		Centre Number	Number
Candidate Name			l

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS

CHEMISTRY

0620/5

Candidate

PAPER 5 Practical Test

MAY/JUNE SESSION 2002

1 hour 15 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **both** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. Practical notes are provided on page 8.

FOR EXAMINER'S USE	
1	
2	
TOTAL	

1 You are going to investigate the redox reaction between potassium manganate(VII) and iron(II) ions.

Read all the Instructions below carefully before starting the two experiments.

Instructions

Experiment 1

Fill the burette provided up to the 0.0 cm³ mark with the solution **A** of potassium manganate(VII). By using a measuring cylinder, pour 25 cm³ of the solution of iron(II) ions into the conical flask provided.

From the burette add 1.0 cm³ of solution **A** to the flask and shake to mix thoroughly. Continue to add solution **A** slowly to the flask until there is just a **permanent** pale pink colour in the contents of the flask. Record the burette readings in the table.

Fill the burette up to the 0.0 cm³ mark with the solution **B** of potassium manganate(VII). Repeat Experiment 1 exactly using solution **B** instead of solution **A**. Record your burette

Experiment 2

Pour away the contents of the burette and rinse with distilled water.

		a little of the contents of the flask into a the tube. Record your observation.
		[2]
Table of results		
Burette readings	/cm ³	
	Experiment 1	Experiment 2
Final reading		
Initial reading		
Difference		
		[6]
(a) Describe the	e appearance of solution A.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[1]
(b) How did the was added?		ons change when 15.0 cm ³ of solution A
From	to)[2]

(c)	(i)	n which Experiment was the greatest volume of aqueous potassium manganate(VII) used?
		[1]
	(ii)	Compare the volumes of potassium manganate(VII) used in Experiments 1 and 2
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		[2]
	(iii)	Suggest an explanation for the difference in the volumes.
	(iv)	Predict the volume of solution ${\bf B}$ which would be needed to react completely with 50.0 cm 3 of the solution of iron(II) ions.
		[2]
(d)	Wha ans	product is formed in the flask at the end of the reaction? Give a reason for your er.
	proc	ıct
	reas	ın[2]
(e)		in one change you could make to the apparatus used in the experiments to more accurate results.
	cha	ge
	expl	nation[2]

You are provided with two solid compounds S and T. Carry out the following tests on S and T, recording all of your observations in the table. Do not write any conclusions in the table.

tests		tests	observations
(a)	Des	scribe the appearance of S and T .	S[2]
(b)	(i)	Add about half of the sample of solid S to about 4 cm ³ of aqueous hydrogen peroxide. Note your observation.	[1]
		Heat the mixture to boiling and test any gas given off with a glowing splint.	[1]
	(ii)	Add about half of the sample of solid T to about 4 cm ³ of aqueous hydrogen peroxide. Note any observations.	[2]
		Test any gas given off with a glowing splint.	[1]
(c)	(1)	Add the rest of solid T to about 3 cm ³ hydrochloric acid. Heat the mixture carefully to boiling point. Test any gas given off with damp blue litmus paper.	[2]
	(ii)	Repeat test (c)(i) using the rest of solid S without testing the gas. Note the colour of the solution.	[1]
		Leave the mixture to settle for 2 minutes.	
		Decant the solution into another test-tube.	

	tests	observations
	ivide the solution from (c)(ii) into two pproximately equal portions of 1cm ³ .	
(i)	To the first portion add excess aqueous sodium hydroxide, a little at a time.	[2]
(ii)	To the second portion add excess aqueous ammonia a little at a time.	
		[3]
(e)	Name the gas given off in test (b)(ii).	
		[1]
(f)	Name the gas given off in test (c)(i).	
		[1]
(g)	What conclusions can you draw about	solid S?
		[2]

BLANK PAGE

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ² -)	add dilute acid	effervesence, carbon dioxide produced
chloride (CI ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqeous lead(II) nitrate	yellow ppt.
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ 2-) [in solution]	acidify, then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (AI 3+)	white ppt., soluble in excess	white ppt., insoluble in excess
ammonium (NH ₄ +)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt,
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn²+)	white ppt., soluble in excess	white ppt., soluble in excess

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chloride (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint