NOVEMBER 2002 ## **INTERNATIONAL GCSE** ## MARK SCHEME **MAXIMUM MARK: 80** **SYLLABUS/COMPONENT: 0625/3** PHYSICS (EXTENDED) | Page 1 | Mark Scheme | Syllabus | Paper | |--------|------------------------------------|----------|-------| | | IGCSE Examinations – November 2002 | 0625 | 3 | | | | | | • | |--------------------------------------|--|-------|---------------|-----------------| | | | | | | | | and the contract of contra | | | | | Accept De E
untal on time
axis | 1 a BD correct, (straight line i.e. constant acceleration) | | B1 | | | tal on Time | DE correct, (constant speed or slightly reducing speed only) | | B1 | | | avis | EF correct, (speed reduced to zero, gradient steeper than BD) | 3 | B1 | 3 | | o labels -1 | | | | | | O LEGELS 1 | b(i) force = 2 (N) | | C1 | | | | work = $(2 \times 0.6) = 1.2 \text{ J}^*$ | _ 2 | A1 | | | | (ii) k.e. = 0.5mv ² | | C1 | | | | $= 0.5 \times 0.2 \times 2.5 \times 2.5$ | | C1 | | | er e | = 0.625 J* | 3 | A1 | 5 | | | | | | | | | c velocity - vector, speed scalar | _ | B1 | _ | | | direction changes so velocity changes | 2 | B1 | | | | d work done against friction | | B1 | | | | (more)friction on EF | | B1 | | | | (k)e. changed to heat | | B1 | 4 | | | less k.e. changed to p.e. | 3 | B1 | M3 ² | | | | | QT | 13 | | | 2 a(i) outline, ruler pivoted (at centre), mass one side, rock other side | | C1 | | | | guality set-up, each mass at(marked)point + labels | | <u>A1</u> | | | | (ii) rod must be balanced before readings can be taken or record mass as distances to pivot from rock endemness Bl climance pivot to mass Bl | 100 (| - | | | | mass or 100 x distance to pivot = mass of rock x distance rock to pivot | 2 | B7.
B1 | 5 | | | mass of 100 X distance to prot - mass of rook X distance fock to prot | | <u>, U , </u> | , 5 | | | b put water in cylinder, read value | | B1 | | | | insert rock until covered, read value | | B1 | .1 | | | difference in values is volume of rock | | B1 | <u>M2</u> | | | c density = mass/volume or 88/24 | N. | C1 | | | 1-21 | c density = mass/volume or $88/24$
= 3.7 g/cm ³ * (accept $3\frac{7}{3}$ g/cm ³) | 2 | | 2 | | (accept 3.6) | = 3.7 grain (Receipt = 7.3 grain / | | QT | | | | | | | • | | ** | 3 a junction of two metals, other ends to meter/alternative arrangements | | C1 | | | | two metals named,meter labelled | 2 | A1 | 2 | | | | | | | | | b(i) meter calibrated in degrees or read value and use calibration chart | | B1 | _ | | | (ii) change in temp. causes change in voltage/current | | <u>B1</u> | | | | \ไոա
c high temperatures | | В1 | | | | rapidly changing temperatures (or low themat capacity) | | B1 | | | | any valid physical reason e.g. distance reading needed, small site etc | 2 | | M2 | | | | | QT | 6 | | | | | _ | _ | | | 4 a(i) L = VIt/m ₁ -m ₂) exact for 2 eg. VIt=(m ₁ -m ₂) L only for m ₂ -m ₁ (ii) = 12 x 2 x 3750 / 40 = 2250 J/g * or 2.25 x 10 J/kg | , 2 | * | CI, | | | $(ii) = 12 \times 2 \times 3750 / 40$ | _ | C1 | , | | | = 2250 J/g - 6T 2.23 × 10 0/159 | | <u>A1</u> | 4 | | | b (large)(intermolecular) forces in liquid / bonds | | B1 | | | | (great) energy needed to separate molecules of liquid | • | B1 | 2 | | | (3) only onorgy modes to sopulate intercentes of induit | | QT | <u>-</u> | | | | | w i | | | Page 2 | Mark Scheme | Syllabus | Paper | |--------|------------------------------------|----------|-------| | | IGCSE Examinations – November 2002 | 0625 | 3 | | 5 a(i) C marked vertically under/at any peak (including on axis) | B1 | |--|---------------------------------------| | R marked on NEXT trough (either way) | 1 B1 | | (ii) half a wavelength | 1 B1 3 | | | | | b $f = y/w$ or 340/1.3 | C1 | | = 260 Hz* | 2 A1 2 | | | QT 5 | | en de la composition de la composition
