
 



Table of Contents 
 

Cover Page 

Title Page 

Copyright Page 

Contents 

Building Modern Mobile Web Apps 

Summary 

Authors and contributors 

Related titles 

Feedback and support 

Choosing between a web and native experience 

Platform options 

Influencing factors 

Native solutions 

Web solutions 

Hybrid solutions 

Using third-party frameworks 

Summary 

Further reading 

Defining the mobile web app experience 

Lightweight and responsive 

Designed to suit device capabilities and 
constraints 

Rich, platform-agnostic user interface 

Forward thinking 

Summary 

References 

Choosing devices and levels of support 

Determining which browsers and devices to 
support 

Summary 

References 

Options for building mobile web experiences 

Improving the mobile-friendliness of your 
existing app 

Using a proxy-based solution 



Developing a standalone mobile solution 

Developing a responsive experience 

Summary 

Resources 

Mobilizing the Mileage Stats app 

What is Mileage Stats Mobile? 

Summary 

Delivering mobile-friendly styles and markup 

Goals when developing mobile-friendly markup 

Embracing browser diversity 

Summary 

Developing mobile-friendly forms 

Goals when developing mobile-friendly forms 

Form element implementation in Mileage Stats 

Styling form elements 

Fallback strategies and false positives 

Creating custom input widgets 

Summary 

Delivering mobile-friendly images 

Major considerations 

Summary 

Delivering a responsive layout 

Why use responsive design? 

Summary 

Additional usability enhancements 

Navigating large recordsets 

Providing access to the desktop experience 

Summary 

Detecting devices and their features 

Detecting features on the server 

Delivering the SPA enhancements 

Defining the single page application (SPA) 
requirements 

Frameworks 

Building the single page application 

Summary 

Testing mobile web experiences 

Mobile testing tools/options 

Testing on desktop browsers 

Testing on emulators and simulators 



Testing on device hardware 

Using a remote device service 

Choosing test browsers and devices 

Why and how to test 

Debugging on mobile devices 

Summary 

Appendix A: Changes to the server-side code 

Reducing duplication in the controller actions 

Appendix B: Implementing geolocation 

Appendix C: Delivering mobile-friendly charts 

Rationale and approach 

Appendix: Code and Table Images 



Developing Modern Mobile Web Apps 
patterns & practices 

Summary: This project provides guidance on building mobile web experiences using HTML5, CSS3, and 
JavaScript. Developing web apps for mobile browsers can be less forgiving than developing for desktop browsers. 
There are issues of screen size, the availability of specific feature support, and other differences between mobile 
browsers that will impact how you develop your apps. In addition, there are various levels of support for the 
emerging standards of HTML5 and CSS3, and standards for some features, such as touch, are just beginning to take 
shape. All of these factors suggest that it is best to keep your HTML, CSS, and JavaScript as simple as you can in 
order to ensure compatibility with as many devices as possible. This project illustrates how to do this, as well as 
how to add more advanced functionality where supported. 

Category: Guide 
Applies to: ASP.NET MVC 4, HTML5, CSS3, and JavaScript 
Source: MSDN Library (patterns & practices) (link to source content) 
E-book publication date: June 2012 

http://msdn.microsoft.com/en-us/library/hh994907


 



Copyright © 2012 by Microsoft Corporation 

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written 

permission of the publisher. 

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are 

trademarks of the Microsoft group of companies. All other marks are property of their respective owners. 

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted herein are 

fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or 

should be inferred. 

This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or 

implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or 

alleged to be caused either directly or indirectly by this book. 



Building Modern Mobile Web Apps 

June 2012 

Summary 

This project provides guidance on building mobile web experiences using HTML5, CSS3, and JavaScript. 
Developing web apps for mobile browsers can be less forgiving than developing for desktop browsers. There are 
issues of screen size, the availability of specific feature support, and other differences between mobile browsers 
that will impact how you develop your apps. In addition, there are various levels of support for the emerging 
standards of HTML5 and CSS3, and standards for some features, such as touch, are just beginning to take shape. 
All of these factors suggest that it is best to keep your HTML, CSS, and JavaScript as simple as you can in order to 
ensure compatibility with as many devices as possible. This project illustrates how to do this, as well as how to 
add more advanced functionality where supported. 

Downloads Download Reference Implementation code 

Guidance topics Choosing between a web and native experience 

 Defining the mobile web app experience 

 Choosing devices and level of support 

 Options for building mobile web experiences 

 Mobilizing the Mileage Stats app 

 Delivering mobile-friendly styles and markup 

 Developing mobile-friendly forms 

 Delivering mobile-friendly images 

http://www.microsoft.com/en-us/download/details.aspx?id=29984


 Delivering a responsive layout 

 Additional usability enhancements 

 Detecting devices and their features 

 Delivering the SPA enhancements 

 Testing mobile web experiences 

 Changes to the server-side code 

 Implementing geolocation 

 Delivering mobile-friendly charts 

Community http://liike.github.com/ 

License Microsoft patterns & practices License 

Click here to view table as image 

 

 

 

 

 

http://liike.github.com/
http://msdn.microsoft.com/en-us/library/ee663037.aspx


Authors and contributors 

This guide was produced by the following individuals: 

• Program and product management: Eugenio Pace and Don Smith. 

• Subject matter experts and advisors: Erick Porter, Abu Obeida Bakhach, Stephanie Rieger, Bryan Rieger. 

• Development: Christopher Bennage, Francis Cheung, Pablo Cibraro, Bryan Rieger, Stephanie Rieger. 

• Test team: Carlos Farre, Amrita Bhandari (Satyam), Jaya Mahato (Satyam). 

• Edit team: Nancy Michell, RoAnn Corbisier. 

• Release Management: Nelly Delgado and Richard Burte (Channel Catalyst). 

 

We want to thank the customers, partners, and community members who have patiently reviewed our early 
content and drafts. Among them, we want to highlight the exceptional contributions of Pablo Cibraro (AgileSight), 
Ducas Francis (Senior Consultant, Readify), Akira Inoue (Microsoft Japan), Chris Love (Chief Mobility Officer, 
Tellago), Luca Passani (CTO, ScientiaMobile, Inc.), Steve Presley (Mobile Technology Architect), Jon Arne Sæterås 
(Mobiletech.no), Don Smith (Intergen Ltd.), and Alexander Zeitler (PDMLab). 

Related titles 

• Project Silk: Client-Side Web Development for Modern Browsers 

• Developing a Windows Phone App from Start to Finish 

 

 

http://msdn.microsoft.com/en-us/library/hh396380
http://msdn.microsoft.com/en-us/library/gg680270(v=pandp.11).aspx


Feedback and support 

Questions? Comments? Suggestions? Visit the patterns & practices community site on GitHub: 
http://liike.github.com/. This content is a guidance offering, designed to be reused, customized, and extended. It is 
not a Microsoft product. Code-based guidance is shipped “as is” and without warranties. Customers can obtain 
support through Microsoft Support Services for a fee, but the code is considered user-written by Microsoft 
support staff. 

http://liike.github.com/


Choosing between a web and native experience 

Before developing a mobile experience for your content or app, you first need to choose which platform to use. 
You can build a native app that is written in the language specific to a device’s platform. You can build a web 
solution using standards-based technologies such as HTML, CSS, and JavaScript. Or, you can take a hybrid 
approach, using both native components and web technologies. It is not always obvious which platform is 
appropriate for your app. 

There’s more to choosing an approach than simply considering the technical advantages and disadvantages. You 
should also bear in mind how the choice will impact your users, whether it will limit the features your app needs, 
and whether it will impact your ability to deliver on time and on budget. 

Platform options 

Let’s begin by defining what we mean by native, web, and hybrid. 

When you build a native app, you must use APIs specific to the device’s operating system. It also generally means 
working with a language and SDK specific to the platform. For example, in the case of Windows Phone, you use 
XAML and either C# or Visual Basic. For iOS devices, you use Cocoa Touch and Objective-C. 

A web app is an app written using HTML, CSS, and JavaScript which are sent from a web server over the Internet 
and rendered in the web browser on the device. In most cases, the browser comes preinstalled on the device, but 
many devices also allow users to install alternate browsers. This guide is focused on building mobile apps using 
web technologies. 

When we speak of hybrid apps, we are referring to apps that are built using both native code and web 
technologies. In general, these are native apps that use an embedded web browser. (For example, in the case of 
Windows Phone it’s the WebBrowser control.) The HTML, CSS, and JavaScript for such an app may live on a web 
server or be embedded in the native app itself. 

http://msdn.microsoft.com/en-us/library/microsoft.phone.controls.webbrowser(v=vs.92).aspx


There is great variation in hybrid implementations. Certain apps will primarily use native platform controls and 
APIs, and the embedded browser will play a very small role. In other instances you may only use the native 
platform as a shim, and build the majority of the app with web technologies. In many cases, hybrid apps use 
frameworks that wrap some of the common native functionality in JavaScript, making it available to the web layer. 

Influencing factors 

In order to choose the most appropriate technique, you should consider your app’s requirements (and how they 
will evolve in the future), the impact of the chosen method on your users, and the experience and culture of the 
team developing the app. In general, these and other factors can be evaluated in terms of investment, reach, and 
features: 

• Investment. Both the time and money required to build, deploy, and maintain the app must be considered. 
This includes team salaries, hosting, and maintenance costs. 

• Features. The features your app needs will play an important role in your decision. 

• Reach. The number of users you can reach will influence which approach you take. 

 

The following table illustrates how these factors compare across native, web, and hybrid solutions at a high level. 

 

Because the real value of this comparison is in the details, let’s explore the specific advantages and disadvantages 
of each option and how they stack up with respect to these factors. 



Native solutions 

There are good reasons to build a native mobile experience. Access to device-specific features and APIs is often at 
the top of list. Using native code you can, for instance: 

• Integrate with the user’s calendar or contact list 

• Enable the capture and storage of photos and video via the device’s camera 

• Use sensor data from the gyroscope or compass, for example 

• Access device diagnostics such as the battery or network status 

 

Using such device-specific features is often unreliable or impossible in a purely web-based approach. There are 
exciting initiatives underway, but it will likely be a while before these standards are ratified, implemented, and 
widely available. 

When building native, you must prioritize the platforms you plan to target. This requires understanding which 
platforms your target users have, which is not always intuitive. 

If your app is graphics-intensive, requires high performance in the user interface, or must function without 
network connectivity, it will likely benefit from being built in native code. 

For users to acquire native apps, most mobile devices today require users to access platform-specific stores such 
as Microsoft’s Windows Phone Marketplace, Apple’s App Store, and Google’s Android Market. In addition to 
making it easy for users to find and install apps, these stores or marketplaces often provide features that facilitate 
revenue generation (see the official documentation for each store for details about services provided). 

Another benefit of native apps is that app update notifications can be delivered directly to the device, allowing you 
to stay in touch with users who don’t use the app frequently. 

http://www.w3.org/2009/dap/


While the aforementioned benefits of native apps represent a strong argument in their favor, there are also 
drawbacks. For example, deploying an app to the stores for distribution can be time consuming and often includes 
a review process that can further delay publication. 

In addition, if your app needs to target multiple native platforms, you may have to employ a larger development 
team (or even multiple development teams) with expertise in each specific platform. This can increase the 
investment of time and money. If you don’t target more than one, you limit your reach. 

Web solutions 

Web solutions all share a similar runtime environment: the browser. Web browsers come pre-installed on all 
modern smartphones, tablets, e-book readers, and some game consoles and music players. If the ability to reach a 
large number of users is your highest priority, then the ubiquity of the web and the multitude of ways users may 
access your app are of great value. 

There are additional advantages of web-based mobile solutions as well. For instance, many developers are already 
familiar with HTML, CSS, and JavaScript, but if your team doesn’t have web experience, becoming competent can 
be relatively quick and inexpensive. Plus, if you already have a web presence, you may be able to save time by 
reusing some of your existing web assets and deployment processes. The ability to deploy new features or bug 
fixes as often as you like is another time saver. Your users will benefit from the time savings as well, because they 
won’t have to install your app or manage updates. 

Another advantage (if you have an existing web presence) is that you will already have metrics on the devices 
your visitors use. Understanding your existing audience makes prioritizing the experience more straightforward. 

However, developing web apps for mobile browsers can be less forgiving than developing for desktop browsers. 
There are issues of screen size, the availability of specific feature support, and other differences between mobile 
browsers that will impact how you develop your apps. In addition, there are various levels of support for the 
emerging standards of HTML5 and CSS3, and standards for some features, such as touch, are just beginning to take 
shape. All of these factors suggest that it is best to keep your HTML, CSS, and JavaScript as simple as you can in 
order to ensure compatibility with as many devices as possible. 



Although you can reach a broad audience quickly and inexpensively, certain features are either not available or 
will require extra effort to implement. For example, the ability to run apps offline is poorly supported on most 
mobile browsers. 

Hybrid solutions 

Using web technologies inside of a native app can give you the best of both worlds. You can mitigate certain 
disadvantages of the native approach, while gaining a considerable level of flexibility. 

Consider a natively built and deployed app whose sole interface is a web view control that takes up the entire 
screen of the device. All of the user interface and interactions can be built using traditional web development 
practices. The device-specific features that are not normally available to web apps, such as the microphone or the 
notification center can be made available to JavaScript. This is possible because many devices allow the JavaScript 
executing in a web view control to communicate with the native host app. In addition, there are a number of third-
party frameworks that provide ways to interact with native APIs using JavaScript. See Using third-party 
frameworks later in this topic for more information. 

Some of the flexibility of this approach relates to where your web assets are stored. That is, they may be 
embedded in the native app itself, or they may be retrieved from the web. Images, markup, style sheets, and 
scripts that aren’t likely to change can often be bundled with the app to improve load times. Other assets (those 
that will likely change) can be downloaded as needed from remote servers. 

Hybrid apps reap the benefits of deployment in an app storefront while often requiring a smaller investment than 
native solutions. However, they aren’t perfect for all scenarios. Because they share the same deployment 
constraints as native solutions, it’s more time consuming to publish new features or fixes compared to web-only 
solutions. And while the reach is broader than it is for a native app because the codebase remains more consistent 
across the targeted platforms, its reach is not as great as that of a web app. 

 



Using third-party frameworks 

There are a number of third-party frameworks available to facilitate the development of mobile web and hybrid 
apps. The list that follows is by no means exhaustive, and is only included here to give you a sense of the types of 
frameworks available at the time of this writing. 

jQuery Mobile is a framework for building mobile web apps. It is a JavaScript UI library that depends upon the 
jQuery Core and jQuery UI libraries. Its themeable design allows for a customized look that matches the mobile OS 
design patterns. However, given the various levels of HTML5 support among mobile browsers, not all elements or 
animations appear consistently across the major platforms. Its main advantage perhaps is that websites built with 
jQuery Core can detect the mobile browser and reformat the site layout to be consistent with the device’s screen 
size. 

Apache Cordova, distributed by Adobe under the name PhoneGap, is a framework that wraps the most common 
device capabilities when building hybrid apps as described above. It provides an app shell that exposes some 
native functionality to the embedded web browser. Frameworks such as PhoneGap aim to make cross-platform 
development easier while enabling developers to use device features that are not commonly available to web 
platforms. Hybrid frameworks like PhoneGap may also be used in conjunction with other web-only frameworks 
such as Sencha Touch or jQuery Mobile. 

Summary 

It’s important to understand the advantages and disadvantages when choosing a platform. The choice is 
determined largely by the way your app will be used by your target audience. Third-party frameworks can be very 
useful, but are not always required. The choice to use a framework should be made by weighing the advantages 
and disadvantages. 

 

 



Further reading 

• Hybrid mobile apps take off as HTML5 vs. native debate continues. By Ron Perry at 
http://venturebeat.com/2011/07/08/hybrid-mobile-apps-take-off-as-html5-vs-native-debate-continues 

• Device APIs Working Group: http://www.w3.org/2009/dap 

• PhoneGap from Adobe: http://phonegap.com 

• jQuery Mobile: http://jquerymobile.com/ 

• Which Cross-Platform Framework is Right for Me? By Daniel Pfeiffer at 
http://floatlearning.com/2011/07/which-cross-platform-framework-is-right-for-me 

• Comparison: App Inventor, DroidDraw, Rhomobile, PhoneGap, Appcelerator, WebView, and AML. By Jeff 
Rowberg at http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-
appcelerator-webview-and-aml 

• HTML5 Offline Web Applications: http://www.w3.org/TR/html5/offline.html 

 

http://venturebeat.com/2011/07/08/hybrid-mobile-apps-take-off-as-html5-vs-native-debate-continues
http://www.w3.org/2009/dap
http://phonegap.com/
http://jquerymobile.com/
http://floatlearning.com/2011/07/which-cross-platform-framework-is-right-for-me
http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml
http://www.amlcode.com/2010/07/16/comparison-appinventor-rhomobile-phonegap-appcelerator-webview-and-aml
http://www.w3.org/TR/html5/offline.html


Defining the mobile web app experience 

As mentioned earlier, this guide focuses on building mobile web apps. In this section we will examine the defining 
characteristics of a modern mobile web app. These characteristics are born of best practices and provide a useful 
framework upon which you may plan and design the features of your own app. 

Mobile web apps should be 

• Lightweight and responsive 

• Designed to suit each device’s capabilities and constraints 

• Include a rich, platform-agnostic user interface 

• Built with forward-thinking practices 

 

Lightweight and responsive 

Mobile devices may be more powerful than the computers we owned in 1995, but they remain quite constrained 
compared to the desktop computers we use today. A slower processor not only impacts the overall speed of the 
browser, but can also influence the speed at which content is accessed from the network, the redraw rate for 
effects and animations, and the responsiveness of the view as a user interacts with it. Mobile devices are also often 
used in contexts where bandwidth may be poor or prone to unexpected latency. 

Mobile apps should therefore be lightweight and not impose additional latency through unnecessarily heavy 
markup, poor data management, or use of gratuitous and unnecessary effects. A good way to determine an 
appropriate size for your app is to consider how long you would like users to wait as the page loads. 

The table below illustrates average wait times for a 1MB web page moving at an average data rate on various 
network types. These times are average and do not account for network latency and the time it will take for 
the browser to render the content once it’s downloaded. (1) 



14.4Kbps 568 seconds (~10 minutes) Typical of a 2G connection 

77.5Kbps 105 seconds (~2 minutes) 3G connection 

550Kbps 15 seconds 4G connection 

Click here to view table as image 

Recent statistics indicate (2) that a size of 1MB or greater is now quite common on the desktop. And while 3G is 
now widely available in many developed economies (reaching over 56% in the US), global 3G penetration stands 
at only 45% (3). When targeting mobile devices, it’s therefore wise to limit the average initial page weight to well 
under 100KB. 

Designed to suit device capabilities and constraints 

A common misconception is that there are standard, easily classified categories of devices, and that all devices in 
each category are alike. This is far from the truth. Smartphones come in different shapes and sizes, ship with many 
different browsers, and have varying CPU power. Tablets also greatly vary in size. In fact some are not much larger 
than a phone. 

A similar problem applies to platforms. For example, although many devices use the Android operating system, 
the platform can be integrated into all manner of devices, from tablets, to televisions, to in-car entertainment 
displays. The manufacturer can also choose which of several platform versions to implement (for example, 
Android 2.2 vs. 2.3), and can make changes to the user interface and platform settings. For this reason, it’s unlikely 
you would be able to design one app that would work seamlessly on all Android devices. 

Rather than develop a web app specific to a particular platform’s browser (such as Windows Phone), rendering 
engine (such as WebKit) or device grouping (such as smartphones) it’s best to deliver a flexible app targeting the 
lowest common denominator app, then layer additional features and enhancements in accordance with the 
capabilities and constraints of each browser and device. 



This level of adaptability is best achieved through the use of future-friendly, backwards-compatible practices such 
as unobtrusive JavaScript and progressive enhancement. These will enable you to broaden your reach today, while 
more easily supporting the browsers and platforms of tomorrow. 

Rich, platform-agnostic user interface 

It’s sometimes hard to define what we mean by a “rich interface” or why an app should have one to begin with. 
The richness of an interface does not guarantee that an app will be stable, well thought out, or have well-chosen 
features and good performance. These characteristics should certainly be the primary concern of a product team 
as they will greatly impact users (and the viability of your product). 

A well-designed product can, however, benefit greatly from a richer interface. A feature may be well designed, but 
still hard to use. Users may not understand how to find a feature, what that feature is for, or the language used 
may cause them to make mistakes. Features may also be hard to use due to external factors such as hardware and 
screen quality. 

A rich user interface is therefore one that works well with (and enhances) the back-end business logic, permitting 
users to effortlessly complete their tasks. A rich app also embraces unique device or browser characteristics, 
working with the device or platform, rather than against it. 

For example, some apps choose to mimic the design of the iOS platform, and include a back button at the top of 
each app view. This may be familiar to native iOS app users, but is counterproductive for a browser-based app. 
Most mobile browsers have their own built-in back button, and those that don’t have purposely omitted it as their 
platform includes a mandatory hardware-based back button. 

So while a separate back button may make the app look like a native app, the developers now have the added 
burden of ensuring this button’s behavior is identical to that of the browser or hardware version. This effort could 
better be spent improving the overall cross-browser compatibility of the app, or implementing enhancements for 
users with more powerful or standards-compliant browsers. 

http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://en.wikipedia.org/wiki/Progressive_enhancement


Forward thinking 

The goals of each app will vary; however, developing for mobile always provides a unique opportunity. Our 
existing patterns and practices were designed in an age of large, stationary desktop computers. Many of these 
practices are being challenged by the new diversity in connected devices. While some of these devices are smaller 
and more portable, others—such as Smart TVs—are larger and more social. And these changes will only 
accelerate. In fact by 2015, Morgan Stanley predicts (4) the number of mobile Internet users will overtake those 
using fixed Internet connectivity. 

Developing a mobile version of your web app is therefore an opportunity to examine older practices and 
determine which may no longer be appropriate. It’s also an opportunity to redesign your product from the ground 
up, with the aim of making it more adaptable to future change. In this sense, designing a mobile app should be 
considered a long-term investment in your product’s future. 

And although your mobile app may start small, it may through iteration achieve feature parity with your original 
desktop app. 

You may even discover that features you considered important when the legacy app was developed become less 
important, when transposed to smaller and more portable devices. Your mobile app may even cause you to 
replace the legacy app altogether, opting for a more feature-based development approach that will enable you to 
support new contexts such as web-enabled TV. 

Summary 

Understanding the constraints of mobile devices can help you build fast and responsive web apps. The practices 
gained from this understanding can also improve your web development in general. It’s important to realize that 
the classification of browsers into “mobile” and “desktop” rapidly changes as the number and types of devices 
continually grows. 

 



References 

(1) Calculated based on data from http://web.forret.com/tools/bandwidth.asp?speed=550&unit=Kbps 

(2) http://gigaom.com/2011/12/21/hold-those-caps-the-average-web-page-is-now-almost-1mb/ 

(3) http://www.slideshare.net/kleinerperkins/kpcb-internet-trends-2011-9778902 

(4) http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/ 

http://web.forret.com/tools/bandwidth.asp?speed=550&unit=Kbps
http://gigaom.com/2011/12/21/hold-those-caps-the-average-web-page-is-now-almost-1mb/
http://www.slideshare.net/kleinerperkins/kpcb-internet-trends-2011-9778902
http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/


Choosing devices and levels of support 

When you’re setting out to create a mobile web experience for an app, one of the first questions you have to be 
able to answer is, “Which devices are you going to support, and what is the achievable UI experience on those 
devices?” Answering this question is not always intuitive or straightforward as it depends on a number of factors. 

Determining which browsers and devices to support 

Choosing which devices and browsers to support is somewhat of an organic process, and a decision that has no 
right or wrong answer. Ideally, you want to support as many browsers (and therefore users) as possible. In 
practice however, the decision is somewhat of a balancing act between the project goals, the available budget, the 
availability of stable and well-distributed web technologies, and the device market share of your target audience. 

If mobile development is new to you, you may not be familiar with the range of mobile browsers or devices. You 
therefore won’t know what features are supported on what browsers, and consequently which devices you should 
support. 

This is not as much of a problem as it seems. Unless you’re building a product for a very specific audience (for 
example, a large corporate sales force where everyone carries the same brand of device) it’s probably safe to 
presume that you will always need to support a variety of browsers and devices. As a matter of fact, even within 
such a sales force group, there may easily be 5-10 different device models, various screen sizes, and multiple form 
factors and browser versions. 

This diversity will be present even when targeting popular devices such as the iPhone. There have been four 
versions of iOS since the platform launched, and although all iPhones have the same screen size, new browser 
features have been introduced with each operating system release. So although they appear quite similar, an 
iPhone 4 with iOS 5 will have different capabilities than an iPhone 3GS with iOS 4.3.5, or even an iPod Touch with 
iOS 4.3.5. 

Now that you know you’ll need to support a range of devices, let’s determine just how wide this range should be. 
The best way to begin is by considering the features and overall experience of your app. 



Considering features 

First, determine the key features and behaviors of your app, and whether these require specific technologies. If, 
for example, your app makes heavy use of location coordinates, you may need a mechanism to detect the user’s 
location. The HTML5 geolocation specification provides a fairly simple API that could generate highly granular 
coordinates, but the technology is not yet well supported across all devices. 

This simple example illustrates the type of choice you will have to make. 

• If you decide that you only have the resources to implement and support HTML5 geolocation, you will have 
no choice but to exclude many older smartphones as well as most feature phones that lack such support. 

• If you decide that excluding these users is unacceptable given your business goals and the market share of 
these devices, this decision will in turn impact the resources you will need to devote to both design and the 
development of a secondary location detection method. 

 

Starting with key features is important as the decisions you make may require or completely eliminate specific 
browsers or devices. 

By comparison, the need for other technologies—for example CSS3 transitions or HTML5 video—may be 
considered simple enhancements (the absence of a transition doesn’t typically affect functionality, and most 
platforms provide an easy means to launch video in a standalone native player). Rather than eliminate devices 
that don’t support these features, it would make sense to detect support for them and only load the appropriate 
resources and scripts if the feature is supported. 

Experience and context of use 

Also related to technology factors are the overall design goals of your app. Some apps are designed for all-purpose 
use, while others are specific to a particular context or behavior such as shopping, watching TV, or inputting 
complex data in the context of work. These factors may inform the type of device that will be used, but that should 
still be considered carefully. Recent research indicates that users often spread tasks over periods of time and 

http://www.guardian.co.uk/technology/2011/nov/18/tablet-smartphone-use-breakfast-evening


make use of whatever device is available to them. The fact that your app enables users to purchase and download 
films for use on their TV doesn’t mean they won’t spend their one-hour train commute browsing and bookmarking 
films on their phone for later viewing at home. 

Market penetration within your audience 

Next, examine the market penetration of the various mobile operating systems in the region your product 
operates in. Most mobile operating systems are popular all over the world, but you will still find significant 
differences from region to region. (1) 

If you have a pre-existing desktop web version of the product, it’s also important to review its web traffic and 
analytics reports. This data is particularly valuable, as it will indicate the most common devices in your region and, 
more importantly, devices that are in use by existing customers. 

Note: If your existing analytics show very little mobile traffic, please review the type of detection method being 
used. Many analytics packages rely on client-side JavaScript to track visitors and to extract device information 
such as screen size. Devices with less capable browsers may not support the necessary level of JavaScript and may 
therefore not appear in the report. 

An alternative is to use server-side detection, which extracts device data from the user agent string. 

When possible, also review the individual platform versions accessing your site. Many users will never update 
their phone’s operating system, or will simply not have the option to do so. Your analytics package should be able 
to provide some version data, and regularly updated platform version stats can also be found on 
the Android and BlackBerry developer sites. (Apple sadly does not release these statistics, but data released by 
native app analytics services such as Flurry can often provide an indication of platform version popularity). 

Budget 

Finally, you may have existing dependencies related to budget, in-house skills, or frameworks and toolkits that 
you specialize in. 

http://developer.android.com/resources/dashboard/platform-versions.html
http://us.blackberry.com/developers/choosingtargetos.jsp
http://blog.flurry.com/


While it’s not always possible to develop a project using the exact technologies you prefer, these factors should be 
considered, as the ramp-up time required to learn new technologies will ultimately affect the cost of the 
developing the app. 

Each variant of app behavior (for example, the difference between loading data through a full-page refresh instead 
of using Ajax) may require additional visual and interaction design, along with further front-end development and 
testing. 

Summary 

Understanding the benefits, risks, and potential return on investment are central to being successful when 
building apps for the mobile web. Balancing the needs of your users against the features available on the platform 
sometimes needs careful consideration. 

References 

(1) An exhaustive list of sites that contain this type of data can be found in A comprehensive guide to mobile 
statistics by Cloud Four in Portland. 

http://www.cloudfour.com/a-comprehensive-guide-to-mobile-statistics/
http://www.cloudfour.com/a-comprehensive-guide-to-mobile-statistics/


Options for building mobile web experiences 

Deciding which approach to use when developing a mobile app is never simple. There are many techniques 
available, each with their own pros and cons. It’s also important to understand that there is also no single correct 
answer. The decision should depend on your circumstances and include careful consideration of all related 
factors, including your resources, timeline, back-end architecture, and data or content structures. 

Improving the mobile-friendliness of your existing app 

Mobile browsers are improving all the time, and if your users own a smartphone they may already be able to use 
your app on that device. While this may not provide a great experience, if your app is simple (or budgets and 
schedule are tight) you could opt to simply improve the mobile-friendliness of that app. 

The goal in this case would not be to optimize the app for mobile use, but to simply address major issues that may 
be driving mobile users away, or preventing them from completing key tasks. Some of the problems that users 
encounter are common to all web apps, while others will be specific to your particular product. In either case, it’s 
best to uncover these problems in context and with a bit of testing. 

1. Check your analytics to determine the most common browsers and devices accessing your app. 

2. Test your site using these devices. Be sure to test all key tasks and flows to ensure important 
functionality isn’t broken and mobile users complete key tasks. 

 

Note: If you’re unable to test on device hardware, you may be able to test on a platform emulator. See Testing 
mobile web experiences for info about choosing emulators for testing. 

These initial tests should provide you with a list of app-specific issues. In addition to these, you can improve the 
experience by addressing the following common problems. 

 



Page weight and latency 

Many mobile users will access your app on slow networks, and may be paying for each kilobyte they download. 
It’s therefore important to reduce page weight and increase responsiveness wherever you can. This will make all 
users happy (even those visiting from a desktop computer) and won’t tempt mobile users to immediately abandon 
your site in favor of others. 

• A portion of the weight will naturally come from the images on your site so where possible, optimize these 
to reduce payload size. 

• Be sure as well to review the number of scripts being used. These can be surprisingly heavy, and in many 
cases greatly exceed the weight of the markup, images, and other assets used to deliver the user interface. 
It’s worth noting as well that if these scripts happen not to work on mobile, the experience might be 
further improved by preventing a user from even downloading them. 

 

If your app uses large numbers of scripts and images, this can impact performance in an additional way. 

Note: According to the Yahoo! Developer Network article, “Best Practices for Speeding Up Your Web Site,” “80% of 
the end-user response time is spent on the front-end. Most of this time is tied up in downloading all the 
components in the page: images, style sheets, scripts, Flash, etc. Reducing the number of components in turn 
reduces the number of HTTP requests required to render the page. This is the key to faster pages.” (1) 

HTTP requests can be reduced in several ways: 

• By combining CSS and script files 

• By supplying images using data URIs which can be embedded directly within your mark-up or CSS 

• By combining icons and other small graphics into one larger image (also called a sprite sheet) 

 



These techniques may not be supported across all devices, so they should be tested on the key browsers and 
devices accessing your site. See Delivering mobile friendly images for more info regarding the image techniques 
described above. 

Don’t forget to try techniques such as minification and gzip compression on your CSS, JavaScript, and HTML, in 
order to reduce the actual size of the file being downloaded to the client. For a full list of performance best 
practices, see Best Practices for Speeding Up Your Web Site. 

Many third-party services such as advertising, social media widgets, and analytics generate their own HTTP 
requests. This is worth investigating as they may generate more requests and result in latency that will be beyond 
your control. 

Scripts and interactivity 

An increasing number of mobile devices are manipulated using a touch screen. It’s therefore important to check 
your app for features and content that can only be accessed using a mouse (or other pointer-based) event. 
Touchscreen users may still be able to trigger these events by tapping the screen, but the interaction may be more 
complex or confusing than it needs to be. 

Augmenting the experience with mobile-specific capabilities 

Typing on small screens can be awkward, so look for ways to improve data input. 

• Don’t force users to type if they don’t have to. Look for opportunities to prepopulate data (based on past 
choices) or provide them with useful choices in a menu. 

• Take advantage of the new HTML5 form input types, placeholder attributes, and built-in validation for 
common inputs such as email addresses and URLs. These are not yet supported on all browsers but are 
designed to degrade gracefully. Until these features are fully supported, it’s important to keep secondary 
hints and validation in place. See Delivering mobile friendly forms for more info. 

 

http://developer.yahoo.com/performance/rules.html


Unless your app is extremely simple, these types of improvements to your desktop web app should be considered 
an interim solution. Following these steps may improve the experience, but it’s likely that many problems will 
remain unresolved. 

Pros 

• Adapting an existing app is typically quicker than designing and implementing a full mobile-specific 
version. 

• While the resulting experience may not be fully optimized, it can improve the experience enough to suit 
many users and provide time to plan a longer-term solution. 

 

Cons 

• Reducing page weight, improving latency, and augmenting the app with mobile-friendly features are in 
most cases stopgap measures. This cannot replace a more comprehensive design process that may involve 
improvements to app flow, markup structure, and deeper integration of mobile-friendly CSS and 
JavaScript. 

• As outlined when discussing images, many of the improvements recommended don’t fully resolve the 
challenge of supporting devices with many screen sizes and capabilities. If your images are 800 pixels wide 
and 300KB, optimizing them will not resolve the basic problem that you are serving large, high-bandwidth 
images to smaller, resource-constrained devices. 

 

 

 

 



Using a proxy-based solution 

Migrating or refactoring a desktop app’s back end to enable new, mobile-friendly features and functionality is not 
always possible. Some apps are highly complex, or may have been built by teams that have since moved onto other 
projects. This can make large-scale changes to the server-side code difficult, and if the app doesn’t have a 
consistent and well-thought-out architecture (or doesn’t contain unit tests) changes can be riskier still. 

Business pressures may also mandate an aggressive mobile strategy that means the app must be available in a 
matter of weeks. In this case, you may want to consider using a proxy-based solution. 

Proxy-based solutions vary in their implementation, but most use a combined approach including data collection, 
transformation, and optimization in order to dynamically generate a mobile-appropriate variant of your web site. 
This optimization and transformation “layer” (or app) is typically offered as a third-party service that intercepts 
the existing web site’s outbound markup, and optimizes it for the mobile client. Certain proxy solutions specialize 
in adaptation of content-heavy sites, while others focus more specifically on e-commerce and transactional apps. 

Pros 

• Using a proxy solution is typically quicker than implementing a mobile site from scratch. 

• Proxy based solutions don’t typically require duplication of content, so they integrate well into your 
existing content management system (CMS) and production workflows. You update the desktop app, and 
the mobile experience takes care of itself. 

• Part of the optimization process requires some sort of content collection, which can often be adapted to 
dynamically generate an API for an otherwise static web site. 

 

 

 

 



Cons 

• Proxy services work best when you wish to entirely mirror the desktop content and business logic. Aiming 
for consistency is great, but there may be times when you still need to serve different content or 
functionality to different devices. Doing so may not be possible when using a proxy. 

• The more you customize your proxied site (and therefore fork desktop business logic or controllers), the 
more long-term maintenance you will incur each time your desktop site changes. 

• Upgrades to your overall technology stack (payment services, remote caching, and so forth) may not be 
reflected in the proxy environment unless you incur the cost of a second implementation. 

• Proxy services may offer less flexibility and control over the design, infrastructure, and the experience you 
deliver to each device. 

 

Developing a standalone mobile solution 

A standalone mobile solution is one that has been designed with mobile as the primary context. Standalone apps 
operate independently from any existing (desktop) web app, and are therefore often hosted on separate domains 
(or subdomains). 

Pros 

• The experience can be fully tailored to small/portable devices. 

• Markup and template structures can be reassessed and optimized in accordance with good practice for 
mobile devices. 

• Content and functionality can be implemented gradually, to suit user demand and budgetary constraints. 
The eventual goal may be to reach feature parity with the legacy app, but a standalone site provides the 
freedom to do this in stages. 



• There may be little need for image adaptation as lightweight images (and media) can be served from the 
very beginning. 

 

Cons 

• Having a standalone site may require maintenance of a separate additional site (and potentially separate 
assets and content within your CMS). 

• A standalone site will require a detection and redirection strategy to ensure URLs resolve gracefully 
regardless of the requesting device. If the standalone mobile experience doesn’t contain all the 
functionality of the desktop experience, you may also need a strategy to convey this to users, and 
suggested alternative content or other means of completing their task. 

• If the site operates from a separate domain (and despite the use of redirection) you may need additional 
marketing efforts to promote the site. 

• If not designed responsively, you may need a separate site for larger devices such as tablets (and a strategy 
to determine which devices should receive each site). 

 

To ensure the best experience, it will also be necessary to implement some manner of feature detection, to ensure 
the functionality and experience you serve is appropriate to the capabilities of each browser and/or device. 

Developing a responsive experience 

Responsive design is a technique that enables developers to adapt the layout and visual design of an app to suit 
multiple screen sizes. This is implemented using a series of CSS media queries that trigger layout and stylistic 
changes. These changes occur once a device property (such as screen width) meets the criteria defined within that 
media query. 



Responsive design is most often applied to a single site (or app) enabling it to adapt to all contexts—from small 
portable devices, all the way up to desktop computers (and even larger screens such as televisions). 

Pros 

• Developers can design and maintain one set of markup (with the occasional variation), and in doing so, 
support a wide range of devices. This reduces the number of templates and resources that must be 
designed, and avoids duplication of any future design, implementation, and maintenance efforts. 

• The app is easier to promote, as there is only one domain, and one URL for each article, section, or feature 
on the web site. This is particularly helpful in today’s highly connected world as URLs shared by email or 
using social media will resolve gracefully regardless of the device. 

 

Cons 

• Responsiveness isn’t something you can simply add to an existing web site. While it may be possible to 
inject some flexibility into an existing experience, most apps will require significant changes to templates, 
styles, and in many cases scripts and content. 

• Responsive design is ideal for adapting layouts, but there is no built-in mechanism to target differences in 
browser or device capabilities. It’s therefore necessary to pair responsive design with some manner of 
feature detection to ensure the most appropriate functionality and experience is served to each device. 

