or mls	67	NR	265	IQR: NR Range: 10-2400' SD: NR
lizuka, 2012 ¹⁰⁷	Arm 2(T1b-Radical Nephrectomy)	Blood loss: cc or mls	195	NR	282	IQR: NR Range: 5-2500' SD: NR

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
lizuka, 2012 ¹⁰⁷	Arm 3(T1a-Partial Nephrectomy)	Blood loss: cc or mls	324	NR	248	IQR: NR Range: 5-3400' SD: NR
Indudhara,199 7 ⁴⁷	Arm 1(nephron sparing surgery)	Blood loss: cc or mls	35	1	390	IQR: NR Range: 100-900
Indudhara,199 7 ⁴⁷	Arm 2(radical nephrectomy)	Blood loss: cc or mls	71	1	150	Range: 90-390
Indudhara,199 7 ⁴⁷	Arm 1(nephron sparing surgery)	Blood Transfusion: patients	35	1	1.7	Range: 0-4
Indudhara,199 7 ⁴⁷	Arm 2(radical nephrectomy)	Blood Transfusion: patients	71	1	0.85	Range: 0-3
Indudhara,199 7 ⁴⁷	Arm 1(nephron sparing surgery)	Length of stay: days	35	1	7	Range: 5 to 19
Indudhara,199 7 ⁴⁷	Arm 2(radical nephrectomy)	Length of stay: days	71	1	5	Range: 5 to 9
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	Blood loss: cc or mls	25	NR	287	Range: 20-800
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic radical nephrectomy)	Blood loss: cc or mls	73	NR	170	IQR: Range: 0-1500 SD:
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	Length of stay: days	25	NR	5.8	Range: 3-8
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic radical nephrectomy)	Length of stay: days	73	NR	7.2	Range: 3-32
Janetschek, 2000 ¹⁰⁰	Arm 1(Wedge- resection)	conversion to open surgery: patients	25	NR	0	NR
Janetschek, 2000 ¹⁰⁰	Arm 2(Laparoscopic radical nephrectomy)	conversion to open surgery: patients	73	NR	0	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Blood Transfusion: patients	211	30 days	14	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Blood Transfusion: patients	160	30 days	NR	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Blood Transfusion: patients	330	30 days	46	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Blood Transfusion: patients	535	30 days	31	NR
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Blood Transfusion: patients	404	30 days	37	NR

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Kaowalczyk, 2013 ¹⁴⁴	Arm 1(Ablation)	Length of stay: days	211	NA	2.3	SD: 2.5
Kaowalczyk, 2013 ¹⁴⁴	Arm 2(MIPN)	Length of stay: days	160	NA	3.7	SD: 3.1
Kaowalczyk, 2013 ¹⁴⁴	Arm 3(OPN)	Length of stay: days	330	NA	5.4	SD: 4.3
Kaowalczyk, 2013 ¹⁴⁴	Arm 4(MIRN)	Length of stay: days	535	NA	3.9	SD: 2.8
Kaowalczyk, 2013 ¹⁴⁴	Arm 5(ORN)	Length of stay: days	404	NA	5.4	SD: 3.6
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Blood loss: cc or mls	79	NR	391.2	Range: 50-1500 SD: 390.7
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Blood loss: cc or mls	35	NR	372.4	Range: 50-1900 SD: 423.7
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Blood Transfusion: patients	79	NR	4 (5.1%)	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Blood Transfusion: patients	35	NR	2 (5.7%)	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Conversion to radical nephrectomy: patients	79	NR	1	NR
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Conversion to radical nephrectomy: patients	35	NR	0	NR
Kim, 2003 ¹⁰¹	Arm 1(Partial nephrectomy)	Length of stay: days	79	NR	2.8	Range: 1-6
Kim, 2003 ¹⁰¹	Arm 2(Radical nephrectomy)	Length of stay: days	35	NR	3.2	Range: 1-9
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Blood loss: cc or mls	51	NR	141	Range: 10 - 600
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Blood loss: cc or mls	51	NR	54.2	Range: 0 - 300
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Blood Transfusion: patients	51	NR	4	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Blood Transfusion: patients	51	NR	5	NR
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	Length of stay: days	51	NR	1.7	Range: 1 - 5
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	Length of stay: days	51	NR	1.67	Range: 0 - 12
Kiriluk, 2011 ¹¹⁶	Arm 1(LPN)	conversion to open surgery: patients	51	NR	4	NR
Kiriluk, 2011 ¹¹⁶	Arm 2(LAT)	conversion to open surgery: patients	51	NR	0	NR
Klatte, 2011 ¹²⁸	Arm 1(Cryoablation)	Blood Transfusion: patients	41	NR	0	NR

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Klatte, 2011 ¹²⁸	Arm 2(PN)	Blood Transfusion: patients	82	NR	1	NR
Kopp, 2014 ⁶⁶	Arm 1(RN)	Blood loss: cc or mls	122	NR	225	IQR: 100-400
Kopp, 2014 ⁶⁶	Arm 2(PN)	Blood loss: cc or mls	80	NR	325	IQR: 200-500
Kopp, 2014 ⁶⁶	Arm 1(RN)	Blood Transfusion: patients	122	NR	20	NR
Kopp, 2014 ⁶⁶	Arm 2(PN)	Blood Transfusion: patients	80	NR	13	NR
Kopp, 2014 ⁶⁶	Arm 1(RN)	Length of stay: days	122	NR	6	IQR: 4-14'
Kopp, 2014 ⁶⁶	Arm 2(PN)	Length of stay: days	80	NR	7	IQR: 6-10'
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Blood loss: cc or mls	82	NR	200	Range: 150-300
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Blood loss: cc or mls	35	NR	100	Range: 50-150
Matin, 2002 ¹⁰⁵	Arm 1(Nephron sparing surgery)	Length of stay: days	82	NR	5	Range: 5-7
Matin, 2002 ¹⁰⁵	Arm 2(Laparoscopic radical nephrectomy)	Length of stay: days	35	NR	1	Range: 1-2
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Blood loss: cc or mls	152	NR	895.1	SD: 73.6
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Blood loss: cc or mls	59	NR	293.5	SD: 38.9
Miyamoto, 2012 ⁷⁶	Arm 1(RN)	Blood loss: cc or mls	152	Not Specifie d	895.1	SD: 73.6
Miyamoto, 2012 ⁷⁶	Arm 2(PN)	Blood loss: cc or mls	59	Not Specifie d	293.5	SD: 38.9
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Blood loss: cc or mls	98	NR	50	Range: 5-400
Mues, 2012 ¹²⁰	Arm 2(PN)	Blood loss: cc or mls	100	NR	400	Range: 25-3900
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Blood Transfusion: patients	98	NR	0	NR
Mues, 2012 ¹²⁰	Arm 2(PN)	Blood Transfusion: patients	100	NR	1	NR
Mues, 2012 ¹²⁰	Arm 1(Ablation)	Length of stay: days	98	NR	1.7	Range: 1.0-8.0
Mues, 2012 ¹²⁰	Arm 2(PN)	Length of stay: days	100	NR	4.1	Range: 1.0-21.0
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Blood loss: cc or mls	48	NR	391.3	SD: 692

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Blood loss: cc or mls	30	NR	162.4	SD: 163.2
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Blood Transfusion: patients	48	NR	8	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Blood Transfusion: patients	30	NR	1	NR
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	Length of stay: days	48	NR	4.6	SD: 2.9
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	Length of stay: days	30	NR	2.4	SD: 2.2
Pascal, 2011 ¹¹⁷	Arm 1(LPN)	conversion to open surgery: patients	48	NR	4	NR
Pascal, 2011 ¹¹⁷	Arm 2(Laparoscopic Renal cryoablation)	conversion to open surgery: patients	30	NR	0	NR
Permpongkoso I, 2007 ¹³⁹	Arm 1(LRN)	conversion to open surgery: patients	549	periopN A	16	NR
Permpongkoso I, 2007 ¹³⁹	Arm 2(LPN)	conversion to open surgery: patients	345	periopN A	12	NR
Permpongkoso I, 2007 ¹³⁹	Arm 3(LRA)	conversion to open surgery: patients	81	periopN A	0	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Blood Transfusion: patients	36	NR	9	NR
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy (NSS), for young (<55 years old))	Blood Transfusion: patients	45	NR	3	NR
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Blood Transfusion: patients	33	NR	7	NR
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Blood Transfusion: patients	55	NR	10	NR
Roos, 2010 ¹⁰⁶	Arm 1(Partial nephrectomy (NSS), for young (<55 years old))	Length of stay: days	36	NR	8	Range: 4-17
Roos, 2010 ¹⁰⁶	Arm 2(Radical nephrectomy	Length of stay: days	45	NR	9	Range: 5-13

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
	(NSS), for young (<55 years old))					
Roos, 2010 ¹⁰⁶	Arm 3(Partial nephrectomy, for old (>65 years old))	Length of stay: days	33	NR	7	Range: 7-15
Roos, 2010 ¹⁰⁶	Arm 4(Radical nephrectomy, for old (>65 years old))	Length of stay: days	55	NR	9	Range: 4-28
Roos, 2012 ⁵¹	Arm 1(NSS(tumor 4.1 - 7cm))	Blood Transfusion: patients	85	NR	14	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor 4.1 - 7cm))	Blood Transfusion: patients	118	NR	16	NR
Roos, 2012 ⁵¹	Arm 1(NSS(tumor >7cm))	Blood Transfusion: patients	16	NR	7	NR
Roos, 2012 ⁵¹	Arm 2(RN(tumor >7cm))	Blood Transfusion: patients	28	NR	4	NR
Shinohara, 2001 ⁵²	Arm 1(NSS)	Blood loss: cc or mls	15	NR	518	SD: 631
Shinohara, 2001 ⁵²	Arm 2(RN)	Blood loss: cc or mls	51	NR	380	SD: 330
Shinohara, 2001 ⁵²	Arm 1(NSS)	Blood Transfusion: patients	15	NR	4	NR
Shinohara, 2001 ⁵²	Arm 2(RN)	Blood Transfusion: patients	51	NR	5	NR
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Blood loss: cc or mls	267	NR	74.2	SD: 100.1
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Blood loss: cc or mls	233	NR	136.3	SD: 112.2
Tanagho, 2013 ¹²⁶	NA(Cryoablation)	Blood Transfusion: patients	267	NR	1	SD: NA
Tanagho, 2013 ¹²⁶	NA(Robot assisted partial nephrectomy)	Blood Transfusion: patients	233	NR	6	SD: NA
Tomaszewski, 2014 ⁸⁴	Overall(Overall)	Blood loss: cc or mls	1092	NR	179	SD: 257
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Blood loss: cc or mls	36	NR	408	Range: 50-4500 SD: 800

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Blood loss: cc or mls	36	NR	151	Range: 10-800 SD: 171
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Blood loss: cc or mls	29	NR	NA	NR
Turna, 2009 ¹²³	Arm 1(Laparoscopic partial nephrectomy)	Length of stay: days	36	NR	3.3	Range: 1.3-12 SD: 2.6
Turna, 2009 ¹²³	Arm 2(Cryoablation)	Length of stay: days	36	NR	1.8	Range: 0.9-6 SD: 1.3
Turna, 2009 ¹²³	Arm 3(Radiofrequency ablation)	Length of stay: days	29	NR	1	Range: 1-1
Uchinda, 2004 ⁸⁵	Arm 1(PN)	Blood loss: cc or mls	54	periopN A	600	Range: 130-2800
Uchinda, 2004 ⁸⁵	Arm 2(RN)	Blood loss: cc or mls	51	periopN A	390	Range: 65-1200
Uzzo, 1999 ⁸⁶	Arm 1(RN)	Length of stay: patients	28	NR	7	NR
Uzzo, 1999 ⁸⁶	Arm 2(NSS)	Length of stay: patients	52	NR	7.8	NR
Van Poppel, 2011 ⁸⁷	Arm 1(NSS)	Blood loss: patients	242	NR	69	NR
Van Poppel, 2011 ⁸⁷	Arm 2(Radical nephrectomy)	Blood loss: patients	290	NR	49	NR
Xu, 2014 ⁵³	Arm 1(LRN)	Blood loss: cc or mls	88	NR	235.9	SD: 411.9
Xu, 2014 ⁵³	Arm 2(ORN)	Blood loss: cc or mls	526	NR	232.1	SD: 379.5
Xu, 2014 ⁵³	Arm 3(LPN)	Blood loss: cc or mls	42	NR	191.1	SD: 166
Xu, 2014 ⁵³	Arm 4(OPN)	Blood loss: cc or mls	187	NR	231.5	SD: 222.5
Xu, 2014 ⁵³	Arm 1(LRN)	Length of stay: days	88	NR	7.6	SD: 2.4
Xu, 2014 ⁵³	Arm 2(ORN)	Length of stay: days	526	NR	9.2	SD: 3.9
Xu, 2014 ⁵³	Arm 3(LPN)	Length of stay: days	42	NR	8.5	SD: 3.1
Xu, 2014 ⁵³	Arm 4(OPN)	Length of stay: days	187	NR	9.3	SD: 3.8
Yasuda, 2013 ⁹²	Arm 1(NSS)	Blood loss: cc or mls	97	NR	150	IQR: 60-275
Yasuda, 2013 ⁹²	Arm 2(RN)	Blood loss: cc or mls	103	NR	157	IQR: 65-400
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Length of stay: days	14	NR	12.28	SD: 3.29
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Length of stay: days	41	NR	8.33	SD: 3.23

Author, year	Arm(name)	Outcome and Units	N for analysis	Time point	Outcome Value	Outcome IQR Range SD
Youn, 2013 ¹³⁰	Arm 1(Open PN)	Blood Transfusion: patients	14	NR	0	NR
Youn, 2013 ¹³⁰	Arm 2(Laparascopic RFA)	Blood Transfusion: patients	41	NR	0	NR
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Blood loss: cc or mls	42	NR	207	Range: 125-450
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Blood loss: cc or mls	55	NR	121	Range: 100-600
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Blood Transfusion: patients	42	NR	2	NR
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Blood Transfusion: patients	55	NR	4	NR
Zorn, 2007 ¹⁰³	Arm 1(LPN)	Length of stay: days	42	NR	2.3	NR
Zorn, 2007 ¹⁰³	Arm 2(LRN)	Length of stay: days	55	NR	1.8	NR
Chang, 2015,	Arm 1(RFA)	Length of stay: days	27	NR	7.3	IQR: NR Range: NR SD: 2
Chang, 2015,	Arm 2(PN)	Length of stay: days	29	NR	7.9	IQR: NR Range: NR SD: 2.4

N=Number; GFR: Glomerular Filtration Rate; H: Hypertension; IQR: Interquartile range; LPN: Laparoscopic partial nephrectomy; LTA: Laparoscopic Thermal Ablation; NA: Not Applicable; NR: Not reported; NSM: Non surgical Management; NSS: Nephron-sparing surgery; OPN: Open partial nephrectomy; ORN: Open Radical Nephrectomy; PN: Partial Nephrectomy; RFA: Radio frequency ablation; RN Radical nephrectomy; SD: Standard deviation; OR=Odds Ratio; RD=Risk Difference; P=p value

Reference List

- 1. Akdogan B, Gudeloglu A, Inci K, Gunay LM, Koni A, Ozen H. Prevalence and predictors of benign lesions in renal masses smaller than 7 cm presumed to be renal cell carcinoma. Clin Genitourin Cancer 2012; 10(2):121-5. PMID: 22401753
- 2. Antonelli A, Furlan M, Sandri M et al. The R.e.N.a.L. Nephrometric nomogram cannot accurately predict malignancy or aggressiveness of small renal masses amenable to partial nephrectomy. Clin Genitourin Cancer 2014; 12(5):366-72. PMID: 24637340
- 3. Bazzi WM, Dejbakhsh SZ, Bernstein M, Russo P. The association of baseline health and gender with small renal mass pathology. Can J Urol 2014; 21(3):7271-6. PMID: 24978356
- 4. Campbell SC, Novick AC, Herts B et al. Prospective evaluation of fine needle aspiration of small, solid renal masses: accuracy and morbidity. Urology 1997; 50(1):25-9. PMID: 9218014
- 5. Choi SK, Jeon SH, Chang SG. Characterization of small renal masses less than 4 cm with quadriphasic multidetector helical computed tomography: differentiation of benign and malignant lesions. Korean J Urol 2012; 53(3):159-64. PMID: 22468210
- 6. Chung MS, Choi HJ, Kim MH, Cho KS. Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J Roentgenol 2014; 202(4):765-71. PMID: 24660704
- 7. Chyhrai A, Sanjmyatav J, Gajda M et al. Multi-colour FISH on preoperative renal tumour biopsies to confirm the diagnosis of uncertain renal masses. World J Urol 2010; 28(3):269-74. PMID: 20390284
- 8. Fujita T, Iwamura M, Wakatabe Y et al. Predictors of benign histology in clinical T1a renal cell carcinoma tumors undergoing partial nephrectomy. Int J Urol 2014; 21(1):100-2. PMID: 23635425
- 9. Halverson SJ, Kunju LP, Bhalla R et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J Urol 2013; 189(2):441-6. PMID: 23253955
- 10. Harisinghani MG, Maher MM, Gervais DA et al. Incidence of malignancy in complex cystic renal masses (Bosniak category III): should imaging-guided biopsy precede surgery? AJR Am J Roentgenol 2003; 180(3):755-8. PMID: 12591691
- 11. Jeon HG, Lee SR, Kim KH et al. Benign lesions after partial nephrectomy for presumed renal cell carcinoma in masses 4 cm or less: prevalence and predictors in Korean patients. Urology 2010; 76(3):574-9. PMID: 20303148
- 12. Kava BR, Eldefrawy A, Ayyathurai R et al. Impact of body mass index and tumor location on the incidence of benign histology at the time of nephron-

- sparing surgery. Int Urol Nephrol 2012; 44(5):1319-24. PMID: 22678516
- 13. Keehn A, Srivastava A, Maiman R et al. The Relationship Between Visceral Obesity and the Clinicopathologic Features of Patients with Small Renal Masses. J Endourol 2014. PMID: 25203393
- 14. Koo KC, Yoo H, Shin TY et al. External validation of the RENAL nephrometry score nomogram for predicting high-grade renal cell carcinoma in solid, enhancing, and small renal masses. World J Urol 2014; 32(1):249-55. PMID: 24013182
- 15. Lane BR, Babineau D, Kattan MW et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol 2007; 178(2):429-34. PMID: 17561141
- 16. Leveridge MJ, Finelli A, Kachura JR et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 2011; 60(3):578-84. PMID: 21704449
- 17. Londono DC, Wuerstle MC, Thomas AA et al. Accuracy and implications of percutaneous renal biopsy in the management of renal masses. Perm J 2013; 17 (3):4-7. PMID: 24355883
- 18. Menogue SR, O'Brien BA, Brown AL, Cohen RJ. Percutaneous core biopsy of small renal mass lesions: a diagnostic tool to better stratify patients for surgical intervention. BJU Int 2013; 111(4 Pt B):E146-51. PMID: 22805186
- Millet I, Curros F, Serre I, Taourel P, Thuret R. Can renal biopsy accurately predict histological subtype and Fuhrman grade of renal cell carcinoma? J Urol 2012; 188(5):1690-4. PMID: 22998910
- 20. Mullins JK, Kaouk JH, Bhayani S et al. Tumor complexity predicts malignant disease for small renal masses . J Urol 2012; 188(6):2072-6. PMID: 23083863
- 21. Murphy AM, Buck AM, Benson MC, McKiernan JM. Increasing detection rate of benign renal tumors: evaluation of factors predicting for benign tumor histologic features during past two decades. Urology 2009; 73(6):1293-7. PMID: 19371933
- 22. Neuzillet Y, Lechevallier E, Andre M, Daniel L, Coulange C. Accuracy and clinical role of fine needle percutaneous biopsy with computerized tomography guidance of small (less than 4.0 cm) renal masses. J Urol 2004; 171(5):1802-5. PMID: 15076280
- 23. Nishikawa M, Miyake H, Kitajima K, Takahashi S, Sugimura K, Fujisawa M. Preoperative differentiation between benign and malignant renal masses smaller than 4 cm treated with partial nephrectomy. Int J Clin Oncol 2014. PMID: 24526391
- 24. Park SY, Jeon SS, Lee SY et al. Incidence and predictive factors of benign renal lesions in Korean patients with preoperative imaging diagnoses of renal cell carcinoma. J Korean Med Sci 2011; 26(3):360-4. PMID: 21394303
- 25. Park SY, Park BK, Kim CK, Kwon GY. Ultrasound-guided core biopsy of small renal masses: diagnostic rate and limitations. J Vasc Interv Radiol 2013; 24(1):90-6. PMID: 23206333

- 26. Rosenkrantz A.B., Wehrli N.E., Melamed J., Taneja S.S., Shaikh M.B. Renal masses measuring under 2 cm: Pathologic outcomes and associations with MRI features. Eur. J. Radiol. 2014; 83(8):1311-6.
- 27. Salem S, Ponsky LE, Abouassaly R et al. Image-guided biopsy of small renal masses in the era of ablative therapies. Int J Urol 2013; 20(6):580-4. PMID: 23190309
- 28. Shannon B.A., Cohen R.J., de Bruto H., Davies R.J. The Value of Preoperative Needle Core Biopsy for Diagnosing Benign Lesions Among Small, Incidentally Detected Renal Masses. J. Urol. 2008; 180(4):1257-61.
- 29. Sofikerim M, Tatlisen A, Canoz O, Tokat F, Demirtas A, Mavili E. What is the role of percutaneous needle core biopsy in diagnosis of renal masses? Urology 2010; 76(3):614-8. PMID: 20110106
- 30. Soga N, Nishikawa K, Takaki H et al. Low incidence of benign lesions in resected suspicious renal masses greater than 2 cm: Single-center experience from Japan. Int J Urol 2012; 19(8):729-34. PMID: 22515572
- 31. Vasudevan A, Davies RJ, Shannon BA, Cohen RJ. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int 2006; 97(5):946-9. PMID: 16643475
- 32. Volpe A, Mattar K, Finelli A et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J Urol 2008; 180(6):2333-7. PMID: 18930274
- 33. Wang R, Wolf JS Jr, Wood DP Jr, Higgins EJ, Hafez KS. Accuracy of percutaneous core biopsy in management of small renal masses. Urology 2009; 73(3):586-90; discussion 590-1. PMID: 19118884
- 34. Xiong YH, Zhang ZL, Li YH et al. Benign pathological findings in 303 Chinese patients undergoing surgery for presumed localized renal cell carcinoma. Int J Urol 2010; 17(6):517-21. PMID: 20370841
- 35. Shin T.Y., Kim J., Koo K.C. et al. Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: Results using the PADUA classification system. BJU Int. 2014; 113(5):754-61.
- 36. Ball M.W., Gorin M.A., Bhayani S.B. et al. Preoperative predictors of malignancy and unfavorable pathology for clinical T1a tumors treated with partial nephrectomy: A multi-institutional analysis. Urol. Oncol. Semin. Orig. Invest. 2015; 33(3):112.e9-112.e14.
- 37. Schmidbauer J, Remzi M, Memarsadeghi M et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol 2008; 53(5):1003-11. PMID: 18061339
- 38. Reichelt O, Gajda M, Chyhrai A, Wunderlich H, Junker K, Schubert J. Ultrasound-guided biopsy of homogenous solid renal masses. Eur Urol 2007; 52(5):1421-6. PMID: 17306920
- 39. Prince J, Bultman E, Hinshaw L et al. Patient and Tumor Characteristics can Predict Nondiagnostic Renal Mass Biopsy Findings. J Urol 2014. PMID:

25498574

- 40. Richard PO, Jewett MA, Bhatt JR et al. Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Eur Urol 2015. PMID: 25900781
- 41. Blumenfeld AJ, Guru K, Fuchs GJ, Kim HL. Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology 2010; 76(3):610-3. PMID: 20163843
- 42. Leonard M, Tait CD, Gillan AS, Rai BP, Byrne DJ, Nabi G. Impact of multiple deprivations on detection, progression and interventions in small renal masses (less than 4 cm) in a population based study. Eur J Surg Oncol 2013; 39(10):1157-63. PMID: 23886896
- 43. Scanga LR, Maygarden SJ. Utility of fine-needle aspiration and core biopsy with touch preparation in the diagnosis of renal lesions. Cancer Cytopathol 2014; 122(3):182-90. PMID: 24353131
- 44. Schmit G.D., Atwell T.D., Callstrom M.R. et al. Percutaneous cryoablation of renal masses (greater-than or equal to)3cm: Efficacy and safety in treatment of 108 patients. J. Endourol. 2010; 24(8):1255-62.
- 45. Barbalias GA, Liatsikos EN, Tsintavis A, Nikiforidis G. Adenocarcinoma of the kidney: nephron-sparing surgical approach vs. radical nephrectomy. J Surg Oncol 1999; 72(3):156-61. PMID: 10562362
- 46. Ficarra V, Novella G, Sarti A et al. Psycho-social well-being and general health status after surgical treatment for localized renal cell carcinoma. Int Urol Nephrol 2002-2003; 34(4):441-6. PMID: 14577481
- 47. Indudhara R, Bueschen AJ, Urban DA, Burns JR, Lloyd LK. Nephron-sparing surgery compared with radical nephrectomy for renal tumors: current indications and results. South Med J 1997; 90 (10):982-5. PMID: 9347807
- 48. Kim JM, Song PH, Kim HT, Park TC. Comparison of Partial and Radical Nephrectomy for pT1b Renal Cell Carcinoma. Korean J Urol 2010; 51(9):596-600. PMID: 20856643
- 49. Mariusdottir E, Jonsson E, Marteinsson VT, Sigurdsson MI, Gudbjartsson T. Kidney function following partial or radical nephrectomy for renal cell carcinoma: a population-based study. Scand J Urol 2013; 47(6):476-82. PMID: 23597159
- 50. Milonas D, Skulcius G, Baltrimavicius R et al. Comparison of long-term results after nephron-sparing surgery and radical nephrectomy in treating 4- to 7-cm renal cell carcinoma. Medicina (Kaunas) 2013; 49(5):223-8. PMID: 24247918
- 51. Roos FC, Brenner W, Thomas C et al. Functional analysis of elective nephron-sparing surgery vs radical nephrectomy for renal tumors larger than 4 cm. Urology 2012; 79(3):607-13. PMID: 22386408
- 52. Shinohara N, Harabayashi T, Sato S, Hioka T, Tsuchiya K, Koyanagi T. Impact of nephron-sparing surgery on quality of life in patients with localized renal cell carcinoma. Eur Urol 2001; 39 (1):114-9. PMID: 11173949

- 53. Xu H., Ding Q., Jiang H.-W. Fewer complications after laparoscopic nephrectomy as compared to the open procedure with the modified Clavien classification system a retrospective analysis from Southern China. World J. Surg. Oncol. 2014; 12(1).
- 54. Antonelli A, Ficarra V, Bertini R et al. Elective partial nephrectomy is equivalent to radical nephrectomy in patients with clinical T1 renal cell carcinoma: results of a retrospective, comparative, multi-institutional study. BJU Int 2012; 109(7):1013-8. PMID: 21883829
- 55. Antoniewicz AA, Poletajew S, Borowka A, Pasierski T, Rostek M, Pikto-Pietkiewicz W. Renal function and adaptive changes in patients after radical or partial nephrectomy. Int Urol Nephrol 2012; 44(3):745-51. PMID: 21947980
- 56. Badalato GM, Kates M, Wisnivesky JP, Choudhury AR, McKiernan JM. Survival after partial and radical nephrectomy for the treatment of stage T1bN0M0 renal cell carcinoma (RCC) in the USA: a propensity scoring approach. BJU Int 2012; 109(10):1457-62. PMID: 21933334
- 57. Bedke J, Pritsch M, Buse S et al. Prognostic stratification of localized renal cell carcinoma by tumor size. J Urol 2008; 180(1):62-7. PMID: 18485376
- 58. Crepel M, Jeldres C, Sun M et al. A population-based comparison of cancer-control rates between radical and partial nephrectomy for T1A renal cell carcinoma. Urology 2010; 76(4):883-8. PMID: 20932408
- 59. Crepel M, Jeldres C, Perrotte P et al. Nephron-sparing surgery is equally effective to radical nephrectomy for T1BN0M0 renal cell carcinoma: a population-based assessment. Urology 2010; 75(2):271-5. PMID: 19962740
- 60. Dash A, Vickers AJ, Schachter LR, Bach AM, Snyder ME, Russo P. Comparison of outcomes in elective partial vs radical nephrectomy for clear cell renal cell carcinoma of 4-7 cm. BJU Int 2006; 97(5):939-45. PMID: 16643474
- 61. Daugherty M, Bratslavsky G. Compared with radical nephrectomy, nephron-sparing surgery offers a long-term survival advantage in patients between the ages of 20 and 44 years with renal cell carcinomas (</=4 cm): an analysis of the SEER database. Urol Oncol 2014; 32 (5):549-54. PMID: 24495447
- 62. Thompson RH, Siddiqui S, Lohse CM, Leibovich BC, Russo P, Blute ML. Partial versus radical nephrectomy for 4 to 7 cm renal cortical tumors. J Urol 2009; 182(6):2601-6. PMID: 19836797
- 63. Huang WC, Levey AS, Serio AM et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7(9):735-40. PMID: 16945768
- 64. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J Urol 2009; 181(1):55-61; discussion 61-2. PMID: 19012918
- 65. Kates M, Badalato GM, Pitman M, McKiernan JM. Increased risk of overall and cardiovascular mortality after radical nephrectomy for renal cell carcinoma 2 cm or less. J Urol 2011; 186(4):1247-53. PMID: 21849201
- 66. Kopp RP, Mehrazin R, Palazzi KL et al. Survival outcomes after radical and partial nephrectomy for clinical T2 renal tumours categorised by

- R.E.N.A.L. nephrometry score. BJU Int 2013. PMID: 24274650
- 67. Kyung YS, You D, Kwon T et al. The type of nephrectomy has little effect on overall survival or cardiac events in patients of 70 years and older with localized clinical t1 stage renal masses. Korean J Urol 2014; 55(7):446-52. PMID: 25045442
- 68. Lane BR, Fergany AF, Weight CJ, Campbell SC. Renal functional outcomes after partial nephrectomy with extended ischemic intervals are better than after radical nephrectomy. J Urol 2010; 184(4):1286-90. PMID: 20723936
- 69. Li JR, Yang CR, Cheng CL et al. Partial nephrectomy in the treatment of localized renal cell carcinoma: experience of Taichung Veterans General Hospital. J Chin Med Assoc 2007; 70(7):281-5. PMID: 17631464
- 70. Li Q, Guan H, Qin J, Jiang T. Mini-Margin nephron sparing surgery for renal cell carcinoma 4 cm or less. Adv Urol 2010. PMID: 20862196
- 71. Lowrance WT, Yee DS, Savage C et al. Complications after radical and partial nephrectomy as a function of age. J Urol 2010; 183(5):1725-30. PMID: 20299040
- 72. McKiernan J, Simmons R, Katz J, Russo P. Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 2002; 59(6):816-20. PMID: 12031359
- 73. Medina-Polo J, Romero-Otero J, Rodriguez-Antolin A et al. Can partial nephrectomy preserve renal function and modify survival in comparison with radical nephrectomy? Scand J Urol Nephrol 2011; 45(2):143-50. PMID: 21247272
- 74. Meskawi M, Becker A, Bianchi M et al. Partial and radical nephrectomy provide comparable long-term cancer control for T1b renal cell carcinoma. Int J Urol 2014; 21(2):122-8. PMID: 23819700
- 75. Mitchell RE, Gilbert SM, Murphy AM, Olsson CA, Benson MC, McKiernan JM. Partial nephrectomy and radical nephrectomy offer similar cancer outcomes in renal cortical tumors 4 cm or larger. Urology 2006; 67(2):260-4. PMID: 16461075
- 76. Miyamoto K, Inoue S, Kajiwara M, Teishima J, Matsubara A. Comparison of renal function after partial nephrectomy and radical nephrectomy for renal cell carcinoma. Urol Int 2012; 89(2):227-32. PMID: 22846207
- 77. Patard JJ, Shvarts O, Lam JS et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol 2004; 171(6 Pt 1):2181-5, quiz 2435. PMID: 15126781
- 78. Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014; 65(2):372-7. PMID: 23850254
- 79. Smaldone MC, Egleston B, Uzzo RG, Kutikov A. Does partial nephrectomy result in a durable overall survival benefit in the Medicare population? J Urol 2012; 188(6):2089-94. PMID: 23083877

- 80. Sun M, Bianchi M, Hansen J et al. Chronic kidney disease after nephrectomy in patients with small renal masses: a retrospective observational analysis. Eur Urol 2012; 62(4):696-703. PMID: 22483407
- 81. Takagi T, Kondo T, Iizuka J et al. Postoperative renal function after partial nephrectomy for renal cell carcinoma in patients with pre-existing chronic kidney disease: a comparison with radical nephrectomy. Int J Urol 2011; 18 (6):472-6. PMID: 21481013
- 82. Tan HJ, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 2012; 307(15):1629-35. PMID: 22511691
- 83. Thompson RH, Boorjian SA, Lohse CM et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol 2008; 179(2):468-71; discussion 472-3. PMID: 18076931
- 84. Tomaszewski JJ, Uzzo RG, Kutikov A et al. Assessing the burden of complications after surgery for clinically localized kidney cancer by age and comorbidity status. Urology 2014; 83(4):843-9. PMID: 24680455
- 85. Uchida K, Takahashi A, Masumori N, Yanase M, Itoh N, Tsukamoto T. Partial nephrectomy for small localized renal cell carcinoma. Hinyokika Kiyo 2004; 50(6):389-95. PMID: 15293735
- 86. Uzzo RG, Wei JT, Hafez K, Kay R, Novick AC. Comparison of direct hospital costs and length of stay for radical nephrectomy versus nephron-sparing surgery in the management of localized renal cell carcinoma. Urology 1999; 54(6):994-8. PMID: 10604696
- 87. Van Poppel H, Da Pozzo L, Albrecht W et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011; 59(4):543-52. PMID: 21186077
- 88. Weight CJ, Larson BT, Gao T et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology 2010; 76(3):631-7. PMID: 20451967
- 89. Weight CJ, Lythgoe C, Unnikrishnan R, Lane BR, Campbell SC, Fergany AF. Partial nephrectomy does not compromise survival in patients with pathologic upstaging to pT2/pT3 or high-grade renal tumors compared with radical nephrectomy. Urology 2011; 77(5):1142-6. PMID: 21420154
- 90. Weight CJ, Larson BT, Fergany AF et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol 2010; 183(4):1317-23. PMID: 20171688
- 91. Woldu SL, Weinberg AC, Korets R et al. Who Really Benefits From Nephron-sparing Surgery? Urology 2014; 84(4):860-8. PMID: 25260447
- 92. Yasuda Y, Yuasa T, Yamamoto S et al. Evaluation of the RENAL nephrometry scoring system in adopting nephron-sparing surgery for cT1 renal cancer. Urol Int 2013; 90(2):179-83. PMID: 23146865
- 93. Zini L, Perrotte P, Capitanio U et al. Radical versus partial nephrectomy: effect on overall and noncancer mortality. Cancer 2009; 115(7):1465-71.

