

NOVEMBER 2002

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/2

PHYSICAL SCIENCE (CORE)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2002	0652	2

1	(a)	Approximately correct (by eye) to mirror 2	1		
		Approximately correct (by eye) from mirror 2	1	2	
		(For both marks a ruler must be used)			
	(b)	i correctly marked	1	1	
	(c)	angle of incidence = angle of reflection (accept 'same')	1	1	
	(d)	suitable suggestion	1	1	
		(e.g. looking over heads at golf match, submarine, etc.)	 .		
			Tot	al 5	
_					
2	(a) (i)	decreases (not just less reactive* but accept longer time)	1		
	(ii)	decreases (not just less reactive* but accept longer time)	1		
	(iii)	increases (not just more reactive* but accept shorter time)	1	3	
		*but penalise once only			
	/b\	Test: use of limewater	1		
	(b)	Result: goes cloudy / milky	+1	2	
		Nesult. goes cloudy / minky	, ,	-	
			Tot	al 5	
					
3	(a) (i)	acceleration, building up / increasing speed	1		
_	(-)	constant / uniform	+1		
	(ii)	constant speed / accept no acceleration	1	3	
	` '				
	(b)	Recognition that distance travelled = area under graph			
	, ,	OR distance travelled = ½ max speed x time	1		
•		insertion of correct values (½ x 10 x 3)	1		
		correct value (15)	1	3	
	d.	(Use of 10 x 3 with final answer 30 1 max)			
		[Calculation of total area under graph with $0 \rightarrow A$ correct give 2 max]			
	(c)	6 m/s	1	1	

Total 7

Page 2	Mark Scheme	Syllabus	Paper	ĺ
	IGCSE Examinations – November 2002	0652	2	ĺ

4	(-)	/:\	40	1	
4	(a)	(i) (ii)	12 2 8 2 (all three) ecf	1	2
		(11)	2 0 2 (un trico) - 501	•	_
	(b)	(i)	copper, magnesium, sodium	1	
		(ii)	potassium, rubidium, caesium or francium		
			(accept correct symbols) ANY ONE	1	
		(iii)	oxides of metals		
			react with acids		
			to form salts		
			form alkali when reacts with water ANY 2	2	4
				Tota	1 6
5	(a)		Diagram correctly completed	2	2
	٧.		(voltmeter connected in parallel with incorrect component(s) 1)		
	(b)	(i)	R = V/I or substitution of correct values	1	
			R = 5	· 1	
		(ii)	ohm or Ω	1	3
	(c)		15 (Ω) or ecf (no unit penalty)	1	1
	(d)		V = IR or correct substitution ecf	1	**
			V = 12 (V)	1	2
				Tota	a/ 8
6	(a)	(i)	Na loses one electron (to form an ion)	1	
			CI gains one electron (to form an ion)	1	2
			(Na gains electrons and Cl loses electrons give 1)		
		(ii)	oppositely charged ions attract	1	
	i2•		strongly or strong bonds / forces	1	2
	/b)		add (dilute nitric acid then) aqueous silver nitrate / load nitrate		
	(b)		add (dilute nitric acid then) aqueous silver nitrate / lead nitrate white precipitate forms	1	•
			(not accept bleaching)	+1	2
			(not accept bleaching)	Tota	16
				1018	## O

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE Examinations – November 2002	0652	2

7	(2)	/i\	any idea that it stops betas going straight to detector	1		
′	(a)	(i)	Geiger Mueller tube or other suitable / photographic film / solid state	1		
		(ii)	<u> </u>	1	3	
		(iii)	background radiation / radiation from earth or sun etc.	•	•	
	(b)		use tongs to handle / do not point at anyone / lead screening / clothes	1	1	
	` '		NOT just protective clothes / photo film badge			
	(c)		alphas very short range	1		
	` '		air would absorb them / lose energy quickly / cause much ionisation	1	2	
	(d)	(i)	mass of alphas greater than betas	1	1	
	• •	(ii)	mention of charge	1		
			on alphas opposite to betas	1	2	
				•		
	(e)		no charge on gamma rays / gammas are e-m waves	1	1	
	` ,					
				Total	10	
8	(a)	(i)	(12 x 20) + (1 x 42) (12 x 6 + 1x42 scores zero)	1	-	
			282 (ignore unit)	• 1		
		(ii)	C ₂₁ H ₄₄	1		
		(iii)	alkane (series) not paraffins	1		
		(iv)	test: add bromine (water) or pot. (per) manganate (VII)	1		
			result for alkanes: no change in colour	+1		
			result for alkenes: goes colourless (not clear / transparent)	+1	7	
	(b)	(i)	1. water (accept steam or H₂O) (1)			
	(-,	(-)	2. carbon monoxide (accept CO) (1) Any 3			
	12 5 :		3. carbon dioxide (accept CO₂) (1)			
			4. carbon (not soot) (1)	3	3	
		(ii)	idea that only liquid wax will soak up the wick / fuel to keep wick burning	1	1	
		(iii)	candles made from C ₂₀ H ₄₂ may sag / bend / melt	1	-	
		1,	C > 20 gives a higher melting point	1	2	
			C at griss a right manage part	•	_	

Total 13