• Responsive techniques enable you to scale images to suit different screen sizes, but do not address image 
weight or legibility. A separate image adaptation strategy may therefore be required. 

• Some content may simply not be appropriate at certain screen sizes. You may therefore need to add, 
remove, or adapt the content (including advertising). 

 



The sample app included in this guide, Mileage Stats Mobile, uses, responsive design as a tool (and strategy), 
enabling us to better target devices with a wide range of screen sizes. 

Users who access Mileage Stats Mobile from a desktop computer are still redirected to the pre-existing desktop 
app, which is fully optimized for larger screens and more capable browsers. 

See Delivering a responsive layout for more details of our responsive implementation. 

Summary 

If you have an existing web app that was not optimized for mobile browsers, there are a few options for improving 
the experience for mobile users. Each option has advantages and disadvantages. You should consider how well 
each of these choices will work for your existing app, and think about the overall return on investment involved in 
any particular option. 

Resources 

(1) http://developer.yahoo.com/performance/rules.html 

http://developer.yahoo.com/performance/rules.html


Mobilizing the Mileage Stats app 

What is Mileage Stats Mobile? 

Mileage Stats Mobile is a reference app developed by the patterns & practices team in order to explore and 
understand the challenges associated with the mobile web. It is built on top of another reference app, Mileage 
Stats, which was included as part of Project Silk. Mileage Stats Mobile seeks to augment the original legacy app by 
providing a mobile-friendly experience while preserving the original functionality for clients that can be classified 
as desktop browsers. 

Mileage Stats itself is an app that allows users to track information about a fleet of vehicles, such as fuel efficiency 
and cost of maintenance. The legacy experience was intended to provide guidance for building a multi-page web 
app where the pages are rendered without requiring a postback. (This pattern is commonly referred to as single 
page application, or SPA.) Likewise, the legacy app highlighted features of modern desktop browsers while still 
remaining completely functional for older browsers through the use of techniques such as progressive 
enhancement. 

Mileage Stats Mobile differs from its predecessor by focusing on problems that are relevant to mobile devices 
(unreliable and unpredictable network connections, a diversity of browsers, and so forth). As a result, it also more 
deeply embraces concepts such as semantic markup. 

http://silk.codeplex.com/
http://en.wikipedia.org/wiki/Single-page_application
http://en.wikipedia.org/wiki/Single-page_application
http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Semantic_HTML


 

Please click the thumbnail above for a larger view of the Mileage Stats mobile app map 

Let’s now examine the process we used to determine the Mileage Stats mobile experience, and how it would map 
to various types of mobile devices. 



We began by identifying the key features and functionality of the Mileage Stats app. This then enabled us to define 
key experience groupings and indirectly enabled us to define the browsers and devices we would support. 

The default app experience 

Although Mileage Stats Mobile is a moderately sophisticated app, the base functionality is quite simple. To use the 
app, users must simply be able to complete a series of online forms: one to add a new vehicle, and the other to add 
a fill up. The rest of the functionality involves basic display of HTML and static images. 

Identifying this baseline requirement resulted in one very simple technology requirement: a modern browser 
with good HTML 4.01 and CSS 2.n support. 

Setting this as a base requirement meant we could (in theory) support an extensive range of devices. It did, 
however, force us to eliminate certain older and/or less capable devices including legacy smartphones and feature 
phones with only XHTML MP and CSS MP browser support. The decision also confirmed that JavaScript support 
was not a key dependency. 

The single page app 

SPA apps are ideally suited to handle many of the constraints of mobile browsers. Nevertheless, we didn’t feel 
comfortable completely eliminating support for browsers that did not meet the requirements for delivering an 
SPA experience. Luckily, the original Mileage Stats app had been designed using principles of progressive 
enhancement. If the necessary features were not present, the app would simply serve the base experience with no 
enhancements, relying on full-page refreshes to submit and manage content. 

This made our decision to support devices with limited JavaScript much easier, as the app logic was already in 
place for both the Ajax and full-page refresh interactions. 

For more information see Delivering the SPA Enhancements. 

 

 



Experience categories and enhancements 

Based on these decisions, we devised two major experience categories: 

• Wow – An advanced, SPA experience aimed at browsers that support JavaScript, XHR, DOM manipulation, 
JavaScript Object Notation (JSON), and hash change events. 

• Works – A baseline experience that would rely on simple page refreshes, and is aimed at browsers that did 
not meet the more advanced Wow criteria. 

 

The experience would not, however, be limited to the criteria outlined for these two groups. We planned to 
implement additional micro-layers of experience based on the capabilities of the browser or device. These would 
include: 

• Using CSS3 media queries and basic responsive design principles to adapt the layout for different screen 
sizes. 

• Enhancing the UI using CSS effects such as drop shadows, gradients, and rounded corners. 

• Using a device-pixel-ratio media query to detect high pixel density devices, and provide them with high-
resolution graphics. 

• Using geolocation data (where supported) to offer a list of nearby gas stations based on the user’s current 
location. 

• Generating custom pre-sized bitmap charts on the server and exploring the use of canvas to deliver 
dynamic charts where supported. 

 

The experience each device would receive would therefore be an aggregate of features based on that browser’s 
capabilities. Rather than implicitly detect a device (or platform), and place it within a particular group, we would 



detect key capabilities (such as JSON, XHR, or location support) and use these to determine the most appropriate 
collection of functionality to provide. 

The Whoops device group 

A third experience level, entitled Whoops, was also created for extremely old or basic browsers. While these 
browsers met the base requirement of HTML 4.01 and CSS 2.n support, the browser implementation might not be 
robust enough, or the devices might be too small and/or underpowered to properly run even a basic Works 
experience. In most cases it was simply due to small screen size (typically less than 320 pixels wide), which 
resulted in an excessively cramped layout. While it might have been possible to detect these devices and serve an 
extremely basic version of the layout, the team decided that it was not worth the additional effort as we were 
already supporting a very wide range of current and legacy (three to four-year old) devices. 

Summary 

The reference app for this project is based upon the reference app for Project Silk. We wanted to explore popular 
patterns for building mobile web apps, making use of modern features while enabling the app to work on as many 
devices as was reasonable. 



Delivering mobile-friendly styles and markup 

Goals when developing mobile-friendly markup 

The key to mobile-friendly markup is structure. Mobile browsers are often less powerful than their desktop 
counterparts. They are often used on resource-constrained devices, and may be subject to latency from both the 
network and the device. These factors may cause markup, scripts, styles, and images to download and render 
slowly—or at worst, not at all. 

Structuring your HTML 

To be mobile friendly, HTML should be simple, clean, and well structured. Delivering well-structured markup 
speeds parsing and rendering, and will ensure that if images or styles don’t load as planned, there will still be 
human- and machine-legible markup underneath. 

The best way to create mobile-friendly HTML is to keep things simple. 

• Use HTML elements for their intended purpose. If your text is a header, use an appropriate, 
semantically relevant tag (such as an <h2> or <header>) instead of wrapping it in <div class=“header”>. 

• Use semantic elements to take advantage of the cascading aspect of CSS. All browsers that support 
HTML will include a default style sheet with instructions to render semantic elements defining paragraphs, 
headers, or text emphasis. There will, however, be no default styling available for random markup 
enclosed in a <div> element. Taking advantage of a browser’s built-in styles may also enable you to write 
fewer CSS definitions, which can result in smaller downloads and faster parsing and rendering. 

• Think twice before wrapping semantic elements (such as headers or paragraphs) in an additional 
div or container. Remember that each new element must still be parsed, and may require additional 
styles that will increase the size of your style sheet. These elements also often require longer CSS 
definitions, with increased specificity, which can also increase the time required to parse the styles. 



• Where possible, use the new HTML5 semantic elements (such as header, footer, section, and aside) 
to further clarify your markup. These elements can be styled and will cascade, like any other HTML 
element. They are supported on most desktop and smartphone browsers including Windows Internet 
Explorer starting at version 9. A polyfill script is also available to enable support back to Internet Explorer 
7, but should be tested thoroughly to ensure it works on target devices. The HTML5 specification also 
includes a series of new form attributes and input types. These include input placeholders, built-in form 
validation for common inputs such as an email address, and attributes that can be set to constrain the 
input type. These are only supported on newer browsers, but are designed to degrade gracefully and thus 
can safely be used in your base markup. See Developing mobile-friendly forms for more details. 

 

Setting the viewport tag 

Setting the viewport meta tag is an important step when developing mobile-friendly markup. Mobile devices come 
in all shapes and sizes, but their physical size is just one of three factors that impact the user experience. Each 
device also has a screen size, measured in hardware pixels, and a pixel density measurement, which is the number 
of pixels per inch (ppi). 

Content on a high-ppi display is small and crisp, as pixels are smaller and more of them have been squeezed onto 
the screen’s physical space. Conversely, content on a low-ppi display will be larger and fuzzier, as fewer (and 
larger) pixels have been used to display the content. 

This creates an interesting problem. Devices with a high ppi may be quite crisp (which is considered a feature), 
but the content may be uncomfortably small (which would be considered a bug). Handset manufacturers 
compensate for this by setting an implicit viewport size. For example, while the Samsung Galaxy S2’s display is 
480 × 800 pixels, the viewport has been adjusted to a dimension of 320 × 450 pixels to improve legibility. 

It’s important to respect these preset dimensions when developing your app. You can do so by adding a viewport 
meta tag and setting its content property to a value of “device-width”. 

<meta name="viewport" content="width=device-width"> 

http://code.google.com/p/html5shiv/


Click here to view code as image 

Doing so instructs the browser to render the page using this preset device viewport width. 

Note: While it is possible to change this value, you should consider the implications that such a change will have 
on the hundreds of devices you might have to support. A value that improves the legibility of your app on one 
device may decrease the legibility on another. 

Other settings are available to control the minimum, maximum, and initial scale at which the page will load. The 
user-scalable property can also be used to prevent a user from zooming in and out. These should also be used with 
caution. And as a rule, it’s best to simply let the device choose the most appropriate viewport behavior, and not 
attempt to control or constrain what the user can do. 

Note: Do not forget to include the viewport tag. If a viewport width is not specified (either with a fixed value or a 
setting of device-width), most mobile browsers will default to a much larger value—often 960px. This will result 
in a tiny layout that is difficult to read, even if that layout has been mobile optimized. 

Please consult The IE Mobile Viewport for Windows Phone for additional details. 

Structuring your CSS 

Mobile-friendly CSS is lightweight and embraces the inherent flexibility and diversity of the web. 

Use flexible values 

Where possible, use flexible values such as em units for typography, and percentages for layouts. These keep the 
layout adaptable and result in a more malleable and future-friendly user interface. They also provide users full 
control over font size, should that option be available in their browser. Pixel values can, of course, still be used 
when setting media queries or specifying borders. 

 

http://blogs.msdn.com/b/iemobile/archive/2010/11/22/the-ie-mobile-viewport-on-windows-phone-7.aspx


Consider browser diversity 

Writing CSS for devices requires pragmatism. There are thousands of mobile devices, several rendering engines, 
many popular mobile browsers, and many versions of each browser. Clearly, understanding the specification level 
of each browser or device is impossible. It’s therefore important to create CSS that is not specifically dependent on 
the specifications or characteristics of just one browser. 

For example, when specifying advanced CSS styles such as gradients, don’t forget to use all vendor-specific CSS 
extensions so as not to favor one browser or rendering engine over another. The example below demonstrates the 
use of vendor-specific extensions when specifying a gradient background. 

CSS 

disabled.button{ 

       background-color:#bec5cc; 

       background-image:linear-gradient(top, #fcfdfd 25%, #d1d5da 75%); 

       background-image:-o-linear-gradient(top, #fcfdfd 25%, #d1d5da 75%); 

       background-image:-moz-linear-gradient(top, #fcfdfd 25%, #d1d5da 75%); 

       background-image:-webkit-linear-gradient(top, #fcfdfd 25%, #d1d5da 75%); 

       background-image:-ms-linear-gradient(top, #fcfdfd 25%, #d1d5da 75%); 

       background-image:-webkit-gradient(linear, left top, left bottom, color-stop(0.25, #fcfdfd), color-

stop(0.75, #d1d5da)); 

       -moz-box-shadow:0px 1px 1px #b0b8c1; 

       -webkit-box-shadow:0px 1px 1px #b0b8c1; 

       box-shadow:0px 1px 1px #b0b8c1 

} 

Click here to view code as image 



Be sure to test the design using all the specified rendering engines and consider as well what will happen if the 
feature isn’t supported at all. In the example above, we have specified all gradient vendor prefixes, but have also 
specified a flat background color, which will be applied in cases where gradients are not supported. 

Consider performance 

An easy way to improve performance in your app is to reduce the number of HTTP requests. Consider ways to 
group your style sheets (to reduce the number of requests) but don’t be afraid to keep them separate if this 
provides efficiency in other areas. Mileage Stats, for example, uses three style sheets. Each style sheet is triggered 
by a media query breakpoint, but additional media queries have also been placed inside of each style sheet. This 
media query inside of a media query technique provided us with the ability to layer multiple media query 
declarations, while reducing the nesting of styles, and keeping the style sheets light and easy to maintain. The 
benefit of these smaller, more versatile style sheets was in the end far greater than the reduction in latency would 
have been had we combined them. 