La composition de la | *** *** *** *** *** * *** * * * * * * | | | | | | 1 44 | | 6 a(i) 43 ±1 ° | <u>'_A1</u> | | (ii) angle r for this ray is 90 | B1 | | angle c is angle i (in denser medium) (giving angle = 90°) | 2 B1 3 | | | | | b(i) 3 x 10 ⁹ m/s [*] | <u> </u> | | (ii) speed in air/speed in medium | ₩ M I | | = 1.5 (no up for o) | 2 MA | | (iii) angle i = 0 / along normal / at 90 to surface | <u> 1 B1</u> | | (iv) increased/more/larger | <u> 1 B1 5</u> | | | QT 8 | | | | | | | | | | | 7 of the l | 1 A1 | | 7 a(i) steel | 1 A1 | | (ii) insert bar in coil(switch on, leave, switch off) | <u> </u> | | (iii) to control/measure current or stop circuit/coil overheating | <u> 1 B1</u> 3 | | 1 m m 40/4 | 04 | | b(i) R = 12/4 | C1 | | = 3 ohms* | 2 A1 | | (ii) $P = 12 \times 4$ | C1 | | = 48 W* | ² A1 | | (iii) $E = 48 \times 5$ | C1 | | =240 J* | <u>2</u> A1 6 | | | 2 | | c(i) <u>5 (V)</u> | <u>/ A1</u> | | (ii) sum of p.d.'s = circuit supply p.d. | C1 | | above + detail eg across each component/ in closed circuit etc | 2 A1 3 | | | QT 12 | | | | | 8 a (magnetic field) from left to right/ N to S | l B1 1 | | | | | b(i) movement at right angles/between poles, up or down | C1 | | (vertically)down, stated or reference to arrow on diagram or label | 2 A1 | | (ii) mention of Fleming's L.H.R. or interacting fields | C1 | | full explanation leading to correct direction e.g Mat funger show | 2 A1 4 | | J. J. 1965 1 200 | | | | | | | | | | | | c use coil instead of single wire | B1 | | c use coil instead of single wire mount coil on bearings | B1 | | arrange suitable contacts e.g slip/slit rings and commutator | _ | | arrange suitable contacts e.g slip/slit rings and commutator | | | | QT 7 | | Page 3 | Mark Scheme | Syllabus | Paper | | |--------|------------------------------------|----------|-------|---| | | IGCSE Examinations – November 2002 | 0625 | 3 | ĺ | | 9 a(i) curve upwards between plates | | C1 | | |--|---|----|----| | curve upwards between plates + straight line | 2 | A1 | | | √(ii) top +, bottom - | 1 | B1 | | | (iii) to left, arrow and C marking any point on the beam between X and P | 1 | B1 | 4 | | / b cathode/heater, labelled | | B1 | | | Y anode labelled | | B1 | | | correct arrangement of cathode with anode cylinder | | B1 | | | suitable power supplies to heater/ anode-cathode (either to score) | 4 | B1 | 4 | | | | QT | 8 | | | | | | | 10 a half-life 4 days* | 1 | A1 | 1 | | b at least two points worked out | | M1 | ξ. | | suitable curve completed | 2 | A1 | 2 | | c by 20 days little radioactivity left, after 1 day about 85% left | L | B1 | 1 | | $d \stackrel{A}{\longrightarrow} X \longrightarrow e + \stackrel{A}{\longrightarrow} Y$ top line, A1/ bottom line A1 | 1 | A2 | 2 | | 2 1 211 | | QT | 6 | | or OB (not e or Balone) PAPER TOTAL | | | | | PAPER TOTAL | | | 80 | | | | | | | a / a | | | | | $A \times \rightarrow e/s + A \times (ci)$ | | | | | \mathcal{L} | | | | mark on diag