PMID: 19195042

- 94. Chung J.S., Son N.H., Lee S.E. et al. Overall survival and renal function after partial and radical nephrectomy among older patients with localised renal cell carcinoma: A propensity-matched multicentre study. Eur. J. Cancer 2015; 51(4):489-97.
- 95. Kim CS, Bae EH, Ma SK, Kweon SS, Kim SW. Impact of partial nephrectomy on kidney function in patients with renal cell carcinoma. BMC Nephrol 2014; 15:181. PMID: 25410757
- 96. Van Poppel H, Da Pozzo L, Albrecht W et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2007; 51(6):1606-15. PMID: 17140723
- 97. O'Malley RL, Hayn MH, Brewer KA et al. Cancer control of partial nephrectomy for high-risk localized renal cell carcinoma: population-based and single-institutional analysis. World J Urol 2015. PMID: 25805189
- 98. Brewer K, O'Malley RL, Hayn M et al. Perioperative and renal function outcomes of minimally invasive partial nephrectomy for T1b and T2a kidney tumors. J Endourol 2012; 26(3):244-8. PMID: 22192099
- 99. Deklaj T, Lifshitz DA, Shikanov SA, Katz MH, Zorn KC, Shalhav AL. Laparoscopic radical versus laparoscopic partial nephrectomy for clinical T1bN0M0 renal tumors: comparison of perioperative, pathological, and functional outcomes . J Endourol 2010; 24(10):1603-7. PMID: 20932215
- 100. Janetschek G, Jeschke K, Peschel R, Strohmeyer D, Henning K, Bartsch G. Laparoscopic surgery for stage T1 renal cell carcinoma: radical nephrectomy and wedge resection. Eur Urol 2000; 38 (2):131-8. PMID: 10895002
- 101. Kim FJ, Rha KH, Hernandez F, Jarrett TW, Pinto PA, Kavoussi LR. Laparoscopic radical versus partial nephrectomy: assessment of complications. J Urol 2003; 170(2 Pt 1):408-11. PMID: 12853787
- 102. Snow DC, Bhayani SB. Rapid communication: chronic renal insufficiency after laparoscopic partial nephrectomy and radical nephrectomy for pathologic t1a lesions. J Endourol 2008; 22 (2):337-41. PMID: 18257672
- 103. Zorn KC, Gong EM, Orvieto MA et al. Comparison of laparoscopic radical and partial nephrectomy: effects on long-term serum creatinine. Urology 2007; 69(6):1035-40. PMID: 17572181
- 104. Becker A, Ravi P, Roghmann F et al. Laparoscopic radical nephrectomy vs laparoscopic or open partial nephrectomy for T1 renal cell carcinoma: comparison of complication rates in elderly patients during the initial phase of adoption. Urology 2014; 83(6):1285-91. PMID: 24862392
- 105. Matin SF, Gill IS, Worley S, Novick AC. Outcome of laparoscopic radical and open partial nephrectomy for the sporadic 4 cm. or less renal tumor with a normal contralateral kidney. J Urol 2002; 168(4 Pt 1):1356-9; discussion 1359-60. PMID: 12352392
- 106. Roos FC, Brenner W, Jager W et al. Perioperative morbidity and renal function in young and elderly patients undergoing elective nephron-sparing

- surgery or radical nephrectomy for renal tumours larger than 4 cm. BJU Int 2011; 107(4):554-61. PMID: 20707798
- 107. Iizuka J, Kondo T, Hashimoto Y et al. Similar functional outcomes after partial nephrectomy for clinical T1b and T1a renal cell carcinoma. Int J Urol 2012; 19(11):980-6. PMID: 22735049
- 108. Minervini A, Serni S, Tuccio A et al. Simple enucleation versus radical nephrectomy in the treatment of pT1a and pT1b renal cell carcinoma. Ann Surg Oncol 2012; 19(2):694-700. PMID: 21861225
- 109. Jeon HG, Jeong IG, Lee JW, Lee SE, Lee E. Prognostic factors for chronic kidney disease after curative surgery in patients with small renal tumors . Urology 2009; 74(5):1064-8. PMID: 19758688
- 110. Gratzke C, Seitz M, Bayrle F et al. Quality of life and perioperative outcomes after retroperitoneoscopic radical nephrectomy (RN), open RN and nephron-sparing surgery in patients with renal cell carcinoma. BJU Int 2009; 104(4):470-5. PMID: 19239445
- 111. Bensalah K, Zeltser I, Tuncel A, Cadeddu J, Lotan Y. Evaluation of costs and morbidity associated with laparoscopic radiofrequency ablation and laparoscopic partial nephrectomy for treating small renal tumours. BJU Int 2008; 101(4):467-71. PMID: 17922853
- 112. Desai MM, Aron M, Gill IS. Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology 2005; 66(5 Suppl):23-8. PMID: 16194703
- 113. Emara AM, Kommu SS, Hindley RG, Barber NJ. Robot-assisted partial nephrectomy vs laparoscopic cryoablation for the small renal mass: redefining the minimally invasive 'gold standard'. BJU Int 2014; 113(1):92-9. PMID: 24053473
- 114. Guillotreau J, Haber GP, Autorino R et al. Robotic partial nephrectomy versus laparoscopic cryoablation for the small renal mass. Eur Urol 2012; 61(5):899-904. PMID: 22264680
- 115. Haramis G, Graversen JA, Mues AC et al. Retrospective comparison of laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small (<3.5 cm) cortical renal masses. J Laparoendosc Adv Surg Tech A 2012; 22 (2):152-7. PMID: 22145574
- 116. Kiriluk KJ, Shikanov SA, Steinberg GD, Shalhav AL, Lifshitz DA. Laparoscopic partial nephrectomy versus laparoscopic ablative therapy: a comparison of surgical and functional outcomes in a matched control study. J Endourol 2011; 25(12):1867-72. PMID: 21902540
- 117. Haber GP, Lee MC, Crouzet S, Kamoi K, Gill IS. Tumour in solitary kidney: laparoscopic partial nephrectomy vs laparoscopic cryoablation. BJU Int 2012; 109(1):118-24. PMID: 21895929
- 118. Chang X, Zhang F, Liu T et al. Radiofrequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: long-term clinical and oncologic outcomes. J Urol 2014. PMID: 25106899
- 119. Faddegon S, Ju T, Olweny EO et al. A comparison of long term renal functional outcomes following partial nephrectomy and radiofrequency ablation. Can J Urol 2013; 20(3):6785-9. PMID: 23783048

- 120. Mues AC, Korets R, Graversen JA et al. Clinical, pathologic, and functional outcomes after nephron-sparing surgery in patients with a solitary kidney: a multicenter experience. J Endourol 2012; 26(10):1361-6. PMID: 22667344
- 121. Stern JM, Svatek R, Park S et al. Intermediate comparison of partial nephrectomy and radiofrequency ablation for clinical T1a renal tumours. BJU Int 2007; 100(2):287-90. PMID: 17617136
- 122. Thompson RH, Atwell T, Schmit G et al. Comparison of Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol 2014. PMID: 25108580
- 123. Turna B, Kaouk JH, Frota R et al. Minimally invasive nephron sparing management for renal tumors in solitary kidneys. J Urol 2009; 182(5):2150-7. PMID: 19758655
- 124. Whitson JM, Harris CR, Meng MV. Population-based comparative effectiveness of nephron-sparing surgery vs ablation for small renal masses. BJU Int 2012; 110(10):1438-43; discussion 1443. PMID: 22639860
- 125. Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol 2012; 61(6):1156-61. PMID: 22257424
- 126. Tanagho YS, Bhayani S, Kim EH, Figenshau RS. Renal Cryoablation versus Robot-Assisted Partial Nephrectomy: Washington University Long-Term Experience. J Endourol 2013. PMID: 24175692
- 127. Chang X., Zhang F., Liu T. et al. Radio frequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: Long-term clinical and oncologic outcomes. J. Urol. 2015; 193(2):430-5.
- 128. Klatte T, Mauermann J, Heinz-Peer G et al. Perioperative, oncologic, and functional outcomes of laparoscopic renal cryoablation and open partial nephrectomy: a matched pair analysis. J Endourol 2011; 25(6):991-7. PMID: 21568698
- 129. Mitchell CR, Atwell TD, Weisbrod AJ et al. Renal function outcomes in patients treated with partial nephrectomy versus percutaneous ablation for renal tumors in a solitary kidney. J Urol 2011; 186(5):1786-90. PMID: 21944103
- 130. Youn CS, Park JM, Lee JY et al. Comparison of laparoscopic radiofrequency ablation and open partial nephrectomy in patients with a small renal mass. Korean J Urol 2013; 54(9):603-8. PMID: 24044094
- 131. Patel HD, Kates M, Pierorazio PM et al. Survival after diagnosis of localized T1a kidney cancer: current population-based practice of surgery and nonsurgical management. Urology 2014; 83(1):126-32. PMID: 24246317
- 132. Patel HD, Kates M, Pierorazio PM, Allaf ME. Balancing cardiovascular (CV) and cancer death among patients with small renal masses: modification by CV risk. BJU Int 2014. PMID: 24589376

- 133. Sun M, Becker A, Tian Z et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur Urol 2014; 65(1):235-41. PMID: 23567066
- 134. Danzig MR, Chang P, Wagner AA, Pierorazio PM, Allaf ME, McKiernan JM. Active Surveillance is Superior to Radical Nephrectomy and Equivalent to Partial Nephrectomy in Preserving Renal Function Among Patients with Small Renal Masses; Results from the DISSRM Registry. J Urol 2015. PMID: 25813449
- 135. Takaki H, Soga N, Kanda H et al. Radiofrequency ablation versus radical nephrectomy: clinical outcomes for stage T1b renal cell carcinoma. Radiology 2014; 270(1):292-9. PMID: 23925272
- 136. Lane BR, Abouassaly R, Gao T et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer 2010; 116(13):3119-26. PMID: 20564627
- 137. Choueiri TK, Schutz FA, Hevelone ND et al. Thermal ablation vs surgery for localized kidney cancer: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Urology 2011; 78(1):93-8. PMID: 21550636
- 138. Lucas SM, Stern JM, Adibi M, Zeltser IS, Cadeddu JA, Raj GV. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J Urol 2008; 179(1):75-9; discussion 79-80. PMID: 17997440
- 139. Permpongkosol S, Link RE, Su LM et al. Complications of 2,775 urological laparoscopic procedures: 1993 to 2005. J Urol 2007; 177(2):580-5. PMID: 17222637
- 140. Takaki H, Yamakado K, Soga N et al. Midterm results of radiofrequency ablation versus nephrectomy for T1a renal cell carcinoma. Jpn J Radiol 2010; 28(6):460-8. PMID: 20661697
- 141. Cooper CJ, Teleb M, Dwivedi A et al. Comparative Outcome of Computed Tomography-guided Percutaneous Radiofrequency Ablation, Partial Nephrectomy or Radical Nephrectomy in the Treatment of Stage T1 Renal Cell Carcinoma. Rare Tumors 2015; 7(1):5583. PMID: 25918603
- 142. Deklaj T, Lifshitz DA, Shikanov SA et al. Localized T1a renal lesions in the elderly: outcomes of laparoscopic renal surgery. J Endourol 2010; 24(3):397-401. PMID: 20334557
- 143. Foyil KV, Ames CD, Ferguson GG et al. Longterm changes in creatinine clearance after laparoscopic renal surgery. J Am Coll Surg 2008; 206(3):511-5. PMID: 18308223
- 144. Kowalczyk KJ, Choueiri TK, Hevelone ND et al. Comparative effectiveness, costs and trends in treatment of small renal masses from 2005 to 2007. BJU Int 2013; 112(4):E273-80. PMID: 23452093
- 145. Abouassaly R, Lane BR, Novick AC. Active surveillance of renal masses in elderly patients. J Urol 2008; 180(2):505-8; discussion 508-9. PMID: 18550113

- 146. Crispen PL, Wong YN, Greenberg RE, Chen DY, Uzzo RG. Predicting growth of solid renal masses under active surveillance. Urol Oncol 2008; 26(5):555-9. PMID: 18774473
- 147. Crispen PL, Viterbo R, Boorjian SA, Greenberg RE, Chen DY, Uzzo RG. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer 2009; 115(13):2844-52. PMID: 19402168
- 148. Jewett MA, Mattar K, Basiuk J et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol 2011; 60(1):39-44. PMID: 21477920
- 149. Kunkle DA, Crispen PL, Chen DY, Greenberg RE, Uzzo RG. Enhancing renal masses with zero net growth during active surveillance. J Urol 2007; 177(3):849-53; discussion 853-4. PMID: 17296355
- 150. Rosales JC, Haramis G, Moreno J et al. Active surveillance for renal cortical neoplasms. J Urol 2010; 183(5):1698-702. PMID: 20299038
- 151. Parker PA, Swartz R, Fellman B et al. Comprehensive assessment of quality of life and psychosocial adjustment in patients with renal tumors undergoing open, laparoscopic and nephron sparing surgery. J Urol 2012; 187(3):822-6. PMID: 22245327
- 152. Sun M, Bianchi M, Trinh QD et al. Comparison of partial vs radical nephrectomy with regard to other-cause mortality in T1 renal cell carcinoma among patients aged >/=75 years with multiple comorbidities. BJU Int 2013; 111(1):67-73. PMID: 22612472
- 153. Yokoyama M, Fujii Y, Iimura Y et al. Longitudinal change in renal function after radical nephrectomy in Japanese patients with renal cortical tumors. J Urol 2011; 185(6):2066-71. PMID: 21496840

Table D14: Risk of bias assessment for studies addressing KQ1

Author, year	Patient selection	Index test(s)	Reference standard	Flow and timing	
Akdogan, 2012 ¹	?	?	+	?	
Antonelli, 2014 ²	+	?	?	+	
Bazzi, 2014 ³	?	?	?	+	
Choi, 2012 ⁴	?	+	+	+	
Chung, 2014, ⁵	+	+	?	-	
Fujita, 2013 ⁶	+	?	+	?	
Jeon, 2010 ⁷	+	+	+	+	
Kava, 20128	+	+	?	-	
Keehn, 2014 ⁹	?	+	?	-	
Koo, 2013 ¹⁰	+	+	+	+	
Lane, 2007 ¹¹	+	+	?	+	
Mullins, 2012 ¹²	?	?	+	?	
Murphy, 2009 ¹³	+	+	+	?	
Nishikawa, 2014 ¹⁴	+	+	?	+	
Park, 2011 ¹⁵	+	+	?	?	
Rosenkratz, 2014 ¹⁶	?	+	+	+	
Soga, 2012 ¹⁷	+	+	+	?	
Xiong, 2010 ¹⁸	+	?	+	+	
Shin, 2013 ¹⁹	?	+	+	+	
Ball, 2015 ²⁰	?	+	+	+	

^{+ =}Low, ? =Unclear, - =High

Table D15: Risk of bias assessment for studies addressing KQ2

Author, year	Patient selection	Index test(s)	Reference standard	Flow and timing	Overall bias
Campbell, 1997 ²¹	+	+	+	+	+
Chyhrai, 2010 ²²	?	+	+	+	at risk
Halverson, 2013 ²³	+	+	+	+	+
Harisinghani, 2003 ²⁴	-	+	+	-	at risk
Leveridge, 2011 ²⁵	+	+	+	-	at risk
Londono, 2013 ²⁶	+	+	+	-	at risk
Menogue, 2012 ²⁷	+	+	+	-	at risk
Millet, 2012 ²⁸	-	+	+	-	at risk
Neuzillet, 2003 ²⁹	+	+	+	-	at risk
Park, 2013 ³⁰	+	+	+	-	at risk
Salem, 2012 ³¹	+	+	+	-	at risk
Shannon, 2008 ³²	+	+	+	-	at risk
Sofikerim, 2009 ³³	+	+	+	+	+
Vasudevan, 2006 ³⁴	+	+	+	-	at risk
Volpe, 2008 ³⁵	+	+	+	-	at risk
Wang, 2009 ³⁶	+	+	+	-	at risk
Reichelt, 2007 ³⁷	+	+	+	+	+
Schmidbauer, 2008 ³⁸	+	+	+	+	+
Richard, 2015 ³⁹	+	+	+	-	at risk
Prince, 2015 ⁴⁰	+	+	+	-	at risk

^{+ =}Low, ? =Unclear, - =High

Table D16: Risk of bias assessment for studies addressing KQ3-oncology efficacy

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Antonelli, 2011 ⁴¹	moderate	moderate	low	low	moderate	low	low	moderate
Badalato, 1997 ⁴²	Moderate	moderate	low	no information	Moderate	low	low	moderate
Barbalias, 1999 ⁴³	Moderate	moderate	low	low	Moderate	low	low	moderate
Bedke, 2008 ⁴⁴	moderate	moderate	low	low	moderate	low	low	moderate
Bensalah, 2007 ⁴⁵	serious	serious	low	low	moderate	moderate	moderate	serious
Chang, 2014 ⁴⁶	low	moderate	low	low	low	low	low	moderate
Choueiri, 2011 ⁴⁷	moderate	serious	low	no information	moderate	low	low	serious
Chung, 2014 ⁴⁸	low	moderate	low	low	low	low	low	moderate
Crepel, 2010 ⁴⁹	serious	serious	low	low	low	low	moderate	serious
Crepel, 2010 ⁵⁰	moderate	moderate	low	no information	low	low	low	moderate
Daugherty, 2014 ⁵¹	serious	moderate	low	no information	moderate	low	low	serious
Deklaj, 2010 ⁵²	serious	moderate	low	moderate	moderate	moderate	moderate	moderate
Desai, 2005 ⁵³	serious	moderate	low	moderate	serious	moderate	low	serious
Emara, 2014 ⁵⁴	serious	moderate	low	moderate	moderate	moderate	low	moderate
Gratzke,2009	serious	Moderate	Low	moderate	Low	Low	Low	serious
Guillotreau, 2012 ⁵⁶	moderate	moderate	low	low	serious	moderate	low	serious
Haramis, 2012 ⁵⁷	moderate	moderate	low	low	low	low	low	moderate
Houston, 2009 ⁵⁸	moderate	moderate	low	low	low	low	low	moderate
Huang, 2009 ⁵⁹	moderate	moderate	low	no information	low	low	moderate	moderate
lizuka, 2012 ⁶⁰	moderate	moderate	low	low	moderate	low	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Indudhara, 1997 ⁶¹	moderate	serious	low	low	low	low	low	serious
Janetschek, 2000 ⁶²	moderate	moderate	low	low	moderate	low	low	moderate
Kim, 2003 ⁶³	serious	moderate	low	low	low	low	low	serious
Klatte, 2011 ⁶⁴	low	moderate	low	low	low	low	low	moderate
Kopp, 2014 ⁶⁵	low	moderate	low	low	moderate	low	low	moderate
Kyung, 2014 ⁶⁶	Moderate	serious	Low	Low	Low	Low	Low	serious
Lane, 2010 ⁶⁷	low	Moderate	Low	Low	Low	Low	Low	Moderate
Lane, 2010 ⁶⁸	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Li, 2007 ⁶⁹	Serious	Serious	Low	Low	Moderate	Low	Moderate	Serious
Li, 2010 ⁷⁰	moderate	moderate	low	low	low	low	moderate	moderate
Lucas, 2007 ⁷¹	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Mariusdottir, 2013 ⁷²	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
McKiernan, 2002 ⁷³	Serious	Serious	Low	Low	Moderate	Low	Low	Serious
Medina-Polo, 2011 ⁷⁴	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Meskawi, 2014 ⁷⁵	moderate	moderate	low	no information	low	low	moderate	Moderate
Milonas, 2013 ⁷⁶	moderate	moderate	low	low	moderate	low	low	moderate
Minervini, 2012 ⁷⁷	moderate	moderate	low	low	low	low	low	moderate
Mitchell, 2005 ⁷⁸	moderate	moderate	low	low	low	low	low	moderate
Mues, 2012 ⁷⁹	serious	serious	moderate	low	low	low	low	serious
Olweny, 2012 ⁸⁰	moderate	moderate	low	moderate	moderate	moderate	low	moderate
Pascal, 2011 ⁸¹ (solitary)	moderate	serious	low	low	low	moderate	low	Serious
Patard, 2004 ⁸²	moderate	moderate	low	low	low	low	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Patel, 2014 ⁸³ (p) ⁸⁴ (s)	moderate	moderate	low	no information	low	low	moderate	moderate
Roos, 2010 ⁸⁵	serious	serious	low	moderate	low	low	low	Serious
Roos, 2012 ⁸⁶	moderate	serious	moderate	low	low	low	low	serious
Shinohara, 2001 ⁸⁷	serious	serious	low	moderate	moderate	moderate	low	Serious
Stern, 200788	serious	serious	serious	moderate	low	moderate	low	Serious
Sun, 2013 ⁸⁹	moderate	moderate	low	no information	low	low	serious	serious
Takaki, 2014 ⁹⁰	serious	serious	moderate	low	moderate	low	low	Serious
Tan, 2012 ⁹¹	moderate	moderate	low	no information	low	low	low	moderate
Tanagho, 2013 ⁹²	moderate	serious	serious	low	moderate	moderate	low	serious
Thompson, 2014 ⁹³	moderate	moderate	low	moderate	moderate	moderate	moderate	moderate
Turna, 2009 ⁹⁴ (solitary)	moderate	moderate	moderate	low	moderate	low	low	moderate
Uchida, 2004 ⁹⁵	serious	serious	low	low	low	low	low	Serious
Uzzo, 1999 ⁹⁶	moderate	moderate	moderate	moderate	low	low	low	moderate
Weight, 2010, ⁹⁷	low	moderate	low	low	low	low	low	moderate
Weight, 2010 ⁹⁸	moderate	moderate	low	low	moderate	low	serious	serious
Whitson, 2012 ⁹⁹	moderate	moderate	low	no information	moderate	low	moderate	serious
Youn, 2013 ¹⁰⁰	serious	serious	serious	low	low	moderate	low	Serious

Table D17: Risk of bias assessment for studies addressing KQ3-overall survival

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Badalato, 1997 ⁴²	Moderate	Moderate	low	no information	Moderate	low	low	moderate
Bensalah, 2007 ⁴⁵	serious	Serious	low	low	moderate	moderate	moderate	serious
Chang, 2014 ⁴⁶	low	Moderate	low	low	low	low	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Chang, 2014 ¹⁰¹	moderate	Moderate	low	low	low	low	low	moderate
Choueiri, 2011 ⁴⁷	moderate	Serious	low	no information	moderate	low	low	serious
Chung, 2014 ⁴⁸	low	Moderate	low	low	low	low	low	moderate
Daugherty, 2014 ⁵¹	Severe	Moderate	low	no information	moderate	low	low	serious
Deklaj, 2010 ⁵²	serious	Moderate	low	moderate	moderate	moderate	moderate	moderate
Desai, 2005 ⁵³	serious	Moderate	low	moderate	serious	moderate	low	serious
Emara, 2014 ⁵⁴	serious	Moderate	low	moderate	moderate	moderate	low	moderate
Gratzke,2009 ⁵⁵	serious	Moderate	Low	moderate	Low	Low	Low	serious
Haramis, 2012 ⁵⁷	moderate	Moderate	low	low	low	low	low	moderate
Houston, 2009 ⁵⁸	moderate	Moderate	low	low	low	low	low	moderate
Huang, 2009 ⁵⁹	moderate	Moderate	low	no information	low	low	moderate	moderate
lizuka, 2012 ⁶⁰	moderate	Moderate	low	low	moderate	low	low	moderate
Indudhara, 1997 ⁶¹	moderate	Serious	low	low	low	low	low	serious
Kates, 2011 ¹⁰²	moderate	Moderate	low	no information	low	low	low	moderate
Kim, 2010 ¹⁰³	moderate	Moderate	low	low	low	low	moderate	moderate
Kopp, 2014 ⁶⁵	low	Moderate	low	low	moderate	low	low	moderate
Kyung, 2014 ⁶⁶	Moderate	Serious	Low	Low	Low	Low	Low	serious
Lane, 2010 ⁶⁷	low	Moderate	Low	Low	Low	Low	Low	Moderate
Lane, 2010 ⁶⁸	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Li, 2007 ⁶⁹	Serious	Serious	Low	Low	Moderate	Low	Moderate	Serious
Li, 2010 ⁷⁰	moderate	Moderate	low	low	low	low	moderate	moderate
Mariusdottir, 2013 ⁷²	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Medina-Polo, 2011 ⁷⁴	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Milonas, 2013 ⁷⁶	moderate	Moderate	low	low	moderate	low	low	moderate
Minervini, 2012 ⁷⁷	moderate	Moderate	low	low	low	low	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Mues, 2012 ⁷⁹	serious	Serious	moderate	low	low	low	low	serious
Olweny, 2012 ⁸⁰	moderate	Moderate	low	moderate	moderate	moderate	low	moserate
Pascal, 201181	moderate	Serious	low	low	low	moderate	low	Serious
Patel, 2014 ⁸³ (p) ⁸⁴ (s)	moderate	Moderate	low	no information	low	low	moderate	moderate
Roos, 2010 ⁸⁵	serious	Serious	low	moderate	low	low	low	Serious
Roos, 2012 ⁸⁶	moderate	Serious	moderate	low	low	low	low	serious
Smaldone, 2012 ¹⁰⁴	moderate	Moderate	low	no information	low	low	serious	serioud
takagi, 2011 ¹⁰⁵	Serious	Serious	Low	Low	Low	Low	Moderate	Serious
Takaki, 2010 ¹⁰⁶	moderate	Moderate	low	low	low	low	moderate	moderate
Takaki, 2014 ⁹⁰	serious	Serious	moderate	low	moderate	low	low	Serious
Tan, 2012 ⁹¹	moderate	Moderate	low	no information	low	low	low	moderate
Tanagho, 2013 ⁹²	moderate	Serious	serious	low	moderate	moderate	low	serious
Thompson, 2008 ¹⁰⁷	moderate	Moderate	low	low	low	low	low	moderate
Thompson, 2014 ⁹³	moderate	Moderate	low	moderate	moderate	moderate	moderate	moderate
Turna, 200994	moderate	Moderate	moderate	low	moderate	low	low	moderate
Weight, 2010 ⁹⁸	moderate	Moderate	low	low	moderate	low	serious	serious
Weight, 2010 ¹⁰⁸	low	Moderate	low	low	low	low	moderate	moderate
Weight, 201097	low	Moderate	low	low	low	low	low	moderate
Zini, 2009 ¹⁰⁹	Moderate	Moderate	low	no information	Moderate	low	moderate	moderate

Table D18: Risk of bias assessment for studies addressing KQ3-renal function

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Antoniewicz, 2012 ¹¹⁰	Serious	Serious	Low	Low	Low	Low	Low	Serious
Barbalias, 1999 ⁴³	Moderate	Moderate	low	low	Moderate	low	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Brewer, 2012 ¹¹¹	low	Moderate	low	low	moderate	low	low	moderate
Chang, 2014 ¹⁰¹	Low	Moderate	Low	Low	Low	Low	Low	Moderate
Chang, 2015 ¹¹²	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Chung, 2014 ⁴⁸	Low	Moderate	Low	Low	Low	Low	Low	Moderate
Cooper, 2015 ¹¹³	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Danzig, 2015 ¹¹⁴	Low	Moderate	Low	Low	Low	Low	Low	Moderate
Dash, 2006 ¹¹⁵	Moderate	Moderate	Low	Moderate	Low	Low	Moderate	Moderate
Deklaj, 2010 ⁵²	serious	Moderate	low	moderate	moderate	moderate	moderate	moderate
Deklaj, 2010 ¹¹⁶	serious	Moderate	low	moderate	low	low	low	serious
Desai, 2005 ⁵³	serious	Moderate	low	moderate	serious	moderate	low	serious
Emara, 2014 ⁵⁴	serious	Moderate	low	moderate	moderate	moderate	low	moderate
Faddegon, 2013 ¹¹⁷	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Foyil, 2008 ¹¹⁸	Serious	Serious	Low	Low	Low	Low	Low	Serious
Gratzke,2009 ⁵⁵	serious	Moderate	Low	moderate	Low	Low	Low	serious
Guillotreau, 2012 ⁵⁶	moderate	Moderate	low	low	serious	moderate	low	serious
Haramis, 2012 ⁵⁷	moderate	Moderate	low	low	low	low	low	moderate
Huang, 2006 ¹¹⁹	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
lizuka, 2012 ⁶⁰	moderate	Moderate	low	low	moderate	low	low	moderate
Jeon, 2009 ¹²⁰	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Kim, 2003 ⁶³	serious	Moderate	low	low	low	low	low	serious
Kim, 2010 ¹⁰³	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Kiriluk, 2011 ¹²¹	moderate	Moderate	low	low	moderate	moderate	low	moderate

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Klatte, 2011 ⁶⁴	low	Moderate	low	low	low	low	low	moderate
Kowalczyk, 2013 ¹²²	low	Moderate	low	low	low	low	low	moderate
Kyung, 2014 ⁶⁶	Moderate	Serious	Low	Low	Low	Low	Low	serious
Lane, 2010 ⁶⁷	low	Moderate	Low	Low	Low	Low	Low	Moderate
Lane, 2010 ⁶⁸	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Li, 2007 ⁶⁹	Serious	Serious	Low	Low	Moderate	Low	Moderate	Serious
Lucas, 2007 ⁷¹	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Mariusdottir, 2013 ⁷²	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Matin, 2002 ¹²³	serious	Moderate	Low	Low	moderate	Low	Low	serious
McKiernan, 2002 ⁷³	Serious	Serious	Low	Low	Moderate	Low	Low	Serious
Medina-Polo, 2011 ⁷⁴	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Mitchell, 2011 ¹²⁴	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Miyamoto, 2012 ¹²⁵	moderate	Moderate	moderate	low	low	low	low	moderate
Mues, 2012 ⁷⁹	serious	Serious	moderate	low	low	low	low	serious
Pascal, 201181	moderate	Serious	low	low	low	moderate	low	Serious
Roos, 2010 ⁸⁵	serious	Serious	low	moderate	low	low	low	Serious
Roos, 2012 ⁸⁶	moderate	Serious	moderate	low	low	low	low	serious
Snow, 2008 ¹²⁶	Serious	Serious	Low	Low	Moderate	Low	Low	Serious
Sun, 2012 ¹²⁷	low	Moderate	low	low	low	low	low	moderate
takagi, 2011 ¹⁰⁵	Serious	Serious	Low	Low	Low	Low	Moderate	Serious
Takaki, 2010 ¹⁰⁶	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Takaki, 201490	serious	Serious	moderate	low	moderate	low	low	Serious

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Tanagho, 2013 ⁹²	moderate	Serious	serious	low	moderate	moderate	low	serious
Turna, 2009 ⁹⁴	moderate	Moderate	moderate	low	moderate	low	low	moderate
Woldu, 2014 ¹²⁸	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Yasuda, 2012 ¹²⁹	Serious	Serious	Low	Low	Low	Low	Moderate	Serious
Youn, 2013 ¹⁰⁰	serious	Serious	serious	low	low	moderate	low	Serious
Zorn, 2007 ¹³⁰	serious	Serious	low	moderate	low	low	low	Serious

Table D19: Risk of bias assessment for studies addressing KQ3-perioperative

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Barbalias, 1999 ⁴³	Moderate	moderate	low	low	Moderate	low	low	moderate
Bensalah, 2007 ⁴⁵	serious	Serious	low	low	moderate	moderate	moderate	serious
Brewer, 2012 ¹¹¹	low	moderate	low	low	moderate	low	low	moderate
Chang, 2015 ¹¹²	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Deklaj, 2010 ⁵²	serious	moderate	low	moderate	moderate	moderate	moderate	moderate
Deklaj, 2010 ¹¹⁶	serious	moderate	low	moderate	low	low	low	serious
Desai, 2005 ⁵³	serious	moderate	low	moderate	serious	moderate	low	serious
Emara, 2014 ⁵⁴	serious	moderate	low	moderate	moderate	moderate	low	moderate
Gratzke, 2009 ⁵⁵	serious	Moderate	Low	moderate	Low	Low	Low	serious
Guillotreau, 2012 ⁵⁶	moderate	moderate	low	low	serious	moderate	low	serious
Haramis, 2012 ⁵⁷	moderate	moderate	low	low	low	low	low	moderate
lizuka, 2012 ⁶⁰	moderate	moderate	low	low	moderate	low	low	moderate
Indudhara, 1997 ⁶¹	moderate	Serious	low	low	low	low	low	serious
Janetschek, 2000 ⁶²	moderate	moderate	low	low	moderate	low	low	moderate
Kaowalczyk, 2013 ¹²²	low	moderate	low	low	low	low	low	moderate
Kim, 2003 ⁶³	serious	moderate	low	low	low	low	low	serious

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Kiriluk, 2011 ¹²¹	moderate	moderate	low	low	moderate	moderate	low	moderate
Klatte, 2011 ⁶⁴	low	moderate	low	low	low	low	low	moderate
Kopp, 2014 ⁶⁵	low	moderate	low	low	moderate	low	low	moderate
Li, 2010 ⁷⁰	moderate	moderate	low	low	low	low	moderate	moderate
Matin, 2002 ¹²³	serious	Moderate	Low	Low	moderate	Low	Low	serious
Miyamoto, 2012 ¹²⁵	moderate	moderate	moderate	low	low	low	low	moderate
Mues, 2012 ⁷⁹	serious	Serious	moderate	low	low	low	low	serious
Pascal, 201181	moderate	Serious	low	low	low	moderate	low	Serious
Permpongkosol, 2007 ¹³¹	moderate	Serious	moderate	low	moderate	low	low	Serious
Roos, 2010 ⁸⁵	serious	Serious	low	moderate	low	low	low	Serious
Roos, 201286	moderate	Serious	moderate	low	low	low	low	serious
Shinohara, 2001 ⁸⁷	serious	Serious	low	moderate	moderate	moderate	low	Serious
Tanagho, 2013 ⁹²	moderate	Serious	serious	low	moderate	moderate	low	serious
Tomaszewski, 2014 ¹³²	moderate	moderate	moderate	low	low	moderate	low	moderate
Turna, 2009 ⁹⁴	moderate	moderate	moderate	low	moderate	low	low	moderate
Uchida, 2004 ⁹⁵	serious	Serious	low	low	low	low	low	Serious
Uzzo, 1999 ⁹⁶	moderate	moderate	moderate	moderate	low	low	low	moderate
Xu, 2014 ¹³³	Moderate	Moderate	Low	Moderate	Low	Low	Low	Moderate
Yasuda, 2013 ¹²⁹	serious	Serious	moderate	low	low	low	low	Serious
Youn, 2013 ¹⁰⁰	serious	Serious	serious	low	low	moderate	low	Serious
Zorn, 2007 ¹³⁰	serious	Serious	low	moderate	low	low	low	Serious

Table D20: Risk of bias assessment for studies addressing KQ3-harms

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Barbalias, 1999 ⁴³	Moderate	moderate	Low	low	Moderate	low	low	moderate
Becker, 2014 ¹³⁴	Moderate	moderate	Low	low	low	low	low	moderate
Bensalah, 2007 ⁴⁵	serious	serious	Low	low	moderate	moderate	moderate	serious

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Brewer, 2012 ¹¹¹	low	moderate	Low	low	moderate	low	low	moderate
Chang, 2014 ⁴⁶	low	moderate	Low	low	low	low	low	moderate
Chang, 2014 ¹⁰¹	Low	Moderate	Low	Low	Low	Low	Low	Moderate
Chang, 2015 ¹¹²	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Cooper, 2015 ¹¹³	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Deklaj, 2010 ⁵²	serious	moderate	Low	moderate	moderate	moderate	moderate	moderate
Deklaj, 2010 ¹¹⁶	serious	moderate	Low	moderate	low	low	low	serious
Desai, 2005 ⁵³	serious	moderate	Low	moderate	serious	moderate	low	serious
Emara, 2014 ⁵⁴	serious	moderate	Low	moderate	moderate	moderate	low	moderate
Gratzke, 2009 ⁵⁵	serious	Moderate	Low	moderate	Low	Low	Low	serious
Guillotreau, 2012 ⁵⁶	moderate	moderate	Low	low	serious	moderate	low	serious
Haramis, 2012 ⁵⁷	moderate	moderate	Low	low	low	low	low	moderate
Indudhara, 1997 ⁶¹	moderate	serious	Low	low	low	low	low	serious
Janetschek, 2000 ⁶²	moderate	moderate	Low	low	moderate	low	low	moderate
Kaowalczyk, 2013 ¹²²	low	moderate	Low	low	low	low	low	moderate
Kim, 2003 ⁶³	serious	moderate	Low	low	low	low	low	serious
Kiriluk, 2011 ¹²¹	moderate	moderate	Low	low	moderate	moderate	low	moderate
Klatte, 2011 ⁶⁴	low	moderate	Low	low	low	low	low	moderate
Kopp, 2014 ⁶⁵	low	moderate	Low	low	moderate	low	low	moderate
Kyung, 2014 ⁶⁶	Moderate	serious	Low	Low	Low	Low	Low	serious
Lane, 2010 ⁶⁷	low	Moderate	Low	Low	Low	Low	Low	Moderate
Li, 2010 ⁷⁰	moderate	moderate	low	low	low	low	moderate	moderate
Lowrance, 2010 ¹³⁵	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate
Matin, 2002 ¹²³	serious	Moderate	Low	Low	moderate	Low	Low	serious
Mitchell, 2005 ⁷⁸	moderate	moderate	low	low	low	low	low	moderate
Mues, 2012 ⁷⁹	serious	serious	moderate	low	low	low	low	serious
Pascal, 2011 ⁸¹	moderate	serious	low	low	low	moderate	low	Serious

Author, year	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Overall
Permpongkosol, 2007 ¹³¹	moderate	serious	moderate	low	moderate	low	low	Serious
Roos, 2010 ⁸⁵	serious	serious	low	moderate	low	low	low	Serious
Roos, 2012 ⁸⁶	moderate	serious	moderate	low	low	low	low	serious
Shinohara, 2001 ⁸⁷	serious	serious	low	moderate	moderate	moderate	low	Serious
Stern, 200788	serious	serious	serious	moderate	low	moderate	low	Serious
Sun, 2012 ¹²⁷	low	moderate	low	low	low	low	low	moderate
Takaki, 2010 ¹⁰⁶	Moderate	Moderate	Low	Low	Low	Low	Moderate	Moderate
Takaki, 2014 ⁹⁰	serious	serious	moderate	low	moderate	low	low	Serious
Tanagho, 2013 ⁹²	moderate	serious	serious	low	moderate	moderate	low	serious
Tomaszewski, 2014 ¹³²	moderate	moderate	moderate	low	low	moderate	low	moderate
Turna, 2009 ⁹⁴	moderate	moderate	moderate	low	moderate	low	low	moderate
Uchida, 2004 ⁹⁵	serious	serious	low	low	low	low	low	Serious
Uzzo, 1999 ⁹⁶	moderate	moderate	moderate	moderate	low	low	low	moderate
Xu, 2014 ¹³³	Moderate	Moderate	Low	Moderate	Low	Low	Low	Moderate
Yasuda, 2013 ¹²⁹	serious	serious	moderate	low	low	low	low	Serious
Youn, 2013 ¹⁰⁰	serious	serious	serious	low	low	moderate	low	Serious

Q1: Bias due to confounding

Q2: Bias in selection of participants into the study

Q3: Bias in measurement of interventions

Q4: Bias due to departures from intended interventions

Q5: Bias due to missing data

Q6: Bias in measurement of outcomes

Q7: Bias in selection of the reported result

Reference List

- 1. Akdogan B, Gudeloglu A, Inci K, Gunay LM, Koni A, Ozen H. Prevalence and predictors of benign lesions in renal masses smaller than 7 cm presumed to be renal cell carcinoma. Clin Genitourin Cancer 2012; 10(2):121-5. PMID: 22401753
- 2. Antonelli A, Furlan M, Sandri M et al. The R.e.N.a.L. Nephrometric nomogram cannot accurately predict malignancy or aggressiveness of small renal masses amenable to partial nephrectomy. Clin Genitourin Cancer 2014; 12(5):366-72. PMID: 24637340