Note: Be sure as well to minify and compress (gzip) all style sheets to reduce network transfer and download 
time. 

Create modular, reusable styles 

As suggested in Structuring your HTML, the best base for a mobile app is well-structured markup that prioritizes 
the use of semantic HTML elements over non-semantic elements such as divs. The key benefit of well-structured 
and semantic markup is that it enables you to reduce the number and complexity of the style declarations you 
create. This will ultimately impact a style sheet’s file size and the time required to parse and render the content. 

The cascading nature of styles allows us to create a common or base style that can be augmented/extended by 
applying additional styles. This enables us to create modular, and easily extensible components that can be reused 
throughout the app. 



In the example below, we’ve used one generic markup structure to define a basic container for a flash message. 
The container has no inherent size, so it can be placed anywhere in the app. A 1-em margin has, however, been 
added around the container to ensure that it doesn’t bump into other elements. The corner has also been 
surrounded by a 1px border. The paragraph text within the container has also been styled. 

HTML 

<div class="flash"> 

     <p>{{notificationMessage}}</p> 

</div> 

Click here to view code as image 

CSS 

.flash { 

    margin: 1em; 

    border: 1px solid #64717D; 

} 

.flash p { 

    margin: 0 0 0 .5em; 

    padding: .7em .5em .5em 2em; 

    background-repeat: no-repeat; 

    background-position: center left; 

} 

Click here to view code as image 

 

 



The unstyled base component as described in the code above 

The markup and styles above form the base for a highly reusable component that can easily be modified using an 
additional class. In the following example, the addition of an alert class inserts a red stop sign icon and changes the 
container’s border and text color. These changes turn the generic component into an alert message. 

HTML 

<div class="flash alert"> 

     <p>{{notificationMessage}}</p> 

</div> 

Click here to view code as image 

CSS 

flash.alert { 

    background-color: #fff5f3; 

    border-color: #d72e02; 

} 

flash.alert p { 

    color: #d72e02; 

    background-image: red-error-icon.png; 

} 

Click here to view code as image 

 

 



The final set of components used in the app 

Modular styles such as these can be enhanced even further using a CSS preprocessor such as LESS or Sass. These 
tools provide many time-saving (and productivity-boosting) features such as nesting, mixins, and variables. These 
features can reduce unnecessary markup and style declarations, and simplify refactoring and ongoing 
maintenance. 

The example below shows the combined flash and alert classes, this time demonstrated using Sass syntax. 

.SCSS (CSS using the simplified Sass syntax) 

.flash { 

    margin: 1em; 

    border: 1px solid $highlight; 

    p { 

        margin: 0 0 0 .5em; 

        padding: .7em .5em .5em 2em; 

        background-repeat: no-repeat; 

        background-position: center left; 

    } 

&.alert { 

        background-color: lighten($alert, 55%); 

        border-color: $alert; 

        p { color: $alert; background-image: $img-alert; 

    } 

} 

Click here to view code as image 

 

http://lesscss.org/
http://sass-lang.com/


Embracing browser diversity 

A challenge when designing, developing, and testing mobile experiences is accepting that your design will look 
different from device to device. Understanding how much variety you can expect, and conveying this to your 
entire team is extremely important. This will enable you to manage stakeholder expectations and avoid spending 
valuable time discussing, and attempting to debug design differences that you cannot control. 

Don’t expect the layout to be pixel perfect on each device. Differences in margin, padding, and alignment may be 
unavoidable due to differences in each browser’s implementation. If most devices are rendering as expected, it 
may not be worth expending valuable resources trying to tweak small differences on one or two browsers or 
devices. 

 

 



The New Vehicle form as rendered on an iPhone 4 using the native Safari browser, an iPhone 4 using the 
Opera Mini browser, and a Nokia Lumia using Internet Explorer 9 

Implementing these tweaks may also involve the implementation of browser-specific hacks (often using user-
agent sniffing to identify the specific browser variant). Each of these will require testing to ensure they don’t 
inadvertently impact other devices, and may need to be tweaked, retested, and maintained long-term. This may 
create a huge amount of overhead for you, while delivering an improvement that is only barely noticeable to the 
user. 

Focus instead on fixing highly noticeable problems that affect legibility, such as text or images that overflow onto 
other elements, inconsistently sized copy, or elements that disappear off the edge of the page. These larger 
problems are often easy to replicate on the desktop, and can often be resolved through tweaking or refactoring of 
markup and styles. 

See Styling form elements for recommendations specific to forms. 

Tip: Test often during the implementation of styles and layout, and where possible, take screenshots of problems 
you encounter as you implement key aspects of the design. This will provide a useful reference for your test team 
and avoid the filing of unnecessary bugs. It will also assist in stakeholder discussions, enabling team members to 
quickly review and discuss differences in rendering across devices. 

Knowing when and what to reuse 

When creating a mobile version of an existing app, it’s natural to want to reuse existing code and assets. This can 
be counterproductive as desktop code, styles, and markup were almost always created with more powerful 
devices in mind. 

Reusing markup 

Good mobile markup is simple, to the point (with few extraneous divs or containers), and makes good use of 
semantic elements. The more complex the markup, the harder the browser will have to work to parse (and if 



necessary) adapt it. It’s therefore often hard to reuse markup that was created for the desktop, as it may be 
bloated and overly complex. 

Reusing CSS 

Existing CSS is also hard to reuse as it may have been created to match your more complex desktop markup. It 
may also include properties that aren’t supported on mobile browsers, or effects such as CSS gradients, shadows, 
and transparencies, that can severely impact performance. 

Reusing JavaScript 

For similar reasons, it may be difficult to reuse existing JavaScript. JavaScript support on mobile devices varies, so 
you should not assume your code will simply work across all the devices you need to support. You may also want 
to reconsider the use of JavaScript-based animations, as these are CPU intensive. Creating animations using CSS is 
less likely to cause performance problems, but may not be as well supported as an equivalent JavaScript 
animation. 

As mobile browsers and devices are incredibly diverse, it’s always important to develop using the principles of 
progressive enhancement. This includes the use of unobtrusive JavaScript practices and feature detection to 
ensure that functionality is only implemented when support actually exists. Although these practices are also 
widely encouraged when developing for desktop computers, it’s possible your app may not have been designed in 
this way. This may make it difficult to reuse front- and back-end controllers. 

See Delivering a responsive layout for additional details on the markup and CSS strategy. 

 

 

 



Summary 

There are a few points you should keep in mind when aiming for mobile-friendly solutions. First, simple markup is 
both easier to maintain and faster to load. Second, understanding how the viewport affects the rendering of your 
markup has a big impact on the experience of your users. Third, CSS is inherently difficult to maintain. Using tools 
such as Sass or LESS can help to mitigate the difficulty. 



Developing mobile-friendly forms 

Goals when developing mobile-friendly forms 

There are several goals when delivering mobile-friendly forms: 

Forms should be easy to complete. Adjusting each form element’s size and layout is the primary technique for 
improving legibility and user manipulation. Usability will, however, also depend on your choice of form elements, 
the clarity of your form labels, and the efficacy of your form validation. 

 

Example A shows a form that has been optimized for usability and legibility. Example B shows an un-
optimized form. 

Forms should be lightweight and compatible with target browsers. Being compatible doesn’t mean that they 
will be identical on all devices. They should, however, be functional and easy to use. They should also not be so 
complex that their rendering will cause unnecessary browser latency. 



Forms should, where possible, take advantage of new technologies to enhance the experience on more 
advanced browsers. This is typically achieved through the addition of new HTML5 input types, some of which 
provide the user with advanced native behaviors such as date picker components and built-in form validation. 

 

A date picker component on the iOS platform 

Achieving these goals will often require a certain level of compromise. Mobile browsers are constantly improving, 
but support for the latest technologies still varies. You should be prepared for cases where the desired support is 
unavailable or poorly implemented. And while it can be tempting to develop your own user input components, 
you should always consider the value and maintenance burden these will involve. 

Note: HTML5 form attributes and input types are extensively discussed in this section despite the fact that they 
are not supported on many devices that meet the default Works experience criteria, discussed in Experience 
categories and enhancements in “Mobilizing the Mileage Stats App.” These aspects of the HTML5 specification 
have, however, been designed to degrade gracefully, so they can be implemented on most browsers with minimal 
risk. To ensure compatibility, any implemented feature should, of course, be tested on target devices. 

Form element implementation in Mileage Stats 

We chose a pragmatic, progressive enhancement approach when developing forms for Mileage Stats. 



As the Works experience was destined for fairly simple browsers, we began with a base of well-structured native 
HTML form elements. The example below shows a label and input field for the odometer value in the New Fill-up 
form. 

HTML 

<label for="Title">Reminder title</label> 

<input type="text" placeholder="Reminder title" value="" name="Title" maxlength="50" 

id="ReminderTitle"> 

Click here to view code as image 

We then enhanced this base with carefully chosen HTML5 input types. The example below demonstrates the 
addition of the HTML5 placeholder attribute in the Reminder title field of the Reminders form. 

HTML 

<input type="text" placeholder="Reminder title" value="" name="Title" maxlength="50" id="ReminderTitle"> 

Click here to view code as image 

HTML5 input types and attributes such as these were chosen based on their support level on our target browsers, 
and their ability to degrade gracefully (even on much older browsers). The following section outlines our 
decisions regarding many useful HTML5 types and attributes including number, placeholder and date. 

Improving the input of numbers 

We used the number input type to improve the user experience on supported browsers. Using this input type 
triggers a numeric keyboard on many touch browsers, and constrains keyboard input to numbers only on many 
QWERTY or T-9 devices. This input type degrades gracefully and will simply default to the traditional keyboard 
when unsupported. 



 

The number input type in action on the iOS platform 

The following example demonstrates the addition of a number input type for the Price Per Unit input field in the 
Fill-up form. 

HTML 

<input data-val="true" 

      data-val-number="The field Price Per Unit (ex. 3.75) must be a number." 

      data-val-range="The price per gallon must be between 0.1 and 100." 

      data-val-range-max="100" 

      data-val-range-min="0.1" 

      data-val-required="Price per unit is required." 

      id="PricePerUnit" 

      name="PricePerUnit" 

      placeholder="3.75" 



      step="0.01" 

      type="number" 

      value="0" /> 

Click here to view code as image 

Note: This example shows the HTML5 placeholder attribute used in conjunction with the number input type. 
Combining these two is prohibited by W3C specification, but testing seemed to indicate that most browsers either 
supported simultaneous use, or simply omitted (and gracefully degraded) the placeholder. We therefore chose to 
continue using these together but would recommend further testing before widespread implementation. See 
Fallback strategies and false positives for more details. 

Specifying placeholders 

We used the placeholder attribute to display hints within many user input fields but encountered problems due 
to its incompatibility with the number input type. See Providing input field hints for more details. 

 



Placeholders in the Price per unit, Total units and Transaction fee fields 

Form validation 

We chose not to implement HTML5 form validation, as support for this feature on target browsers was poor and 
the specification insufficient for our particular needs. We also already had robust server-side data validation in 
place using ASP.NET for the Works experience, so it was fairly trivial to implement a client-side alternative using 
JavaScript on devices that supported our Wow experience criteria. The Wow experience is discussed in Experience 
categories and enhancements in “Mobilizing the Mileage Stats App.” 

Improving the input of dates 

We chose not to implement the HTML5 date input type, as support was inconsistent on our target browsers. See 
Fallback strategies and false positives for more details. 

Specifying date ranges 

The Mileage Stats charts view displays a series of mileage and performance charts based on a range of dates 
provided by the user. This at first seemed like an ideal opportunity to implement the range input type, which on 
many browsers displayed a slider mechanism whose handle can be dragged to choose a value. One of these sliders 
could (in theory) have been used to specify a “To:” date and a second one used to specify the “From” date. 

We decided, however, that the support for this property was still insufficient on target browsers. We were also 
unsure a slider would be the best mechanism for our purposes. A slider can be difficult to manipulate on a small 
screen so it is most useful when it contains a small number of increments. After several years of use, the chart 
sliders might contain many dozens of intervals, making it harder to distinguish between each date. 

We instead implemented the range feature using two select menus, each prepopulated with a month and date 
value. 



 

The date range option, implemented using select menus 

Styling form elements 

Given the diversity of browsers and devices, a key rule when styling form elements is to keep things simple. 
Browsers already provide a default style for each form element and retaining these often provides the more 
consistent experience amongst devices. 

• Ensure your form’s markup is well structured and uses semantic elements where these exist. For example, 
be sure to use <label> elements for all form labels, instead of less semantically relevant paragraph, header 
or div elements. 

• Begin by testing your form on key browsers using only basic, browser-default styling. There is quite a bit of 
variety in the styling of certain form elements, so it’s important to begin with an understanding of each 
form element’s’ default state. This step can prevent you from wasting time later debugging differences that 
may look like bugs, but may be beyond your control. 