- 3. Bazzi WM, Dejbakhsh SZ, Bernstein M, Russo P. The association of baseline health and gender with small renal mass pathology. Can J Urol 2014; 21(3):7271-6. PMID: 24978356
- 4. Choi SK, Jeon SH, Chang SG. Characterization of small renal masses less than 4 cm with quadriphasic multidetector helical computed tomography: differentiation of benign and malignant lesions. Korean J Urol 2012; 53(3):159-64. PMID: 22468210
- 5. Chung MS, Choi HJ, Kim MH, Cho KS. Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J Roentgenol 2014; 202(4):765-71. PMID: 24660704
- 6. Fujita T, Iwamura M, Wakatabe Y et al. Predictors of benign histology in clinical T1a renal cell carcinoma tumors undergoing partial nephrectomy. Int J Urol 2014; 21(1):100-2. PMID: 23635425
- 7. Jeon HG, Lee SR, Kim KH et al. Benign lesions after partial nephrectomy for presumed renal cell carcinoma in masses 4 cm or less: prevalence and predictors in Korean patients. Urology 2010; 76(3):574-9. PMID: 20303148
- 8. Kava BR, Eldefrawy A, Ayyathurai R et al. Impact of body mass index and tumor location on the incidence of benign histology at the time of nephron-sparing surgery. Int Urol Nephrol 2012; 44(5):1319-24. PMID: 22678516
- 9. Keehn A, Srivastava A, Maiman R et al. The Relationship Between Visceral Obesity and the Clinicopathologic Features of Patients with Small Renal Masses. J Endourol 2014. PMID: 25203393
- 10. Koo KC, Yoo H, Shin TY et al. External validation of the RENAL nephrometry score nomogram for predicting high-grade renal cell carcinoma in solid, enhancing, and small renal masses. World J Urol 2014; 32(1):249-55. PMID: 24013182
- 11. Lane BR, Babineau D, Kattan MW et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol 2007; 178(2):429-34. PMID: 17561141
- 12. Mullins JK, Kaouk JH, Bhayani S et al. Tumor complexity predicts malignant disease for small renal masses . J Urol 2012; 188(6):2072-6. PMID: 23083863
- 13. Murphy AM, Buck AM, Benson MC, McKiernan JM. Increasing detection rate of benign renal tumors: evaluation of factors predicting for benign tumor histologic features during past two decades. Urology 2009; 73(6):1293-7. PMID: 19371933
- 14. Nishikawa M, Miyake H, Kitajima K, Takahashi S, Sugimura K, Fujisawa M. Preoperative differentiation between benign and malignant renal masses smaller than 4 cm treated with partial nephrectomy. Int J Clin Oncol 2014. PMID: 24526391
- 15. Park SY, Jeon SS, Lee SY et al. Incidence and predictive factors of benign renal lesions in Korean patients with preoperative imaging diagnoses of renal cell carcinoma. J Korean Med Sci 2011; 26(3):360-4. PMID: 21394303
- 16. Rosenkrantz A.B., Wehrli N.E., Melamed J., Taneja S.S., Shaikh M.B. Renal masses measuring under 2 cm: Pathologic outcomes and associations with

- MRI features. Eur. J. Radiol. 2014; 83(8):1311-6.
- 17. Soga N, Nishikawa K, Takaki H et al. Low incidence of benign lesions in resected suspicious renal masses greater than 2 cm: Single-center experience from Japan. Int J Urol 2012; 19(8):729-34. PMID: 22515572
- 18. Xiong YH, Zhang ZL, Li YH et al. Benign pathological findings in 303 Chinese patients undergoing surgery for presumed localized renal cell carcinoma. Int J Urol 2010; 17(6):517-21. PMID: 20370841
- 19. Shin T.Y., Kim J., Koo K.C. et al. Assessing the anatomical characteristics of renal masses has a limited effect on the prediction of pathological outcomes in solid, enhancing, small renal masses: Results using the PADUA classification system. BJU Int. 2014; 113(5):754-61.
- 20. Ball M.W., Gorin M.A., Bhayani S.B. et al. Preoperative predictors of malignancy and unfavorable pathology for clinical T1a tumors treated with partial nephrectomy: A multi-institutional analysis. Urol. Oncol. Semin. Orig. Invest. 2015; 33(3):112.e9-112.e14.
- 21. Campbell SC, Novick AC, Herts B et al. Prospective evaluation of fine needle aspiration of small, solid renal masses: accuracy and morbidity. Urology 1997; 50(1):25-9. PMID: 9218014
- 22. Chyhrai A, Sanjmyatav J, Gajda M et al. Multi-colour FISH on preoperative renal tumour biopsies to confirm the diagnosis of uncertain renal masses. World J Urol 2010; 28(3):269-74. PMID: 20390284
- 23. Halverson SJ, Kunju LP, Bhalla R et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J Urol 2013; 189(2):441-6. PMID: 23253955
- 24. Harisinghani MG, Maher MM, Gervais DA et al. Incidence of malignancy in complex cystic renal masses (Bosniak category III): should imaging-guided biopsy precede surgery? AJR Am J Roentgenol 2003; 180(3):755-8. PMID: 12591691
- 25. Leveridge MJ, Finelli A, Kachura JR et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 2011; 60(3):578-84. PMID: 21704449
- 26. Londono DC, Wuerstle MC, Thomas AA et al. Accuracy and implications of percutaneous renal biopsy in the management of renal masses. Perm J 2013; 17 (3):4-7. PMID: 24355883
- 27. Menogue SR, O'Brien BA, Brown AL, Cohen RJ. Percutaneous core biopsy of small renal mass lesions: a diagnostic tool to better stratify patients for surgical intervention. BJU Int 2013; 111(4 Pt B):E146-51. PMID: 22805186
- 28. Millet I, Curros F, Serre I, Taourel P, Thuret R. Can renal biopsy accurately predict histological subtype and Fuhrman grade of renal cell carcinoma? J Urol 2012; 188(5):1690-4. PMID: 22998910
- 29. Neuzillet Y, Lechevallier E, Andre M, Daniel L, Coulange C. Accuracy and clinical role of fine needle percutaneous biopsy with computerized tomography guidance of small (less than 4.0 cm) renal masses. J Urol 2004; 171(5):1802-5. PMID: 15076280

- 30. Park SY, Park BK, Kim CK, Kwon GY. Ultrasound-guided core biopsy of small renal masses: diagnostic rate and limitations. J Vasc Interv Radiol 2013; 24(1):90-6. PMID: 23206333
- 31. Salem S, Ponsky LE, Abouassaly R et al. Image-guided biopsy of small renal masses in the era of ablative therapies. Int J Urol 2013; 20(6):580-4. PMID: 23190309
- 32. Shannon B.A., Cohen R.J., de Bruto H., Davies R.J. The Value of Preoperative Needle Core Biopsy for Diagnosing Benign Lesions Among Small, Incidentally Detected Renal Masses. J. Urol. 2008; 180(4):1257-61.
- 33. Sofikerim M, Tatlisen A, Canoz O, Tokat F, Demirtas A, Mavili E. What is the role of percutaneous needle core biopsy in diagnosis of renal masses? Urology 2010; 76(3):614-8. PMID: 20110106
- 34. Vasudevan A, Davies RJ, Shannon BA, Cohen RJ. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int 2006; 97(5):946-9. PMID: 16643475
- 35. Volpe A, Mattar K, Finelli A et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J Urol 2008; 180(6):2333-7. PMID: 18930274
- 36. Wang R, Wolf JS Jr, Wood DP Jr, Higgins EJ, Hafez KS. Accuracy of percutaneous core biopsy in management of small renal masses. Urology 2009; 73(3):586-90; discussion 590-1. PMID: 19118884
- 37. Reichelt O, Gajda M, Chyhrai A, Wunderlich H, Junker K, Schubert J. Ultrasound-guided biopsy of homogenous solid renal masses. Eur Urol 2007; 52(5):1421-6. PMID: 17306920
- 38. Schmidbauer J, Remzi M, Memarsadeghi M et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol 2008; 53(5):1003-11. PMID: 18061339
- 39. Richard PO, Jewett MA, Bhatt JR et al. Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Eur Urol 2015. PMID: 25900781
- 40. Prince J, Bultman E, Hinshaw L et al. Patient and Tumor Characteristics can Predict Nondiagnostic Renal Mass Biopsy Findings. J Urol 2014. PMID: 25498574
- 41. Antonelli A, Ficarra V, Bertini R et al. Elective partial nephrectomy is equivalent to radical nephrectomy in patients with clinical T1 renal cell carcinoma: results of a retrospective, comparative, multi-institutional study. BJU Int 2012; 109(7):1013-8. PMID: 21883829
- 42. Badalato GM, Kates M, Wisnivesky JP, Choudhury AR, McKiernan JM. Survival after partial and radical nephrectomy for the treatment of stage T1bN0M0 renal cell carcinoma (RCC) in the USA: a propensity scoring approach. BJU Int 2012; 109(10):1457-62. PMID: 21933334
- 43. Barbalias GA, Liatsikos EN, Tsintavis A, Nikiforidis G. Adenocarcinoma of the kidney: nephron-sparing surgical approach vs. radical nephrectomy. J

- Surg Oncol 1999; 72(3):156-61. PMID: 10562362
- 44. Bedke J, Pritsch M, Buse S et al. Prognostic stratification of localized renal cell carcinoma by tumor size. J Urol 2008; 180(1):62-7. PMID: 18485376
- 45. Bensalah K, Zeltser I, Tuncel A, Cadeddu J, Lotan Y. Evaluation of costs and morbidity associated with laparoscopic radiofrequency ablation and laparoscopic partial nephrectomy for treating small renal tumours. BJU Int 2008; 101(4):467-71. PMID: 17922853
- 46. Chang X, Zhang F, Liu T et al. Radiofrequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: long-term clinical and oncologic outcomes. J Urol 2014. PMID: 25106899
- 47. Choueiri TK, Schutz FA, Hevelone ND et al. Thermal ablation vs surgery for localized kidney cancer: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Urology 2011; 78(1):93-8. PMID: 21550636
- 48. Chung J.S., Son N.H., Lee S.E. et al. Overall survival and renal function after partial and radical nephrectomy among older patients with localised renal cell carcinoma: A propensity-matched multicentre study. Eur. J. Cancer 2015; 51(4):489-97.
- 49. Crepel M, Jeldres C, Sun M et al. A population-based comparison of cancer-control rates between radical and partial nephrectomy for T1A renal cell carcinoma. Urology 2010; 76(4):883-8. PMID: 20932408
- 50. Crepel M, Jeldres C, Perrotte P et al. Nephron-sparing surgery is equally effective to radical nephrectomy for T1BN0M0 renal cell carcinoma: a population-based assessment. Urology 2010; 75(2):271-5. PMID: 19962740
- 51. Daugherty M, Bratslavsky G. Compared with radical nephrectomy, nephron-sparing surgery offers a long-term survival advantage in patients between the ages of 20 and 44 years with renal cell carcinomas (</=4 cm): an analysis of the SEER database. Urol Oncol 2014; 32 (5):549-54. PMID: 24495447
- 52. Deklaj T, Lifshitz DA, Shikanov SA, Katz MH, Zorn KC, Shalhav AL. Laparoscopic radical versus laparoscopic partial nephrectomy for clinical T1bN0M0 renal tumors: comparison of perioperative, pathological, and functional outcomes . J Endourol 2010; 24(10):1603-7. PMID: 20932215
- 53. Desai MM, Aron M, Gill IS. Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology 2005; 66(5 Suppl):23-8. PMID: 16194703
- 54. Emara AM, Kommu SS, Hindley RG, Barber NJ. Robot-assisted partial nephrectomy vs laparoscopic cryoablation for the small renal mass: redefining the minimally invasive 'gold standard'. BJU Int 2014; 113(1):92-9. PMID: 24053473
- 55. Gratzke C, Seitz M, Bayrle F et al. Quality of life and perioperative outcomes after retroperitoneoscopic radical nephrectomy (RN), open RN and nephron-sparing surgery in patients with renal cell carcinoma. BJU Int 2009; 104(4):470-5. PMID: 19239445
- 56. Guillotreau J, Haber GP, Autorino R et al. Robotic partial nephrectomy versus laparoscopic cryoablation for the small renal mass. Eur Urol 2012; 61(5):899-904. PMID: 22264680

- 57. Haramis G, Graversen JA, Mues AC et al. Retrospective comparison of laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small (<3.5 cm) cortical renal masses. J Laparoendosc Adv Surg Tech A 2012; 22 (2):152-7. PMID: 22145574
- 58. Thompson RH, Siddiqui S, Lohse CM, Leibovich BC, Russo P, Blute ML. Partial versus radical nephrectomy for 4 to 7 cm renal cortical tumors. J Urol 2009; 182(6):2601-6. PMID: 19836797
- 59. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J Urol 2009; 181(1):55-61; discussion 61-2. PMID: 19012918
- 60. Iizuka J, Kondo T, Hashimoto Y et al. Similar functional outcomes after partial nephrectomy for clinical T1b and T1a renal cell carcinoma. Int J Urol 2012; 19(11):980-6. PMID: 22735049
- 61. Indudhara R, Bueschen AJ, Urban DA, Burns JR, Lloyd LK. Nephron-sparing surgery compared with radical nephrectomy for renal tumors: current indications and results. South Med J 1997; 90 (10):982-5. PMID: 9347807
- 62. Janetschek G, Jeschke K, Peschel R, Strohmeyer D, Henning K, Bartsch G. Laparoscopic surgery for stage T1 renal cell carcinoma: radical nephrectomy and wedge resection. Eur Urol 2000; 38 (2):131-8. PMID: 10895002
- 63. Kim FJ, Rha KH, Hernandez F, Jarrett TW, Pinto PA, Kavoussi LR. Laparoscopic radical versus partial nephrectomy: assessment of complications. J Urol 2003; 170(2 Pt 1):408-11. PMID: 12853787
- 64. Klatte T, Mauermann J, Heinz-Peer G et al. Perioperative, oncologic, and functional outcomes of laparoscopic renal cryoablation and open partial nephrectomy: a matched pair analysis. J Endourol 2011; 25(6):991-7. PMID: 21568698
- 65. Kopp RP, Mehrazin R, Palazzi KL et al. Survival outcomes after radical and partial nephrectomy for clinical T2 renal tumours categorised by R.E.N.A.L. nephrometry score. BJU Int 2013. PMID: 24274650
- 66. Kyung YS, You D, Kwon T et al. The type of nephrectomy has little effect on overall survival or cardiac events in patients of 70 years and older with localized clinical t1 stage renal masses. Korean J Urol 2014; 55(7):446-52. PMID: 25045442
- 67. Lane BR, Fergany AF, Weight CJ, Campbell SC. Renal functional outcomes after partial nephrectomy with extended ischemic intervals are better than after radical nephrectomy. J Urol 2010; 184(4):1286-90. PMID: 20723936
- 68. Lane BR, Abouassaly R, Gao T et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer 2010; 116(13):3119-26. PMID: 20564627
- 69. Li JR, Yang CR, Cheng CL et al. Partial nephrectomy in the treatment of localized renal cell carcinoma: experience of Taichung Veterans General Hospital. J Chin Med Assoc 2007; 70(7):281-5. PMID: 17631464
- 70. Li Q, Guan H, Qin J, Jiang T. Mini-Margin nephron sparing surgery for renal cell carcinoma 4 cm or less. Adv Urol 2010. PMID: 20862196

- 71. Lucas SM, Stern JM, Adibi M, Zeltser IS, Cadeddu JA, Raj GV. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J Urol 2008; 179(1):75-9; discussion 79-80. PMID: 17997440
- 72. Mariusdottir E, Jonsson E, Marteinsson VT, Sigurdsson MI, Gudbjartsson T. Kidney function following partial or radical nephrectomy for renal cell carcinoma: a population-based study. Scand J Urol 2013; 47(6):476-82. PMID: 23597159
- 73. McKiernan J, Simmons R, Katz J, Russo P. Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 2002; 59(6):816-20. PMID: 12031359
- 74. Medina-Polo J, Romero-Otero J, Rodriguez-Antolin A et al. Can partial nephrectomy preserve renal function and modify survival in comparison with radical nephrectomy? Scand J Urol Nephrol 2011; 45(2):143-50. PMID: 21247272
- 75. Meskawi M, Becker A, Bianchi M et al. Partial and radical nephrectomy provide comparable long-term cancer control for T1b renal cell carcinoma. Int J Urol 2014; 21(2):122-8. PMID: 23819700
- 76. Milonas D, Skulcius G, Baltrimavicius R et al. Comparison of long-term results after nephron-sparing surgery and radical nephrectomy in treating 4- to 7-cm renal cell carcinoma. Medicina (Kaunas) 2013; 49(5):223-8. PMID: 24247918
- 77. Minervini A, Serni S, Tuccio A et al. Simple enucleation versus radical nephrectomy in the treatment of pT1a and pT1b renal cell carcinoma. Ann Surg Oncol 2012; 19(2):694-700. PMID: 21861225
- 78. Mitchell RE, Gilbert SM, Murphy AM, Olsson CA, Benson MC, McKiernan JM. Partial nephrectomy and radical nephrectomy offer similar cancer outcomes in renal cortical tumors 4 cm or larger. Urology 2006; 67(2):260-4. PMID: 16461075
- 79. Mues AC, Korets R, Graversen JA et al. Clinical, pathologic, and functional outcomes after nephron-sparing surgery in patients with a solitary kidney: a multicenter experience. J Endourol 2012; 26(10):1361-6. PMID: 22667344
- 80. Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol 2012; 61(6):1156-61. PMID: 22257424
- 81. Haber GP, Lee MC, Crouzet S, Kamoi K, Gill IS. Tumour in solitary kidney: laparoscopic partial nephrectomy vs laparoscopic cryoablation. BJU Int 2012; 109(1):118-24. PMID: 21895929
- 82. Patard JJ, Shvarts O, Lam JS et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol 2004; 171(6 Pt 1):2181-5, quiz 2435. PMID: 15126781
- 83. Patel HD, Kates M, Pierorazio PM et al. Survival after diagnosis of localized T1a kidney cancer: current population-based practice of surgery and nonsurgical management. Urology 2014; 83(1):126-32. PMID: 24246317
- 84. Patel HD, Kates M, Pierorazio PM, Allaf ME. Balancing cardiovascular (CV) and cancer death among patients with small renal masses: modification by

- CV risk. BJU Int 2014. PMID: 24589376
- 85. Roos FC, Brenner W, Jager W et al. Perioperative morbidity and renal function in young and elderly patients undergoing elective nephron-sparing surgery or radical nephrectomy for renal tumours larger than 4 cm. BJU Int 2011; 107(4):554-61. PMID: 20707798
- 86. Roos FC, Brenner W, Thomas C et al. Functional analysis of elective nephron-sparing surgery vs radical nephrectomy for renal tumors larger than 4 cm. Urology 2012; 79(3):607-13. PMID: 22386408
- 87. Shinohara N, Harabayashi T, Sato S, Hioka T, Tsuchiya K, Koyanagi T. Impact of nephron-sparing surgery on quality of life in patients with localized renal cell carcinoma. Eur Urol 2001; 39 (1):114-9. PMID: 11173949
- 88. Stern JM, Svatek R, Park S et al. Intermediate comparison of partial nephrectomy and radiofrequency ablation for clinical T1a renal tumours. BJU Int 2007; 100(2):287-90. PMID: 17617136
- 89. Sun M, Becker A, Tian Z et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur Urol 2014; 65(1):235-41. PMID: 23567066
- 90. Takaki H, Soga N, Kanda H et al. Radiofrequency ablation versus radical nephrectomy: clinical outcomes for stage T1b renal cell carcinoma. Radiology 2014; 270(1):292-9. PMID: 23925272
- 91. Tan HJ, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 2012; 307(15):1629-35. PMID: 22511691
- 92. Tanagho YS, Bhayani S, Kim EH, Figenshau RS. Renal Cryoablation versus Robot-Assisted Partial Nephrectomy: Washington University Long-Term Experience. J Endourol 2013. PMID: 24175692
- 93. Thompson RH, Atwell T, Schmit G et al. Comparison of Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol 2014. PMID: 25108580
- 94. Turna B, Kaouk JH, Frota R et al. Minimally invasive nephron sparing management for renal tumors in solitary kidneys. J Urol 2009; 182(5):2150-7. PMID: 19758655
- 95. Uchida K, Takahashi A, Masumori N, Yanase M, Itoh N, Tsukamoto T. Partial nephrectomy for small localized renal cell carcinoma. Hinyokika Kiyo 2004; 50(6):389-95. PMID: 15293735
- 96. Uzzo RG, Wei JT, Hafez K, Kay R, Novick AC. Comparison of direct hospital costs and length of stay for radical nephrectomy versus nephron-sparing surgery in the management of localized renal cell carcinoma. Urology 1999; 54(6):994-8. PMID: 10604696
- 97. Weight CJ, Larson BT, Fergany AF et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol 2010; 183(4):1317-23. PMID: 20171688

- 98. Weight CJ, Lythgoe C, Unnikrishnan R, Lane BR, Campbell SC, Fergany AF. Partial nephrectomy does not compromise survival in patients with pathologic upstaging to pT2/pT3 or high-grade renal tumors compared with radical nephrectomy. Urology 2011; 77(5):1142-6. PMID: 21420154
- 99. Whitson JM, Harris CR, Meng MV. Population-based comparative effectiveness of nephron-sparing surgery vs ablation for small renal masses. BJU Int 2012; 110(10):1438-43; discussion 1443. PMID: 22639860
- 100. Youn CS, Park JM, Lee JY et al. Comparison of laparoscopic radiofrequency ablation and open partial nephrectomy in patients with a small renal mass. Korean J Urol 2013; 54(9):603-8. PMID: 24044094
- 101. Kim CS, Bae EH, Ma SK, Kweon SS, Kim SW. Impact of partial nephrectomy on kidney function in patients with renal cell carcinoma. BMC Nephrol 2014; 15:181. PMID: 25410757
- 102. Kates M, Badalato GM, Pitman M, McKiernan JM. Increased risk of overall and cardiovascular mortality after radical nephrectomy for renal cell carcinoma 2 cm or less. J Urol 2011; 186(4):1247-53. PMID: 21849201
- 103. Kim JM, Song PH, Kim HT, Park TC. Comparison of Partial and Radical Nephrectomy for pT1b Renal Cell Carcinoma. Korean J Urol 2010; 51(9):596-600. PMID: 20856643
- 104. Smaldone MC, Egleston B, Uzzo RG, Kutikov A. Does partial nephrectomy result in a durable overall survival benefit in the Medicare population? J Urol 2012; 188(6):2089-94. PMID: 23083877
- 105. Takagi T, Kondo T, Iizuka J et al. Postoperative renal function after partial nephrectomy for renal cell carcinoma in patients with pre-existing chronic kidney disease: a comparison with radical nephrectomy. Int J Urol 2011; 18(6):472-6. PMID: 21481013
- 106. Takaki H, Yamakado K, Soga N et al. Midterm results of radiofrequency ablation versus nephrectomy for T1a renal cell carcinoma. Jpn J Radiol 2010; 28(6):460-8. PMID: 20661697
- 107. Thompson RH, Boorjian SA, Lohse CM et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol 2008; 179(2):468-71; discussion 472-3. PMID: 18076931
- 108. Weight CJ, Larson BT, Gao T et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology 2010; 76(3):631-7. PMID: 20451967
- 109. Zini L, Perrotte P, Capitanio U et al. Radical versus partial nephrectomy: effect on overall and noncancer mortality. Cancer 2009; 115(7):1465-71. PMID: 19195042
- 110. Antoniewicz AA, Poletajew S, Borowka A, Pasierski T, Rostek M, Pikto-Pietkiewicz W. Renal function and adaptive changes in patients after radical or partial nephrectomy. Int Urol Nephrol 2012; 44(3):745-51. PMID: 21947980
- 111. Brewer K, O'Malley RL, Hayn M et al. Perioperative and renal function outcomes of minimally invasive partial nephrectomy for T1b and T2a kidney

- tumors. J Endourol 2012; 26(3):244-8. PMID: 22192099
- 112. Chang X., Zhang F., Liu T. et al. Radio frequency ablation versus partial nephrectomy for clinical T1b renal cell carcinoma: Long-term clinical and oncologic outcomes. J. Urol. 2015; 193(2):430-5.
- 113. Cooper CJ, Teleb M, Dwivedi A et al. Comparative Outcome of Computed Tomography-guided Percutaneous Radiofrequency Ablation, Partial Nephrectomy or Radical Nephrectomy in the Treatment of Stage T1 Renal Cell Carcinoma. Rare Tumors 2015; 7(1):5583. PMID: 25918603
- 114. Danzig MR, Chang P, Wagner AA, Pierorazio PM, Allaf ME, McKiernan JM. Active Surveillance is Superior to Radical Nephrectomy and Equivalent to Partial Nephrectomy in Preserving Renal Function Among Patients with Small Renal Masses; Results from the DISSRM Registry. J Urol 2015. PMID: 25813449
- 115. Dash A, Vickers AJ, Schachter LR, Bach AM, Snyder ME, Russo P. Comparison of outcomes in elective partial vs radical nephrectomy for clear cell renal cell carcinoma of 4-7 cm. BJU Int 2006; 97(5):939-45. PMID: 16643474
- 116. Deklaj T, Lifshitz DA, Shikanov SA et al. Localized T1a renal lesions in the elderly: outcomes of laparoscopic renal surgery. J Endourol 2010; 24(3):397-401. PMID: 20334557
- 117. Faddegon S, Ju T, Olweny EO et al. A comparison of long term renal functional outcomes following partial nephrectomy and radiofrequency ablation. Can J Urol 2013; 20(3):6785-9. PMID: 23783048
- 118. Foyil KV, Ames CD, Ferguson GG et al. Longterm changes in creatinine clearance after laparoscopic renal surgery. J Am Coll Surg 2008; 206(3):511-5. PMID: 18308223
- 119. Huang WC, Levey AS, Serio AM et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7(9):735-40. PMID: 16945768
- 120. Jeon HG, Jeong IG, Lee JW, Lee SE, Lee E. Prognostic factors for chronic kidney disease after curative surgery in patients with small renal tumors . Urology 2009; 74(5):1064-8. PMID: 19758688
- 121. Kiriluk KJ, Shikanov SA, Steinberg GD, Shalhav AL, Lifshitz DA. Laparoscopic partial nephrectomy versus laparoscopic ablative therapy: a comparison of surgical and functional outcomes in a matched control study. J Endourol 2011; 25(12):1867-72. PMID: 21902540
- 122. Kowalczyk KJ, Choueiri TK, Hevelone ND et al. Comparative effectiveness, costs and trends in treatment of small renal masses from 2005 to 2007. BJU Int 2013; 112(4):E273-80. PMID: 23452093
- 123. Matin SF, Gill IS, Worley S, Novick AC. Outcome of laparoscopic radical and open partial nephrectomy for the sporadic 4 cm. or less renal tumor with a normal contralateral kidney. J Urol 2002; 168(4 Pt 1):1356-9; discussion 1359-60. PMID: 12352392
- 124. Mitchell CR, Atwell TD, Weisbrod AJ et al. Renal function outcomes in patients treated with partial nephrectomy versus percutaneous ablation for renal

- tumors in a solitary kidney. J Urol 2011; 186(5):1786-90. PMID: 21944103
- 125. Miyamoto K, Inoue S, Kajiwara M, Teishima J, Matsubara A. Comparison of renal function after partial nephrectomy and radical nephrectomy for renal cell carcinoma. Urol Int 2012; 89 (2):227-32. PMID: 22846207
- 126. Snow DC, Bhayani SB. Rapid communication: chronic renal insufficiency after laparoscopic partial nephrectomy and radical nephrectomy for pathologic t1a lesions. J Endourol 2008; 22 (2):337-41. PMID: 18257672
- 127. Sun M, Bianchi M, Hansen J et al. Chronic kidney disease after nephrectomy in patients with small renal masses: a retrospective observational analysis. Eur Urol 2012; 62(4):696-703. PMID: 22483407
- 128. Woldu SL, Weinberg AC, Korets R et al. Who Really Benefits From Nephron-sparing Surgery? Urology 2014; 84(4):860-8. PMID: 25260447
- 129. Yasuda Y, Yuasa T, Yamamoto S et al. Evaluation of the RENAL nephrometry scoring system in adopting nephron-sparing surgery for cT1 renal cancer. Urol Int 2013; 90(2):179-83. PMID: 23146865
- 130. Zorn KC, Gong EM, Orvieto MA et al. Comparison of laparoscopic radical and partial nephrectomy: effects on long-term serum creatinine. Urology 2007; 69(6):1035-40. PMID: 17572181
- 131. Permpongkosol S, Link RE, Su LM et al. Complications of 2,775 urological laparoscopic procedures: 1993 to 2005. J Urol 2007; 177(2):580-5. PMID: 17222637
- 132. Tomaszewski JJ, Uzzo RG, Kutikov A et al. Assessing the burden of complications after surgery for clinically localized kidney cancer by age and comorbidity status. Urology 2014; 83(4):843-9. PMID: 24680455
- 133. Xu H., Ding Q., Jiang H.-W. Fewer complications after laparoscopic nephrectomy as compared to the open procedure with the modified Clavien classification system a retrospective analysis from Southern China. World J. Surg. Oncol. 2014; 12(1).
- 134. Becker A, Ravi P, Roghmann F et al. Laparoscopic radical nephrectomy vs laparoscopic or open partial nephrectomy for T1 renal cell carcinoma: comparison of complication rates in elderly patients during the initial phase of adoption. Urology 2014; 83(6):1285-91. PMID: 24862392
- 135. Lowrance WT, Yee DS, Savage C et al. Complications after radical and partial nephrectomy as a function of age. J Urol 2010; 183(5):1725-30. PMID: 20299040

Appendix E. Uncontrolled Studies

Uncontrolled Studies

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Larcher, 2014 ¹	Retrospective	Thermal ablation (174)	Oncologic efficacy ,Overall survival	Not reported	48 months
Larson, 2014 ²	Retrospective	Partial nephrectomy (1532)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	1month
Sandberg, 2014 ³	Prospective	Partial nephrectomy (339)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	367 and 462 year
Takagi, 2014 ⁴	Prospective cohort	Partial nephrectomy (163)	Renal functional outcomes	Not reported	12 months
Miyake, 2014 ⁵	Prospective cohort	Partial nephrectomy (48)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	NR
Keehn, 2014 ⁶	Retrospective	Partial nephrectomy (144)	Renal functional outcomes	Not reported	NR
Zargar, 2014 ⁷	Retrospective	Partial nephrectomy (266)	Renal functional outcomes	Not reported	1-2 year
Kuru, 2014 ⁸	Retrospective series	Partial nephrectomy (35)	Renal functional outcomes	Not reported	36 months
Maddox, 2014 ⁹	cohort, Retrospective	Partial nephrectomy (46)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and peri- operative outcome -	24.3 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,	
Johnson, 2014 ¹⁰	Retrospective cohort	Thermal ablation (144)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	97.9 months
Rodriguez- Faba, 2014 ¹¹	case series	Thermal ablation (28)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	25 months
McClure, 2014 ¹²	Retrospective series	Thermal ablation (84)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	24 months
Yap, 2014 ¹³	Retrospective series, national database	Partial nephrectomy (2107)	Renal functional outcomes ,Overall survival	Not reported	59 months
Curtiss, 2014 ¹⁴	case series	Partial nephrectomy (297)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,	Not reported
Cheema, 2014 ¹⁵	Retrospective	Partial nephrectomy (97)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and peri- operative outcome - Give an adequate	2 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Tomaszewski, 2014 ¹⁶	Retrospective	Partial nephrectomy (831)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,	Not reported
Richards, 2014 ¹⁷	Retrospective	Partial nephrectomy (235)	Renal functional outcomes	Not reported	29 months
Tomaszewski, 2014 ¹⁸	case series	Partial nephrectomy (375)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
Porpiglia, 2014 ¹⁹	Retrospective	Partial nephrectomy (87)	Renal functional outcomes	Not reported	Not reported
Hu, 2014 ²⁰	MC Retrospective	Partial nephrectomy (227)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	2.7 year
Mukkamala, 2014 ²¹	Retrospective	Partial nephrectomy (358)	Renal functional outcomes	Not reported	39 months
Aguilera Bazan, 2014 ²²	Retrospective Cohort	Partial nephrectomy (130)	Oncologic efficacy	Not reported	71 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Eggener, 2014 ²³	MC retro	Partial nephrectomy (874)	Renal functional outcomes	Not reported	Not reported
Choo, 2014 ²⁴	retro matched	Partial nephrectomy (107)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Schmit, 2014 ²⁵	Retrospective	Thermal ablation (375)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Tay, 2014 ²⁶	Retrospective	Radical nephrectomy(65)	Oncologic efficacy	Not reported	4 year
Wahafu, 2014 ²⁷	Retrospective Cohort	Partial nephrectomy (526)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	31 months
Yeon, 2014 ²⁸	Retrospective	Partial nephrectomy (113)	Not reported	Harms and peri- operative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Mukkamala, 2014 ²⁹	Retrospective Cohort	Partial nephrectomy (602)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	2.9 year
Bessede, 2014 ³⁰	Retrospective Cohort	Partial nephrectomy (519)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	23 months
Peyronnet, 2014 ³¹	Retrospective Cohort	Partial nephrectomy (430)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	16.7 months
Leslie, 2014 ³²	Retrospective	Partial nephrectomy (162)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Park, 2014 ³³	case series	Partial nephrectomy (98)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	47.5 months
Zeccolini, 2014 ³⁴	25	Thermal ablation (25)	Oncologic efficacy ,Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how complications and	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Pignot, 2014 ³⁵	case series	Partial nephrectomy (570)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	Not reported
Schauer, 2014 ³⁶	Retrospective	Partial nephrectomy (50)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	Not reported
Borghesi, 2014 ³⁷	case series	Partial nephrectomy (96)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Non-urologic complications	Not reported
Wiener, 2014 ³⁸	case series	Partial nephrectomy (122)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	20 months
Curry, 2014 ³⁹	case series	Thermal ablation (45)	Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/perioperative outcomes	30.6 months
Harris, 2014 ⁴⁰	Retrospective Cohort	Partial nephrectomy (260)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and	10.6 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Mukkamala, 2014 ⁴¹	Retrospective	Partial nephrectomy (417)	Oncologic efficacy	Not reported	1 year
Georgiades, 2014 ⁴²	Retrospective	Thermal ablation (134)	Oncologic efficacy	Not reported	Not reported
Takagi, 2013 ⁴³	Retrospective	Partial nephrectomy (122)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Chang, 2014 ⁴⁴	Retrospective	Thermal ablation (170)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	51.2 months
Veltri, 2014 ⁴⁵	Retrospective	Thermal ablation (137)	Oncologic efficacy	Not reported	39 months
Ploussard, 2013 ⁴⁶	Prospective cohort	Partial nephrectomy (65)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were	12 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				assessed /clavien grading , ,Non- urologic complications	
Lagerveld, 2014 ⁴⁷	Retrospective cohort	Thermal ablation (97)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	37.7 months
Bigot, 2014 ⁴⁸	Retrospective Cohort	Partial nephrectomy (168)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Not reported	30 months
Sea, 2013 ⁴⁹	Retrospective	Partial nephrectomy (119)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	8.9 months
Ramirez, 2014 ⁵⁰	Retrospective	Thermal ablation (79)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	59 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Hakky, 2014 ⁵¹	Retrospective cohort	Partial nephrectomy (166)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	Not reported
George, 2014 ⁵²	Retrospective cohort	Partial nephrectomy (488)	Renal functional outcomes	Not reported	41.6 months
Funahashi, 2014 ⁵³	retro single inst	Partial nephrectomy (58)	Renal functional outcomes	Not reported	Not reported
Kreshover, 2013 ⁵⁴	Retrospective Cohort	Partial nephrectomy (360)	Oncologic efficacy	Not reported	34 months
Wah, 2014 ⁵⁵	Retrospective	Thermal ablation (165)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	46.1 months
Seideman, 2013 ⁵⁶	Retrospective	Thermal ablation (199)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Non-urologic complications	Not reported
Ma, 2014 ⁵⁷	Retrospective	Thermal ablation (52)	Oncologic efficacy ,Renal functional outcomes	Not reported	60 months
Autorino, 2014 ⁵⁸	Retrospective Cohort	Partial nephrectomy (65)	Renal functional outcomes	Study reports final health outcomes	15.7 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri- operative outcomes	
Seklehner, 2013 ⁵⁹	retro single- institution	Thermal ablation (40)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	2 year
Lee, 2014 ⁶⁰	retro single-inst	Partial nephrectomy (369)	Renal functional outcomes	Not reported	1 year
Golan, 2014 ⁶¹	retro single inst	Partial nephrectomy (206)	Renal functional outcomes	Not reported	7 months
Sea, 2013 ⁶²	retro single inst	Partial nephrectomy (119)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	9 months
Yang, 2014 ⁶³	retro single inst	Thermal ablation (51)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	32 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Kobayashi, 2013 ⁶⁴	Retrospective	Partial nephrectomy (99)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Qi, 2013 ⁶⁵	retro	Partial nephrectomy (51)	Renal functional outcomes	Not reported	Not reported
loffe, 2013 ⁶⁶	retro single inst	Partial nephrectomy (118)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	Not reported
Porpiglia, 2013 ⁶⁷	retro single inst	Partial nephrectomy (206)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Schmit, 2013 ⁶⁸	retro single inst	Thermal ablation (189)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and	18 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Mathieu, 2013 ⁶⁹	Retrospective	Partial nephrectomy (240)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Krane, 2013 ⁷⁰	Retrospective case series	Partial nephrectomy (233)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	27 months
Mir, 2013 ⁷¹	92	Partial nephrectomy (92)	Renal functional outcomes	Not reported	Not reported
Alyami, 2013 ⁷²	case series	Partial nephrectomy (52)	Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Khalifeh, 2013 ⁷³	Retrospective Cohort	Partial nephrectomy (943)	Oncologic efficacy	Not reported	17.3 months
Mehrazin, 2013 ⁷⁴	MC retro	Partial nephrectomy (322)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	25 months
Allen, 2013 ⁷⁵	case series	Thermal ablation (38)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	2.8 year
Zhang, 2014 ⁷⁶	retro single inst	Partial nephrectomy (245)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Khalifeh, 2013 ⁷⁷	case series	Partial nephrectomy (134)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate	3 year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Eyraud, 2013 ⁷⁸	retro single inst	Partial nephrectomy (364)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	7 months
Breen, 2013 ⁷⁹	retro single inst	Thermal ablation (147)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	20 months
Masson- Lecomte, 2013 ⁸⁰	Retrospective Cohort	Partial nephrectomy (220)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	26 months
Kiziloz, 2013 ⁸¹	Retrospective cohort	Partial nephrectomy (283)	,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative	1month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Gorin, 2013 ⁸²	case series	Partial nephrectomy (257)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Karam, 2013 ⁸³	case series	Thermal ablation (150)	Oncologic efficacy ,Overall survival	Not reported	40.1 months
Ching, 2013 ⁸⁴	Restrospective Cohort	Partial nephrectomy (282)	Renal functional outcomes	Not reported	175 months
Osawa, 2013 ⁸⁵	Retrospective cohort	Partial nephrectomy (71)	Renal functional outcomes	Not reported	92 months
Tanagho, 2013 ⁸⁶	Prospective cohort	Partial nephrectomy (886)	Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Non-urologic complications	1month
Balageas, 2013 ⁸⁷	Retrospective cohort	Thermal ablation (62)	Oncologic efficacy, Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	78 months
Chen, 2013 ⁸⁸	Retrospective Cohort	Thermal ablation (96)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	16 months
Abaza, 2013 ⁸⁹	Retrospective Cohort	Partial nephrectomy (150)	Renal functional outcomes	Study reports final health outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri- operative outcomes	
Campero, 2012 ⁹⁰	retro single surg	Partial nephrectomy (100)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	42 months
Springer, 2013 ⁹¹	retro single inst	Radical nephrectomy(56)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	14 months
Pertia, 2012 ⁹²	retro single inst, cT1b	Partial nephrectomy (57)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	70 months
Simhan, 2013 ⁹³	retro single inst, multifocal tumors	Partial nephrectomy (97)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and	24 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Hung, 2013 ⁹⁴	retro single surg	Partial nephrectomy (534)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Erdem, 2013 ⁹⁵	Prospective cohort study	Partial nephrectomy (66)	Renal functional outcomes	Not reported	Not reported
Hillyer, 2013 ⁹⁶	MC retro, solitary kidney	Partial nephrectomy (26)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	6 months
Kim, 2013 ⁹⁷	retro single inst	Thermal ablation (124)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and peri- operative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	30 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Kaczmarek, 2013 ⁹⁸	MC retro, matched off- clamp	Partial nephrectomy (886)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	21 months
Cai, 2012 ⁹⁹	MC retro	Radical nephrectomy(1147)	Oncologic efficacy ,Overall survival	Not reported	61 months
Shao, 2013 ¹⁰⁰	Retrospective cohort	Partial nephrectomy (82)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	31 months
Blute, 2013 ¹⁰¹	retro single inst	Thermal ablation (139)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	24 months
Isac, 2012 ¹⁰²	retro single inst	Partial nephrectomy (250)	Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Yap, 2013 ¹⁰³	Retrospective cohort study	Radical nephrectomy(1651)	Oncologic efficacy ,Overall survival	Not reported	10 year
Akaihata, 2013 ¹⁰⁴	Retrospective cohort study	Radical nephrectomy(95)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	Not reported
Guillotreau, 2012 ¹⁰⁵	Prospective cohort study	Partial nephrectomy (355)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	10 months
Long, 2012 ¹⁰⁶	Retrospective Cohort	Partial nephrectomy (381)	Renal functional outcomes	Not reported	3.1 months
Abaza, 2013 ¹⁰⁷	Retrospective Cohort	Partial nephrectomy (150)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,	8.5 months
Sejima, 2013 ¹⁰⁸	Retrospective cohort study	Radical nephrectomy(92)	Oncologic efficacy ,Overall survival	Not reported	5 year
Okhunov, 2012 ¹⁰⁹	Retrospective cohort study	Thermal ablation (210)	Not reported	Harms and peri- operative outcome - Give an adequate description of how	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	
Bylund, 2012 ¹¹⁰	Retrospective cohort study	Partial nephrectomy (162)	Renal functional outcomes	Not reported	Not reported
Kim, 2012 ¹¹¹	case series	Thermal ablation (47)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	49.6 months
Png, 2013 ¹¹²	Retrospective cohort study	Partial nephrectomy (83)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	3 months
Ficarra, 2012 ¹¹³	Retrospective Cohort	Partial nephrectomy (49)	Oncologic efficacy ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	12 months
Psutka, 2013 ¹¹⁴	Retrospective cohort study	Thermal ablation (185)	Oncologic efficacy ,Overall survival	Not reported	13 year
Sandhu, 2013 ¹¹⁵	Retrospective Cohort	Partial nephrectomy (39)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Sankin, 2012 ¹¹⁶	Retrospective cohort study	Partial nephrectomy (32)	Renal functional outcomes	Not reported	Not reported
Tanagho, 2012 ¹¹⁷	Retrospective cohort study	Thermal ablation (62)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	89.4 months
Buethe, 2012 ¹¹⁸	Retrospective cohort study	Partial nephrectomy (42)	Renal functional outcomes	Not reported	6 months
Kim, 2012 ¹¹⁹	Retrospective cohort study	Partial nephrectomy (65)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	2 year
Long, 2013 ¹²⁰	Retrospective cohort study	Partial nephrectomy (177)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Favaretto, 2013 ¹²¹		Partial nephrectomy (150)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Not reported	70 months
Simmons, 2012 ¹²²	Retrospective Cohort	Partial nephrectomy (299)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1.7 year
Shao, 2012 ¹²³	Retrospective cohort study	Partial nephrectomy (125)	Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how complications and	27 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Berg, 2012 ¹²⁴	Retrospective cohort study	Partial nephrectomy (44)	Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,	45 months
Tugcu, 2011 ¹²⁵	retro single surgeon	Partial nephrectomy (49)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	11 months
Takagi, 2012 ¹²⁶	Retrospective cohort	Partial nephrectomy (195)	Renal functional outcomes	Not reported	Not reported
Kim, 2013 ¹²⁷	Nationwide Inpatient Sample	Partial nephrectomy (8944)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	3 months
Tsivian, 2012 ¹²⁸	Retrospective cohort	Partial nephrectomy (147)	Not reported	Harms and peri- operative outcome - Give an adequate description of how	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Mayer, 2012 ¹²⁹	Retrospective cohort	Partial nephrectomy (67)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	Not reported
Kyllo, 2012 ¹³⁰	Retrospective cohort	Partial nephrectomy (124)	Oncologic efficacy	Not reported	29 months
Tanagho, 2012 ¹³¹	case series	Partial nephrectomy (42)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	3.3 months
Reyes, 2013 ¹³²	retro single inst	Thermal ablation (39)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	24 months
Novak, 2012 ¹³³	Retrospective cohort	Partial nephrectomy (57)	Renal functional outcomes	Not reported	6 months
Jack, 2012 ¹³⁴	retro single inst	Partial nephrectomy (50)	Oncologic efficacy ,Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how	36 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien	
				grading ,Urologic complications ,Non- urologic complications	
Kong, 2012 ¹³⁵	Retrospective cohort	Partial nephrectomy (195)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading , ,Non-urologic complications	Not reported
Tatsugami, 2012 ¹³⁶	retro single inst	Partial nephrectomy (51)	Renal functional outcomes	Not reported	3 months
Sobey, 2012 ¹³⁷	retro single inst	Partial nephrectomy (145)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	17 months
Porpiglia, 2012 ¹³⁸	retro single inst	Partial nephrectomy (54)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	4 year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Thompson, 2012 ¹³⁹	Retrospective cohort	Partial nephrectomy (362)	Renal functional outcomes	Not reported	1.6 year
Kruck, 2012 ¹⁴⁰	Retrospective cohort	Partial nephrectomy (81)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Ficarra, 2012 ¹⁴¹	Retrospective cohort	Partial nephrectomy (349)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Saito, 2012 ¹⁴²	MC retro	Partial nephrectomy (1375)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	26 months
Funahashi, 2012 ¹⁴³	retro single inst	Partial nephrectomy (32)	Renal functional outcomes	Not reported	6 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Tsivian, 2012 ¹⁴⁴	Retrospective cohort	Thermal ablation (172)	Oncologic efficacy	Not reported	12 months
Duffey, 2012 ¹⁴⁵	case series	Thermal ablation (116)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	2704 months
Wehrenberg- Klee, 2012 ¹⁴⁶	Retrospective cohort	Thermal ablation (48)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1 year
Erdeljan, 2011 ¹⁴⁷	retro single inst	Thermal ablation (30)	Oncologic efficacy ,Overall survival	Not reported	Not reported
Wang, 2011 ¹⁴⁸	retro single inst	Partial nephrectomy (74)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	31 months
Kim, 2011 ¹⁴⁹	case series	Thermal ablation (49)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	31.7 months
Mufarrij, 2011 ¹⁵⁰	retro single surgeon	Partial nephrectomy (100)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	7.2 months
Hyams, 2011 ¹⁵¹	MC retro	Partial nephrectomy (998)	Not reported	Only Harms -Primary objective of the study is to assess the	20 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications ,Urologic complications ,	
Lifshitz, 2011 ¹⁵²	Retrospective cohort	Partial nephrectomy (184)	Renal functional outcomes	Not reported	15 months
Minervini, 2012 ¹⁵³	Prospective cohort	Partial nephrectomy (200)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,	Not reported
Porpiglia, 2012 ¹⁵⁴	case series	Partial nephrectomy (51)	Renal functional outcomes	Not reported	12 months
Wheat, 2013 ¹⁵⁵	Retrospective cohort	Partial nephrectomy (329)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Nonurologic complications	Not reported
Godoy, 2011 ¹⁵⁶	Retrospective cohort	Partial nephrectomy (75)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,	Not reported
Caceres, 2011 ¹⁵⁷	Retrospective cohort	Partial nephrectomy (60)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	31 months
Simhan, 2011 ¹⁵⁸	Retrospective Cohort	Partial nephrectomy (390)	Not reported	Harms and peri- operative outcome - Give an adequate description of how	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Halachmi, 2011 ¹⁵⁹	case series	Partial nephrectomy (229)	Oncologic efficacy	Not reported	45 months
Cha, 2013 ¹⁶⁰	Retrospective cohort study	Partial nephrectomy (53)	Renal functional outcomes	Not reported	52.3 months
Song, 2011 ¹⁶¹	Retrospective cohort	Partial nephrectomy (116)	Renal functional outcomes	Not reported	Not reported
Zagoria, 2011 ¹⁶²	Retrospective cohort	Thermal ablation (41)	Oncologic efficacy	Not reported	56 months
Mues, 2011 ¹⁶³	case series	Partial nephrectomy (100)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	8 months
Pouliot, 2011 ¹⁶⁴	Restrospective Cohort	Partial nephrectomy (182)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
Rosenberg, 2011 ¹⁶⁵	Retrospective cohort	Thermal ablation (107)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	9.3 months
Lane, 2011 ¹⁶⁶	Retrospective cohort	Partial nephrectomy (1132)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1.5 year
Choi, 2010 ¹⁶⁷	Retrospective cohort study	Partial nephrectomy (44)	Renal functional outcomes	Not reported	3 months
Becker, 2011 ¹⁶⁸	Retrospective cohort	Partial nephrectomy (91)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	28 months
White, 2011 ¹⁶⁹	Restrospective Cohort	Partial nephrectomy (112)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and	Not reported

Author, year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Arai, 2011 ¹⁷⁰	Retrospective cohort	Partial nephrectomy (32)	Renal functional outcomes	Not reported	Not reported
Mottrie, 2013 ¹⁷¹	Retrospective cohort study	Partial nephrectomy (62)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Ji, 2011 ¹⁷²	Prospective cohort	Thermal ablation (106)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	32 months
Tsivian, 2011 ¹⁷³	Retrospective cohort study	Partial nephrectomy (111)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	18.7 months
Muramaki, 2011 ¹⁷⁴	710	Radical nephrectomy(710)	Oncologic efficacy	Not reported	36 months
Minervini, 2011 ¹⁷⁵	Prospective Cohort	Partial nephrectomy (164)	Oncologic efficacy ,Overall survival	Not reported	38 months
Hayn, 2011 ¹⁷⁶	Retrospective Cohort	Partial nephrectomy (141)	Renal functional outcomes	Study reports final health outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri-	
				operative outcomes	
Davis, 2012 ¹⁷⁷	Retrospective	Thermal ablation	Oncologic efficacy	Study reports final	12 months
	Cohort	(36)		health outcomes	
				AND Harms/peri-	
				operative outcomes	
Dulabon,	Prospective	Partial nephrectomy	Oncologic efficacy	Harms and peri-	45 months
2011 ¹⁷⁸	cohort study	(446)		operative outcome -	
				Give an adequate	
				description of how	
				complications and	
				peri-operative	
				outcomes were	
				assessed /clavien	
				grading ,Urologic	
				complications ,Non-	
				urologic	
				complications	
Coffin, 2011 ¹⁷⁹	Retrospective	Partial nephrectomy	Oncologic efficacy ,Renal functional outcomes	Harms and peri-	289 months
	cohort study	(155)	,Overall survival	operative outcome -	
				Give an adequate	
				description of how	
				complications and	
				peri-operative	
				outcomes were	
				assessed /clavien	
				grading ,Urologic	
				complications ,Non-	
				urologic	
				complications	
Kong, 2011 ¹⁸⁰	Retrospective cohort study	Thermal ablation (63)	Oncologic efficacy ,Overall survival	Not reported	34 months
Schmit, 2010 ¹⁸¹	Retrospective	Thermal ablation	Oncologic efficacy ,Renal functional outcomes	Harms and peri-	38 months
	cohort study	(45)		operative outcome -	
				Give an adequate	
				description of how	
				complications and	
				peri-operative	
				outcomes were	
				assessed /clavien	
				grading , ,Non-	
				urologic	
				complications	

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Clark, 2011 ¹⁸²	Retrospective Cohort	Partial nephrectomy (1228)	Renal functional outcomes	Not reported	1 year
Wszolek, 2011 ¹⁸³	Retrospective cohort study	Partial nephrectomy (104)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	10 year
Beemster, 2011 ¹⁸⁴	Retrospective cohort study	Thermal ablation (92)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Not reported	30.2 months
Porpiglia, 2011 ¹⁸⁵	case series	Partial nephrectomy (100)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Smith, 2011 ¹⁸⁶	case series	Partial nephrectomy (308)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Samplaski, 2010 ¹⁸⁷	case series	Partial nephrectomy (131)	Renal functional outcomes	Not reported	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Marszalek, 2011 ¹⁸⁸	Retrospective cohort	Partial nephrectomy (105)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	Not reported
Ferakis, 2010 ¹⁸⁹	case series	Thermal ablation (31)	Oncologic efficacy	Not reported	61 months
Dente, 2010 ¹⁹⁰	Prospective cohort	Partial nephrectomy (96)	Renal functional outcomes	Not reported	1month
Montag, 2011 ¹⁹¹	case series	Partial nephrectomy (640)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Non-urologic complications	Not reported
Thompson, 2010 ¹⁹²	case series	Partial nephrectomy (362)	Renal functional outcomes	Not reported	1.6 year
Pettus, 2010 ¹⁹³	Retrospective cohort	Thermal ablation (62)	Renal functional outcomes	Not reported	1 year
Atwell, 2010 ¹⁹⁴	Retrospective cohort	Thermal ablation (92)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Non-urologic complications	26 months
Lyrdal, 2010 ¹⁹⁵	Retrospective cohort	Thermal ablation (41)	Renal functional outcomes	Not reported	27 months
Lin, 2010 ¹⁹⁶	Retrospective cohort	Partial nephrectomy (45)	Renal functional outcomes	Not reported	Not reported
Rodriguez, 2011 ¹⁹⁷	case series	Thermal ablation (113)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	1 year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Waldert, 2010 ¹⁹⁸	case series	Partial nephrectomy (240)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Guazzoni, 2010 ¹⁹⁹	Retrospective cohort	Thermal ablation (123)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	24 months
Tracy, 2010 ²⁰⁰	Retrospective Cohort	Thermal ablation (215)	Oncologic efficacy	Not reported	3 year
Netsch, 2010 ²⁰¹	case series	Partial nephrectomy (329)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Non-urologic complications	23 months
Colli, 2011 ²⁰²	case series	Partial nephrectomy (141)	Renal functional outcomes	Not reported	6 months
Karellas, 2010 ²⁰³	Retrospective Cohort	Partial nephrectomy (34)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	17 months
Forsberg, 2010 ²⁰⁴	Retrospective Cohort	Partial nephrectomy (89)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	79 months
Beemster, 2010 ²⁰⁵	Prospective cohort	Thermal ablation (57)	,Quality of life ,	Not reported	Not reported
Ko, 2010 ²⁰⁶	case series	Thermal ablation (39)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Only Harms -Primary objective of the study is to assess the complications ,Urologic	23.5 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications ,Non- urologic complications	
Msezane, 2010 ²⁰⁷	case series	Partial nephrectomy (184)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	20 months
Aguilera Bazan, 2010 ²⁰⁸	Retrospective Cohort	Partial nephrectomy (38)	Oncologic efficacy	Study reports final health outcomes AND Harms/perioperative outcomes	Not reported
Ham, 2010 ²⁰⁹	Prospective	Thermal ablation (37)	Oncologic efficacy	Not reported	Not reported
Mottrie, 2010 ²¹⁰	Prospective	Partial nephrectomy (62)	Renal functional outcomes	Not reported	Not reported
Schmit, 2010 ²¹¹	Retrospective Cohort	Thermal ablation (108)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Non-urologic complications	Not reported
Park, 2010 ²¹²	Retrospective Cohort	Partial nephrectomy (35)	Renal functional outcomes	Not reported	Not reported
Huber, 2010 ²¹³	Retrospective Cohort	Partial nephrectomy (196)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Non-urologic complications	Not reported
Jeon, 2010 ²¹⁴	Retrospective Cohort	Partial nephrectomy (376)	Renal functional outcomes	Study reports final health outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri-	
				operative outcomes	
Shikanov, 2010 ²¹⁵	Retrospective Cohort	Partial nephrectomy (401)	Renal functional outcomes	Not reported	Not reported
Kundu, 2010 ²¹⁶	Retrospective Cohort	Partial nephrectomy (118)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,	Not reported
Porpiglia, 2010 ²¹⁷	Retrospective Cohort	Partial nephrectomy (63)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	Not reported
Kava, 2010 ²¹⁸	Retrospective Cohort	Partial nephrectomy (163)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Benway, 2010 ²¹⁹	Retrospective Cohort	Partial nephrectomy (183)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications ,Non- urologic complications	
Roos, 2010 ²²⁰	Retrospective cohort study	Partial nephrectomy (851)	Oncologic efficacy ,Renal functional outcomes	Not reported	24.1 year
Aron, 2010 ²²¹	Retrospective Cohort	Thermal ablation (80)	Oncologic efficacy	Not reported	Not reported
Scoll, 2010 ²²²	Retrospective Cohort	Partial nephrectomy (100)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Yoost, 2010 ²²³	Retrospective cohort	Thermal ablation (35)	Oncologic efficacy	Not reported	13 months
Lifshitz, 2010 ²²⁴	Prospective cohort study	Partial nephrectomy (184)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Non-urologic complications	30 months
Lifshitz, 2010 ²²⁵	Retrospective Cohort	Partial nephrectomy (184)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Patel, 2010 ²²⁶	Retrospective Cohort	Partial nephrectomy (71)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
Tsivian, 2010 ²²⁷	Retrospective Cohort	Thermal ablation (163)	Oncologic efficacy	Not reported	Not reported
Zheng, 2009 ²²⁸	Prospective	Partial nephrectomy (56)	Renal functional outcomes	Not reported	Not reported
Gill, 2010 ²²⁹	Retrospective Cohort	Partial nephrectomy (800)	Renal functional outcomes	Not reported	3.4 year
Lebed, 2010 ²³⁰	Retrospective cohort study	Partial nephrectomy (36)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	51 months
Malcolm, 2010 ²³¹	Retrospective Cohort	Thermal ablation (62)	Renal functional outcomes	Not reported	30 months
Corcoran, 2009 ²³²	Retrospective cohort study	Partial nephrectomy (105)	Oncologic efficacy ,Renal functional outcomes, Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	80 months
Hiraoka, 2009 ²³³	case series	Thermal ablation (40)	Oncologic efficacy	Not reported	16 months
Thomas, 2009 ²³⁴	Retrospective Cohort	Partial nephrectomy (832)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Rouach, 2010 ²³⁵	Retrospective cohort	Partial nephrectomy (305)	Oncologic efficacy	Not reported	80 months
Ficarra, 2009 ²³⁶	retro single inst	Partial nephrectomy (164)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Gupta, 2009 ²³⁷	case series	Thermal ablation (151)	Oncologic efficacy ,Overall survival	Not reported	18 months
Ku, 2009 ²³⁸	Retrospective cohort	Radical nephrectomy(102)	Oncologic efficacy ,Overall survival	Not reported	58.5 months
Laguna, 2009 ²³⁹	case series	Thermal ablation (144)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	Not reported
Srivastava, 2009 ²⁴⁰	Retrospective Cohort	Partial nephrectomy (102)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Non-urologic complications	Not reported
Stern, 2009 ²⁴¹	Retrospective Cohort	Thermal ablation (63)	Oncologic efficacy ,Renal functional outcomes	Not reported	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Godoy, 2009 ²⁴²	Retrospective Cohort	Partial nephrectomy (101)	Renal functional outcomes	Not reported	6 months
La Rochelle, 2009 ²⁴³	Retrospective Cohort	Partial nephrectomy (84)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	40 months
Badger, 2009 ²⁴⁴	case series	Thermal ablation (27)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	22 months
Carrafiello, 2008 ²⁴⁵	Prospective	Thermal ablation (26)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	6 months
Joniau, 2009 ²⁴⁶	case series	Partial nephrectomy (67)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Not reported	40.1 months
Li, 2008 ²⁴⁷	case series	Partial nephrectomy (115)	Oncologic efficacy ,Overall survival	Not reported	65 months
Peycelon, 2009 ²⁴⁸	case series	Partial nephrectomy (61)	Oncologic efficacy ,Overall survival	Not reported	70.7 months
Nadu, 2009 ²⁴⁹	Retrospective cohort	Partial nephrectomy (212)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	1.5 months
Celia, 2008 ²⁵⁰	cohort	Partial nephrectomy (592)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	3 year
Kefer, 2008 ²⁵¹	case control	Partial nephrectomy (94)	Renal functional outcomes	Harms and peri- operative outcome - Give an adequate description of how complications and peri-operative outcomes were	1month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Lane, 2008 ²⁵²	case series	Partial nephrectomy (1169)	Renal functional outcomes	Not reported	1.5 year
Stein, 2008 ²⁵³	case series	Thermal ablation (30)	Oncologic efficacy	Not reported	25.2 months
lida, 2008 ²⁵⁴	case series	Partial nephrectomy (131)	Renal functional outcomes	Not reported	41 months
Crispen, 2008 ²⁵⁵	case series	Partial nephrectomy (798)	Oncologic efficacy ,Overall survival	Not reported	5.4 year
Okegawa, 2008 ²⁵⁶	cohort	Radical nephrectomy(53 vs 47)	Oncologic efficacy	Not reported	34 months
Georgiades, 2008 ²⁵⁷	case series	Thermal ablation (46)	Oncologic efficacy ,Renal functional outcomes	Not reported	7 months
Veltri, 2009 ²⁵⁸	Prospective	Thermal ablation (71)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	24.4 months
Pyo, 2008 ²⁵⁹	Retrospective cohort	Partial nephrectomy (110)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	35 months
Weizer, 2008 ²⁶⁰	Retrospective cohort	Partial nephrectomy (174)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	14 months
Simmons, 2009 ²⁶¹	Retrospective cohort	Partial nephrectomy (425)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
McClean, 2009 ²⁶²	Retrospective cohort	Partial nephrectomy (46)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic	17.2 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications ,Non- urologic complications	
Lehman, 2008 ²⁶³	Retrospective cohort	Thermal ablation (44)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	Not reported
Yossepowitch, 2008 ²⁶⁴	Retrospective cohort	Partial nephrectomy (1344)	Oncologic efficacy	Not reported	Not reported
Desai, 2008 ²⁶⁵	Retrospective cohort	Partial nephrectomy (50)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	56.4 months
Turna, 2008 ²⁶⁶	Retrospective cohort	Partial nephrectomy (507)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Non-urologic complications	Not reported
Li, 2008 ²⁶⁷	Retrospective cohort	Partial nephrectomy (115)	,Overall survival	Not reported	65 months
Colombo, 2008 ²⁶⁸	Retrospective cohort	Partial nephrectomy (585)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	25 months
Wright, 2007 ²⁶⁹	Retrospective cohort	Thermal ablation (32)	Oncologic efficacy	Study reports final health outcomes AND Harms/perioperative outcomes	18 months
Nguyen, 2008 ²⁷⁰	Retrospective cohort	Partial nephrectomy (100)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	3 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Pahernik, 2008 ²⁷¹	Retrospective cohort	Partial nephrectomy (474)	,Overall survival	Not reported	4.7 year
Porpiglia, 2008 ²⁷²	Retrospective cohort	Partial nephrectomy (90)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Polascik, 2007 ²⁷³	Retrospective cohort	Thermal ablation (26)	,Overall survival	Study reports final health outcomes AND Harms/perioperative outcomes	24 months
Bandi, 2008 ²⁷⁴	Retrospective cohort	Radical nephrectomy(75)	,Overall survival	Study reports final health outcomes AND Harms/perioperative outcomes	41 months
Carey, 2007 ²⁷⁵	Retrospective cohort	Thermal ablation (85)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	11 months
Denzinger, 2007 ²⁷⁶	Retrospective cohort	Partial nephrectomy (91)	Oncologic efficacy	Study reports final health outcomes AND Harms/perioperative outcomes	48 months
Hemal, 2007 ²⁷⁷	Retrospective cohort	Radical nephrectomy(143)	,Quality of life ,	Harms and peri- operative outcome - Give an adequate description of how complications and	56 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Zagoria, 2007 ²⁷⁸	retro single inst	Thermal ablation (104)	Oncologic efficacy	Not reported	14 months
Pettus, 2007 ²⁷⁹	retro single isnt	Partial nephrectomy (742)	Renal functional outcomes	Not reported	19 months
Nadu, 2007 ²⁸⁰	retrso single inst	Partial nephrectomy (140)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Simmons, 2007 ²⁸¹	retro single inst	Partial nephrectomy (200)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Senga, 2007 ²⁸²	MC retro	Partial nephrectomy (469)	Oncologic efficacy	Not reported	48 months
Atwell, 2007 ²⁸³	case series	Thermal ablation (40)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative	9 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Zorn, 2007 ²⁸⁴	case series	Partial nephrectomy (84)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	13 months
Weld, 2007 ²⁸⁵	case series	Thermal ablation (81)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	45.7 months
Littrup, 2007 ²⁸⁶	cases series	Thermal ablation (49)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	1.6 year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Adamakis, 2007 ²⁸⁷	retro single inst	Partial nephrectomy (42)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	32 months
Brown, 2007 ²⁸⁸	case series	Partial nephrectomy (60)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	14.2 months
Patard, 2007 ²⁸⁹	MC retro	Partial nephrectomy (1048)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	36 months
Pertia, 2006 ²⁹⁰	retro single inst	Partial nephrectomy (30)	Oncologic efficacy ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	71 months
Gupta, 2007 ²⁹¹	retro single inst	Partial nephrectomy (36)	Oncologic efficacy ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	52 months
Lane, 2007 ²⁹²	case series	Partial nephrectomy (60)	Oncologic efficacy ,Renal functional outcomes	Not reported	5.7 year
Kwon, 2007 ²⁹³	retro single inst	Partial nephrectomy (777)	Oncologic efficacy	Not reported	22 months
Salagierski, 2006 ²⁹⁴	retro single inst	Thermal ablation (42)	,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	14 months
Matin, 2006 ²⁹⁵	retro single inst	Thermal ablation (616)	Oncologic efficacy ,Overall survival	Not reported	2 year
Yossepowitch, 2006 ²⁹⁶	retro single inst	Partial nephrectomy (70)	Renal functional outcomes	Not reported	1 year
Schwartz, 2006 ²⁹⁷	case series	Thermal ablation (85)	Oncologic efficacy ,Renal functional outcomes	Harms and peri- operative outcome - Give an adequate	10 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic	
Davol, 2006 ²⁹⁸	case series	Thermal ablation (48)	Oncologic efficacy	complications Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	64 months
Sorbellini, 2006 ²⁹⁹	retro single inst	Partial nephrectomy (161)	Renal functional outcomes	Not reported	1month
Carini, 2006 ³⁰⁰	case series	Partial nephrectomy (232)	Oncologic efficacy ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	76 months
Venkatesh, 2006 ³⁰¹	retro single inst	Partial nephrectomy (123)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				grading ,Urologic complications ,Non- urologic complications	
Pahernik, 2006 ³⁰²	Retrospective cohort	Partial nephrectomy (504)	Oncologic efficacy ,Overall survival	Not reported	6.77 year
Carini, 2006 ³⁰³	Retrospective cohort	Partial nephrectomy (71)	Oncologic efficacy ,Overall survival	Not reported	74 months
Berdjis, 2006 ³⁰⁴	case series	Partial nephrectomy (121)	Oncologic efficacy	Not reported	49.3 months
Becker, 2006 ³⁰⁵	retro single inst	Partial nephrectomy (368)	Oncologic efficacy ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	6.2 year
Weld, 2006 ³⁰⁶	case series	Partial nephrectomy (60)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	25.3 months
Frank, 2006 ³⁰⁷	retro single inst	Partial nephrectomy (363)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Pasticier, 2006 ³⁰⁸	retro single inst	Partial nephrectomy (127)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Wille, 2006 ³⁰⁹	retro single inst	Partial nephrectomy (44)	Renal functional outcomes	Study reports final health outcomes AND Harms/perioperative outcomes	15 months
Moinzadeh, 2006 ³¹⁰	retro single inst	Partial nephrectomy (480)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	3 year
Orvieto, 2005 ³¹¹	retro single inst	Partial nephrectomy (41)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	7.5 months
Permpongkosol, 2005 ³¹²	single retro	Radical nephrectomy(121)	Oncologic efficacy ,Overall survival	Not reported	73 months
Thompson, 2005 ³¹³	retro single inst	Partial nephrectomy (823)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Non-urologic complications	Not reported
Gill, 2005 ³¹⁴	retro single inst	Partial nephrectomy (25)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Ng, 2005 ³¹⁵	retro single inst	Partial nephrectomy (163)	Not reported	Harms and peri- operative outcome -	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Wright, 2005 ³¹⁶	retro single inst	Partial nephrectomy (51)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Gervais, 2005 ³¹⁷	retro single inst	Thermal ablation (85)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Gervais, 2005 ³¹⁸	retro single inst	Thermal ablation (85)	Oncologic efficacy ,Overall survival	Not reported	2.3 year
Cheung, 2005 ³¹⁹	single retro	Radical nephrectomy(100)	Oncologic efficacy ,Overall survival	Not reported	30 months
Lapini, 2005 ³²⁰	retro single inst	Partial nephrectomy (107)	Oncologic efficacy ,Overall survival	Not reported	88 months
Gill, 2005 ³²¹	retro single inst	Thermal ablation (56)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Study reports final health outcomes	3 year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri- operative outcomes	
Link, 2005 ³²²	retro single inst	Partial nephrectomy (223)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	37.7 months
Salama, 2005 ³²³	retro single inst	Radical nephrectomy(115)	Oncologic efficacy	Not reported	7.5 year
Mullerad, 2005 ³²⁴	retro single inst	Partial nephrectomy (118)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	38.8 months
Desai, 2005 ³²⁵	retro single inst	Partial nephrectomy (179)	Renal functional outcomes	Not reported	5 months
Seifman, 2004 ³²⁶	retro single inst	Partial nephrectomy (36)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	2 year
Lee, 2004 ³²⁷	retro single inst	Radical nephrectomy(100)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	24 months
Ramani, 2005 ³²⁸	case series	Partial nephrectomy (200)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Cestari, 2004 ³²⁹	case series	Thermal ablation (37)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	20.5 months
Bhayani, 2004 ³³⁰	case series	Partial nephrectomy (118)	Renal functional outcomes	Not reported	28 months
Allaf, 2004 ³³¹	case series	Partial nephrectomy (48)	Oncologic efficacy Not reported	Not reported	3 year
Bove, 2004 ³³²	retro single inst	Partial nephrectomy (103)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Matsumoto, 2004 ³³³	retro single inst	Thermal ablation (64)	Oncologic efficacy	Not reported	6 months
Kane, 2004 ³³⁴	case series	Partial nephrectomy (27)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	
Diblasio, 2004 ³³⁵	case series	Partial nephrectomy (154)	Renal functional outcomes	Not reported	Not reported
Elmore, 2003 ³³⁶	retro single inst	Radical nephrectomy(544)	Oncologic efficacy	Not reported	74 months
Kuriki, 2003 ³³⁷	case series	Radical nephrectomy(185)	Oncologic efficacy	Not reported	108 months
Zigeuner, 2003 ³³⁸	case series	Partial nephrectomy (114)	Oncologic efficacy	Not reported	80 months
Patel, 2003 ³³⁹	case series	Radical nephrectomy(60)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	11 months
Lundstam, 2003 ³⁴⁰	case series	Partial nephrectomy (87)	Oncologic efficacy ,Overall survival	Not reported	61 months
Kural, 2003 ³⁴¹	case series	Partial nephrectomy (76)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	37.1 months
Franks, 2003 ³⁴²	case series	Partial nephrectomy (45)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and peri- operative outcome - Give an adequate	34 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Mayo-Smith, 2003 ³⁴³	case series	Thermal ablation (32)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	9 months
Zucchi, 2003 ³⁴⁴	case series	Partial nephrectomy (63)	Oncologic efficacy	Not reported	39 months
Desai, 2003 ³⁴⁵	case series	Partial nephrectomy (64)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	9.5 months
McKiernan, 2002 ³⁴⁶	case series	Partial nephrectomy (292)	Oncologic efficacy	Not reported	25.3 months
Castilla, 2002 ³⁴⁷	case series	Partial nephrectomy (69)	Oncologic efficacy	Not reported	8.5 year
Minervini, 2002 ³⁴⁸	case series	Radical nephrectomy(213)	Oncologic efficacy	Not reported	52 months
Russo, 2002 ³⁴⁹	case series	Partial nephrectomy (39)	Oncologic efficacy ,Renal functional outcomes	Not reported	30 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Fryczkowski, 2001 ³⁵⁰	case series	Partial nephrectomy (53)	Oncologic efficacy	Not reported	Not reported
Lau, 2002 ³⁵¹	case series	Radical nephrectomy()	Oncologic efficacy	Not reported	9.4 year
Gill, 2002 ³⁵²	case series	Partial nephrectomy (50)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	7.2 months
Piper, 2001 ³⁵³		Partial nephrectomy (62)	Oncologic efficacy ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	60 months
Sutherland, 2002 ³⁵⁴	case series	Partial nephrectomy (44)	Oncologic efficacy	Not reported	49 months
Jeschke, 2001 ³⁵⁵	case series	Partial nephrectomy (51)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	34.2 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Igarashi, 2001 ³⁵⁶	case series	Radical nephrectomy(333)	Oncologic efficacy	Not reported	63 months
Fryczkowski, 2000 ³⁵⁷	case series	Partial nephrectomy (53)	Oncologic efficacy	Not reported	63.8 months
Rukstalis, 2001 ³⁵⁸	case series	Thermal ablation (29)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	16 months
Gill, 2000 ³⁵⁹	case series	Thermal ablation (32)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	16.2 months
Filipas, 2000 ³⁶⁰	retro single inst	Partial nephrectomy (180)	Oncologic efficacy ,Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	4.7 year
Black, 2000 ³⁶¹	case series	Partial nephrectomy (311)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	5.2 year
Fergany, 2000 ³⁶²	case series	Partial nephrectomy (107)	Oncologic efficacy ,Renal functional outcomes	Not reported	10 year
Abbou, 1999 ³⁶³	single retro	Radical nephrectomy(58)	Oncologic efficacy ,Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	15 months
Herr, 1999 ³⁶⁴	retro single inst	Partial nephrectomy (70)	Oncologic efficacy ,Overall survival	Not reported	10 year
Ono, 1999 ³⁶⁵	Retrospective cohort	Radical nephrectomy(60)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	24 months
Cadeddu, 1998 ³⁶⁶	Retrospective cohort	Radical nephrectomy(157)	Oncologic efficacy	Not reported	15 months
Van Poppel, 1998 ³⁶⁷	Retrospective cohort	Partial nephrectomy (76)	Oncologic efficacy	Not reported	75 months
Ljungberg, 1998 ³⁶⁸	Retrospective cohort	Radical nephrectomy(89)	Oncologic efficacy ,Renal functional outcomes	Not reported	10 year
Ono, 1997 ³⁶⁹	retro single inst	Radical nephrectomy(25)	Oncologic efficacy ,Overall survival	Harms and peri- operative outcome - Give an adequate description of how	22 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Hafez, 1997 ³⁷⁰	retro single inst	Partial nephrectomy (327)	Oncologic efficacy ,Overall survival	Not reported	55 months
Hsi R.S., 2014 ³⁷¹	retro single inst	Partial nephrectomy (51)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	6.5 months
Fardoun T., 2014 ³⁷²	retro single inst	Partial nephrectomy (199)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
Tomaszewski J.J., 2014 ³⁷³	retro single inst	Partial nephrectomy (255)	Not reported	Only Harms -Primary objective of the study is to assess the complications ,Urologic complications ,Nonurologic complications	62 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Alesawi A., 2014 ³⁷⁴	retro single inst	Partial nephrectomy (25)	Renal functional outcomes	Not reported	12 months
Petros F., 2012 ³⁷⁵	MC retro	Partial nephrectomy (445)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	10 months
Best S.L., 2012 ³⁷⁶	retro single inst	Thermal ablation (159)	Oncologic efficacy	Not reported	54 months
Spana G., 2011 ³⁷⁷	MC retro	Partial nephrectomy (450)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	Not reported
White M.A., 2011 ³⁷⁸	retro single inst	Partial nephrectomy (164)	Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non- urologic complications	8 months
Naeem N., 2011 ³⁷⁹	retro single inst	Partial nephrectomy (97)	Renal functional outcomes	Harms and peri- operative outcome - Give an adequate	10 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Schmit G.D., 2010 ³⁸⁰	retro single inst	Thermal ablation (108)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	15 months
Park SW., 2010 ³⁸¹	retro single inst	Partial nephrectomy (62)	Renal functional outcomes	Not reported	43 months
Jeon S.H., 2009 ³⁸²	MC retro	Radical nephrectomy(150)	Not reported	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	Not reported
Hiraoka K., 2009 ³⁸³	retro single inst	Thermal ablation (40)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	16 months
Ritchie R.W., 2009 ³⁸⁴	retro single inst	Radical nephrectomy(118)	Not reported	Harms and peri- operative outcome - Give an adequate description of how	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	
Bandi G., 2008 ³⁸⁵	retro single inst	Partial nephrectomy (75)	Oncologic efficacy ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Nonurologic complications	46 months
Polascik T.J., 2007 ³⁸⁶	retro single inst	Thermal ablation (26)	Oncologic efficacy ,Renal functional outcomes ,Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	21 months
Wille A.H., 2007 ³⁸⁷	retro single inst	Partial nephrectomy (80)	Oncologic efficacy ,Renal functional outcomes	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-	28 months