• Add form styling gradually and retest frequently. This may feel like an additional step, but form elements 
are often the trickiest HTML elements to style. Appling styles gradually can help catch problems early and 
reduce the need for extensive debugging at a later date. 

• Where possible, take screenshots of default form elements behavior. This will provide a useful reference 
for your test team and avoid the filing of unnecessary bugs. 

 

 



Fallback strategies and false positives 

Due to the wide fragmentation in form input types, it’s important to consider what will happen in cases where the 
specification isn’t fully implemented (or behaves unexpectedly). We encountered this several times during the 
development of Mileage Stats. 

Inputting a date 

Choosing the most appropriate method for all our users to enter a date proved challenging. The simplest, and most 
consistent date input method is to provide three select menus (one each for the day, month and year). The select 
form element is well supported and benefits from a well-designed native component—even on much older 
browsers. Using a select menu also simplifies validation, as the user can only input values contained within these 
menus. 

On certain newer devices however, specifying an HTML5 date input type would display a custom calendar widget, 
improving the experience even further. A calendar widget may be better for the user, but knowing when it’s safe 
to use one poses a problem. It’s possible to detect support for this input type using a JavaScript feature test, but 
due to spotty implementation, a large number of devices return a false positive. These devices pass a feature test 
for the date input type, but only display a simple text input field. 

We therefore had two choices: 

• We could use the simplest and most consistent form element for everyone. 

• Or, we could improve the experience for certain users, while making it far worse for others. 

 

Note: A third but far more maintenance-intensive solution would have been to create an approved list containing 
devices that we knew supported the date input type. We would serve the simple select menu to most devices, and 
the custom HTML5 date element markup to devices on our approved list. 

We eliminated this option, however, as it seemed too cumbersome, did not fully comply with progressive 
enhancement principles, and would require ongoing checking and reformulating of the approved list. 



In the end, we decided to implement the simplest and most consistent option: three select menus. 

 

The final implementation using three select menus on Windows Phone 7.5 

Providing input field hints 

Another HTML5 form attribute that caused problems was the placeholder. This attribute enables developers to 
specify an input hint that will be automatically visible to users. This hint is typically displayed (often in greyed-out 
text) within the input field itself, but disappears once the user taps or selects the field to begin typing. 

According to W3C specification, this attribute cannot, however, be used alongside the number input type. 

We were therefore forced to choose between triggering a numeric keyboard for certain users, or providing a 
placeholder within those input fields. We were not, however, guaranteed that all users would receive either of 
these benefits, and expected both to be unsupported on most Works devices. 

Our decision was made easier by our initial choice to develop the app following principles of progressive 
enhancement. The input forms had been constructed using a base of well-structured HTML, and already included 
form labels and input hints within the markup. So while the HTML5 placeholders were more attractive (and 
included the useful behavior of disappearing once the user tapped the field) they were not absolutely necessary, 
given that the input field label already provided this information. 

Note: We discovered through testing that most browsers either supported simultaneous use, or simply omitted 
(and gracefully degraded) the placeholder. We therefore chose to continue using these together but would 
recommend further testing before widespread implementation. 

 

http://dev.w3.org/html5/spec/common-input-element-attributes.html#the-placeholder-attribute


Creating custom input widgets 

During development, we also discussed the possibility of creating our own input widgets. Building custom widgets 
often seems like a good option, as it enables full freedom over the design, functionality and integration of these 
widgets. There are, however, several drawbacks to this approach—especially given the wide fragmentation in 
mobile browsers. 

• Creating your own widgets to input date, color, range, and so forth is time consuming. Ensuring cross-
platform compatibility will require extensive testing, and these tests will need to be repeated with each 
new platform or browser update. You may also need to review your interaction model to suit unexpected 
new browsing methods—for example, the use of a remote control or Xbox Kinect-style gestures on an 
Internet-enabled TV. 

• If your widget doesn’t work on a user’s browser there may be no natural fallback mechanism. The user 
may simply be stuck. 

 

Unless you plan to support only a few browsers, or have considerable testing and development resources at your 
disposal, it’s best to avoid rolling your own widgets and opt to provide the best experience you can using the 
existing (and usable) HTML form elements. 

Note: Frameworks and libraries such as Sencha Touch and jQuery Mobile include custom input components. 
These can be useful if you wish to provide a custom experience but do not wish to develop one on your own. 

 

 

 

 

 



Summary 

Inputting data on small, resource-constrained devices can be difficult. Your primary goal should be to simplify this 
task as much as possible. 

Use HTML5 input types where you can, but be pragmatic. Test thoroughly to ensure features work as expected 
and ensure fallbacks are in place to plug the gaps. Avoid implementing custom components unless you have the 
time and resources to thoroughly test and maintain them. 

In the end, your users (and team) may be far happier with old fashioned markup that is easy to construct and 
maintain, and expected to work on most devices. 



Delivering mobile-friendly images 

Major considerations 

There are three primary concerns when delivering mobile-friendly images: 

• Improving clarity and legibility 

• Reducing payload size 

• Reducing the number of HTTP requests 

 

Improving clarity and legibility 

A common practice when mobile-optimizing images is to simply shrink them down to fit the mobile screen. This 
may work well with many photographs—especially those whose role is to simply embellish a piece of content—
but it can have disastrous effects when images contain fine detail or provide information that is critical to the 
content. The example below shows the rendering of a chart graphic that was delivered to the device using a 
generic size, then simply scaled by the browser. 

 

Scaled by the browser 

 



The following example shows a chart graphic that has been custom-generated to suit the client’s screen size. 

 

Custom-generated image size 

A great example of this problem can be seen in the charts used to display mileage statistics in Mileage Stats 
Mobile. We generated these charts on the server, but initially chose to deliver a generic size (600 × 400 pixels) 
that would be scaled up or down using CSS to suit the actual screen size. This resulted in charts that were so fuzzy 
and pixelated that they were barely legible. The only option to maintain clarity on all devices was to detect each 
device’s screen size, and use this information to generate an appropriately sized chart. Charts were also styled 
using a max-width property of 100% to ensure that in cases where the images might be compelled to scale (for 
example, if the user switched to a much wider landscape mode) they wouldn’t scale any larger than their original 
size. See Delivering mobile-friendly charts for details. 

Reducing payload size 

Delivering lightweight images shows consideration for your users. Mobile networks are slower than wired ones, 
and penetration rates for high-speed data (such as 3G and 4G/LTE) vary considerably, even within developed 
countries or regions such as the United States. Many users also pay for each kilobyte they download, or are 
provided with a monthly allowance, and often forced to pay if they go over their preset limit. 

Serving lightweight images reduces a user’s costs when using your app, but also ensures that your app loads 
quickly. The attention span of web users is already short; on mobile it can be even worse. Surveys indicate that 
users expect a mobile site (or app) to load at least as fast (or faster) than it would on their desktop computer at 
home. So the faster your app, the less likely your users will be to begin hunting for an alternative. 

http://www.compuware.com/about/release/592528/new-study-reveals-the-mobile-web-disappoints-global-consumers


Reducing the number of HTTP requests 

An easy way to improve performance in your app is to reduce the number of HTTP requests. As discussed in 
Delivering mobile-friendly styles and markup, you should be pragmatic when reducing requests and consider the 
overall impact on the project. If saving a handful of HTTP requests requires weeks of work or causes a major shift 
in workflow, the additional work may not be worth it. 

Luckily, when it comes to saving HTTP requests caused by images, there are several excellent options available: 

• Using CSS image sprites 

• Embedding images using a data URI 

 

Note: A third option that we will not cover due to poor support is the use of CSS 2.x clipping regions. This 
technique relies on a much older CSS specification, but is unfortunately poorly supported on certain mobile 
browsers. 

Using CSS sprites 

CSS sprites are individual images (such as icons or common brand elements) that have been grouped within a 
single bitmap image file (called a sprite sheet). 

 

 

 



An example of a CSS sprite sheet. All icons are combined into a single bitmap file. 

This sprite sheet is then referenced within the style sheet as a background image. Each time one of these images is 
required, the sprite sheet is repositioned so that only the required sprite is displayed. As all the images are 
contained within one sheet, there is only one download and one HTTP request. 

 

An example of the use of CSS sprites 

The technologies required to use CSS sprites are well supported on mobile browsers, but the technique can 
require additional markup. Positioning a sprite sheet so that only the desired sprite is visible, either requires 
sprites to be positioned quite far apart (so that one doesn’t accidentally appear on browsers that miscalculate the 
position) or, the sprite must be applied to a container element that is smaller than the sprite sheet. This often 
requires the addition of a <div> element or other non-semantic container (shown in the diagram above as a red, 
dotted line). 

Sprites can also be difficult to use in cases where the layout is flexible because the sprite’s parent container may 
also be flexible, increasing the likelihood that adjacent sprites may unexpectedly appear due to differences in 
browser specification and rendering. 

For both these reasons, we chose to deliver icons for Mileage Stats using the slightly more HTTP-intensive 
technique of base64-encoded images. 

 



Embedding an image using a data URI 

Data URIs enable you to embed images as raw base64-encoded data, that is then decoded and rendered by the 
browser. Image data can be embedded directly into an app’s HTML, or referenced within the CSS. In either case, 
this data is downloaded with the initial application files. The images are then decoded when needed and no 
additional HTTP requests are required. 

Images that have been converted to a data URI are often a bit larger than the equivalent bitmap reference would 
have been, but the savings in HTTP requests are often well worth the slight increase. Minifying and gzipping 
markup and styles will assist in reducing this additional weight and is considered a best practice regardless. 

CSS 

 

.flash.alert p { 

      color:#d72e02; 

      background-image:url( 

VQ4ja2TKw7CQBRFDx+FIWygGocAj6pmCbiyDlZBaNI94Em6AkioKw4MigRIERBSimDaTMsMTEOveZP5nLnzub 

UkSahS9UppQFM3EPYac8D5snYN2N0gPsmdSocGMIA+sCx2fgANYRlUzM9USx8l7DU6Ysd+cVVrMATgcdjzOOx 

UYLcbxJOiQyUMwPJ8LM+nPRrrnDqpUxmohJWQUwRWIiPg83p51+hcDfAWbnL1b2AZGQHv2yBXv0kbPVmRvyCO 

zsQGdygDXTQJsTw/ax9nUx1rDdKRxU93f1rQw2yQopdKleUf0ctipwQK6Aqz5ORgoH9lG3EnZWBah//oBcbsY 

/fF+otkAAAAAElFTkSuQmCC) 

} 

Click here to view code as image 

Note: Free online tools are available to generate data URIs. A search for “data uri generator” will provide the most 
up-to-date list. 

 

 



Using canvas and SVG 

There are considerable benefits to using newer image formats such as canvas and SVG on mobile; however, these 
benefits may take a few more years to be fully realized. 

Scalable Vector Images (SVG) are ideal for mobile as they are often lightweight, and can be scaled up or down with 
(theoretically) little impact on clarity. Support for SVG is improving, but if your app needs to work on older 
browsers, you will need a strategy to detect support for SVG, and provide bitmap images in cases where SVG is 
unsupported). There are also differing levels of support for SVG, even in newer browsers, so it’s important to 
carefully examine the overall value of using this format for your project. 

Aspects of the canvas API are now supported on most smartphone browsers and can be used to generate and style 
diagrams, icons, and other graphical images. Support for canvas is improving but—similar to SVG—it cannot yet 
be relied on as a solution on all browsers. Generating complex graphics using canvas can also be time consuming, 
and extensive testing will be required if supporting many browsers. Tools and libraries are available to assist you 
in generating canvas drawings; however, many have not been fully tested on mobile. 

Delivering high-resolution images 

Mobile devices come in a large range of pixel densities (the number of hardware pixels per inch). On high pixel-
density displays, HTML text is crystal clear, but bitmap images can look fuzzy if not designed with this high density 
in mind. If an image has been specified as a background image using CSS, it’s easy to swap it for a higher-density 
version using the device pixel ratio media query. 

An example of this technique can be found in the enhanced.css style sheet. In this case, we use a media query to 
identify devices with a pixel ratio of two. We then specify a new icon within that media query. The original low-
resolution icon (the one we are replacing) was 20 × 20 pixels. The new icon is four times that size, 40 × 40 pixels. 
We then resize this icon using the background-size property, to fit the original 20 pixel × 20-pixel dimension. 