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Salagierska- Barwinska A., 2007 ³⁸⁸	retro single inst	Thermal ablation (55)	Oncologic efficacy	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading ,Urologic complications ,Non-urologic complications	25 months
Lee DG., 2006 ³⁸⁹	case series	Radical nephrectomy(147)	Oncologic efficacy	Not reported	54.9 months
Marszalek M., 2004 ³⁹⁰	case series	Partial nephrectomy (129)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	34 months
Seklehner S., 2013{#51239}	Retrospective cohort	Thermal ablation (44)	Oncologic efficacy ,Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	2 year
Kim E.H., 2012{#51431}	Retrospective cohort	Thermal ablation (124)	Oncologic efficacy ,Renal functional outcomes	Not reported	30 months
Cooper, 2015 ³⁹¹	retrospective cohort	Radical nephrectomy(31)	Oncologic efficacy	Harms and perioperative outcome, Urologic complications ,Nonurologic complications	Not reported
Caputo, 2015 ³⁹²	retrospective cohort	Thermal ablation (138)	Oncologic efficacy, Renal functional outcomes, Overall survival	Harms and perioperative outcome, Urologic complications, Non- urologic complications	98.8 Month
Antic, 2015 ³⁹³	retrospective cohort	Partial nephrectomy (406)	Oncologic efficacy	Not reported	33.1 Month
Carneiro, 2015 ³⁹⁴	Retrospective	Partial nephrectomy (347)	Oncologic efficacy, Renal functional outcomes	Study reports final health outcomes	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri- operative outcomes	
Lay, 2015 ³⁹⁵	Retrospective Cohort	Thermal ablation (229)	Oncologic efficacy, Overall survival	Not reported	33.2 Month
Lamoshi, 2015 ³⁹⁶	Retrospective Cohort	Partial nephrectomy (34)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	18.7 Month
Abdeldaeim, 2015 ³⁹⁷	Prospective	Partial nephrectomy (120)	Oncologic efficacy, Renal functional outcomes	Not reported	24 Months
Kim, 2015 ³⁹⁸	Retrospective Cohort	Partial nephrectomy (213)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Chang, X., ³⁹⁹	Retrospective Cohort	Thermal ablation (215)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Mehrazin, 2015 ⁴⁰⁰	Retrospective	Active surveillance (minimum six Months) (346)	Oncologic efficacy, Overall survival	Not reported	37 Month
Camacho, 2015 ⁴⁰¹	retrospective cohort	Thermal ablation (87)	Oncologic efficacy	Harms and perioperative outcome, Urologic complications, Nonurologic complications	34.6 +/- 23.5 Month
Patel, 2015 ⁴⁰²	retrospective	Partial nephrectomy (2124)	Not reported	Only Harms -Primary objective of the study is to assess the complications, Urologic complications, Non-urologic complications	1 Month
Satasivam, 2015 ⁴⁰³	Retrospective Cohort	Partial nephrectomy (156)	Renal functional outcomes	Not reported	Not reported
Zargar, 2014 ⁴⁰⁴	retrospective cohort	Partial nephrectomy (1019)	Not reported	Only Harms -Primary objective of the study	18 Month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				is to assess the complications, Urologic complications,	
Zeccolini, 2014 ⁴⁰⁵	retrospective cohort	Partial nephrectomy ()	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	36 Month
Kim, 2015 ⁴⁰⁶	Retrospective	Partial nephrectomy (390)	Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	31.1 Month
Jang, 2014 ⁴⁰⁷	Retrospective	Partial nephrectomy (127)	Renal functional outcomes Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Yang, 2014 ⁴⁰⁸	Retrospective	Partial nephrectomy (178)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	3 Month
Miller, 2014 ⁴⁰⁹	Retrospective	Thermal ablation (95)	Oncologic efficacy, Renal functional outcomes, Overall survival	Harms and perioperative outcome - Give an adequate description of how complications and peri-operative outcomes were assessed /clavien grading, Urologic complications, Non-urologic complications	2 Year
Han, 2014 ⁴¹⁰	Retrospective	Partial nephrectomy (590)	Not reported	Harms and peri- operative outcome, Urologic complications, Non-	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Rodriguez- Faba, 2015 ⁴¹¹	prospective	Thermal ablation (28)	Oncologic efficacy, Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications, Urologic complications, Non-urologic complications	25 Month
Richards, 2014 ⁴¹²	Retrospective	Partial nephrectomy (235)	Renal functional outcomes	Not reported	29 Month
Becker, 2015 ⁴¹³	Retrospective	Partial nephrectomy (293)	Quality of life	Harms and perioperative outcome, Urologic complications, Nonurologic complications	49 Month
Eggener, 2015 ⁴¹⁴	Retrospective	Partial nephrectomy (1396)	Renal functional outcomes	Not reported	18 Month
Choo, 2014 ⁴¹⁵	Retrospective	Partial nephrectomy (107)	Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Bessede, 2015 ⁴¹⁶	Retrospective	Partial nephrectomy (519)	Renal functional outcomes	Not reported	23 Month
Pignot,2015 ⁴¹⁷	Prospective Cohort	Partial nephrectomy (570)	Not reported	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	1 Month
Desai, 2014 ⁴¹⁸	Retrospective	Partial nephrectomy (122)	Renal functional outcomes	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	6 Month
Veltri, 2014 ⁴¹⁹	Retrospective Cohort	Thermal ablation (137)	Oncologic efficacy, Overall survival	Study reports final health outcomes	39 Month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri- operative outcomes	
Li HK., 2015 ⁴²⁰	retrospective	Partial nephrectomy (169)	Renal functional outcomes	Not reported	1 Year
Boylu U., 2015 ⁴²¹	retrospective	Partial nephrectomy (66)	Oncologic efficacy, Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	37 Month
Gahan , 2015 ⁴²²	retrospective	Thermal ablation (192)	Oncologic efficacy	Not reported	32 Month
Zargar , 2015 ⁴²³	Retrospective	Partial nephrectomy (266)	Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	24 Month
Curtiss, 2015 ⁴²⁴	cohort	Partial nephrectomy (30 vs 267)	Oncologic efficacy	Only Harms -Primary objective of the study is to assess the complications, Urologic complications, Non-urologic complications	10.6 Months
Larcher ,2015 ⁴²⁵	retrospective	Thermal ablation (174)	Oncologic efficacy	Harms and perioperative outcome, Urologic complications, Nonurologic complications	48 Month
Lista , 2015 ⁴²⁶	cohort	Partial nephrectomy (339)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	49 Month
Larson 2015 ⁴²⁷	multi- institutional cohort	Partial nephrectomy (1532)	Not reported	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Salevitz 2015 ⁴²⁸	retrospective cohort	Partial nephrectomy (607)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	3 Year
Porpiglia 2015 ⁴²⁹	retrospective	Partial nephrectomy (86)	Renal functional outcomes	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	Not reported
Webb 2015 ⁴³⁰	retrospective	Partial nephrectomy (66)	Not reported	Harms and peri- operative, Urologic complications, Non- urologic complications	Not reported
Wu 2015 ⁴³¹	Retrospective	Partial nephrectomy (237)	Oncologic efficacy, Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Ganpule 2015 ⁴³²	retrospective cohort	Partial nephrectomy (57)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	5.1 Month
Komninos 2015 ⁴³³	retrospective cohort	Partial nephrectomy (83)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1 Year
Tanaka 2015 ⁴³⁴	Retrospective	Partial nephrectomy (39)	Renal functional outcomes	Not reported	Not reported
Castaneda 2015 ⁴³⁵	Retrospective	Active surveillance (minimum six Months) (64)	, Renal functional outcomes	Not reported	17 Month
Atwell 2015 ⁴³⁶	retrospective cohort	Thermal ablation (46)	Oncologic efficacy	Study reports final health outcomes AND Harms/peri- operative outcomes	2 Year
Zargar2015 ⁴³⁷	Retrospective	Thermal ablation (412)	Oncologic efficacy	Harms and peri- operative outcome, Urologic complications, Non-	3.15 Year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Tay 2014 ⁴³⁸	retrospective	Radical nephrectomy(65)	Oncologic efficacy	Not reported	Not reported
Maddox 2014 ⁴³⁹	retrospective	Partial nephrectomy (46)	Oncologic efficacy, Renal functional outcomes	Harms and peri- operative, Urologic complications, Non- urologic complications	24.3 Month
Park 2014 ⁴⁴⁰	retrospective	Radical nephrectomy(1098)	Oncologic efficacy	Harms and perioperative outcome, Urologic complications, Nonurologic complications	63 Month
Hongo 2014 ⁴⁴¹	retrospective	Radical nephrectomy(193)	Oncologic efficacy	Harms and peri- operative, Urologic complications, Non- urologic complications	65 Month
Wiener 2014 ⁴⁴²	retrospective	Partial nephrectomy (122)	Renal functional outcomes	Not reported	20 Month
Harris 2014 ⁴⁴³	retrospective cohort	Partial nephrectomy (260)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	10.6 Month
Mukkamala 2014 ⁴⁴⁴	retrospective cohort	Partial nephrectomy (417)	Oncologic efficacy, Overall survival	Not reported	2.9 Year
Lai WJ., 2015 ⁴⁴⁵	retrospective cohort	Thermal ablation (30)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	15.2 Month
Chang X., 2014 ⁴⁴⁶	Retrospective	Thermal ablation (170)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	51 Month
Lee 2014 ⁴⁴⁷	Retrospective	Partial nephrectomy (369)	Renal functional outcomes	Not reported	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
Wah 2014 ⁴⁴⁸	retrospective cohort	Thermal ablation (200)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	46.1 Month
Yokoyama 2014 ⁴⁴⁹	Retrospective	Radical nephrectomy(209)	Renal functional outcomes	Not reported	84 Month
Wang 2014 ⁴⁵⁰	Retrospective	Partial nephrectomy (194)	Renal functional outcomes	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	3 Years
Hsi 2014 ⁴⁵¹	Cohort	Partial nephrectomy (51)	Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications, Urologic complications, Non-urologic complications	6.5 Month
Springer 2014 ⁴⁵²	retrospective	Partial nephrectomy (190)	Oncologic efficacy, Renal functional outcomes	Harms and peri- operative outcome, Urologic complications, Non- urologic complications	36 Month
Georgiades 2014 ⁴⁵³	prospective	Thermal ablation (246)	Overall survival	Harms and perioperative outcome, Urologic complications, Non- urologic complications	Not reported
Maeda 2014 ⁴⁵⁴	Retrospective cohort	Partial nephrectomy (127)	Renal functional outcomes	Not reported	6 Month
Yang 2014 ⁴⁵⁵	retrospective	Thermal ablation (51)	Oncologic efficacy, Renal functional outcomes	Harms and perioperative outcome Urologic complications, Non-urologic complications	31.5 Month
Tan HJ., 2014 ⁴⁵⁶	Prospective cohort	Partial nephrectomy (2321)	Not reported	Only Harms -Primary objective of the study is to assess the	1 Month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications, Urologic complications, Non- urologic complications	
George 2014 ⁴⁵⁷	retrospective	Partial nephrectomy (488)	Oncologic efficacy, Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Non- urologic complications	41.6 Month
Sandberg ,2014 ⁴⁵⁸	prospective	Partial nephrectomy (339)	Renal functional outcomes	Harms and perioperative outcome, Urologic complications, Nonurologic complications	1 Year
Yeon 2014 ⁴⁵⁹	Retrospective cohort study	Partial nephrectomy (113)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Komninos 2014 ⁴⁶⁰	retrospective cohort	Partial nephrectomy (225)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	4 Year
Ma Y., 2014 ⁴⁶¹	retrospective cohort	Thermal ablation (52)	Oncologic efficacy, Renal functional outcomes, Overall survival	Not reported	60 Month
Verhoest , 2014 ⁴⁶²	Retrospective cohort study	Partial nephrectomy (300)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	37 Month
Lorber G., 2014 ⁴⁶³	retrospective cohort	Thermal ablation (50)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	65.6 Month
Mukkamala 2014 ⁴⁶⁴	retrospective cohort	Partial nephrectomy (358)	Renal functional outcomes	Not reported	39 Month
Hu J.C., 2014 ⁴⁶⁵	retrospective	Partial nephrectomy (227)	Oncologic efficacy, Renal functional outcomes	Harms and peri- operative outcome -, Urologic complications, Non-	3.7 Year

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				urologic complications	
Autorino 2014 ⁴⁶⁶	retrospective cohort	Partial nephrectomy (65 vs 145 vs 179)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	12.6 Month
Tan H J.,2014 ⁴⁶⁷	Prospective cohort study	Partial nephrectomy (2321)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	1 Month
Johnson S., 2014 ⁴⁶⁸	retrospective	Thermal ablation (149)	Oncologic efficacy, Renal functional outcomes	Harms and peri- operative outcome, Urologic complications,	97.9 Month
Kim E.H., 2014 ⁴⁶⁹	Retrospective cohort study	Thermal ablation (300)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	38.6 Month
Zargar H., 2014 ⁴⁷⁰	Retrospective cohort study	Partial nephrectomy (125)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	12 Month
Takagi T., 2014 ⁴⁷¹	Retrospective cohort study	Partial nephrectomy (163)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
Fardoun T., 2014 ⁴⁷²	Retrospective cohort study	Partial nephrectomy (199)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Ficarra V., 2014 ⁴⁷³	Retrospective cohort study	Partial nephrectomy (368)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	Not reported
Jung S., 2014 ⁴⁷⁴	Retrospective cohort study	Partial nephrectomy (300)	Not reported	Only Harms -Primary objective of the study is to assess the	Not reported

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				complications Non- urologic complications	
Ghani K.R., 2014 ⁴⁷⁵	retrospective	Partial nephrectomy (38064)	Not reported	Harms and perioperative outcome, Urologic complications, Nonurologic complications	Not reported
Mobley, 2014 ⁴⁷⁶	Retrospective cohort study	Partial nephrectomy (162)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1 Year
Volpe, 2014 ⁴⁷⁷	Retrospective cohort study	Partial nephrectomy (44)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	6 Month
Youssef ,2014 ⁴⁷⁸	Retrospective cohort study	Partial nephrectomy (121)	Oncologic efficacy, Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	12 Month
Gin , 2014 ⁴⁷⁹	Retrospective cohort study	Partial nephrectomy (191)	Renal functional outcomes	Study reports final health outcomes AND Harms/peri- operative outcomes	1 Month
Liu JJ., 2014 ⁴⁸⁰	Prospective cohort (PN portion only)	Partial nephrectomy (2902)	Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications Non-urologic complications	1 Month
Wu ZJ., 2014 ⁴⁸¹	Retrospective cohort study	Partial nephrectomy (70)	Renal functional outcomes	Only Harms -Primary objective of the study is to assess the complications, Non-urologic complications	Not reported
Oh J.J., 2014 ⁴⁸²	Retrospective cohort study (only PN group)	Partial nephrectomy (45)	Oncologic efficacy, Renal functional outcomes, Overall survival	Study reports final health outcomes AND Harms/peri- operative outcomes	35.91 Month
Ye HM., 2014 ⁴⁸³	Retrospective cohort study	Partial nephrectomy (37)	Oncologic efficacy	Study reports final health outcomes	5.9 Month

Author,year	Study Design	Intervention(n)	Outcome	Adverse Event	Follow Up
				AND Harms/peri-	
				operative outcomes	

Reference List

- 1. Larcher A, Fossati N, Mistretta F et al. Long-term oncologic outcomes of laparoscopic renal cryoablation as primary treatment for small renal masses. Urol Oncol 2014. PMID: 25301741
- Larson JA, Kaouk J, Stifelman MD et al. Non-modifiable factors and complications contribute to length of stay in Robot-Assisted Partial Nephrectomy. J Endourol 2014. PMID: 25286232
- 3. Sandberg JM, Krane LS, Hemal AK. A Nonrandomized Prospective Comparison of Robotic-assisted Partial Nephrectomy in the Elderly to a Younger Cohort: An Analysis of 339 Patients With Intermediate-term Follow-up. Urology 2014; 84(4):838-43. PMID: 25260445
- 4. Takagi T, Mir MC, Campbell RA et al. Assessment of Outcomes in Partial Nephrectomy Incorporating Detailed Functional Analysis. Urology 2014. PMID: 25239254
- 5. Miyake H, Furukawa J, Hinata N, Muramaki M, Tanaka K, Fujisawa M. Significant impact of R.E.N.A.L. nephrometry score on changes in postoperative renal function early after robot-assisted partial nephrectomy. Int J Clin Oncol 2014. PMID: 25224963
- 6. Keehn A, Srivastava A, Maiman R et al. The Relationship Between Visceral Obesity and the Clinicopathologic Features of Patients with Small Renal Masses. J Endourol 2014. PMID: 25203393
- 7. Zargar H, Akca O, Ramirez D et al. THE IMPACT OF EXTENDED WARM ISCHEMIA TIME ON LATE RENAL FUNCTION AFTER ROBOTIC PARTIAL NEPHRECTOMY. J Endourol 2014. PMID: 25203268
- 8. Kuru TH, Zhu J, Popeneciu IV et al. Volumetry may predict early renal function after nephron sparing surgery in solitary kidney patients. Springerplus 2014; 3:488. PMID: 25202653
- 9. Maddox M, Mandava S, Liu J, Boonjindasup A, Lee BR. Robotic Partial Nephrectomy for Clinical Stage T1b Tumors: Intermediate Oncologic and Functional Outcomes. Clin Genitourin Cancer 2014. PMID: 25176501
- 10. Johnson S, Pham KN, See W, Begun FP, Langenstroer P. Laparoscopic cryoablation for clinical stage T1 renal masses: long-term oncologic outcomes at the Medical College of Wisconsin. Urology 2014; 84(3):613-8. PMID: 25168540
- 11. Rodriguez-Faba O, Palou J, Rosales A et al. Prospective study of ultrasound-guided percutaneous renal cryotherapy: Case selection as an optimization factor for a technique. Actas Urol Esp 2014. PMID: 25124045

- 12. McClure TD, Chow DS, Tan N, Sayre JA, Pantuck AJ, Raman SS. Intermediate Outcomes and Predictors of Efficacy in the Radiofrequency Ablation of 100 Pathologically Proven Renal Cell Carcinomas. J Vasc Interv Radiol 2014. PMID: 25081202
- 13. Yap SA, Finelli A, Urbach DR, Tomlinson GA, Alibhai SM. Partial Nephrectomy for the Treatment of Renal Cell Carcinoma and the Risk of End Stage Renal Disease. BJU Int 2014. PMID: 25065448
- Curtiss KM, Ball MW, Gorin MA, Harris KT, Pierorazio PM, Allaf ME. Perioperative Outcomes of Robotic Partial Nephrectomy for Intrarenal Tumors. J Endourol 2014. PMID: 24983384
- 15. Cheema Z, Alsinnawi M, Casey RG, Corr J. A single United Kingdom center experience of open partial nephrectomy using regional ischemia. Can J Urol 2014; 21(3):7277-82. PMID: 24978357
- 16. Tomaszewski JJ, Smaldone MC, Cung B et al. Internal validation of the renal pelvic score: a novel marker of renal pelvic anatomy that predicts urine leak after partial nephrectomy. Urology 2014; 84(2):351-7. PMID: 24975712
- 17. Richards KA, Negron E, Cohn JA, Steinberg Z, Eggener SE, Shalhav AL. The Impact of Body Mass Index on Renal Functional Outcomes Following Minimally Invasive Partial Nephrectomy. J Endourol 2014. PMID: 24935823
- 18. Tomaszewski JJ, Smaldone MC, Mehrazin R et al. Anatomic complexity quantitated by nephrometry score is associated with prolonged warm ischemia time during robotic partial nephrectomy. Urology 2014; 84(2):340-4. PMID: 24925833
- 19. Porpiglia F, Bertolo R, Amparore D et al. Evaluation of functional outcomes following laparoscopic partial nephrectomy by using renal scintigraphy: "clamped" versus "clampless". BJU Int 2014. PMID: 24913695
- 20. Hu JC, Treat E, Filson CP et al. Technique and Outcomes of Robot-assisted Retroperitoneoscopic Partial Nephrectomy: A Multicenter Study. Eur Urol 2014; 66(3):542-9. PMID: 24857539
- 21. Mukkamala A, He C, Weizer AZ et al. Long-term renal functional outcomes of minimally invasive partial nephrectomy for renal cell carcinoma. Urol Oncol 2014. PMID: 24846342
- 22. Aguilera Bazan A, Banuelos B, Alonso-Dorrego JM, Diez J, Cisneros J, De la Pena Barthel J. Oncological outcomes of nephron sparing nephrectomy. 17-year analysis. Arch Esp Urol 2014; 67(3):237-42. PMID: 24840588
- 23. Eggener SE, Clark MA, Shikanov S et al. Impact of warm versus cold ischemia on renal function following partial nephrectomy. World J Urol 2014. PMID: 24817142
- 24. Choo SH, Lee SY, Sung HH et al. Transperitoneal versus retroperitoneal robotic partial nephrectomy: matched-pair comparisons by nephrometry scores. World J Urol 2014. PMID: 24817141
- 25. Schmit GD, Schenck LA, Thompson RH et al. Predicting renal cryoablation complications: new risk score based on tumor size and location and patient

- history. Radiology 2014; 272(3):903-10. PMID: 24814178
- 26. Tay MH, Thamboo TP, Wu FM et al. High R.e.N.a.L. Nephrometry scores are associated with pathologic upstaging of clinical t1 renal-cell carcinomas in radical nephrectomy specimens: implications for nephron-sparing surgery. J Endourol 2014; 28(9):1138-42. PMID: 24810993
- 27. Wahafu W, Ma X, Li HZ et al. Evolving renorrhaphy technique for retroperitoneal laparoscopic partial nephrectomy: single-surgeon series. Int J Urol 2014; 21(9):865-73. PMID: 24780100
- 28. Yeon JS, Son SJ, Lee YJ et al. The nephrometry score: is it effective for predicting perioperative outcome during robot-assisted partial nephrectomy? Korean J Urol 2014; 55(4):254-9. PMID: 24741414
- 29. Mukkamala A, Allam CL, Ellison JS et al. Tumor enucleation vs sharp excision in minimally invasive partial nephrectomy: technical benefit without impact on functional or oncologic outcomes. Urology 2014; 83(6):1294-9. PMID: 24713137
- 30. Bessede T, Bigot P, Bernhard JC et al. Are warm ischemia and ischemia time still predictive factors of poor renal function after partial nephrectomy in the setting of elective indication? World J Urol 2014. PMID: 24700310
- 31. Peyronnet B, Baumert H, Mathieu R et al. Early unclamping technique during robot-assisted laparoscopic partial nephrectomy can minimise warm ischaemia without increasing morbidity. BJU Int 2014. PMID: 24690155
- 32. Leslie S, Gill IS, de Castro Abreu AL et al. Renal Tumor Contact Surface Area: A Novel Parameter for Predicting Complexity and Outcomes of Partial Nephrectomy. Eur Urol 2014. PMID: 24680360
- 33. Park DS, Hwang JH, Kang MH, Oh JJ. Association between R.E.N.A.L. nephrometry score and perioperative outcomes following open partial nephrectomy under cold ischemia. Can Urol Assoc J 2014; 8(3-4):E137-41. PMID: 24678352
- 34. Zeccolini G, Del Biondo D, Cicero C, Casarin A, Guarise A, Celia A. Comparison of Contrast-Enhanced Ultrasound Scan (CEUS) and MRI in the follow-up of cryoablation for small renal tumors. Experience on 25 cases. Urologia 2014; 81(Suppl. 23):1-8. PMID: 24665032
- 35. Pignot G, Mejean A, Bernhard JC et al. The use of partial nephrectomy: results from a contemporary national prospective multicenter study. World J Urol 2014. PMID: 24663965
- 36. Schauer I, Theimer O, Klatte T, Waldert M, Klingler HC, Margreiter M. Use of self-retaining barbed sutures decreases cold ischemia time in open nephron-sparing surgery. Wien Klin Wochenschr 2014; 126(11-12):329-34. PMID: 24652018
- 37. Borghesi M, Della Mora L, Brunocilla E et al. Warm ischemia time and postoperative complications after partial nephrectomy for renal cell carcinoma. Actas Urol Esp 2014; 38(5):313-8. PMID: 24565512
- 38. Wiener S, Kiziloz H, Dorin RP, Finnegan K, Shichman SS, Meraney A. Predictors of postoperative decline in estimated glomerular filtration rate in patients undergoing robotic partial nephrectomy. J Endourol 2014; 28(7):807-13. PMID: 24548077

- 39. Curry D, Yassin M, Thwaini A et al. Radiofrequency ablation of renal cell carcinoma: a follow up of outcomes. Can J Urol 2014; 21(1):7135-40. PMID: 24529016
- 40. Harris KT, Ball MW, Gorin MA, Curtiss KM, Pierorazio PM, Allaf ME. Transperitoneal robot-assisted partial nephrectomy: a comparison of posterior and anterior renal masses. J Endourol 2014; 28(6):655-9. PMID: 24422597
- 41. Mukkamala A, He C, Weizer AZ et al. Long-term oncologic outcomes of minimally invasive partial nephrectomy for renal-cell carcinoma. J Endourol 2014; 28(6):649-54. PMID: 24405274
- 42. Georgiades CS, Rodriguez R. Efficacy and Safety of Percutaneous Cryoablation for Stage 1A/B Renal Cell Carcinoma: Results of a Prospective, Single-Arm, 5-Year Study. Cardiovasc Intervent Radiol 2014. PMID: 24385225
- 43. Takagi T, Mir MC, Campbell RA et al. Predictors of Precision of Excision and Reconstruction in Partial Nephrectomy. J Urol 2013. PMID: 24373802
- 44. Chang X, Ji C, Zhao X et al. The application of R.E.N.A.L. nephrometry scoring system in predicting the complications after laparoscopic renal radiofrequency ablation. J Endourol 2014; 28(4):424-9. PMID: 24364623
- 45. Veltri A, Gazzera C, Busso M et al. T1a as the Sole Selection Criterion for RFA of Renal Masses: Randomized Controlled Trials versus Surgery Should Not Be Postponed. Cardiovasc Intervent Radiol 2014; 37(5):1292-8. PMID: 24337348
- 46. Ploussard G, Haddad R, Kovac E, Richard P, Anidjar M, Bladou F. Robot-assisted laparoscopic partial nephrectomy: Early single Canadian institution experience. Can Urol Assoc J 2013; 7(9-10):348-54. PMID: 24319515
- 47. Lagerveld BW, Brenninkmeijer M, van der Zee JA, van Haarst EP. Can RENAL and PADUA nephrometry indices predict complications of laparoscopic cryoablation for clinical stage T1 renal tumors? J Endourol 2014; 28(4):464-71. PMID: 24228738
- 48. Bigot P, Hetet JF, Bernhard JC et al. Nephron-sparing surgery for renal tumors measuring more than 7 cm: morbidity, and functional and oncological outcomes. Clin Genitourin Cancer 2014; 12(1):e19-27. PMID: 24210610
- 49. Sea JC, Bahler CD, Mendonsa E, Lucas SM, Sundaram CP. Comparison of measured renal tumor size versus R.E.N.A.L. nephrometry score in predicting patient outcomes after robot-assisted laparoscopic partial nephrectomy. J Endourol 2013; 27(12):1471-6. PMID: 24205980
- 50. Ramirez D, Ma YB, Bedir S, Antonelli JA, Cadeddu JA, Gahan JC. Laparoscopic radiofrequency ablation of small renal tumors: long-term oncologic outcomes. J Endourol 2014; 28(3):330-4. PMID: 24156661
- 51. Hakky TS, Baumgarten AS, Allen B et al. Zonal NePhRO scoring system: a superior renal tumor complexity classification model. Clin Genitourin Cancer 2014; 12(1):e13-8. PMID: 24120084
- 52. George AK, Herati AS, Rais-Bahrami S, Waingankar N, Kavoussi LR. Laparoscopic partial nephrectomy for hilar tumors: oncologic and renal functional outcomes. Urology 2014; 83(1):111-5. PMID: 24119677

- 53. Funahashi Y, Kato M, Yoshino Y, Fujita T, Sassa N, Gotoh M. Comparison of renal ischemic damage during laparoscopic partial nephrectomy with artery-vein and artery-only clamping. J Endourol 2014; 28(3):306-11. PMID: 24099438
- 54. Kreshover JE, Richstone L, Kavoussi LR. Renal cell recurrence for T1 tumors after laparoscopic partial nephrectomy. J Endourol 2013; 27(12):1468-70. PMID: 24074156
- 55. Wah TM, Irving HC, Gregory W, Cartledge J, Joyce AD, Selby PJ. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int 2014; 113(3):416-28. PMID: 24053769
- 56. Seideman CA, Gahan J, Weaver M et al. Renal tumour nephrometry score does not correlate with the risk of radiofrequency ablation complications. BJU Int 2013; 112(8):1121-4. PMID: 24053576
- 57. Ma Y, Bedir S, Cadeddu JA, Gahan JC. Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumours. BJU Int 2014; 113(1):51-5. PMID: 24053553
- 58. Autorino R, Khalifeh A, Laydner H et al. Robot-assisted partial nephrectomy (RAPN) for completely endophytic renal masses: a single institution experience. BJU Int 2014; 113(5):762-8. PMID: 24053421
- 59. Seklehner S, Fellner H, Engelhardt PF, Schabauer C, Riedl C. Percutaneous radiofrequency ablation of renal tumors: a single-center experience. Korean J Urol 2013; 54(9):580-6. PMID: 24044090
- 60. Lee JW, Kim H, Choo M et al. Different methods of hilar clamping during partial nephrectomy: Impact on renal function. Int J Urol 2014; 21(3):232-6. PMID: 24033600
- 61. Golan S, Patel AR, Eggener SE, Shalhav AL. The volume of nonneoplastic parenchyma in a minimally invasive partial nephrectomy specimen: predictive factors and impact on renal function. J Endourol 2014; 28(2):196-200. PMID: 24033335
- 62. Sea JC, Bahler CD, Lucas SM, Mendonsa E, Sundaram C. COMPARISON OF MEASURED RENAL TUMOR SIZE VERSUS R.E.N.A.L. NEPHROMETRY SCORE IN PREDICITING PATIENT OUTCOMES FOLLOWING ROBOT ASSISTED LAPAROSCOPIC PARTIAL NEPHRECTOMY. J Endourol 2013. PMID: 24011227
- 63. Yang R, Lian H, Zhang G et al. Laparoscopic radiofrequency ablation with intraoperative contrast-enhanced ultrasonography for T1bN0M0 renal tumors: initial functional and oncologic outcomes. J Endourol 2014; 28(1):4-9. PMID: 23998802
- 64. Kobayashi K, Saito T, Kitamura Y et al. The RENAL nephrometry score and the PADUA classification for the prediction of perioperative outcomes in patients receiving nephron-sparing surgery: feasible tools to predict intraoperative conversion to nephrectomy. Urol Int 2013; 91(3):261-8. PMID: 23988749
- 65. Qi J, Yu Y, Huang T et al. Predictors of postoperative renal functional damage after nephron-sparing surgery. World J Surg Oncol 2013; 11:216. PMID: 23987305

- 66. Ioffe E, Hakimi AA, Oh SK et al. Effect of visceral obesity on minimally invasive partial nephrectomy. Urology 2013; 82(3):612-8. PMID: 23987153
- 67. Porpiglia F, Bertolo R, Amparore D, Fiori C. Margins, ischaemia and complications rate after laparoscopic partial nephrectomy: impact of learning curve and tumour anatomical characteristics. BJU Int 2013; 112(8):1125-32. PMID: 23937616
- 68. Schmit GD, Thompson RH, Boorjian SA et al. Percutaneous renal cryoablation in obese and morbidly obese patients. Urology 2013; 82(3):636-41. PMID: 23890665
- 69. Mathieu R, Verhoest G, Droupy S et al. Predictive factors of complications after robot-assisted laparoscopic partial nephrectomy: a retrospective multicentre study. BJU Int 2013; 112(4):E283-9. PMID: 23879913
- 70. Krane LS, Manny TB, Mufarrij PW, Hemal AK. Does experience in creating a robot-assisted partial nephrectomy (RAPN) programme in an academic centre impact outcomes or complication rate? BJU Int 2013; 112(2):207-15. PMID: 23795787
- 71. Mir MC, Campbell RA, Sharma N et al. Parenchymal volume preservation and ischemia during partial nephrectomy: functional and volumetric analysis. Urology 2013; 82(2):263-8. PMID: 23791213
- 72. Alyami FA, Rendon RA. Laparoscopic partial nephrectomy for >4 cm renal masses. Can Urol Assoc J 2013; 7(5-6):E281-6. PMID: 23766830
- 73. Khalifeh A, Kaouk JH, Bhayani S et al. Positive surgical margins in robot-assisted partial nephrectomy: a multi-institutional analysis of oncologic outcomes (leave no tumor behind). J Urol 2013; 190(5):1674-9. PMID: 23764077
- 74. Mehrazin R, Palazzi KL, Kopp RP et al. Impact of tumour morphology on renal function decline after partial nephrectomy. BJU Int 2013; 111(8):E374-82. PMID: 23714649
- 75. Allen BC, Chen MY, Childs DD, Zagoria RJ. Imaging-guided radiofrequency ablation of cystic renal neoplasms. AJR Am J Roentgenol 2013; 200(6):1365-9. PMID: 23701077
- 76. Zhang ZY, Tang Q, Li XS et al. Clinical analysis of the PADUA and the RENAL scoring systems for renal neoplasms: a retrospective study of 245 patients undergoing laparoscopic partial nephrectomy. Int J Urol 2014; 21(1):40-4. PMID: 23675903
- 77. Khalifeh A, Autorino R, Eyraud R et al. Three-year oncologic and renal functional outcomes after robot-assisted partial nephrectomy. Eur Urol 2013; 64(5):744-50. PMID: 23639721
- 78. Eyraud R, Long JA, Snow-Lisy D et al. Robot-assisted partial nephrectomy for hilar tumors: perioperative outcomes. Urology 2013; 81(6):1246-51. PMID: 23601446
- 79. Breen DJ, Bryant TJ, Abbas A et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int 2013; 112(6):758-65. PMID: 23581293

- 80. Masson-Lecomte A, Yates DR, Bensalah K et al. Robot-assisted laparoscopic nephron sparing surgery for tumors over 4 cm: operative results and preliminary oncologic outcomes from a multicentre French study. Eur J Surg Oncol 2013; 39(7):799-803. PMID: 23566551
- 81. Kiziloz H, Dorin R, Finnegan KT, Shichman S, Meraney A. The impact of body mass index on perioperative outcomes in robot-assisted laparoscopic partial nephrectomy. J Endourol 2013; 27 (8):1000-7. PMID: 23547917
- 82. Gorin MA, Mullins JK, Pierorazio PM, Jayram G, Allaf ME. Increased intra-abdominal fat predicts perioperative complications following minimally invasive partial nephrectomy. Urology 2013; 81(6):1225-30. PMID: 23541439
- 83. Karam JA, Ahrar K, Vikram R et al. Radiofrequency ablation of renal tumours with clinical, radiographical and pathological results. BJU Int 2013; 111(6):997-1005. PMID: 23510233
- 84. Ching CB, Lane BR, Campbell SC, Li J, Fergany AF. Five to 10-year followup of open partial nephrectomy in a solitary kidney. J Urol 2013; 190(2):470-4. PMID: 23499747
- 85. Osawa T, Harada H, Oba K, Seki T, Togashi M. Clinical factor affecting the recovery of kidney function in clinically localized renal cell carcinoma patients who underwent nephron-sparing surgery. Hokkaido Igaku Zasshi 2013; 88(1):15-20. PMID: 23461068
- 86. Tanagho YS, Kaouk JH, Allaf ME et al. Perioperative complications of robot-assisted partial nephrectomy: analysis of 886 patients at 5 United States centers. Urology 2013; 81(3):573-9. PMID: 23452807
- 87. Balageas P, Cornelis F, Le Bras Y et al. Ten-year experience of percutaneous image-guided radiofrequency ablation of malignant renal tumours in high-risk patients. Eur Radiol 2013; 23(7):1925-32. PMID: 23443351
- 88. Chen Y, Huang J, Xia L et al. Monitoring laparoscopic radiofrequency renal lesions in real time using contrast-enhanced ultrasonography: an open-label, randomized, comparative pilot trial. J Endourol 2013; 27(6):697-704. PMID: 23442174
- 89. Abaza R, Shah K. A single overnight stay is possible for most patients undergoing robotic partial nephrectomy. Urology 2013; 81(2):301-6. PMID: 23374787
- 90. Campero JM, Ramos CG, Valdevenito R, Mercado A, Fulla J. Laparoscopic partial nephrectomy: A series of one hundred cases performed by the same surgeon. Urol Ann 2012; 4(3):162-5. PMID: 23248523
- 91. Springer C, Inferrera A, Kawan F, Schumann A, Fornara P, Greco F. Laparoendoscopic single-site versus conventional laparoscopic radical nephrectomy for renal cell cancer in patients with increased comorbidities and previous abdominal surgery: preliminary results of a single-centre retrospective study. World J Urol 2013; 31(1):213-8. PMID: 23242034
- 92. Pertia A, Managadze L, Chkhotua A. The value of nephron-sparing surgery for the treatment of renal cell carcinoma 4 to 7 cm in size. Georgian Med News 2012; (212): 7-12. PMID: 23221132

- 93. Simhan J, Canter DJ, Sterious SN et al. Pathological concordance and surgical outcomes of sporadic synchronous unilateral multifocal renal masses treated with partial nephrectomy. J Urol 2013; 189(1):43-7. PMID: 23164383
- 94. Hung AJ, Cai J, Simmons MN, Gill IS. "Trifecta" in partial nephrectomy. J Urol 2013; 189(1):36-42. PMID: 23164381
- 95. Erdem S, Tefik T, Mammadov A et al. The use of self-retaining barbed suture for inner layer renorrhaphy significantly reduces warm ischemia time in laparoscopic partial nephrectomy: outcomes of a matched-pair analysis. J Endourol 2013; 27(4):452-8. PMID: 23157211
- 96. Hillyer SP, Bhayani SB, Allaf ME et al. Robotic partial nephrectomy for solitary kidney: a multi-institutional analysis. Urology 2013; 81(1):93-7. PMID: 23153935
- 97. Kim EH, Tanagho YS, Bhayani SB, Saad NE, Benway BM, Figenshau RS. Percutaneous cryoablation of renal masses: Washington University experience of treating 129 tumours. BJU Int 2013; 111(6):872-9. PMID: 23145500
- 98. Kaczmarek BF, Tanagho YS, Hillyer SP et al. Off-clamp robot-assisted partial nephrectomy preserves renal function: a multi-institutional propensity score analysis. Eur Urol 2013; 64(6):988-93. PMID: 23122834
- 99. Cai M, Wei J, Zhang Z et al. Impact of age on the cancer-specific survival of patients with localized renal cell carcinoma: martingale residual and competing risks analysis. PLoS One 2012; 7(10):e48489. PMID: 23119034
- 100. Shao P, Tang L, Li P et al. Application of a vasculature model and standardization of the renal hilar approach in laparoscopic partial nephrectomy for precise segmental artery clamping. Eur Urol 2013; 63(6):1072-81. PMID: 23116655
- 101. Blute ML Jr, Okhunov Z, Moreira DM et al. Image-guided percutaneous renal cryoablation: preoperative risk factors for recurrence and complications. BJU Int 2013; 111(4 Pt B):E181-5. PMID: 23107011
- 102. Isac WE, Autorino R, Hillyer SP, Hernandez AV, Stein RJ, Kaouk JH. The impact of body mass index on surgical outcomes of robotic partial nephrectomy. BJU Int 2012; 110(11 Pt C):E997-E1002. PMID: 23106799
- 103. Yap SA, Alibhai SM, Abouassaly R, Timilshina N, Margel D, Finelli A. Ipsilateral adrenalectomy at the time of radical nephrectomy impacts overall survival. BJU Int 2013; 111(3 Pt B):E54-8. PMID: 23039377
- 104. Akaihata H, Haga N, Yanagida T et al. Does body habitus of patients affect operative difficulty during retroperitoneal laparoscopic radical nephrectomy? J Endourol 2013; 27(2):208-13. PMID: 23039311
- 105. Guillotreau J, Yakoubi R, Long JA et al. Robotic partial nephrectomy for small renal masses in patients with pre-existing chronic kidney disease. Urology 2012; 80(4):845-51. PMID: 23021665
- 106. Long JA, Lee B, Eyraud R et al. Robotic partial nephrectomy: imperative vs elective indications. Urology 2012; 80(4):833-7. PMID: 23021664

- 107. Abaza R, Prall D. Drain placement can be safely omitted after the majority of robotic partial nephrectomies. J Urol 2013; 189(3):823-7. PMID: 23009869
- 108. Sejima T, Iwamoto H, Masago T et al. Oncological and functional outcomes after radical nephrectomy for renal cell carcinoma: a comprehensive analysis of prognostic factors. Int J Urol 2013; 20(4):382-9. PMID: 23003206
- Okhunov Z, Shapiro EY, Moreira DM et al. R.E.N.A.L. nephrometry score accurately predicts complications following laparoscopic renal cryoablation. J Urol 2012; 188(5):1796-800. PMID: 22999696
- 110. Bylund JR, Gayheart D, Fleming T et al. Association of tumor size, location, R.E.N.A.L., PADUA and centrality index score with perioperative outcomes and postoperative renal function. J Urol 2012; 188(5):1684-9. PMID: 22998902
- 111. Kim SD, Yoon SG, Sung GT. Radiofrequency ablation of renal tumors: four-year follow-up results in 47 patients. Korean J Radiol 2012; 13(5):625-33. PMID: 22977331
- 112. Png KS, Bahler CD, Milgrom DP, Lucas SM, Sundaram CP. The role of R.E.N.A.L. nephrometry score in the era of robot-assisted partial nephrectomy. J Endourol 2013; 27(3):304-8. PMID: 22967057
- 113. Ficarra V, Bhayani S, Porter J et al. Robot-assisted partial nephrectomy for renal tumors larger than 4 cm: results of a multicenter, international series. World J Urol 2012; 30(5):665-70. PMID: 22965742
- 114. Psutka SP, Feldman AS, McDougal WS, McGovern FJ, Mueller P, Gervais DA. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol 2013; 63(3):486-92. PMID: 22959191
- 115. Sandhu GS, Kim EH, Tanagho YS, Bhayani SB, Figenshau RS. Robot-assisted partial nephrectomy: off-clamp technique. J Endourol 2013; 27(1):4-7. PMID: 22957660
- 116. Sankin A, Sfakianos JP, Schiff J, Sjoberg D, Coleman JA. Assessing renal function after partial nephrectomy using renal nuclear scintigraphy and estimated glomerular filtration rate. Urology 2012; 80(2):343-6. PMID: 22857751
- 117. Tanagho YS, Roytman TM, Bhayani SB et al. Laparoscopic cryoablation of renal masses: single-center long-term experience. Urology 2012; 80 (2):307-14. PMID: 22857748
- 118. Buethe DD, Moussly S, Lin HY et al. Is the R.E.N.A.L. nephrometry scoring system predictive of the functional efficacy of nephron sparing surgery in the solitary kidney? J Urol 2012; 188(3):729-35. PMID: 22819418
- 119. Kim EH, Tanagho YS, Sandhu GS, Bhayani SB, Figenshau RS. Off-clamp robot-assisted partial nephrectomy for complex renal tumors. J Endourol 2012; 26(9):1177-82. PMID: 22788753
- 120. Long JA, Arnoux V, Fiard G et al. External validation of the RENAL nephrometry score in renal tumours treated by partial nephrectomy. BJU Int 2013; 111(2):233-9. PMID: 22788546

- 121. Favaretto RL, Sanchez-Salas R, Benoist N et al. Oncologic outcomes after laparoscopic partial nephrectomy: mid-term results. J Endourol 2013; 27(1):52-7. PMID: 22788241
- 122. Simmons MN, Hillyer SP, Lee BH, Fergany AF, Kaouk J, Campbell SC. Diameter-axial-polar nephrometry: integration and optimization of R.E.N.A.L. and centrality index scoring systems. J Urol 2012; 188(2):384-90. PMID: 22698624
- 123. Shao P, Tang L, Li P et al. Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur Urol 2012; 62(6):1001-8. PMID: 22695243
- 124. Berg WT, Rich CR, Badalato GM et al. The first assistant sparing technique robot-assisted partial nephrectomy decreases warm ischemia time while maintaining good perioperative outcomes. J Endourol 2012; 26(11):1448-53. PMID: 22691152
- 125. Tugcu V, Bitkin A, Sonmezay E, Polat H, Ilbey YO, Tasci AI. Transperitoneal versus retroperitoneal laparoscopic partial nephrectomy: initial experience. Arch Ital Urol Androl 2011; 83 (4):175-80. PMID: 22670314
- 126. Takagi T, Kondo T, Iizuka J et al. Predictors for postoperative renal function after open partial nephrectomy: including postoperative biomarkers. Int J Urol 2012; 19(9):823-8, PMID: 22568789
- 127. Kim SP, Leibovich BC, Shah ND et al. The relationship of postoperative complications with in-hospital outcomes and costs after renal surgery for kidney cancer. BJU Int 2013; 111(4):580-8. PMID: 22564425
- 128. Tsivian M, Ulusoy S, Abern M, Wandel A, Sidi AA, Tsivian A. Renal mass anatomic characteristics and perioperative outcomes of laparoscopic partial nephrectomy: a critical analysis. J Endourol 2012; 26(10):1307-13. PMID: 22563868
- 129. Mayer WA, Godoy G, Choi JM, Goh AC, Bian SX, Link RE. Higher RENAL Nephrometry Score is predictive of longer warm ischemia time and collecting system entry during laparoscopic and robotic-assisted partial nephrectomy. Urology 2012; 79(5):1052-6. PMID: 22546382
- 130. Kyllo RL, Tanagho YS, Kaouk JH et al. Prospective multi-center study of oncologic outcomes of robot-assisted partial nephrectomy for pT1 renal cell carcinoma. BMC Urol 2012; 12:11. PMID: 22546073
- 131. Tanagho YS, Bhayani SB, Kim EH, Sandhu GS, Vaughn NP, Figenshau RS. Off-clamp robot-assisted partial nephrectomy: initial Washington University experience. J Endourol 2012; 26(10):1284-9. PMID: 22524453
- 132. Reyes J, Canter D, Putnam S et al. Thermal ablation of the small renal mass: case selection using the R.E.N.A.L.-Nephrometry Score. Urol Oncol 2013; 31(7):1292-7. PMID: 22521770
- 133. Novak R, Mulligan D, Abaza R. Robotic partial nephrectomy without renal ischemia. Urology 2012; 79 (6):1296-301. PMID: 22503763
- 134. Jack GS, Lua M, Chan Y, Bolton DM. Integration of laparoscopic partial nephrectomy into an Australian public hospital: three-year follow-up of our initial 50 cases. BJU Int 2012; 109 Suppl 3:35-9. PMID: 22458491

- 135. Kong W, Zhang J, Dong B et al. Application of a standardized anatomical classification in a Chinese partial nephrectomy series. Int J Urol 2012; 19 (6):551-8. PMID: 22462720
- 136. Tatsugami K, Tanaka S, Ohtsubo S et al. Causes of diminished renal function in the affected kidney after partial nephrectomy. BJU Int 2012; 110(8 Pt B):E357-61. PMID: 22416962
- 137. Sobey S, Hakimi AA, Faleck D, Ghavamian R. Minimally invasive heminephrectomy: feasibility and outcomes. J Endourol 2012; 26(7):866-70. PMID: 22360474
- 138. Porpiglia F, Fiori C, Bertolo R et al. Long-term functional evaluation of the treated kidney in a prospective series of patients who underwent laparoscopic partial nephrectomy for small renal tumors. Eur Urol 2012; 62 (1):130-5. PMID: 22349568
- 139. Thompson RH, Lane BR, Lohse CM et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology 2012; 79(2):356-60. PMID: 22310752
- 140. Kruck S, Anastasiadis AG, Walcher U, Stenzl A, Herrmann TR, Nagele U. Laparoscopic partial nephrectomy: risk stratification according to patient and tumor characteristics. World J Urol 2012; 30(5):639-46. PMID: 22270261
- 141. Ficarra V, Bhayani S, Porter J et al. Predictors of warm ischemia time and perioperative complications in a multicenter, international series of robot-assisted partial nephrectomy. Eur Urol 2012; 61(2):395-402. PMID: 22079308
- 142. Saito H, Matsuda T, Tanabe K et al. Surgical and oncologic outcomes of laparoscopic partial nephrectomy: a Japanese multi-institutional study of 1375 patients. J Endourol 2012; 26(6):652-9. PMID: 22077693
- 143. Funahashi Y, Hattori R, Yamamoto T, Sassa N, Fujita T, Gotoh M. Effect of warm ischemia on renal function during partial nephrectomy: assessment with new 99mTc-mercaptoacetyltriglycine scintigraphy parameter. Urology 2012; 79(1):160-4. PMID: 22070892
- 144. Tsivian M, Kim CY, Caso JR, Rosenberg MD, Nelson RC, Polascik TJ. Contrast enhancement on computed tomography after renal cryoablation: an evidence of treatment failure? J Endourol 2012; 26(4):330-5. PMID: 22070179
- 145. Duffey B, Nguyen V, Lund E, Koopmeiners JS, Hulbert J, Anderson JK. Intermediate-term outcomes after renal cryoablation: results of a multi-institutional study. J Endourol 2012; 26(1):15-20. PMID: 22050505
- 146. Wehrenberg-Klee E, Clark TW, Malkowicz SB et al. Impact on renal function of percutaneous thermal ablation of renal masses in patients with preexisting chronic kidney disease. J Vasc Interv Radiol 2012; 23(1):41-5. PMID: 22019179
- 147. Erdeljan P, Dhar M, Wignall G, Kozak R, Pautler SE. Thermal ablation of small renal masses: intermediate outcomes from a Canadian center. Can J Urol 2011; 18(5):5903-7. PMID: 22018153
- 148. Wang H, Gao ZL, Lin CH et al. Laparoscopic partial nephrectomy for T1a renal tumors is safe and feasible. Chin Med J (Engl) 2011; 124(15):2243-7.

PMID: 21933551

- 149. Kim JH, Kim SD, Lee KS, Sung GT. Radiofrequency ablation of renal tumors: our experience. Korean J Urol 2011; 52(8):531-7. PMID: 21927699
- 150. Mufarrij PW, Krane LS, Rajamahanty S, Hemal AK. Does nephrometry scoring of renal tumors predict outcomes in patients selected for robot-assisted partial nephrectomy? J Endourol 2011; 25 (10):1649-53. PMID: 21851270
- 151. Hyams ES, Pierorazio P, Proteek O et al. Iatrogenic vascular lesions after minimally invasive partial nephrectomy: a multi-institutional study of clinical and renal functional outcomes. Urology 2011; 78(4):820-6. PMID: 21813164
- 152. Lifshitz DA, Shikanov SA, Razmaria AA et al. Clinical and histologic predictors of renal function decline after laparoscopic partial nephrectomy. J Endourol 2011; 25(9):1435-41. PMID: 21797760
- 153. Minervini A, Vittori G, Lapini A et al. Morbidity of tumour enucleation for renal cell carcinoma (RCC): results of a single-centre prospective study. BJU Int 2012; 109(3):372-7; discussion 378, PMID: 21794068
- 154. Porpiglia F, Fiori C, Bertolo R et al. The effects of warm ischaemia time on renal function after laparoscopic partial nephrectomy in patients with normal contralateral kidney. World J Urol 2012; 30(2):257-63. PMID: 21769680
- 155. Wheat JC, Roberts WW, Hollenbeck BK, Wolf JS Jr, Weizer AZ. Complications of laparoscopic partial nephrectomy. Urol Oncol 2013; 31(1):57-62. PMID: 21719322
- 156. Godoy G, Katz DJ, Adamy A, Jamal JE, Bernstein M, Russo P. Routine drain placement after partial nephrectomy is not always necessary. J Urol 2011; 186(2):411-5. PMID: 21683403
- 157. Caceres F, Nunez-Mora C, Cabrera PM, Garcia-Mediero JM, Garcia-Tello A, Angulo JC. [Laparoscopic partial nephrectomy]. Actas Urol Esp 2011; 35(8):487-93. PMID: 21641090
- 158. Simhan J, Smaldone MC, Tsai KJ et al. Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy. Eur Urol 2011; 60(4):724-30. PMID: 21621910
- 159. Halachmi S, Moskovitz B, Farfara R, Nativ O. Predictors and mechanisms of oncological failure following nephron-sparing surgery for renal cancer. Isr Med Assoc J 2011; 13(3):166-71. PMID: 21608338
- 160. Cha EK, Ng CK, Jeun B et al. Preoperative radiographic parameters predict long-term renal impairment following partial nephrectomy. World J Urol 2013; 31(4):817-22. PMID: 21604019
- 161. Song C, Park S, Jeong IG et al. Followup of unilateral renal function after laparoscopic partial nephrectomy. J Urol 2011; 186(1):53-8. PMID: 21571327

- 162. Zagoria RJ, Pettus JA, Rogers M, Werle DM, Childs D, Leyendecker JR. Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 2011; 77(6):1393-7. PMID: 21492910
- 163. Mues AC, Okhunov Z, Haramis G, Landman J. Contemporary experience with laparoscopic partial nephrectomy. J Laparoendosc Adv Surg Tech A 2011; 21(4):323-7. PMID: 21486150
- 164. Pouliot F, Pantuck A, Imbeault A et al. Multivariate analysis of the factors involved in loss of renal differential function after laparoscopic partial nephrectomy: a role for warm ischemia time. Can Urol Assoc J 2011; 5(2):89-95. PMID: 21470531
- 165. Rosenberg MD, Kim CY, Tsivian M et al. Percutaneous cryoablation of renal lesions with radiographic ice ball involvement of the renal sinus: analysis of hemorrhagic and collecting system complications. AJR Am J Roentgenol 2011; 196(4):935-9. PMID: 21427348
- 166. Lane BR, Gill IS, Fergany AF, Larson BT, Campbell SC. Limited warm ischemia during elective partial nephrectomy has only a marginal impact on renal functional outcomes. J Urol 2011; 185(5):1598-603. PMID: 21419452
- 167. Choi JD, Park JW, Choi JY et al. Renal damage caused by warm ischaemia during laparoscopic and robot-assisted partial nephrectomy: an assessment using Tc 99m-DTPA glomerular filtration rate. Eur Urol 2010; 58(6):900-5. PMID: 21414862
- 168. Becker F, Roos FC, Janssen M et al. Short-term functional and oncologic outcomes of nephron-sparing surgery for renal tumours >/= 7 cm. Eur Urol 2011; 59(6):931-7. PMID: 21371812
- 169. White MA, Haber GP, Autorino R et al. Outcomes of robotic partial nephrectomy for renal masses with nephrometry score of >/=7. Urology 2011; 77 (4):809-13. PMID: 21333338
- 170. Arai Y, Kaiho Y, Saito H et al. Renal hypothermia using ice-cold saline for retroperitoneal laparoscopic partial nephrectomy: evaluation of split renal function with technetium-99m-dimercaptosuccinic acid renal scintigraphy. Urology 2011; 77(4):814-8. PMID: 21333332
- 171. Mottrie A, Schatteman P, De Wil P, De Troyer B, Novara G, Ficarra V. Validation of the preoperative aspects and dimensions used for an anatomical (PADUA) score in a robot-assisted partial nephrectomy series. World J Urol 2013; 31(4):799-804. PMID: 21286726
- 172. Ji C, Li X, Zhang S et al. Laparoscopic radiofrequency ablation of renal tumors: 32-month mean follow-up results of 106 patients. Urology 2011; 77 (4):798-802. PMID: 21256566
- 173. Tsivian A, Tsivian M, Benjamin S, Sidi AA. Laparoscopic partial nephrectomy for multiple tumours: feasibility and analysis of peri-operative outcomes. BJU Int 2011; 108(8):1330-4. PMID: 21199286
- 174. Muramaki M, Miyake H, Sakai I et al. Age at diagnosis as a powerful predictor for disease recurrence after radical nephrectomy in Japanese patients with pT1 renal cell carcinoma. Int J Urol 2011; 18(2):121-5. PMID: 21166889
- 175. Minervini A, Serni S, Tuccio A et al. Local recurrence after tumour enucleation for renal cell carcinoma with no ablation of the tumour bed: results of a

- prospective single-centre study. BJU Int 2011; 107(9):1394-9. PMID: 21166766
- 176. Hayn MH, Schwaab T, Underwood W, Kim HL. RENAL nephrometry score predicts surgical outcomes of laparoscopic partial nephrectomy. BJU Int 2011; 108(6):876-81. PMID: 21166761
- 177. Davis K, Kielar A, Jafari K. Effectiveness of ultrasound-guided radiofrequency ablation in the treatment of 36 renal cell carcinoma tumours compared with published results of using computed tomography guidance. Can Assoc Radiol J 2012; 63(3 Suppl):S23-32. PMID: 21145195
- 178. Dulabon LM, Kaouk JH, Haber GP et al. Multi-institutional analysis of robotic partial nephrectomy for hilar versus nonhilar lesions in 446 consecutive cases. Eur Urol 2011; 59(3):325-30. PMID: 21144643
- 179. Coffin G, Hupertan V, Taksin L et al. Impact of elective versus imperative indications on oncologic outcomes after open nephron-sparing surgery for the treatment of sporadic renal cell carcinomas. Ann Surg Oncol 2011; 18 (4):1151-7. PMID: 21136181
- 180. Kong WT, Zhang WW, Guo HQ et al. Application of contrast-enhanced ultrasonography after radiofrequency ablation for renal cell carcinoma: is it sufficient for assessment of therapeutic response? Abdom Imaging 2011; 36 (3):342-7. PMID: 21107560
- 181. Schmit GD, Atwell TD, Leibovich BC et al. Percutaneous cryoablation of anterior renal masses: technique, efficacy, and safety. AJR Am J Roentgenol 2010; 195(6):1418-22. PMID: 21098204
- 182. Clark MA, Shikanov S, Raman JD et al. Chronic kidney disease before and after partial nephrectomy. J Urol 2011; 185(1):43-8. PMID: 21074205
- 183. Wszolek MF, Kenney PA, Lee Y, Libertino JA. Comparison of hilar clamping and non-hilar clamping partial nephrectomy for tumours involving a solitary kidney. BJU Int 2011; 107(12):1886-92. PMID: 21070570
- 184. Beemster PW, Barwari K, Mamoulakis C, Wijkstra H, de la Rosette JJ, Laguna MP. Laparoscopic renal cryoablation using ultrathin 17-gauge cryoprobes: mid-term oncological and functional results. BJU Int 2011; 108(4):577-82. PMID: 21044249
- 185. Porpiglia F, Fiori C, Bertolo R, Scarpa RM. Does tumour size really affect the safety of laparoscopic partial nephrectomy? BJU Int 2011; 108(2):268-73. PMID: 21044241
- 186. Smith GL, Kenney PA, Lee Y, Libertino JA. Non-clamped partial nephrectomy: techniques and surgical outcomes. BJU Int 2011; 107(7):1054-8. PMID: 21040369
- 187. Samplaski MK, Hernandez A, Gill IS, Simmons MN. C-index is associated with functional outcomes after laparoscopic partial nephrectomy. J Urol 2010; 184(6):2259-63. PMID: 21036370
- 188. Marszalek M, Chromecki T, Al-Ali BM et al. Laparoscopic partial nephrectomy: a matched-pair comparison of the transperitoneal versus the retroperitoneal approach. Urology 2011; 77(1):109-13. PMID: 20970830

- 189. Ferakis N, Bouropoulos C, Granitsas T, Mylona S, Poulias I. Long-term results after computed-tomography-guided percutaneous radiofrequency ablation for small renal tumors. J Endourol 2010; 24(12):1909-13. PMID: 20946062
- 190. Dente D, Paniccia T, Petrone D et al. Open partial nephrectomy with no clamping of the pedicule: a good surgical option in treatment of renal cancer. Minerva Urol Nefrol 2010; 62(4):341-6. PMID: 20944534
- 191. Montag S, Rais-Bahrami S, Seideman CA et al. Delayed haemorrhage after laparoscopic partial nephrectomy: frequency and angiographic findings. BJU Int 2011; 107(9):1460-6. PMID: 20831568
- 192. Thompson RH, Lane BR, Lohse CM et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol 2010; 58(3):340-5. PMID: 20825756
- 193. Pettus JA, Werle DM, Saunders W et al. Percutaneous radiofrequency ablation does not affect glomerular filtration rate. J Endourol 2010; 24(10):1687-91. PMID: 20818985
- 194. Atwell TD, Callstrom MR, Farrell MA et al. Percutaneous renal cryoablation: local control at mean 26 months of followup. J Urol 2010; 184(4):1291-5. PMID: 20719341
- 195. Lyrdal D, Andersson M, Hellstrom M, Sternal J, Lundstam S. Ultrasound-guided percutaneous radiofrequency ablation of small renal tumors: Clinical results and radiological evolution during follow-up. Acta Radiol 2010; 51(7):808-18. PMID: 20707665
- 196. Lin YS, Chung HJ, Lin AT et al. Laparoscopic partial nephrectomy: Taipei veterans general hospital experience. J Chin Med Assoc 2010; 73(7):364-8. PMID: 20688302
- 197. Rodriguez R, Cizman Z, Hong K, Koliatsos A, Georgiades C. Prospective analysis of the safety and efficacy of percutaneous cryoablation for pT1NxMx biopsy-proven renal cell carcinoma. Cardiovasc Intervent Radiol 2011; 34(3):573-8. PMID: 20628879
- 198. Waldert M, Waalkes S, Klatte T et al. External validation of the preoperative anatomical classification for prediction of complications related to nephron-sparing surgery. World J Urol 2010; 28(4):531-5. PMID: 20607246
- 199. Guazzoni G, Cestari A, Buffi N et al. Oncologic results of laparoscopic renal cryoablation for clinical T1a tumors: 8 years of experience in a single institution. Urology 2010; 76(3):624-9. PMID: 20579705
- 200. Tracy CR, Raman JD, Donnally C, Trimmer CK, Cadeddu JA. Durable oncologic outcomes after radiofrequency ablation: experience from treating 243 small renal masses over 7.5 years. Cancer 2010; 116(13):3135-42. PMID: 20564644
- 201. Netsch C, Bruning R, Bach T, Gross AJ. Management of renal artery pseudoaneurysm after partial nephrectomy. World J Urol 2010; 28(4):519-24. PMID: 20563584
- 202. Colli J, Martin B, Purcell M, Kim YI, Busby EJ. Surgical factors affecting return of renal function after partial nephrectomy. Int Urol Nephrol 2011;

- 43(1):131-7. PMID: 20526891
- 203. Karellas ME, O'Brien MF, Jang TL, Bernstein M, Russo P. Partial nephrectomy for selected renal cortical tumours of >/= 7 cm. BJU Int 2010; 106(10):1484-7. PMID: 20518765
- 204. Forsberg AM, Uvelius B, Wullt B. Open partial nephrectomy for renal cell cancer in a medium patient volume centre: is high quality possible? Scand J Urol Nephrol 2010; 44(4):204-11. PMID: 20459372
- 205. Beemster PW, Wijkstra H, de la Rosette JJ, Zwinderman AH, Pes MP. Quality of life and perceived pain after laparoscopic-assisted renal cryoablation . J Endourol 2010: 24(5):713-9. PMID: 20443715
- 206. Ko YH, Choi H, Kang SG et al. Efficacy of laparoscopic renal cryoablation as an alternative treatment for small renal mass in patients with poor operability: experience from the Korean single center. J Laparoendosc Adv Surg Tech A 2010; 20(4):339-45. PMID: 20438310
- 207. Msezane L, Chang A, Shikanov S et al. Laparoscopic nephron-sparing surgery in the management of angiomyolipoma: a single center experience. J Endourol 2010; 24(4):583-7. PMID: 20423289
- 208. Aguilera Bazan A, Perez Utrilla M, Giron de Francisco M, Reinoso Elbers J, Cisneros Ledo J, De la Pena Barthel J. [Laparoscopic nephron-sparing surgery. 5 years' experience]. Actas Urol Esp 2010; 34(3):238-41. PMID: 20416240
- 209. Ham BK, Kang SG, Choi H, Ko YH, Kang SH, Cheon J. The impact of renal tumor size on the efficacy of laparoscopic renal cryoablation. Korean J Urol 2010; 51(3):171-7. PMID: 20414392
- 210. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol 2010; 58(1):127-32. PMID: 20399002
- 211. Schmit GD, Atwell TD, Callstrom MR et al. Percutaneous cryoablation of renal masses >or=3 cm: efficacy and safety in treatment of 108 patients. J Endourol 2010; 24(8):1255-62. PMID: 20380510
- 212. Park SW, Jung SG, Lee W, Chung MK. Changes in renal function after nephron-sparing surgery in patients with a normal contralateral kidney. Int J Urol 2010; 17(5):457-61. PMID: 20370846
- 213. Huber J, Pahernik S, Hallscheidt P et al. Risk factors and clinical management of haemorrhage after open nephron-sparing surgery. BJU Int 2010; 106(10):1488-93. PMID: 20367634
- 214. Jeon HG, Lee SR, Kim KH et al. Benign lesions after partial nephrectomy for presumed renal cell carcinoma in masses 4 cm or less: prevalence and predictors in Korean patients. Urology 2010; 76(3):574-9. PMID: 20303148
- 215. Shikanov S, Lifshitz D, Chan AA et al. Impact of ischemia on renal function after laparoscopic partial nephrectomy: a multicenter study. J Urol 2010; 183(5):1714-8. PMID: 20299052

- 216. Kundu SD, Thompson RH, Kallingal GJ, Cambareri G, Russo P. Urinary fistulae after partial nephrectomy. BJU Int 2010; 106(7):1042-4. PMID: 20230384
- 217. Porpiglia F, Fiori C, Piechaud T et al. Laparoscopic partial nephrectomy for large renal masses: results of a European survey. World J Urol 2010; 28(4):525-9. PMID: 20204379
- 218. Kava BR, De Los Santos R, Ayyathurai R et al. Contemporary open partial nephrectomy is associated with diminished procedure-specific morbidity despite increasing technical challenges: a single institutional experience. World J Urol 2010; 28(4):507-12. PMID: 20119642
- 219. Benway BM, Bhayani SB, Rogers CG et al. Robot-assisted partial nephrectomy: an international experience. Eur Urol 2010; 57(5):815-20. PMID: 20116163
- 220. Roos FC, Pahernik S, Brenner W, Thuroff JW. Imperative and elective indications for nephron-sparing surgery for renal tumors: long-term oncological follow-up. Aktuelle Urol 2010; 41 Suppl 1:S70-6. PMID: 20094960
- 221. Aron M, Kamoi K, Remer E, Berger A, Desai M, Gill I. Laparoscopic renal cryoablation: 8-year, single surgeon outcomes. J Urol 2010; 183(3):889-95. PMID: 20089263
- 222. Scoll BJ, Uzzo RG, Chen DY et al. Robot-assisted partial nephrectomy: a large single-institutional experience. Urology 2010; 75(6):1328-34. PMID: 20080290
- 223. Yoost TR, Clarke HS, Savage SJ. Laparoscopic cryoablation of renal masses: which lesions fail? Urology 2010; 75(2):311-4. PMID: 20018355
- 224. Lifshitz DA, Shikanov SA, Deklaj T et al. Laparoscopic partial nephrectomy: a single-center evolving experience. Urology 2010; 75(2):282-7. PMID: 19962732
- 225. Lifshitz DA, Shikanov SA, Deklaj T, Katz MH, Zorn KC, Shalhav AL. Laparoscopic partial nephrectomy for tumors larger than 4 cm: a comparative study . J Endourol 2010; 24(1):49-55. PMID: 19958147
- 226. Patel MN, Krane LS, Bhandari A et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur Urol 2010; 57(2):310-6. PMID: 19945213
- 227. Tsivian M, Lyne JC, Mayes JM, Mouraviev V, Kimura M, Polascik TJ. Tumor size and endophytic growth pattern affect recurrence rates after laparoscopic renal cryoablation. Urology 2010; 75 (2):307-10. PMID: 19942265
- 228. Zheng JH, Xu YF, Peng B et al. Retroperitoneal laparoscopic partial nephrectomy for renal-cell carcinoma in a solitary kidney: report of 56 cases. J Endourol 2009; 23(12):1971-4. PMID: 19916753
- 229. Gill IS, Kamoi K, Aron M, Desai MM. 800 Laparoscopic partial nephrectomies: a single surgeon series. J Urol 2010; 183(1):34-41. PMID: 19913256
- 230. Lebed B, Jani SD, Kutikov A, Iffrig K, Uzzo RG. Renal masses herniating into the hilum: technical considerations of the "ball-valve phenomenon" during

- nephron-sparing surgery. Urology 2010; 75(3):707-10. PMID: 19854478
- 231. Malcolm JB, Logan JE, Given RW et al. Renal functional outcomes after cryoablation of small renal masses . J Endourol 2010; 24(3):479-82. PMID: 19839780
- 232. Corcoran AT, Hayn MH, Gibbons EP, Mori R, Hrebinko R, Davies BJ. Partial nephrectomy without hilar control or cooling: longitudinal data over 5 years. Can J Urol 2009; 16(5):4820-5. PMID: 19796457
- 233. Hiraoka K, Kawauchi A, Nakamura T, Soh J, Mikami K, Miki T. Radiofrequency ablation for renal tumors: our experience. Int J Urol 2009; 16(11):869-73. PMID: 19735313
- 234. Thomas AA, Aron M, Hernandez AV, Lane BR, Gill IS. Laparoscopic partial nephrectomy in octogenarians. Urology 2009; 74(5):1042-6. PMID: 19683799
- 235. Rouach Y, Delongchamps N, Timsit MO et al. Capsular involvement in patients undergoing partial nephrectomy for localized renal cell carcinoma: an adverse pathological finding? BJU Int 2010; 105(5):616-9. PMID: 19681891
- 236. Ficarra V, Novara G, Secco S et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol 2009; 56(5):786-93. PMID: 19665284
- 237. Gupta A, Raman JD, Leveillee RJ et al. General anesthesia and contrast-enhanced computed tomography to optimize renal percutaneous radiofrequency ablation: multi-institutional intermediate-term results. J Endourol 2009; 23 (7):1099-105. PMID: 19530948
- 238. Ku JH, Moon KC, Kwak C, Kim HH. External validation of an international multicenter study to predict survival in Korean patients with pT2N0M0 renal cell carcinoma. Urology 2009; 74 (2):359-63. PMID: 19501879
- 239. Laguna MP, Beemster P, Kumar V et al. Perioperative morbidity of laparoscopic cryoablation of small renal masses with ultrathin probes: a European multicentre experience. Eur Urol 2009; 56(2):355-61. PMID: 19467771
- 240. Srivastava A, Gupta M, Singh P et al. Laparoscopic radical nephrectomy: a journey from T1 to very large T2 tumors. Urol Int 2009; 82(3):330-4. PMID: 19440023
- 241. Stern JM, Gupta A, Raman JD et al. Radiofrequency ablation of small renal cortical tumours in healthy adults: renal function preservation and intermediate oncological outcome. BJU Int 2009; 104(6):786-9. PMID: 19426196
- 242. Godoy G, Ramanathan V, Kanofsky JA et al. Effect of warm ischemia time during laparoscopic partial nephrectomy on early postoperative glomerular filtration rate. J Urol 2009; 181(6):2438-43; discussion 2443-5. PMID: 19371905
- 243. La Rochelle J, Shuch B, Riggs S et al. Functional and oncological outcomes of partial nephrectomy of solitary kidneys. J Urol 2009; 181(5):2037-42; discussion 2043. PMID: 19298974

- 244. Badger WJ, de Araujo HA, Kuehn DM, Angresen KJ, Winfield HN. Laparoscopic renal tumor cryoablation: appropriate application of real-time ultrasonographic monitoring. J Endourol 2009; 23 (3):427-30. PMID: 19250024
- 245. Carrafiello G, Lagana D, Ianniello A et al. Percutaneous radiofrequency thermal ablation of renal cell carcinoma: is it possible a day-hospital treatment? Int J Surg 2008; 6 Suppl 1:S31-5. PMID: 19200792
- 246. Joniau S, Vander Eeckt K, Srirangam SJ, Van Poppel H. Outcome of nephron-sparing surgery for T1b renal cell carcinoma. BJU Int 2009; 103(10):1344-8. PMID: 19040528
- 247. Li QL, Guan HW, Wang FP, Jiang T, Wu HC, Song XS. Significance of margin in nephron sparing surgery for renal cell carcinoma of 4 cm or less. Chin Med J (Engl) 2008; 121(17):1662-5. PMID: 19024095
- 248. Peycelon M, Hupertan V, Comperat E et al. Long-term outcomes after nephron sparing surgery for renal cell carcinoma larger than 4 cm. J Urol 2009; 181(1):35-41. PMID: 19012929
- 249. Nadu A, Kleinmann N, Laufer M, Dotan Z, Winkler H, Ramon J. Laparoscopic partial nephrectomy for central tumors: analysis of perioperative outcomes and complications. J Urol 2009; 181(1):42-7; discussion 47. PMID: 19012908
- 250. Celia A, Zeccolini G, Guazzoni G et al. Laparoscopic nephron sparing surgery: a multi-institutional European survey of 592 cases. Arch Ital Urol Androl 2008; 80(3):85-91. PMID: 19009862
- 251. Kefer JC, Desai MM, Fergany A, Novick AC, Gill IS. Outcomes of partial nephrectomy in patients on chronic oral anticoagulant therapy. J Urol 2008; 180(6):2370-4; discussion 2734. PMID: 18930273
- 252. Lane BR, Babineau DC, Poggio ED et al. Factors predicting renal functional outcome after partial nephrectomy. J Urol 2008; 180(6):2363-8; discussion 2368-9. PMID: 18930264
- 253. Stein AJ, Mayes JM, Mouraviev V, Chen VH, Nelson RC, Polascik TJ. Persistent contrast enhancement several months after laparoscopic cryoablation of the small renal mass may not indicate recurrent tumor. J Endourol 2008; 22(11):2433-9. PMID: 18928388
- 254. Iida S, Kondo T, Amano H et al. Minimal effect of cold ischemia time on progression to late-stage chronic kidney disease observed long term after partial nephrectomy. Urology 2008; 72(5):1083-8; discussion 1088-9. PMID: 18822449
- 255. Crispen PL, Boorjian SA, Lohse CM et al. Outcomes following partial nephrectomy by tumor size. J Urol 2008; 180(5):1912-7. PMID: 18801543
- 256. Okegawa T, Noda H, Horie S, Nutahara K, Higashihara E. Comparison of transperitoneal and retroperitoneal laparoscopic nephrectomy for renal cell carcinoma: a single-center experience of 100 cases. Int J Urol 2008; 15(11):957-60. PMID: 18775034
- 257. Georgiades CS, Hong K, Bizzell C, Geschwind JF, Rodriguez R. Safety and efficacy of CT-guided percutaneous cryoablation for renal cell carcinoma. J Vasc Interv Radiol 2008; 19(9):1302-10. PMID: 18725093