CSS 



 

@media all and (-webkit-min-device-pixel-ratio: 2) { 

   form li.required, .flag { 

      background-image:url(data:image/png;base64, 

iVBORw0KGgoAAAANSUhEUgAAACgAAAAoCAYAAACM/rhtAAAAzElEQVRYhe3YuRGDQBBFwUbBopggWeRKJa69Z 

tfgud/pqvFm2rbNbuu0YN4f43odLvP2xhpH2e8YyBDIcyDdkddAuiLvAemGvA+kCzINSDgyHUgoMg9IGDIfSA 

iyDEhzZDmQpsg6QJoh6wFpgqwLpDqyPpCqyDZAqiHbAamCbAukGNkeSBEyBkg2Mg5IFjIWSDIyHkgSsg+Q28h 

+QG4h+wK5RPYHcoocA8ghchwgu8ixgPwhxwPyg5wOH5gjtE7L2ECjnvirB1jaAyztA7vNWNO+pD0WAAAAAElF 

TkSuQmCC); 

     -webkit-background-size:20px 20px; 

    background-size:20px 20px 

   } 

} 

Click here to view code as image 

 

An example of a normal and high-density graphic 

Note: Before implementing widespread image replacement for high-pixel-density displays, consider the impact 
this will have on the performance of your app. Keep in mind that each high-density image is not only crisper, it’s 
also likely much heavier than the original. The impact of this may be minor if all you’re replacing is a few tiny 
icons, but replacing much larger images (or large quantities of smaller ones) can add up to a much heavier app. 



Summary 

When planning to deliver images that meet the performance needs of your mobile app, keep in mind the primary 
concerns of image clarity, size over the network, and number of network requests. It’s also important to note that 
there is no one-size-fits-all solution for delivery of images. The method you choose depends upon the type and 
purpose of the images. 



Delivering a responsive layout 

Why use responsive design? 

Responsive design is a technique that enables developers to adapt the layout and design of an app to suit multiple 
screen sizes. This is implemented using a series of CSS media queries that trigger layout and stylistic changes. 
These changes occur once a device property (such as screen width) meets the criteria defined within the media 
query. Developing a site in this way provides several advantages. 

Developers can design and maintain one set of markup (with the occasional minor variation), and in doing so, 
support a wide range of devices. This reduces the number of templates and resources that must be designed, and 
avoids duplication of any future design, implementation, or maintenance efforts. The app is also easier to promote, 
as there is only one domain, and one URL for each article, section, or feature on the website. This is particularly 
helpful in today’s highly connected world as URLs shared by email or using social media will resolve gracefully 
regardless of the device. 

The technologies required to design responsively are also widely supported, and by creating the markup and 
styles “mobile first,” it’s possible to design around devices without the necessary media query support. 

Responsive design is most often applied to a single site (or app), enabling it to adapt to all contexts—from small 
portable devices, all the way up to desktop computers (and even larger screens such as televisions). There is, 
however, no reason it cannot be used to improve apps that have been explicitly designed to suit a mobile context 
such as Mileage Stats. 

Note: See Choosing the number of style sheets for more information about the “mobile first” technique. 

Targeting features and capabilities 

Responsive design is ideal for mobile, as it enables developers to target a wide variety of screen sizes. It enables 
you to detect devices that share a common screen size, and deliver specific CSS to those devices. Where it falls 
short, however, is in addressing the variety in browser implementations. 



A group of devices may all share a screen width of 320 pixels, but one of these may be a lower-powered 
smartphone with a basic browser and QWERTY keyboard, while the other may be a high-capability, touch-enabled 
device with a next-generation rendering engine. The last thing you may want is to serve the same CSS, JavaScript 
(and sometimes even HTML) to these two devices. 

For these reasons, we decided to implement several additional levels of feature detection for Mileage Stats Mobile. 
These additional steps would enable us to detect not only the screen size, but additional capabilities such as 
support for JSON, XHR, Canvas, and the HTML5 geolocation API. 

See Detecting devices and their features for additional information. 

Managing expectations 

A critical step in responsive design is managing expectations. Stakeholders must understand, and buy into, 
concepts of progressive enhancement, graceful degradation, and the need to design in accordance with device 
capabilities and constraints. 

They must understand that there will be no single, pixel-perfect reference version of the design. Each device (and 
browser) will render the design to the best of its capabilities. Font size and line length will vary (within an 
appropriate range). Design elements (such as gradients and rounded corners) may appear on one device, but not 
another, and the brand colors may shift based on a device’s screen quality, brightness, contrast settings, and 
environmental factors such as lighting. 

This is perfectly normal, but it’s important to prepare all manner of stakeholders for this reality. This is 
particularly important for the test team, who will encounter the app on many devices and should be able to 
distinguish between actual bugs and design differences caused by varying levels of HTML or CSS support. 

Evolving your design process 

Another key factor in developing a responsive experience is a willingness to vary your design process. Your app 
will not only be flexible, it will adapt its appearance and UI, its layout, and even certain features to suit the 



capabilities of each device. To deliver the best product, your design process will need to be as flexible as the app 
you are creating. 

Responsive design is a fairly new practice, so best practices are still emerging. What is becoming clear, however, is 
that it’s counterproductive to approach the design of a responsive app using only static and pixel-perfect mockups 
or wireframes. 

While we cannot offer a formal set of recommendations, the list below outlines suggestions based on the process 
we used when developing Mileage Stats Mobile: 

• We started working in HTML quite early, creating exploratory prototypes based on the data and app flows 
of the original Mileage Stats app. These prototypes were extremely simple, with very little visual design, 
but helped kick off and inform the overall design process. They also helped us uncover problem areas 
caused by lack of space, and the need for a clearer way of finding mechanisms on smaller screens. 

• As the app was based on an existing product, we decided not to spend too much time wireframing the 
application flow. We focusing instead on uncovering, prototyping, and eventually documenting the 
differences between the existing desktop app and the new mobile version. 

• We created preliminary visual design mock-ups with variants to represent common mobile phone and 
tablet screen sizes. These helped the team visualize the product while keeping in mind that actual screen 
sizes would vary. We also began work on the actual templates (based on these designs) quite early, testing 
all design iterations on target devices to ensure feasibility and uncover problems as soon as possible. 

• Our final design documentation consisted of fewer than 30 pages. Rather than document every flow and 
every detail of the UI, we provided just enough information to ensure that design, development, and 
testing would all essentially be playing from the same page moving forward. This document—combined 
with prototypes and small functional tests—created a living spec and provided far more accurate context 
than a larger document would. 

 



Defining breakpoints and structuring style sheets 

A common question when designing a responsive app is how to structure your breakpoints. Breakpoints are the 
thresholds or criteria at which a media query will execute. These will typically correspond to a screen size, but the 
question is: how do you decide which screen sizes to use? 

A primary reason to create a responsive design is to ensure that the app looks good at different screen sizes. 
Although it may appear counterintuitive, it’s best to ignore screen size at first, and instead consider your content 
and layout. 

During the design of Mileage Stats, we frequently tested the layout on a desktop browser (by resizing the screen to 
simulate different sizes). In doing so, we determined that the main view didn’t feel quite right when stretched 
wider than 640 pixels. We therefore chose to introduce the breakpoint for an additional split-pane layout at that 
width. This layout change was implemented with the addition of the extended.css style sheet. 

This design decision was cross-checked on a variety of wide-screen mobile devices to ensure that the breakpoint 
was appropriate and all aspects of the layout felt balanced. 



 

Example A shows the Mileage Stats Mobile layout up to the 640-pixel breakpoint. Example B shows the 
addition of the second pane. 

Choosing the number of style sheets 

Given that each HTTP request causes latency, you might expect that combining all your style sheets would be a 
good idea. There is, however, some benefit to loading several distinct style sheets that progressively enhance the 
experience based on a variety of criteria. 

The first benefit comes from a mobile-first approach to structuring your style sheets. Most smartphones now 
include a browser that supports CSS media queries, but users may be using an older device, or a low-cost feature 



phone. A mobile-first approach structures your CSS so that the smallest, and least capable device doesn’t receive 
the styles destined for more capable devices. 

The first step is to create a style sheet with only minimal styling for default HTML elements such as headers, 
paragraphs and form elements. This style sheet has no media query breakpoint, so it is served to every device 
(including those that don’t yet support or understand media queries). Structuring style sheets in this way is what 
we mean by “mobile first” as it doesn’t penalize web browsers with no media query support. These browsers 
receive a simple, “good enough” experience that prioritizes speed, legibility, and widespread availability. 

HTML 

 

<link rel="stylesheet" type="text/css" href="../styles/css/default.css" 

media="screen, handheld" /> 

Click here to view code as image 

Note: Most devices, as well as desktop browsers use the “screen” media type; however, certain older mobile 
browsers use the “handheld” type. We have specified both to ensure that all browsers download this particular 
style sheet. 

The next step is to create a style sheet with the next layer of styles and layout. For Mileage Stats Mobile, this style 
sheet was defined using a 320-pixel breakpoint, as this is a common base size for smartphones. 

HTML 

 

<link rel="stylesheet" type="text/css" href="../styles/css/enhanced.css" media="only 

screen and (min-width: 320px)" /> 

Click here to view code as image 



This style sheet shouldn’t replicate the styles supplied in the first; it should instead build on them. Let’s say, for 
example, that we want all h2 elements to be 1.2 em in size, but as screens get larger, we want to surround them 
with a blue border. We would therefore set all h2s font size to 1.2 em in the default style sheet, but only include 
the enhancement—in this case, the blue border—in the second style sheet. 

We then repeat this approach with the third style sheet, which in this case begins at 640 pixels and primarily 
focuses on changing the layout to suit wider screens. There is no need to reapply default styles for fonts, lists, and 
form elements, as these were applied in the first style sheet and will cascade to all the others. What this also 
means is that the second and third style sheets are often much smaller than the first. 

Note: Serving a larger style sheet to a smaller device may seem odd, but remember that these are all default styles 
that a user would need to download regardless. 

By keeping these style sheets separate, the smaller devices won’t (in theory) download or use the CSS meant for 
larger devices, but there is also a second advantage. These style sheets (and the media queries that control them) 
have so far been specified in the document head. Now that the style sheets are separate, we can add a second layer 
of media queries inside the CSS documents themselves. 

This second layer is best reserved for small tweaks in layout or content. For example, you may find that when the 
screen is larger than 500 pixels, copy becomes uncomfortable to read due to the width of a line of text. It isn’t 
worth creating an entirely new style sheet (and breakpoint in the head of your document) to fix this small 
problem, but you can add a media query within the second style sheet to enable that adjustment. 

An example of this technique can be found in the default.css style sheet. This style sheet is served to all devices, 
some of which will include a screen that is less than 320 pixels in width. On these smaller screens, there isn’t room 
for the arrow icon that is displayed next to each fill-up and reminder record. We have therefore omitted this icon 
in the default design, then use a media query to add the icon on screens that meet the minimum size criteria 
(which we determined through testing was 320 pixels). 

 



CSS 

 

@media (min-width: 320px){ 

.widget.fillup tr td:last-child,.widget.reminder tr td:last-child { 

    padding-right:1.75em; 

    background-image:url( 

VQ4ja2Uv0sCYRjHP9oPBRu65VBxSZEQbJCCoKZIB4eGBqGbggaHdlcHV/+DhlYDh8YGjbYi6GjIoYYKXJJbjo 

ZAK7OhO7H3zt4z/C4v7wPf5/M+78v79Q0GA0ZVrtaKQBYo8Ft1oFkpaUdMIJ8NKFdrCtAAViUeHchVSprpGWA 

1fwQUjwczgYQXiN9aG2LzTDrO4X6eYGDezWdPK9XMV2i5CBRHi6lkjMLOBguhIMmlKHf3bT77fdEbvbhsvWxt 

ruiyCcTH5Llt0O19ABBWFznY2x43icPrBsiKxW7vneOTcy8Qh9cN4KqOYbpCJtVYAEBEVQgG5ob7K/1heoBMO 

s5ufn24Pz275rb19C9AUyymkjGvzR1eN0BdLJqvb8O7l5zc4RVl/+QbhIgIqwoRVfmruV4paWsywKy15hCiom 

OYdIyxSWBaHqn8AFamJPgJMpl0POYQjKSprWnH9TfLX4TCilQ89gAAAABJRU5ErkJggg==); 

    background-repeat:no-repeat; 

    background-position:center right 

    } 

} 

Click here to view code as image 



 

The arrow icons shown surrounded in red are only loaded once the screen width reaches 320 pixels. 

Note: The arrow icon has, in this case, been provided as a data URI. See Delivering mobile friendly images for 
details. 

As discussed earlier, the key to structuring your style sheets is to remain pragmatic. A few additional HTTP 
requests will impact the overall speed of the website, but if these help you design and structure the markup more 
effectively, the net result will be a much better user experience. 

Reminder: Be sure to minify and compress (gzip) all three style sheets to reduce network transfer and download 
time. 

 



Delivering responsive images 

One of the challenges in responsive design is what to do with images. Mobile devices range wildly in screen and 
viewport dimensions. Your design may be displayed on a 320-pixel feature phone, a 1280- pixel 10” tablet, or on 
many sizes and devices in between. You therefore need a means to resize images to match the screen size, and in 
some cases serve different images altogether. The technique you use will depend on how the image is 
implemented in the app. 

Creating flexible inline images 

If your image is included inline, within the HTML markup, you can easily render it flexible via the following steps. 

This first step is to omit an image size when creating the markup for your inline image. 

HTML 

 

<img id="chartimage" src="/MileageStats/Chart/chart.png"> 

Click here to view code as image 

Then, apply the following styles to the image. 