- 258. Veltri A, Garetto I, Pagano E, Tosetti I, Sacchetto P, Fava C. Percutaneous RF thermal ablation of renal tumors: is US guidance really less favorable than other imaging guidance techniques? Cardiovasc Intervent Radiol 2009; 32(1):76-85. PMID: 18709413
- 259. Pyo P, Chen A, Grasso M. Retroperitoneal laparoscopic partial nephrectomy: surgical experience and outcomes. J Urol 2008; 180(4):1279-83. PMID: 18707736
- 260. Weizer AZ, Gilbert SM, Roberts WW, Hollenbeck BK, Wolf JS Jr. Tailoring technique of laparoscopic partial nephrectomy to tumor characteristics. J Urol 2008; 180(4):1273-8. PMID: 18707711
- 261. Simmons MN, Chung BI, Gill IS. Perioperative efficacy of laparoscopic partial nephrectomy for tumors larger than 4 cm. Eur Urol 2009; 55(1):199-207. PMID: 18684555
- 262. McClean JM, Kercher KW, Mah NA et al. Strategies in the management of renal tumors amenable to partial nephrectomy. Surg Endosc 2009; 23 (9):2161-6. PMID: 18594916
- 263. Lehman DS, Hruby GW, Phillips CK, McKiernan JM, Benson MC, Landman J. First Prize (tie): Laparoscopic renal cryoablation: efficacy and complications for larger renal masses. J Endourol 2008; 22(6):1123-7. PMID: 18484888
- 264. Yossepowitch O, Thompson RH, Leibovich BC et al. Positive surgical margins at partial nephrectomy: predictors and oncological outcomes. J Urol 2008; 179(6):2158-63. PMID: 18423758
- 265. Desai PJ, Andrews PE, Ferrigni RG, Castle EP. Laparoscopic partial nephrectomy at the Mayo Clinic Arizona: follow-up surveillance of positive margin disease. Urology 2008; 71(2):283-6. PMID: 18308104
- 266. Turna B, Frota R, Kamoi K et al. Risk factor analysis of postoperative complications in laparoscopic partial nephrectomy. J Urol 2008; 179(4):1289-94; discussion 1294-5. PMID: 18289584
- 267. Li QL, Cheng L, Guan HW, Zhang Y, Wang FP, Song XS. Safety and efficacy of mini-margin nephron-sparing surgery for renal cell carcinoma 4-cm or less. Urology 2008; 71(5):924-7. PMID: 18267335
- 268. Colombo JR Jr, Haber GP, Gill IS. Laparoscopic partial nephrectomy in patients with compromised renal function. Urology 2008; 71(6):1043-8. PMID: 18267332
- 269. Wright AD, Turk TM, Nagar MS, Phelan MW, Perry KT. Endophytic lesions: a predictor of failure in laparoscopic renal cryoablation. J Endourol 2007; 21(12):1493-6. PMID: 18186689
- 270. Nguyen MM, Gill IS. Halving ischemia time during laparoscopic partial nephrectomy. J Urol 2008; 179(2):627-32; discussion 632. PMID: 18082215
- 271. Pahernik S, Roos F, Rohrig B, Wiesner C, Thuroff JW. Elective nephron sparing surgery for renal cell carcinoma larger than 4 cm. J Urol 2008; 179(1):71-4; discussion 74. PMID: 17997423

- 272. Porpiglia F, Volpe A, Billia M, Renard J, Scarpa RM. Assessment of risk factors for complications of laparoscopic partial nephrectomy. Eur Urol 2008; 53(3):590-6. PMID: 17997214
- 273. Polascik TJ, Nosnik I, Mayes JM, Mouraviev V. Short Term Clinical Outcome after Laparoscopic Cryoablation of the Renal Tumor < or = 3.5 cm. Technol Cancer Res Treat 2007; 6(6):621-4. PMID: 17994792
- 274. Bandi G, Christian MW, Hedican SP, Moon TD, Nakada SY. Oncological outcomes of hand-assisted laparoscopic radical nephrectomy for clinically localized renal cell carcinoma: a single-institution study with >or=3 years of follow-up. BJU Int 2008; 101(4):459-62. PMID: 17941924
- 275. Carey RI, Leveillee RJ. First prize: direct real-time temperature monitoring for laparoscopic and CT-guided radiofrequency ablation of renal tumors between 3 and 5 cm. J Endourol 2007; 21 (8):807-13. PMID: 17867933
- 276. Denzinger S, Ganzer R, Fink A, Wieland WF, Blana A. Open partial nephrectomy for imperative and elective indications comparison of peri-operative data and long-term follow-up. Scand J Urol Nephrol 2007; 41(6):496-500. PMID: 17853016
- 277. Hemal AK, Kumar A, Gupta NP, Kumar R. Oncologic outcome of 132 cases of laparoscopic radical nephrectomy with intact specimen removal for T1-2N0M0 renal cell carcinoma. World J Urol 2007; 25(6):619-26. PMID: 17786453
- 278. Zagoria RJ, Traver MA, Werle DM, Perini M, Hayasaka S, Clark PE. Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR Am J Roentgenol 2007; 189(2):429-36. PMID: 17646471
- 279. Pettus JA, Sharp DS, Yossepowitch O et al. Tumor location does not affect long-term renal function after partial nephrectomy. Urology 2007; 69 (6):1059-63. PMID: 17572186
- 280. Nadu A, Mor Y, Laufer M et al. Laparoscopic partial nephrectomy: single center experience with 140 patients--evolution of the surgical technique and its impact on patient outcomes. J Urol 2007; 178(2):435-9; discussion 438-9. PMID: 17561145
- 281. Simmons MN, Gill IS. Decreased complications of contemporary laparoscopic partial nephrectomy: use of a standardized reporting system. J Urol 2007; 177(6):2067-73; discussion 2073. PMID: 17509287
- 282. Senga Y, Ozono S, Nakazawa H et al. Surgical outcomes of partial nephrectomy for renal cell carcinoma: a joint study by the Japanese Society of Renal Cancer. Int J Urol 2007; 14(4):284-8. PMID: 17470154
- 283. Atwell TD, Farrell MA, Callstrom MR et al. Percutaneous cryoablation of large renal masses: technical feasibility and short-term outcome. AJR Am J Roentgenol 2007; 188(5):1195-200. PMID: 17449758
- 284. Zorn KC, Gong EM, Orvieto MA, Gofrit ON, Mikhail AA, Shalhav AL. Impact of collecting-system repair during laparoscopic partial nephrectomy. J Endourol 2007; 21(3):315-20. PMID: 17444778
- 285. Weld KJ, Figenshau RS, Venkatesh R et al. Laparoscopic cryoablation for small renal masses: three-year follow-up. Urology 2007; 69(3):448-51. PMID:

17382142

- 286. Littrup PJ, Ahmed A, Aoun HD et al. CT-guided percutaneous cryotherapy of renal masses. J Vasc Interv Radiol 2007; 18(3):383-92. PMID: 17377184
- 287. Adamakis I, Koutalellis G, Mitropoulos D, Vourekas S, Constantinides C, Zervas A. Enucleoresection for the elective treatment of small renal cell carcinoma: can it be the treatment of choice? Onkologie 2007; 30(3):97-102. PMID: 17341895
- 288. Brown GA, Matin SF. Laparoscopic partial nephrectomy: experience in 60 cases. J Endourol 2007; 21(1):71-4. PMID: 17263612
- 289. Patard JJ, Pantuck AJ, Crepel M et al. Morbidity and clinical outcome of nephron-sparing surgery in relation to tumour size and indication. Eur Urol 2007; 52(1):148-54. PMID: 17240036
- 290. Pertia A, Managadze L. Long-term results of simple enucleation for the treatment of small renal cell carcinoma. Int Braz J Urol 2006; 32(6):640-5; discussion 646-7. PMID: 17201941
- 291. Gupta NP, Kumar A, Hemal AK, Dogra PN, Seth A, Kumar R. Open nephron-sparing surgery in renal tumors with normal contralateral kidney: A single centre experience of 8 years. Indian J Urol 2007; 23(1):18-22. PMID: 19675755
- 292. Lane BR, Gill IS. 5-Year outcomes of laparoscopic partial nephrectomy. J Urol 2007; 177(1):70-4; discussion 74. PMID: 17162003
- 293. Kwon EO, Carver BS, Snyder ME, Russo P. Impact of positive surgical margins in patients undergoing partial nephrectomy for renal cortical tumours . BJU Int 2007; 99(2):286-9. PMID: 17155985
- 294. Salagierski M, Salagierski M, Salagierska-Barwinska A, Sosnowski M. Percutaneous ultrasound-guided radiofrequency ablation for kidney tumors in patients with surgical risk. Int J Urol 2006; 13(11):1375-9. PMID: 17083386
- 295. Matin SF, Ahrar K, Cadeddu JA et al. Residual and recurrent disease following renal energy ablative therapy: a multi-institutional study. J Urol 2006; 176(5):1973-7. PMID: 17070224
- 296. Yossepowitch O, Eggener SE, Serio A et al. Temporary renal ischemia during nephron sparing surgery is associated with short-term but not long-term impairment in renal function. J Urol 2006; 176(4 Pt 1):1339-43; discussion 1343. PMID: 16952626
- 297. Schwartz BF, Rewcastle JC, Powell T, Whelan C, Manny T Jr, Vestal JC. Cryoablation of small peripheral renal masses: a retrospective analysis. Urology 2006; 68(1 Suppl):14-8. PMID: 16857455
- 298. Davol PE, Fulmer BR, Rukstalis DB. Long-term results of cryoablation for renal cancer and complex renal masses. Urology 2006; 68(1 Suppl):2-6. PMID: 16857453
- 299. Sorbellini M, Kattan MW, Snyder ME, Hakimi AA, Sarasohn DM, Russo P. Prognostic nomogram for renal insufficiency after radical or partial nephrectomy. J Urol 2006; 176(2):472-6; discussion 476. PMID: 16813869

- 300. Carini M, Minervini A, Masieri L, Lapini A, Serni S. Simple enucleation for the treatment of PT1a renal cell carcinoma: our 20-year experience. Eur Urol 2006; 50(6):1263-8; discussion 1269-71. PMID: 16787695
- 301. Venkatesh R, Weld K, Ames CD et al. Laparoscopic partial nephrectomy for renal masses: effect of tumor location. Urology 2006; 67(6):1169-74; discussion 1174. PMID: 16765174
- 302. Pahernik S, Roos F, Hampel C, Gillitzer R, Melchior SW, Thuroff JW. Nephron sparing surgery for renal cell carcinoma with normal contralateral kidney: 25 years of experience. J Urol 2006; 175(6):2027-31. PMID: 16697793
- 303. Carini M, Minervini A, Lapini A, Masieri L, Serni S. Simple enucleation for the treatment of renal cell carcinoma between 4 and 7 cm in greatest dimension: progression and long-term survival. J Urol 2006; 175(6):2022-6; discussion 2026. PMID: 16697790
- 304. Berdjis N, Hakenberg OW, Zastrow S, Oehlschlager S, Novotny V, Wirth MP. Impact of resection margin status after nephron-sparing surgery for renal cell carcinoma. BJU Int 2006; 97 (6):1208-10. PMID: 16686712
- 305. Becker F, Siemer S, Hack M, Humke U, Ziegler M, Stockle M. Excellent long-term cancer control with elective nephron-sparing surgery for selected renal cell carcinomas measuring more than 4 cm. Eur Urol 2006; 49(6):1058-63; discussion 1063-4. PMID: 16630686
- 306. Weld KJ, Venkatesh R, Huang J, Landman J. Evolution of surgical technique and patient outcomes for laparoscopic partial nephrectomy. Urology 2006; 67(3):502-6; discussion 506-7. PMID: 16527568
- 307. Frank I, Colombo JR Jr, Rubinstein M, Desai M, Kaouk J, Gill IS. Laparoscopic partial nephrectomy for centrally located renal tumors. J Urol 2006; 175(3 Pt 1):849-52. PMID: 16469563
- 308. Pasticier G, Timsit MO, Badet L et al. Nephron-sparing surgery for renal cell carcinoma: detailed analysis of complications over a 15-year period. Eur Urol 2006; 49(3):485-90. PMID: 16443321
- 309. Wille AH, Tullmann M, Roigas J, Loening SA, Deger S. Laparoscopic partial nephrectomy in renal cell cancer--results and reproducibility by different surgeons in a high volume laparoscopic center. Eur Urol 2006; 49(2):337-42; discussion 342-3. PMID: 16413957
- 310. Moinzadeh A, Gill IS, Finelli A, Kaouk J, Desai M. Laparoscopic partial nephrectomy: 3-year followup. J Urol 2006; 175(2):459-62. PMID: 16406971
- 311. Orvieto MA, Chien GW, Tolhurst SR et al. Simplifying laparoscopic partial nephrectomy: technical considerations for reproducible outcomes. Urology 2005; 66(5):976-80. PMID: 16286106
- 312. Permpongkosol S, Chan DY, Link RE et al. Long-term survival analysis after laparoscopic radical nephrectomy . J Urol 2005; 174(4 Pt 1):1222-5. PMID: 16145374
- 313. Thompson RH, Leibovich BC, Lohse CM, Zincke H, Blute ML. Complications of contemporary open nephron sparing surgery: a single institution experience. J Urol 2005; 174(3):855-8. PMID: 16093969

- 314. Gill IS, Colombo JR Jr, Frank I, Moinzadeh A, Kaouk J, Desai M. Laparoscopic partial nephrectomy for hilar tumors. J Urol 2005; 174(3):850-3; discussion 853-4. PMID: 16093968
- 315. Ng CS, Gill IS, Ramani AP et al. Transperitoneal versus retroperitoneal laparoscopic partial nephrectomy: patient selection and perioperative outcomes. J Urol 2005; 174(3):846-9. PMID: 16093967
- 316. Wright JL, Porter JR. Laparoscopic partial nephrectomy: comparison of transperitoneal and retroperitoneal approaches. J Urol 2005; 174(3):841-5. PMID: 16093966
- 317. Gervais DA, Arellano RS, McGovern FJ, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 2, Lessons learned with ablation of 100 tumors. AJR Am J Roentgenol 2005; 185(1):72-80. PMID: 15972401
- 318. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol 2005; 185(1):64-71. PMID: 15972400
- 319. Cheung MC, Lee YM, Rindani R, Lau H. Oncological outcome of 100 laparoscopic radical nephrectomies for clinically localized renal cell carcinoma. ANZ J Surg 2005; 75(7):593-6 . PMID: 15972054
- 320. Lapini A, Serni S, Minervini A, Masieri L, Carini M. Progression and long-term survival after simple enucleation for the elective treatment of renal cell carcinoma: experience in 107 patients. J Urol 2005; 174(1):57-60; discussion 60. PMID: 15947577
- 321. Gill IS, Remer EM, Hasan WA et al. Renal cryoablation: outcome at 3 years. J Urol 2005; 173(6):1903-7. PMID: 15879772
- 322. Link RE, Bhayani SB, Allaf ME et al. Exploring the learning curve, pathological outcomes and perioperative morbidity of laparoscopic partial nephrectomy performed for renal mass. J Urol 2005; 173(5):1690-4. PMID: 15821559
- 323. Salama ME, Guru K, Stricker H et al. pT1 substaging in renal cell carcinoma: validation of the 2002 TNM staging modification of malignant renal epithelial tumors. J Urol 2005; 173(5):1492-5. PMID: 15821466
- 324. Mullerad M, Kastin A, Adusumilli PS, Moskovitz B, Sabo E, Nativ O. Comparison of nephron-sparing surgery in central versus peripheral renal tumors. Urology 2005; 65(3):467-72. PMID: 15780357
- 325. Desai MM, Gill IS, Ramani AP, Spaliviero M, Rybicki L, Kaouk JH. The impact of warm ischaemia on renal function after laparoscopic partial nephrectomy. BJU Int 2005; 95(3):377-83. PMID: 15679798
- 326. Seifman BD, Hollenbeck BK, Wolf JS Jr. Laparoscopic nephron-sparing surgery for a renal mass: 1-year minimum follow-up. J Endourol 2004; 18(8):783-6. PMID: 15659903
- 327. Lee YM, Cheung MC, Lau H. Laparoscopic radical nephrectomy: oncologic outcome in 100 cases. Ann Acad Med Singapore 2004; 33(5 Suppl):S86. PMID: 15651228

- 328. Ramani AP, Desai MM, Steinberg AP et al. Complications of laparoscopic partial nephrectomy in 200 cases. J Urol 2005; 173(1):42-7. PMID: 15592022
- 329. Cestari A, Guazzoni G, dell'Acqua V et al. Laparoscopic cryoablation of solid renal masses: intermediate term followup. J Urol 2004; 172(4 Pt 1):1267-70. PMID: 15371821
- 330. Bhayani SB, Rha KH, Pinto PA et al. Laparoscopic partial nephrectomy: effect of warm ischemia on serum creatinine. J Urol 2004; 172(4 Pt 1):1264-6. PMID: 15371820
- 331. Allaf ME, Bhayani SB, Rogers C et al. Laparoscopic partial nephrectomy: evaluation of long-term oncological outcome. J Urol 2004; 172(3):871-3. PMID: 15310986
- 332. Bove P, Bhayani SB, Rha KH, Allaf ME, Jarrett TW, Kavoussi LR. Necessity of ureteral catheter during laparoscopic partial nephrectomy. J Urol 2004; 172(2):458-60. PMID: 15247702
- 333. Matsumoto ED, Watumull L, Johnson DB et al. The radiographic evolution of radio frequency ablated renal tumors. J Urol 2004; 172(1):45-8. PMID: 15201734
- 334. Kane CJ, Mitchell JA, Meng MV, Anast J, Carroll PR, Stoller ML. Laparoscopic partial nephrectomy with temporary arterial occlusion: description of technique and renal functional outcomes. Urology 2004; 63(2):241-6. PMID: 14972462
- 335. Diblasio CJ, Snyder ME, Kattan MW, Russo P. Ketorolac: safe and effective analgesia for the management of renal cortical tumors with partial nephrectomy. J Urol 2004; 171(3):1062-5. PMID: 14767271
- 336. Elmore JM, Kadesky KT, Koeneman KS, Sagalowsky AI. Reassessment of the 1997 TNM classification system for renal cell carcinoma. Cancer 2003; 98(11):2329-34. PMID: 14635066
- 337. Kuriki O, Ono Y, Kinukawa T et al. Laparoscopic radical nephrectomy for renal cell carcinoma. Aktuelle Urol 2003; 34(4):244-6. PMID: 14566674
- 338. Zigeuner R, Quehenberger F, Pummer K, Petritsch P, Hubmer G. Long-term results of nephron-sparing surgery for renal cell carcinoma in 114 patients: risk factors for progressive disease. BJU Int 2003; 92(6):567-71. PMID: 14511035
- 339. Patel VR, Leveillee RJ. Hand-assisted laparoscopic nephrectomy for stage T1 and large stage T2 renal tumors. J Endourol 2003; 17(6):379-83. PMID: 12965063
- 340. Lundstam S, Jonsson O, Lyrdal D, Peeker R, Pettersson S. Nephron-sparing surgery for renal cell carcinoma--long-term results. Scand J Urol Nephrol 2003; 37(4):299-304. PMID: 12944187
- 341. Kural AR, Demirkesen O, Onal B et al. Outcome of nephron-sparing surgery: elective versus imperative indications. Urol Int 2003; 71(2):190-6. PMID: 12890959

- 342. Franks ME, Hrebinko RL, Konety BR. Surgical enucleation for the treatment of renal tumors. Urol Int 2003; 71(2):184-9. PMID: 12890958
- 343. Mayo-Smith WW, Dupuy DE, Parikh PM, Pezzullo JA, Cronan JJ. Imaging-guided percutaneous radiofrequency ablation of solid renal masses: techniques and outcomes of 38 treatment sessions in 32 consecutive patients. AJR Am J Roentgenol 2003; 180(6):1503-8. PMID: 12760909
- 344. Zucchi A, Mearini L, Mearini E, Costantini E, Vivacqua C, Porena M. Renal cell carcinoma: histological findings on surgical margins after nephron sparing surgery. J Urol 2003; 169(3):905-8. PMID: 12576810
- 345. Desai MM, Gill IS, Kaouk JH, Matin SF, Novick AC. Laparoscopic partial nephrectomy with suture repair of the pelvicaliceal system. Urology 2003; 61(1):99-104. PMID: 12559277
- 346. McKiernan J, Yossepowitch O, Kattan MW et al. Partial nephrectomy for renal cortical tumors: pathologic findings and impact on outcome. Urology 2002; 60(6):1003-9. PMID: 12475658
- 347. Castilla EA, Liou LS, Abrahams NA et al. Prognostic importance of resection margin width after nephron-sparing surgery for renal cell carcinoma. Urology 2002; 60(6):993-7. PMID: 12475656
- 348. Minervini A, Lilas L, Minervini R, Selli C. Prognostic value of nuclear grading in patients with intracapsular (pT1-pT2) renal cell carcinoma. Long-term analysis in 213 patients. Cancer 2002; 94(10):2590-5. PMID: 12173325
- 349. Russo P, Goetzl M, Simmons R, Katz J, Motzer R, Reuter V. Partial nephrectomy: the rationale for expanding the indications. Ann Surg Oncol 2002; 9(7):680-7. PMID: 12167583
- 350. Fryczkowski M, Potyka A, Huk J. Evaluation of organ sparing operation results from planned indications in patients with kidney cancer. Int Urol Nephrol 2001; 32(4):621-7. PMID: 11989552
- 351. Lau WK, Cheville JC, Blute ML, Weaver AL, Zincke H. Prognostic features of pathologic stage T1 renal cell carcinoma after radical nephrectomy. Urology 2002; 59(4):532-7. PMID: 11927308
- 352. Gill IS, Desai MM, Kaouk JH et al. Laparoscopic partial nephrectomy for renal tumor: duplicating open surgical techniques. J Urol 2002; 167(2 Pt 1):469-7; discussion 475-6. PMID: 11792899
- 353. Piper NY, Bishoff JT, Magee C et al. Is a 1-CM margin necessary during nephron-sparing surgery for renal cell carcinoma? Urology 2001; 58 (6):849-52. PMID: 11744443
- 354. Sutherland SE, Resnick MI, Maclennan GT, Goldman HB. Does the size of the surgical margin in partial nephrectomy for renal cell cancer really matter? J Urol 2002; 167(1):61-4. PMID: 11743276
- 355. Jeschke K, Peschel R, Wakonig J, Schellander L, Bartsch G, Henning K. Laparoscopic nephron-sparing surgery for renal tumors. Urology 2001; 58(5):688-92. PMID: 11711341

- 356. Igarashi T, Tobe T, Nakatsu HO et al. The impact of a 4 cm. cutoff point for stratification of T1N0M0 renal cell carcinoma after radical nephrectomy. J Urol 2001; 165(4):1103-6. PMID: 11257647
- 357. Fryczkowski M, Potyka A, Huk J. Evaluation of organ sparing surgery results in patients with kidney cancer in scheduled operations. Med Sci Monit 2000; 6(6):1098-103. PMID: 11208462
- 358. Rukstalis DB, Khorsandi M, Garcia FU, Hoenig DM, Cohen JK. Clinical experience with open renal cryoablation. Urology 2001; 57(1):34-9. PMID: 11164139
- 359. Gill IS, Novick AC, Meraney AM et al. Laparoscopic renal cryoablation in 32 patients. Urology 2000; 56(5):748-53. PMID: 11068292
- 360. Filipas D, Fichtner J, Spix C et al. Nephron-sparing surgery of renal cell carcinoma with a normal opposite kidney: long-term outcome in 180 patients. Urology 2000; 56(3):387-92. PMID: 10962300
- 361. Black P, Filipas D, Fichtner J, Hohenfellner R, Thuroff JW. Nephron sparing surgery for central renal tumors: experience with 33 cases. J Urol 2000; 163(3):737-43. PMID: 10687967
- 362. Fergany AF, Hafez KS, Novick AC. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J Urol 2000; 163(2):442-5. PMID: 10647650
- 363. Abbou CC, Cicco A, Gasman D et al. Retroperitoneal laparoscopic versus open radical nephrectomy. J Urol 1999; 161(6):1776-80. PMID: 10332433
- 364. Herr HW. Partial nephrectomy for unilateral renal carcinoma and a normal contralateral kidney: 10-year followup. J Urol 1999; 161(1):33-4; discussion 34-5. PMID: 10037361
- 365. Ono Y, Kinukawa T, Hattori R et al. Laparoscopic radical nephrectomy for renal cell carcinoma: a five-year experience. Urology 1999; 53(2):280-6. PMID: 9933040
- 366. Cadeddu JA, Ono Y, Clayman RV et al. Laparoscopic nephrectomy for renal cell cancer: evaluation of efficacy and safety: a multicenter experience. Urology 1998; 52(5):773-7. PMID: 9801097
- 367. Van Poppel H, Bamelis B, Oyen R, Baert L. Partial nephrectomy for renal cell carcinoma can achieve long-term tumor control. J Urol 1998; 160(3 Pt 1):674-8. PMID: 9720519
- 368. Ljungberg B, Alamdari FI, Holmberg G, Granfors T, Duchek M. Radical nephrectomy is still preferable in the treatment of localized renal cell carcinoma. A long-term follow-up study. Eur Urol 1998; 33(1):79-85. PMID: 9471045
- 369. Ono Y, Katoh N, Kinukawa T, Matsuura O, Ohshima S. Laparoscopic radical nephrectomy: the Nagoya experience. J Urol 1997; 158(3 Pt 1):719-23. PMID: 9258067

- 370. Hafez KS, Novick AC, Campbell SC. Patterns of tumor recurrence and guidelines for followup after nephron sparing surgery for sporadic renal cell carcinoma. J Urol 1997; 157(6):2067-70. PMID: 9146581
- 371. Hsi R.S., Macleod L.C., Gore J.L., Wright J.L., Harper J.D. Comparison of selective parenchymal clamping to hilar clamping during robotic-assisted laparoscopic partial nephrectomy. Urology 2014; 83(2):339-44.
- 372. Fardoun T., Chaste D., Oger E. et al. Predictive factors of hemorrhagic complications after partial nephrectomy. Eur. J. Surg. Oncol. 2014; 40(1):85-9.
- 373. Tomaszewski J.J., Cung B., Smaldone M.C. et al. Renal pelvic anatomy is associated with incidence, grade, and need for intervention for urine leak following partial nephrectomy. Eur. Urol. 2014; 66(5):949-55.
- 374. Alesawi A., Nadeau G., Bergeron A., Dujardin T., Lacombe L., Caumartin Y. Cystatin C for early detection of acute kidney injury after laparoscopic partial nephrectomy. Urol. Ann. 2014; 6(4):298-304.
- 375. Petros F., Sukumar S., Haber G.-P. et al. Multi-institutional analysis of robot-assisted partial nephrectomy for renal tumors >4 cm versus (less-than or equal to)4 cm in 445 consecutive patients. J. Endourol. 2012; 26(6):642-6.
- 376. Best S.L., Park S.K., Yaacoub R.F. et al. Long-term outcomes of renal tumor radio frequency ablation stratified by tumor diameter: Size matters. J. Urol. 2012; 187(4):1183-9.
- 377. Spana G., Haber G.-P., Dulabon L.M. et al. Complications after robotic partial nephrectomy at centers of excellence: Multi-institutional analysis of 450 cases. J. Urol. 2011; 186(2):417-21.
- 378. White M.A., Haber G.-P., Autorino R. et al. Outcomes of robotic partial nephrectomy for renal masses with nephrometry score of (greater-than or equal to)7. Urology 2011; 77(4):809-13.
- 379. Naeem N., Petros F., Sukumar S. et al. Robot-assisted partial nephrectomy in obese patients. J. Endourol. 2011; 25(1):101-5.
- 380. Schmit G.D., Atwell T.D., Callstrom M.R. et al. Percutaneous cryoablation of renal masses (greater-than or equal to)3cm: Efficacy and safety in treatment of 108 patients. J. Endourol. 2010; 24(8):1255-62.
- 381. Park S.-W., Jung S.-G., Lee W., Chung M.-K. Changes in renal function after nephron-sparing surgery in patients with a normal contralateral kidney: Original article: Clinical investigation. Int. J. Urol. 2010; 17(5):457-61.
- 382. Jeon S.H., Han K.-S., Yoo K.H. et al. How many cases are necessary to develop competence for laparoscopic radical nephrectomy? J. Endourol. 2009; 23(12):1965-70.
- 383. Hiraoka K., Kawauchi A., Nakamura T., Soh J., Mikami K., Miki T. Radiofrequency ablation for renal tumors: Our experience: Original Article. Int. J. Urol. 2009; 16(11):869-73.

- 384. Ritchie R.W., Sullivan M.E., Jones A. Laparoscopic radical nephrectomy for T2 renal cell carcinoma. Br. J. Med. Surg. Urol. 2009; 2(3):117-23.
- 385. Bandi G., Christian M.W., Hedican S.P., Moon T.D., Nakada S.Y. Oncological outcomes of hand-assisted laparoscopic radical nephrectomy for clinically localized renal cell carcinoma: A single-institution study with (greater-than or equal to)3 years of follow-up. BJU Int. 2008; 101(4):459-62.
- 386. Polascik T.J., Nosnik I., Mayes J.M., Mouraviev V. Short term clinical outcome after laparoscopic cryoablation of the renal tumor (less-than or equal to) 3.5 cm. Technol. Cancer Res. Treat. 2007; 6(6):621-4.
- 387. Wille A.H., Deger S., Tullmann M. et al. Laparoscopic Partial Nephrectomy in Renal Cell Cancer-Indications, Technique, and Outcome in 80 Patients. Eur. Urol. Suppl. 2007; 6(10):635-40.
- 388. Salagierska-Barwinska A., Salagierski M., Salagierski M. 4-year experience with percutaneous US-guided radiofrequency ablation of kidney tumors. Pol. J. Radiol. 2007; 72(2):32-5.
- 389. Lee D.-G., Chang S.-G., Jeon S.H. Optimal size cutoff point for prognostic stratification of localized renal cell carcinoma. Korean J. Urol. 2006; 47(6):601-6.
- 390. Marszalek M., Ponholzer A., Brossner C., Wachter J., Maier U., Madersbacher S. Elective open nephron-sparing surgery for renal masses: Single-center experience with 129 consecutive patients. Urology 2004; 64(1):38-42.
- 391. Cooper CJ, Teleb M, Dwivedi A et al. Comparative Outcome of Computed Tomography-guided Percutaneous Radiofrequency Ablation, Partial Nephrectomy or Radical Nephrectomy in the Treatment of Stage T1 Renal Cell Carcinoma. Rare Tumors 2015; 7(1):5583. PMID: 25918603
- 392. Caputo PA, Ramirez D, Zargar H et al. Laparoscopic cryoablation for renal cell carcinoma: 100-month oncologic outcomes, a single institution's experience. J Urol 2015. PMID: 25912493
- 393. Antic T, Taxy JB. Partial nephrectomy for renal tumors: lack of correlation between margin status and local recurrence. Am J Clin Pathol 2015; 143(5):645-51. PMID: 25873497
- 394. Carneiro A, Sivaraman A, Sanchez-Salas R et al. Evolution from laparoscopic to robotic nephron sparing surgery: a high-volume laparoscopic center experience on achieving 'trifecta' outcomes. World J Urol 2015. PMID: 25869814
- 395. Lay AH, Faddegon S, Olweny EO et al. Oncologic efficacy of Radiofrequency Ablation for Small Renal Masses: Clear Cell versus Papillary Subtype. J Urol 2015. PMID: 25846416
- 396. Lamoshi AY, Salkini MW. Off-clamp robotic partial nephrectomy: Technique and outcome. Urol Ann 2015; 7(2):226-30. PMID: 25835489
- 397. Abdeldaeim HM, Abou Youssif TM, Abdel Wahab MM, Kotb AF, El Gebaly OF, Mokhless IA. Prospective Randomized Comparison between Cold and Warm Ischemia in Patients With Renal Insufficiency Undergoing Partial Nephrectomy. Urology 2015; 85(4):862-8. PMID: 25817108

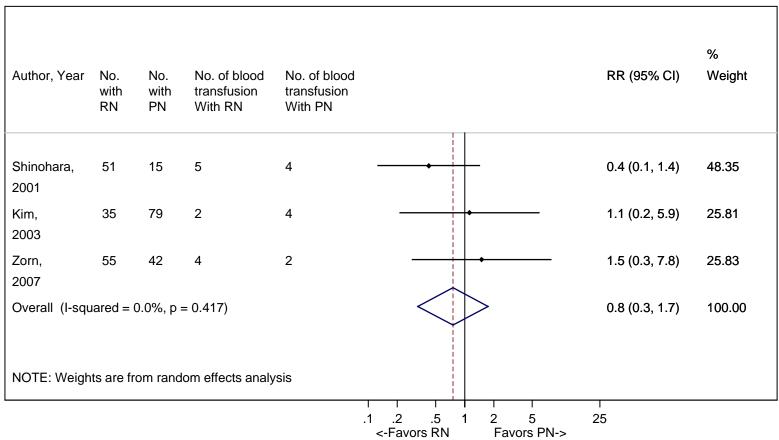
- 398. Kim EH, Larson JA, Potretzke AM, Hulsey NK, Bhayani S, Figenshau RS. Retroperitoneal Robot-Assisted Partial Nephrectomy for Posterior Renal Masses is Associated with Earlier Hospital Discharge: A Single-Institution Retrospective Comparison. J Endourol 2015. PMID: 25816694
- 399. Chang X, Liu T, Zhang F et al. The comparison of R.E.N.A.L., PADUA and Centrality Index score in predicting perioperative outcomes and complications following laparoscopic radiofrequency ablation of renal tumors. J Urol 2015. PMID: 25813450
- 400. Mehrazin R, Smaldone MC, Egleston B et al. Is anatomic complexity associated with renal tumor growth kinetics under active surveillance? Urol Oncol 2015; 33(4):167.e7-167.e12. PMID: 25778696
- 401. Camacho JC, Kokabi N, Xing M et al. R.e.N.a.L. (Radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines) nephrometry score predicts early tumor recurrence and complications after percutaneous ablative therapies for renal cell carcinoma: a 5-year experience. J Vasc Interv Radiol 2015; 26(5):686-93. PMID: 25769213
- 402. Patel NB, Monn MF, Bahler CD, Sundaram CP. Risk factors associated with 30 day hospital readmission following partial nephrectomy. Can J Urol 2015; 22(1):7640-6. PMID: 25694012
- 403. Satasivam P, Reeves F, Rao K et al. Patients with medical risk factors for chronic kidney disease are at increased risk of renal impairment despite the use of nephron-sparing surgery. BJU Int 2015. PMID: 25676543
- 404. Zargar H, Khalifeh A, Autorino R et al. Urine leak in minimally invasive partial nephrectomy: analysis of risk factors and role of intraoperative ureteral catheterization. Int Braz J Urol 2014; 40(6):763-71. PMID: 25615258
- 405. Zeccolini G, de Concilio B, Del Biondo D, Gallo G, Silvestre P, Celia A. Robotic-assisted partial nephrectomy: experience on 60 cases. Urologia 2014; 0(0):0. PMID: 25589026
- 406. Kim JH, Park YH, Kim YJ et al. Perioperative and long-term renal functional outcomes of robotic versus laparoscopic partial nephrectomy: a multicenter matched-pair comparison. World J Urol 2015. PMID: 25585500
- 407. Jang HJ, Song W, Suh YS et al. Comparison of perioperative outcomes of robotic versus laparoscopic partial nephrectomy for complex renal tumors (RENAL nephrometry score of 7 or higher). Korean J Urol 2014; 55(12):808-13. PMID: 25512815
- 408. Yang CM, Chung HJ, Huang YH, Lin TP, Lin AT, Chen KK. Standardized analysis of laparoscopic and robotic-assisted partial nephrectomy complications with Clavien classification. J Chin Med Assoc 2014; 77(12):637-41. PMID: 25441770
- 409. Miller AJ, Kurup AN, Schmit GD et al. Percutaneous Clinical T Renal Mass Ablation in the Octogenarian and Nonagenarian: Oncologic Outcomes and Morbidity. J Endourol 2014. PMID: 25386995
- 410. Han KS, Song GH, You D et al. Comparison of Hand-Assisted Laparoscopic Versus Robot-Assisted Laparoscopic Versus Open Partial Nephrectomy in Patients with T1 Renal Masses. J Endourol 2014. PMID: 25353326

- 411. Rodriguez-Faba O, Palou J, Rosales A et al. Prospective study of ultrasound-guided percutaneous renal cryotherapy: case selection as an optimization factor for a technique. Actas Urol Esp 2015; 39(1):8-12. PMID: 25124045
- 412. Richards KA, Negron E, Cohn JA, Steinberg Z, Eggener SE, Shalhav AL. The impact of body mass index on renal functional outcomes following minimally invasive partial nephrectomy. J Endourol 2014; 28(11):1338-44. PMID: 24935823
- 413. Becker A, Pradel L, Kluth L et al. Laparoscopic versus open partial nephrectomy for clinical T1 renal masses: no impact of surgical approach on perioperative complications and long-term postoperative quality of life. World J Urol 2015; 33(3):421-6. PMID: 24879404
- 414. Eggener SE, Clark MA, Shikanov S et al. Impact of warm versus cold ischemia on renal function following partial nephrectomy. World J Urol 2015; 33(3):351-7. PMID: 24817142
- 415. Choo SH, Lee SY, Sung HH et al. Transperitoneal versus retroperitoneal robotic partial nephrectomy: matched-pair comparisons by nephrometry scores. World J Urol 2014; 32(6):1523-9. PMID: 24817141
- 416. Bessede T, Bigot P, Bernhard JC et al. Are warm ischemia and ischemia time still predictive factors of poor renal function after partial nephrectomy in the setting of elective indication? World J Urol 2015; 33(1):11-5. PMID: 24700310
- 417. Pignot G, Mejean A, Bernhard JC et al. The use of partial nephrectomy: results from a contemporary national prospective multicenter study. World J Urol 2015; 33(1):33-40. PMID: 24663965
- 418. Desai MM, de Castro Abreu AL, Leslie S et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol 2014; 66(4):713-9. PMID: 24486306
- 419. Veltri A, Gazzera C, Busso M et al. T1a as the sole selection criterion for RFA of renal masses: randomized controlled trials versus surgery should not be postponed. Cardiovasc Intervent Radiol 2014; 37(5):1292-8. PMID: 24337348
- 420. Li H.-K., Chung H.-J., Huang E.Y., Lin A.T., Chen K.-K. Impact of warm ischemia time on the change of split renal function after minimally invasive partial nephrectomy in Taiwanese patients. J. Chin. Med. Assoc. 2015; 78(1):62-6.
- 421. Boylu U., Basatac C., Yildirim U., Onol F., Gumus E. Comparison of surgical, functional, and oncological outcomes of open and robot-assisted partial nephrectomy. J. Minimal Access Surg. 2015; 11(1):72-7.
- 422. Gahan J.C., Richter M.D., Seideman C.A. et al. The performance of a modified RENAL nephrometry score in predicting renal mass radiofrequency ablation success. Urology 2015; 85(1):125-9.
- 423. Zargar H., Akca O., Ramirez D. et al. The impact of extended warm ischemia time on late renal function after robotic partial nephrectomy. J. Endourol. 2015; 29(4):444-8.
- 424. Curtiss K.M., Ball M.W., Gorin M.A., Harris K.T., Pierorazio P.M., Allaf M.E. Perioperative outcomes of robotic partial nephrectomy for intrarenal

- tumors. J. Endourol. 2015; 29(3):293-6.
- 425. Larcher A., Fossati N., Mistretta F. et al. Long-term oncologic outcomes of laparoscopic renal cryoablation as primary treatment for small renal masses. Urol. Oncol. Semin. Orig. Invest. 2015; 33(1):22.e1-22.e9.
- 426. Lista G., Buffi N.M., Lughezzani G. et al. Margin, ischemia, and complications system to report perioperative outcomes of robotic partial nephrectomy: A European multicenter observational study (EMOS project). Urology 2015; 85(3):589-94.
- 427. Larson J.A., Kaouk J.H., Stifelman M.D. et al. Nonmodifiable factors and complications contribute to length of stay in Robot-Assisted partial nephrectomy. J. Endourol. 2015; 29(4):422-9.
- 428. Salevitz D.A., Patton M.W., Tyson M.D. et al. The impact of ischemia on long-term renal function after partial nephrectomy in the two kidney model. J. Endourol. 2015; 29(4):474-8.
- 429. Porpiglia F., Bertolo R., Amparore D. et al. Evaluation of functional outcomes after laparoscopic partial nephrectomy using renal scintigraphy: Clamped vs clampless technique. BJU Int. 2015; 115(4):606-12.
- 430. Webb C.M., Kamel M., Eltahawy E. et al. A comparative study of open, laparoscopic and robotic partial nephrectomy in obese patients. Urol. Ann. 2015; 7(2):231-4.
- 431. Wu Z., Li M., Song S. et al. Propensity-score matched analysis comparing robot-assisted with laparoscopic partial nephrectomy. BJU Int. 2015; 115(3):437-45.
- 432. Ganpule A., Goti A., Mishra S., Sabnis R., Desai M., Desai M. Robotic-assisted laparoscopic partial nephrectomy: A single centre Indian experience. J. Minimal Access Surg. 2015; 11(1):78-82.
- 433. Komninos C., Tuliao P., Koo K.C., Chang C.-H., Han W.K., Rha K.H. Obesity is not associated with increased operative complications in single-site robotic partial nephrectomy. Yonsei Med. J. 2015; 56(2):382-7.
- 434. Tanaka K., Furukawa J., Shigemura K. et al. Surgery-related outcomes and postoperative split renal function by scintigraphy evaluation in robot-assisted partial nephrectomy in complex renal tumors: An initial case series. J. Endourol. 2015; 29(1):29-34.
- 435. Castaneda C.V., Danzig M.R., Finkelstein J.B. et al. The natural history of renal functional decline in patients undergoing surveillance in the DISSRM registry. Urol. Oncol. Semin. Orig. Invest. 2015.
- 436. Atwell T.D., Vlaminck J.J., Boorjian S.A. et al. Percutaneous Cryoablation of Stage T1b Renal Cell Carcinoma: Technique Considerations, Safety, and Local Tumor Control. J. Vasc. Intervent. Radiol. 2015.
- 437. Zargar H., Samarasekera D., Khalifeh A. et al. Laparoscopic vs Percutaneous Cryoablation for the Small Renal Mass: 15-Year Experience at a Single Center. Urology 2015.

- 438. Tay M.H.W., Thamboo T.P., Wu F.M.W. et al. High R.E.N.A.L. nephrometry scores are associated with pathologic upstaging of clinical T1 renal-cell carcinomas in radical nephrectomy specimens: Implications for nephron-sparing surgery. J. Endourol. 2014; 28(9):1138-42.
- 439. Maddox M., Mandava S., Liu J., Boonjindasup A., Lee B.R. Robotic Partial Nephrectomy for Clinical Stage T1b Tumors: Intermediate Oncologic and Functional Outcomes. Clin. Genitourin. Cancer 2014.
- 440. Park Y.H., Lee E.S., Kim H.H. et al. Long-term oncologic outcomes of hand-assisted laparoscopic radical nephrectomy for clinically localized renal cell carcinoma: A multi-institutional comparative study. J. Laparoendosc. Adv. Surg. Techn. 2014; 24(8):556-62.
- 441. Hongo F., Kawauchi A., Ueda T. et al. Long-term outcome of hand-assisted laparoscopic radical nephrectomy for T1 renal cell carcinoma. Int. J. Urol. 2014.
- 442. Wiener S., Kiziloz H., Dorin R.P., Finnegan K., Shichman S.S., Meraney A. Predictors of postoperative decline in estimated glomerular filtration rate in patients undergoing robotic partial nephrectomy. J. Endourol. 2014; 28(7):807-13.
- 443. Harris K.T., Ball M.W., Gorin M.A., Curtiss K.M., Pierorazio P.M., Allaf M.E. Transperitoneal robot-assisted partial nephrectomy: A comparison of posterior and anterior renal masses. J. Endourol. 2014; 28(6):655-9.
- 444. Mukkamala A., He C., Weizer A.Z. et al. Long-term oncologic outcomes of minimally invasive partial nephrectomy for renal-cell carcinoma. J. Endourol. 2014; 28(6):649-54.
- 445. Lai W.-J., Chung H.-J., Chen C.-K. et al. Percutaneous computed tomography-guided cryoablation for renal tumor: Experience in 30 cases. J. Chin. Med. Assoc. 2015.
- 446. Chang X., Ji C., Zhao X. et al. The application of R.E.N.A.L. nephrometry scoring system in predicting the complications after laparoscopic renal radiofrequency ablation. J. Endourol. 2014; 28(4):424-9.
- 447. Lee J.W., Kim H., Choo M. et al. Different methods of hilar clamping during partial nephrectomy: Impact on renal function. Int. J. Urol. 2014; 21(3):232-6.
- 448. Wah T.M., Irving H.C., Gregory W., Cartledge J., Joyce A.D., Selby P.J. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): Experience in 200 tumours. BJU Int. 2014; 113(3):416-28.
- 449. Yokoyama M., Fujii Y., Takeshita H. et al. Renal function after radical nephrectomy: Development and validation of predictive models in Japanese patients. Int. J. Urol. 2014; 21(3):238-42.
- 450. Wang H., Zhou L., Guo J. et al. Mini-flank supra-12th rib incision for open partial nephrectomy compared with laparoscopic partial nephrectomy and traditional open partial nephrectomy. PLoS ONE 2014; 9(2).
- 451. Hsi R.S., Macleod L.C., Gore J.L., Wright J.L., Harper J.D. Comparison of selective parenchymal clamping to hilar clamping during robotic-assisted

- laparoscopic partial nephrectomy. Urology 2014; 83(2):339-44.
- 452. Springer C., Greco F., Autorino R. et al. Analysis of oncological outcomes and renal function after laparoendoscopic single-site (LESS) partial nephrectomy: A multi-institutional outcome analysis. BJU Int. 2014; 113(2):266-74.
- 453. Georgiades C.S., Rodriguez R. Efficacy and Safety of Percutaneous Cryoablation for Stage 1A/B Renal Cell Carcinoma: Results of a Prospective, Single-Arm, 5-Year Study. Cardiovasc. Intervent. Radiol. 2014; 1-6.
- 454. Maeda M., Funahashi Y., Sassa N., Fujita T., Majima T., Gotoh M. Prediction of partial nephrectomy outcomes by using the diameter-axis-polar nephrometry score. Int. J. Urol. 2014; 21(5):442-6.
- 455. Yang R., Lian H., Zhang G. et al. Laparoscopic radiofrequency ablation with intraoperative contrast-enhanced ultrasonography for T1bN0M0 renal tumors: Initial functional and oncologic outcomes. J. Endourol. 2014; 28(1):4-9.
- 456. Tan H.-J., Wolf Jr. J.S., Ye Z., Hafez K.S., Miller D.C. Population level assessment of hospital based outcomes following laparoscopic versus open partial nephrectomy during the adoption of minimally invasive surgery. J. Urol. 2014; 191(5):1231-7.
- 457. George A.K., Herati A.S., Rais-Bahrami S., Waingankar N., Kavoussi L.R. Laparoscopic partial nephrectomy for hilar tumors: Oncologic and renal functional outcomes. Urology 2014; 83(1):111-5.
- 458. Sandberg J.M., Krane L.S., Hemal A.K. A nonrandomized prospective comparison of robotic-assisted partial nephrectomy in the elderly to a younger cohort: An analysis of 339 patients with intermediate-term follow-up. Urology 2014; 84(4):838-43.
- 459. Yeon J.S., Son S.J., Lee Y.J. et al. The nephrometry score: Is it effective for predicting perioperative outcome during robot-assisted partial nephrectomy? Korean J. Urol. 2014; 55(4):254-9.
- 460. Komninos C., Shin T.Y., Tuliao P. et al. Robotic partial nephrectomy for completely endophytic renal tumors: Complications and functional and oncologic outcomes during a 4-year median period of follow-up. Urology 2014; 84(6):1367-73.
- 461. Ma Y., Bedir S., Cadeddu J.A., Gahan J.C. Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumours. BJU Int. 2014; 113(1):51-5.
- 462. Verhoest G., Patard J.J., Oger E. et al. Predictive factors of chronic kidney disease stage V after partial nephrectomy in a solitary kidney: A multi-institutional study. Urol. Oncol. Semin. Orig. Invest. 2014; 32(1):28.e21-28.e26.
- 463. Lorber G., Glamore M., Doshi M., Jorda M., Morillo-Burgos G., Leveillee R.J. Long-term oncologic outcomes following radiofrequency ablation with real-time temperature monitoring for T1a renal cell cancer. Urol. Oncol. Semin. Orig. Invest. 2014; 32(7):1017-23.
- 464. Mukkamala A., He C., Weizer A.Z. et al. Long-term renal functional outcomes of minimally invasive partial nephrectomy for renal cell carcinoma. Urol. Oncol. Semin. Orig. Invest. 2014; 32(8):1247-51.


- 465. Hu J.C., Treat E., Filson C.P. et al. Technique and outcomes of robot-assisted retroperitoneoscopic partial nephrectomy: A multicenter study. Eur. Urol. 2014; 66(3):542-9.
- 466. Autorino R., Khalifeh A., Laydner H. et al. Robot-assisted partial nephrectomy (RAPN) for completely endophytic renal masses: A single institution experience. BJU Int. 2014; 113(5):762-8.
- 467. Tan H.-J., Wolf J.S., Ye Z., Hafez K.S., Miller D.C. Population level assessment of hospital based outcomes following laparoscopic versus open partial nephrectomy durin. The adoption of minimally invasive surgery. J. Urol. 2014; 191(5):1231-7.
- 468. Johnson S., Pham K.N., See W., Begun F.P., Langenstroer P. Laparoscopic cryoablation for clinical stage T1 renal masses: Long-term oncologic outcomes at the medical college of wisconsin. Urology 2014; 84(3):613-7.
- 469. Kim E.H., Tanagho Y.S., Saad N.E., Bhayani S.B., Figenshau R.S. Comparison of laparoscopic and percutaneous cryoablation for treatment of renal masses. Urology 2014; 83(5):1081-7.
- 470. Zargar H., Bhayani S., Allaf M.E. et al. Comparison of perioperative outcomes of robot-assisted partial nephrectomy and open partial nephrectomy in patients with a solitary kidney. J. Endourol. 2014; 28(10):1224-30.
- 471. Takagi T., Mir M.C., Campbell R.A. et al. Assessment of outcomes in partial nephrectomy incorporating detailed functional analysis. Urology 2014; 84(5):1128-33.
- 472. Fardoun T., Chaste D., Oger E. et al. Predictive factors of hemorrhagic complications after partial nephrectomy. Eur. J. Surg. Oncol. 2014; 40(1):85-9.
- 473. Ficarra V., Minervini A., Antonelli A. et al. A multicentre matched-pair analysis comparing robot-assisted versus open partial nephrectomy. BJU Int. 2014; 113(6):936-41.
- 474. Jung S., Min G.E., Chung B.I., Jeon S.H. Risk factors for postoperative hemorrhage after partial nephrectomy. Korean J. Urol. 2014; 55(1):17-22.
- 475. Ghani K.R., Sukumar S., Sammon J.D., Rogers C.G., Trinh Q.-D., Menon M. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: Results from the nationwide inpatient sample. J. Urol. 2014; 191(4):907-12.
- 476. Mobley J.M., Kim E.H., Larson J.A. et al. Patients with pathologically proven renal disease have similar declines in renal function following robot-assisted partial nephrectomy. J. Endourol. 2014; 28(12):1429-34.
- 477. Volpe A., Garrou D., Amparore D. et al. Perioperative and renal functional outcomes of elective robot-assisted partial nephrectomy (RAPN) for renal tumours with high surgical complexity. BJU Int. 2014; 114(6):903-9.
- 478. Youssef F.R., Smith D.J., Oakley N.E. Laparoscopic and open partial nephrectomy: A UK centre's experience. J. Clini. Urol. 2014; 7(2):105-11.
- 479. Gin G.E., Maschino A.C., Spaliviero M., Vertosick E.A., Bernstein M.L., Coleman J.A. Comparison of perioperative outcomes of retroperitoneal and

- transperitoneal minimally invasive partial nephrectomy after adjusting for tumor complexity. Urology 2014; 84(6):1355-60.
- 480. Liu J.-J., Leppert J.T., Maxwell B.G., Panousis P., Chung B.I. Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Urol. Oncol. Semin. Orig. Invest. 2014; 32(4):473-9.
- 481. Wu Z.-J., Ye H.-M., Li M.-M. et al. Application of R. E. N. A. L. scoring system in robotic laparoscopic partial nephrectomy. Acad. J. Second Mil. Med. Univ. 2014; 35(4):383-7.
- 482. Oh J.J., Byun S.-S., Lee S.E. et al. Partial nephrectomy versus radical nephrectomy for non-metastatic pathological T3a renal cell carcinoma: A multi-institutional comparative analysis. Int. J. Urol. 2014; 21(4):352-7.
- 483. Ye H.-M., Wang R., Wu Z.-J. et al. da Vinci robot-assisted laparoscopic partial nephrectomy for renal tumors with PADUA score (greater-than or equal to)10. Acad. J. Second Mil. Med. Univ. 2014; 35(7):800-3.

Appendix F. Meta-Analysis Figures

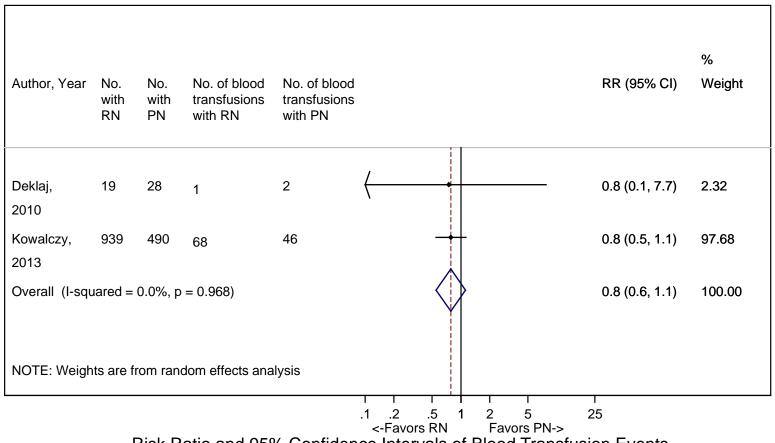

Harms meta-analysis figures

Figure F1: Meta-analysis figure showing blood transfusion events in cT1a patients Radical Nephrectomy (RN) vs Partial Nephrectomy (PN)

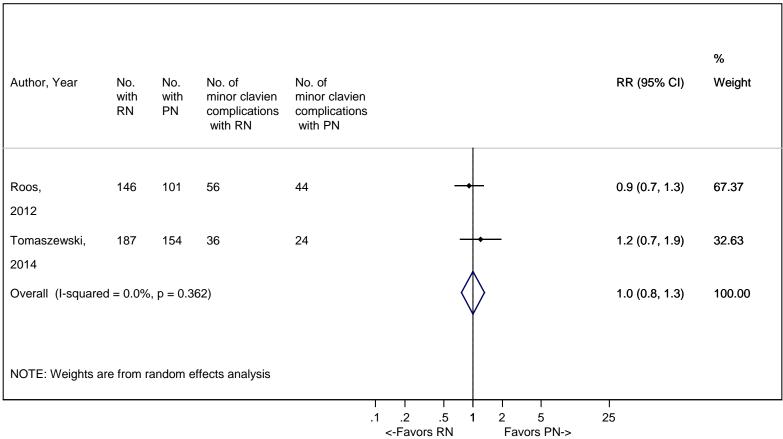

Risk Ratio and 95% Confidence Intervals of Blood Transfusion Events

Figure F2: Meta-analysis figure showing blood transfusion events in cT1 patients Radical Nephrectomy (RN) vs Partial Nephrectomy (PN)

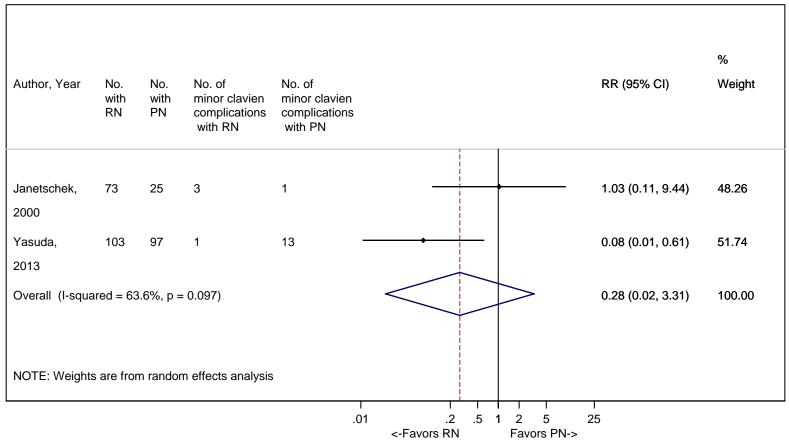
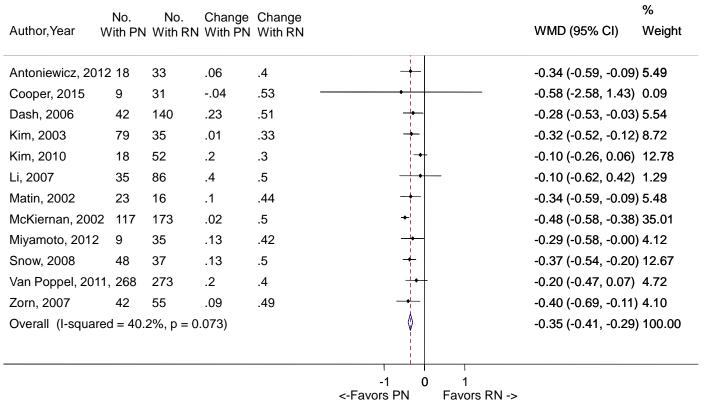

Risk Ratio and 95% Confidence Intervals of Blood Transfusion Events

Figure F3: Meta-analysis figure showing incidence of minor clavien complications in cT1b patients Radical Nephrectomy (RN) vs Partial Nephrectomy (PN)

Risk Ratio and 95% Confidence Intervals of Minor Clavien Complications


Figure F4: Meta-analysis figure showing incidence of minor clavien complications in cT1 patients Radical Nephrectomy (RN) vs Partial Nephrectomy (PN)

Risk Ratio and 95% Confidence Intervals of Minor Clavien Complications

Renal functional outcomes meta-analysis figures

Figure F5: Meta-analysis figure showing mean Change in Creatinine Radical Nephrectomy (RN) vs Partial Nephrectomy (PN)

Pooled Mean Difference Between Groups in Creatinine Change

Figure F6: Meta-analysis figure showing mean change in Creatinine Partial Nephrectomy (PN) vs Thermal Ablation (TA)

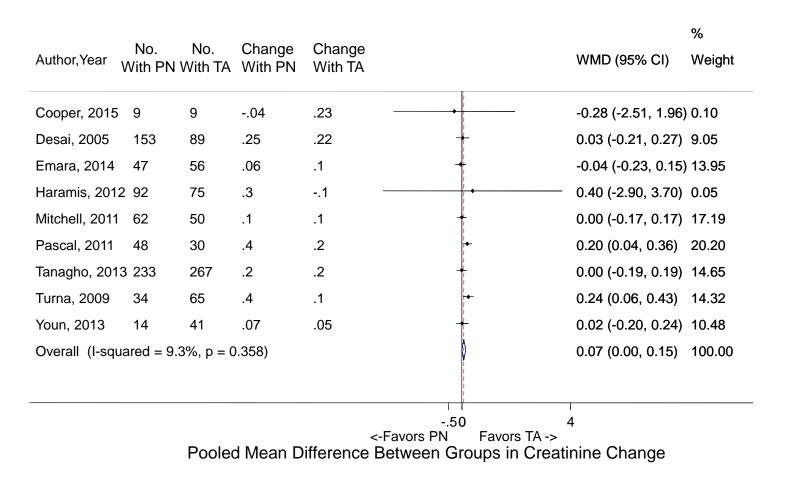


Figure F7: Meta-analysis figure showing incidence of Stage 3b Chronic Kidney Disease (CKD) Radical Nephrectomy (RN) vs partial Nephrectomy

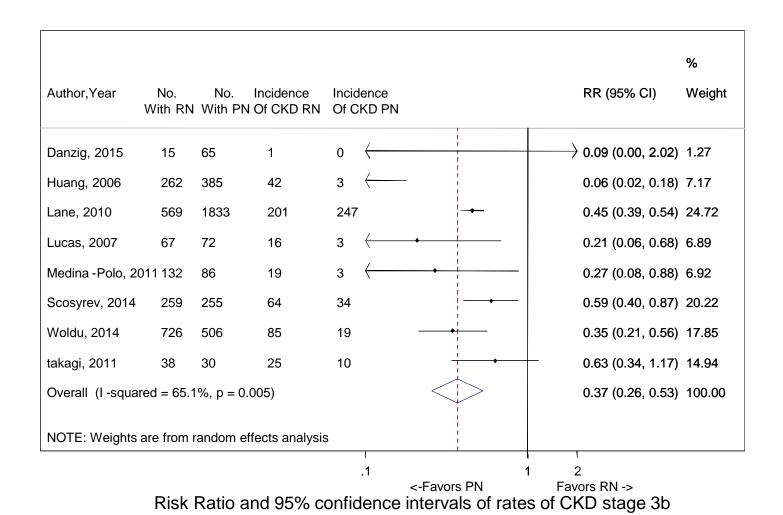
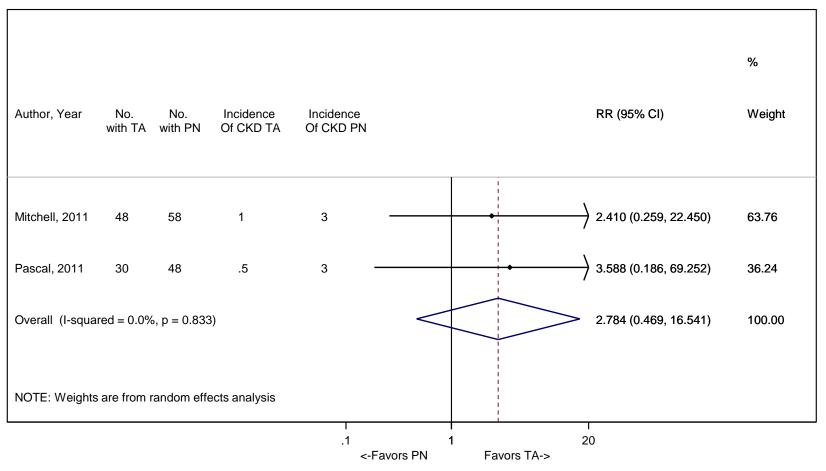
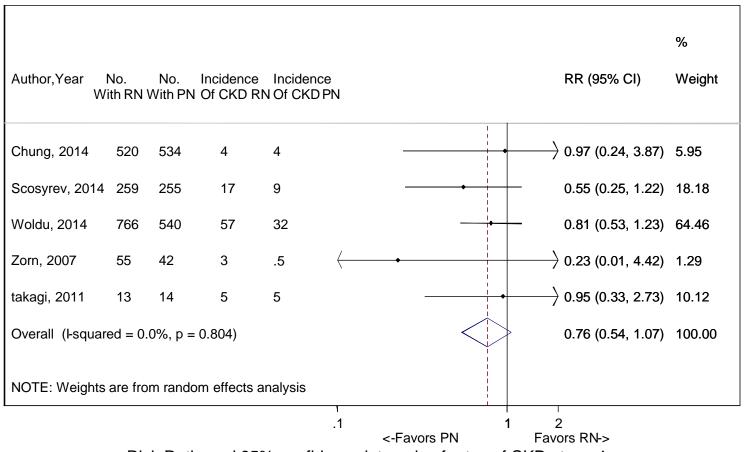
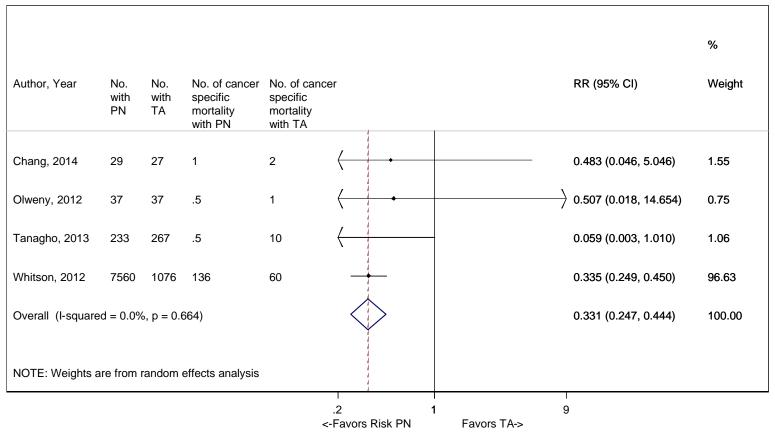




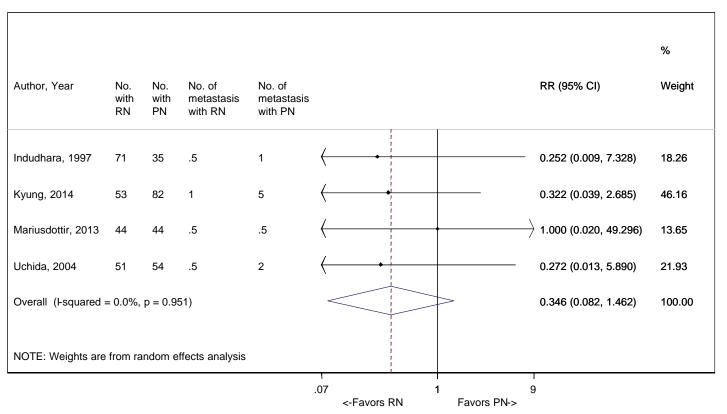
Figure F8: Meta-analysis figure showing incidence of Stage 3b Chronic Kidney Disease (CKD) Thermal Ablation (TA) vs Partial Nephrectomy (PN)

Risk Ratio and 95% Confidence Intervals of Incidence of CKD Stage 3b


Figure F9: Meta-analysis figure showing incidence of Stage 4 Chronic Kidney Disease (CKD) Radical Nephrectomy (RN) vs partial Nephrectomy

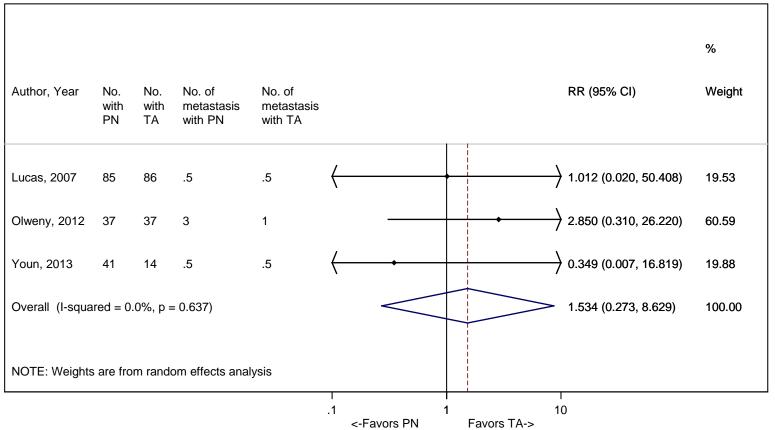
Risk Ratio and 95% confidence intervals of rates of CKD stage 4

Oncologic outcomes meta-analysis figures


Figure F10: Meta-analysis figure showing incidence of Cancer SpecificMortality at 60monthsPartial Nephrectomy (PN) vs Thermal Ablation (TA)

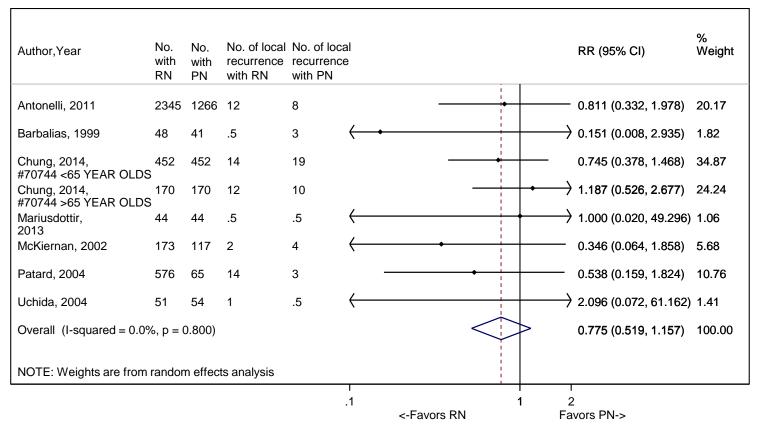
Risk Ratio and 95% Confidence Intervals of Cancer Specific Mortality

N=number; RN=Radical Nephrectomy; PN=Partial Nephrectomy, TA=Thermal Ablation; RR=Risk Ratio


Figure F11: Meta-analysis figure showing incidence of Metastasis at 50 ± 10 monthsRadical Nephrectomy (RN) vs Partial Nephrectomy (PN)

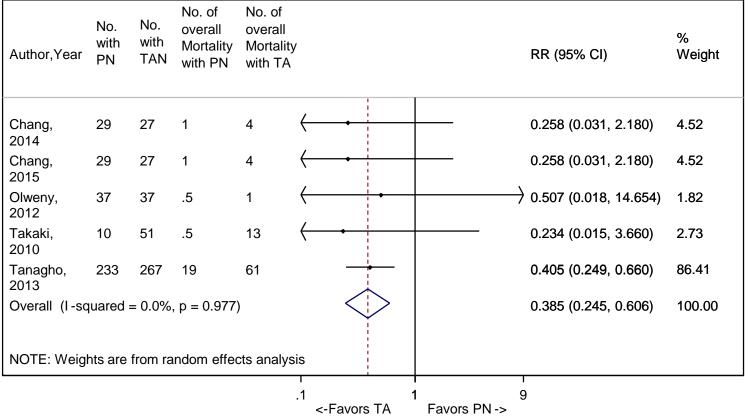
Risk Ratio and 95% Confidence Intervals of Metastasis Occurence

N=number; RN=Radical Nephrectomy; PN=Partial Nephrectomy, TA=Thermal Ablation; RR=Risk Ratio


Figure F12: Meta-analysis figure showing incidence of Metastasis 50 ± 10monthsPartial Nephrectomy (PN) vs Thermal Ablation (TA)

Risk Ratio and 95% Confidence Intervals of Metastasis Occurence

N=number; RN=Radical Nephrectomy; PN=Partial Nephrectomy, TA=Thermal Ablation; RR=Risk Ratio


Figure F13: Meta-analysis figure showing incidence of Local Recurrence 50 ± 10 monthsRadical Nephrectomy (RN) vs Partial Nephrectomy (PN)

Risk Ratio and 95% Confidence Intervals for local recurrence

N=number; RN=Radical Nephrectomy; PN=Partial Nephrectomy, TA=Thermal Ablation; RR=Risk Ratio

Figure F14: Meta-analysis figure showing incidence of Overall Mortality at 60monthsPartial Nephrectomy (PN) vsThermal Ablation (TA)

Risk Ratio and 95% Confidence Intervals of overall mortality

N=number; RN=Radical Nephrectomy; PN=Partial Nephrectomy, TA=Thermal Ablation; RR=Risk Ratio

Appendix G. Clinical Trials Report Clinical Trials Report

Evidence-Based Practice Center Johns Hopkins University School of Medicine 07/21/2015

Objective: To review ongoing (open and closed to recruitment) trials (listed in the clinicaltrials.gov website that contained either the search term "renal masses" OR "renal cell carcinoma" OR "renal cancer", received from 01/01/1997 to 07/21/2015 and were conducted in those ≥18years of age. Using the preceding search criteria,

Number of Studies found as of 07/21/2015: 1213

Number of Studies relevant to Review: 4

Study ID#	NCT Number	Title	Interventions	Study Types	Study Designs	Outcome Measures
1.	NCT00002473	Kidney-Sparing Surgery Compared With Kidney Removal in Treating Patients With Kidney Cancer	Procedure: conventional surgery	Interventional	Allocation: Randomized Primary Purpose: Treatment	
2.	NCT01608165	A Feasibility Study for a Multicentre Randomised Controlled Trial to Compare Surgery With Needle Ablation Techniques in People With Small Renal Masses (4cm) (CONSERVE)	Procedure: Surgical treatment for renal mass Patients will be randomised to receive a partial nephrectomy as treatment for their renal cancer mass Procedure: Percutaneous Radiofrequency ablation	Interventional	Allocation: Randomized Intervention Model: Parallel Assignment Masking: Open Label	SF-36 quality of life questionnaire [Time Frame: at 7 days of randomisation and at 3 to 6 months follow up] [Designated as safety issue: No] To review responses and patients willingness to complete this questionnaire over the course of their involvement in the study EQ-5D quality of life questionnaire [Time Frame: Within 7 days of randomisation, and at 3 and 6 months follow up] [Designated as safety issue: No]

Study ID#	NCT Number	Title	Interventions	Study Types	Study Designs	Outcome Measures
			Patients may be randomised to undergo a radiofrequency ablation treatment for their renal cancer mass Procedure: Laparascopic or percutaneous cryoablation Patients may be randomised to undergo cryoablation as treatment for their renal cancer mass			To review responses and patient's willingess to complete this questionnaire during the course of their involvement in the study FACT-G quality of life questionnaire [Time Frame: Within 7 days, and 3 and 6 month follow-up] [Designated as safety issue: No] To review response and patients willingness to complete this questionnaire during the course of their involvement in the study Hospital anxiety and depression questionnaire [Time Frame: Within 7 days, and 3 and 6 month follow up] [Designated as safety issue: No] To review response and patients willingness to complete this questionnaire during the course of their involvement in the study Differences in results in pre and post treatment CT scans [Time Frame: at 1, 3 and 6 months after surgery] [Designated as safety issue: No] The timing of these CT scans is dependent on the treatment arm the patient is randomised to. Effectiveness of treatment by a renal biopsy assessment [Time Frame: 6 months post treatment] [Designated as safety issue: No] This renal biopsy is only applicable to patients undergoing ablative treatment Response within qualitative interviews for patients who decline randomisation [Time Frame: Two to six weeks after recruitment interaction] [Designated as safety issue: No] Response within qualitative interviews following treatment [Time Frame: Eight to sixteen weeks after treatment] [Designated as safety issue: No]

Study ID#	NCT Number	Title	Interventions	Study Types	Study Designs	Outcome Measures
3.	NCT02326558	Comparison of Microwave Ablation-Assisted Enucleation and Conventional Laparoscopic Nephron-Sparing Surgery in the Treatment of T1a Renal Cell Carcinoma	Procedure: laparoscopic microwave ablation- assisted enucleation Procedure: conventional laparoscopic nephron-sparing surgery Device: Microwave generator and ablation antenna	Interventional	Allocation: Randomized Endpoint Classification: Safety/Efficacy Study Intervention Model: Parallel Assignment Masking: Open Label Primary Purpose: Treatment	Absolute change in glomerular filtration rate (GFR) of the affected kidney [Time Frame: baseline and 6 months] [Designated as safety issue: Yes] measured by renal scintigraphy Absolute change in eGFR of the affected kidney [Time Frame: baseline, 1 month and 6 months] [Designated as safety issue: Yes] absolute change in total GFR [Time Frame: baseline and 6 months] [Designated as safety issue: Yes] measured by renal scintigraphy Blood loss [Time Frame: during surgery] [Designated as safety issue: Yes] Operation time [Time Frame: during surgery] [Designated as safety issue: Yes] Surgical margin [Time Frame: 1 month] [Designated as safety issue: Yes] assessed according to the pathology report of the operation specimen Postoperative complications [Time Frame: up to 6 months] [Designated as safety issue: Yes]; Number of participants with postoperative complications graded by Clavien-Dindo system Progression-free survival [Time Frame: 12 months, 3 years and 5 years] [Designated as safety issue: Yes]
4.	NCT02346435	The Delayed Intervention and Surveillance for Small Renal Masses (DISSRM) Registry	NA	Observational	Time Perspective: Prospective	Disease-specific survival [Time Frame: 5 years] [Designated as safety issue: Yes] Safety and Efficacy of active surveillance and delayed intervention for the SRM, measured by disease-free survival at 5-years. Objective Safety and Tolerability of Percutaneous Renal Biopsy [Time Frame: 5 years] [Designated as safety issue: Yes]

Study ID#	NCT Number	Title	Interventions	Study Types	Study Designs	Outcome Measures
						Measured by observed total (minor and major) complications compared to historical complication rates for this procedure. Quality-of-life outcomes for patients undergoing AS versus definitive therapy. [Time Frame: 5 years] [Designated as safety issue: No] Measured by SF12 Questionnaire at enrollment, 6 and 12 months and annually thereafter. To determine objective selection criteria for active surveillance. [Time Frame: 5 years] [Designated as safety issue: No] Demographic (i.e. age, sex, race), clinical (i.e. comorbidities, medications, family history) and imaging characteristics (i.e. tumor size, enhancement patterns, tumor complexity) will be used to determine patients most suitable for active surveillance.