CSS 

 

img { 

    height: auto; 

    max-width: 100%; 

} 

Click here to view code as image 



This will create an image with no initial size, but that scales proportionally thanks to the height: auto declaration. 
Setting the max-width property to 100% ensures that the image will not scale larger than its intrinsic size. 
Without this setting, there would be nothing to prevent the image from scaling up to match any screen size—even 
a huge one. In doing so, it would become highly pixelated and the image quality would degrade. 

Resizing background images 

Background images will not scale naturally, but can be resized (or replaced by entirely new images) using media 
queries. In this example, an existing background image is sized to a dimension of 16 × 16 pixels once the screen 
reaches a minimum of 500 pixels in width. 

CSS 

 

@media all and (min-width: 500px) { 

   ol.buttons { 

       -webkit-background-size: 16px 16px; 

       background-size: 16px 16px; 

   } 

} 

Click here to view code as image 

In this next example, a new image is loaded once the screen reaches a width of 480 pixels, and then is replaced 
with another once the screen reaches 600 pixels. 

CSS 

 

@media all and (min-width: 480px) { 

    p.intro img { 



      background-image: url('../intro-mid-size.png'); 

    } 

} 

@media all and (min-width: 600px) { 

    p.intro img { 

      background-image:  url('../intro-large.png'); 

    } 

} 

Click here to view code as image 

Image replacement techniques 

The techniques described in the last section enable you to replace a background image via CSS, or create a flexible 
inline image, but there are many cases in which these changes may not be sufficient to deliver a good experience. 

It’s trivial to scale an image, enabling it to fit any screen size. But unless the image was quite large to begin with, it 
will look progressively fuzzier as it scales up. And given that the largest mobile screens range from 800 to 1280+ 
pixels (easily resulting in 200KB to 300KB images) it hardly seems fair to subject smaller devices to such a large 
download. 

Automatically resizing images can also impact legibility. This was a big problem for Mileage Stats Mobile as some 
of our most important images were charts containing text and fine details. Resizing these by as little as 20% 
resulted in blurred text, and a loss of critical detail. We therefore needed a means of detecting the screen size 
ahead of time and serving an appropriately sized image to each device. 

There are many techniques available for this type of responsive image replacement. Many of these rely on client-
side screen size detection, making it difficult to deliver correctly sized images on first load (before the tests have 
been run and the correct screen size determined). Using client-side, Canvas-based chart rendering for Mileage 
Stats Mobile would have also overcomplicated our implementation. We therefore needed a means to detect the 
screen size well ahead of the first load. 



See Detecting devices and their features and Delivering mobile-friendly charts for more details. 

Note: A detailed explanation of many client-side responsive image replacement techniques can be found in the 
following articles from Cloud Four in Portland: Responsive images – Part 1 and Part 2 – An in depth look at 
techniques. 

Summary 

It is increasingly difficult to make assumptions about the screen sizes and resolutions on devices with web 
browsers. Instead of offering a different design for each variation, it is more practical to create a single design that 
responds to the differences. In order to best employ the technique, developers and designers need to understand 
features of CSS such as media queries. 

http://cloudfour.com/responsive-imgs/
http://cloudfour.com/responsive-imgs-part-2/
http://cloudfour.com/responsive-imgs-part-2/


Additional usability enhancements 

This section describes additional usability enhancements that were implemented or considered during the 
development of Mileage Stats Mobile. 

Navigating large recordsets 

When developing data-intensive apps it’s important to consider the impact of large datasets on the user 
experience. The user benefits from continuing to use the Mileage Stats app over time, so it’s wise to expect that the 
dataset will grow as large numbers of fill-ups and reminders are added. The following enhancements were 
designed to improve the browsing of these datasets. 

• Lists of fill-ups and reminders are grouped to improve usability. Fill-ups are grouped by month and 
displayed in descending order, while reminders are grouped based on their status: pending, overdue or 
fulfilled. 

• To save space, these groups are enclosed within expandable containers. Certain containers, such as those 
containing urgent overdue reminders are designed to load in an expanded state. Others load in a collapsed 
state to save space. In cases where large numbers of collapsible items exist, it’s also best practice to include 
a toggle enabling users to expand or collapse all containers at once. 

• A final recommendation would be to implement some level of pagination. Pagination is particularly 
important on mobile due to lack of screen real estate and the need to manage latency. In this case, we 
might expect to see multiple types of latency. Simultaneously loading hundreds of records into one view 
would require a long download time, but users might also experience latency when scrolling (or expanding 
and collapsing) such a large number of elements. 

 



 

Proposed content groupings and expandable containers 

Providing access to the desktop experience 

When developing an explicitly mobile experience, it’s a best practice to provide users with an easily discoverable 
link to the original desktop web app. This is useful for several reasons: 

• Mobile devices are typically small, so it’s not always possible to include the same content and features that 
were found in the desktop version. Users may therefore be looking for something quite specific from the 
original app and it’s important to provide them a means of accessing it. 



• Despite your best efforts, the mobile optimized version may not be suitable for a user’s device. It’s unlikely 
the (typically far heavier and more complex) desktop app will perform any better, but as mobile devices 
vary greatly in their capabilities, access to the desktop version may be useful to certain users. 

• Many explicitly mobile experiences are accessed using a subdomain or different URL (e.g. m.domain.com, 
domain.com/mobile). Users on blogs or social networks may share this URL and it’s therefore possible 
users will reach your mobile site accidentally after clicking such a link. Successfully detecting and 
rerouting these users may not always be possible, so it’s important to have this link in place. 

 

Note: Once this link has been implemented, it should be thoroughly tested on target browsers to ensure there is a 
clear and latency-free path from one app to the other. It’s not uncommon to discover sites that provide such a link, 
but don’t appropriately adjust their server-side detection. Users who click the link are therefore intercepted 
before they reach the desktop domain and redirected back to the mobile experience they just came from. 

As we tested this “Switch to desktop site” pathway on Mileage Stats Mobile, we quickly realized that our desktop 
web app was in fact nearly unusable on many mobile devices. The desktop web app made extensive use of 
transitions during navigation, and relied heavily on desktop-optimized JavaScript libraries that were unsuitable 
for more resource-constrained environments. We therefore decided to implement an interim page warning users 
that the desktop app would—in most cases—be useless to them, and providing them with an opportunity to turn 
back before incurring the heavy download. 



 

The Switch to desktop site link, shown outlined in red 

Summary 

Building for highly-constrained devices such as smartphones and tablets forces us to deal with many usability 
concerns. However, even devices without heavy constraints benefit from these improvements. When dealing with 
large datasets, keep in mind how these will affect a user. It’s best to use pagination when possible. In cases where 
your mobile site is distinct from your desktop site, it’s a good idea to provide users with a back door to the 
desktop version in case functionality is missing from the mobile one. 



Detecting devices and their features 

The number of mobile web browsers in use today is surprisingly large. In addition, there is a lot of variation in the 
characteristics of these devices (such as screen size and pixel density) as well as in the browsers’ support for web 
standards. Historically, these variations have been so divergent that it was common for web apps to have two 
completely different sets of pages. That is, one set of markup for mobile devices and another for desktop browsers. 

However, new types of devices such as tablets and televisions are being used to browse the web, and creating a 
separate set of pages for each of these types is simply not feasible. The distinctions between these devices are 
blurring. It is becoming increasingly difficult to make assumptions about device and browser capabilities based 
upon these historical classifications. 

We’ve already mentioned that the safest choice when developing for the web is to keep things simple. However, 
users’ expectations are always increasing. One solution to building the simplest app is progressive enhancement. 
Progressive enhancement means that you first build your app to support the set of features that represents the 
lowest common denominator. In the case of the mobile web, this will likely mean simple HTML and CSS and very 
little JavaScript. First, ensure that the essential functionality of the app is available on highly constrained devices, 
then begin detecting specific features and enhancing the user experience when those features are present. 

The concept of identifying mobile devices as the lowest common denominator has become known as mobile first. 

The legacy experience of Mileage Stats targeted desktop browsers. Since our goal was to extend the app to provide 
a mobile experience, we decided early in the project to group devices into two classes: desktop and mobile. We 
further subdivided the mobile experience into the Works and Wow experiences mentioned in Mobilizing the 
Mileage Stats application. 

 

 

 

http://en.wikipedia.org/wiki/Progressive_enhancement
http://www.lukew.com/ff/entry.asp?933


Detecting features on the server 

Identifying and grouping devices into classes 

Every browser identifies itself by providing a user-agent string whenever it makes a request to a web server. This 
user-agent string not only identifies the browser’s vendor and version number, but frequently includes 
information such as the host operating system or some identifier for the device it’s running on. 

It is generally a bad practice to provide unique responses for specific user-agent strings for a number of reasons. 

User-agent strings may vary slightly even for the same browser on devices that are seemingly identical. The 
number of variations can quickly become overwhelming. 

Likewise, there is no guaranteed way to predict the user-agent strings of future browsers. Historically this has 
caused problems. At one time, it was a common practice for many sites to deliver the latest markup only to 
browsers that identified certain vendors in their user-agent strings. Other vendors received down-level markup 
even if they supported the latest features. We still see vestiges of this practice in modern user-agent strings; for 
example, the inclusion of “Mozilla/5.0” in the user-agent string for Internet Explorer 9. For more information on 
user-agent strings, see Understanding User-Agent Strings. 

Despite these problems, user-agent strings are still necessary in many scenarios. 

There are third-party databases available that can provide detailed information about a browser based on its 
user-agent string. These solutions are not generally free for commercial use though, and they all require the use of 
a custom programming interface for making queries. Nevertheless, these databases allow developers to make 
choices about what assets to send to a browser based on capabilities. Furthermore, browsers can be sorted into 
classifications based upon their capabilities. 

 

 

http://msdn.microsoft.com/en-us/library/ms537503(v=VS.85).aspx


Built-in feature detection in ASP.NET 

Out of the box, ASP.NET will examine an incoming request and provide you with information on the capabilities of 
the browser making the request. The capabilities are exposed on the HttpRequest object as the property Browser 
with a type of HttpBrowserCapabilities. Internally, ASP.NET uses an instance of HttpCapabilitiesDefaultProvider to 
populate this property. 

However, you can create your own provider by inheriting from HttpCapabilitiesProvider. In Mileage Stats, we did 
just that and created MobileCapabilitiesProvider. Our custom provider inherits from the default provider. Then 
you can tell ASP.NET to use your custom provider instead of the default. 

Global.asax.cs 

 

protected void Application_Start() 

{ 

   AreaRegistration.RegisterAllAreas(); 

 

   RegisterGlobalFilters(GlobalFilters.Filters); 

   RegisterRoutes(RouteTable.Routes); 

 

 

   InitializeDependencyInjectionContainer(); 

 

 

   // Injects the custom BrowserCapabilitiesProvider 

   // into the ASP.NET pipeline. 

   HttpCapabilitiesBase.BrowserCapabilitiesProvider = 

       container.Resolve<MobileCapabilitiesProvider>();   // Some code omitted for clarity 

} 

http://msdn.microsoft.com/en-us/library/h55b6cak.aspx
http://msdn.microsoft.com/en-us/library/system.web.httprequest.browser.aspx
http://msdn.microsoft.com/en-us/library/system.web.httpbrowsercapabilities.aspx
http://msdn.microsoft.com/en-us/library/dd322114.aspx
http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcapabilitiesprovider.aspx


Click here to view code as image 

In the snippet above, we resolve our custom provider from the container and tell ASP.NET to use it instead of the 
default, by assigning it to HttpCapabilitiesBase.BrowserCapabilitiesProvider. 

At its core, the HttpBrowserCapabilities object is really just a dictionary, though it has many strongly typed 
properties available for convenience. These properties perform an internal lookup and then convert the raw value 
to the appropriate type. For most properties, the raw value is a string representing a Boolean value such as True 
or False. 

We can set values in the dictionary directly using the indexer and the strongly typed properties will return the 
corresponding values. 

When creating a custom provider, the only method that needs to be overridden when inheriting from 
HttpCapabilitiesProvider is GetBrowserCapabilities. 

HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request); 

Click here to view code as image 

In our implementation, we’ll first get the values from the default provider and then supplement that with data 
from multiple sources. 

Extending ASP.NET with a third-party database 

There are a number of third-party databases and services that can be used to determine a browser’s capabilities 
from a user-agent string. 51Degrees, DeviceAtlas, and WURFL are a few examples. At the time of this writing, both 
51Degrees and WURLF provide NuGet packages. 

We chose not to implement a specific third-party product in Mileage Stats. Instead, we created a placeholder 
function named DetermineCapsBy3rdPartyDatabase that simulates providing results from a database. 

http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcapabilitiesprovider.aspx
http://51degrees.mobi/
http://deviceatlas.com/
http://scientiamobile.com/


In the snippet below, we first get the base capabilities by invoking the method on the super class. We then call 
GetAdditionalCapabilities and merge the results into a single dictionary. Finally, we return an instance of 
HttpBrowserCapabilities. 

MobileCapabilitiesProvider.cs 

 

public override HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request) 

{ 

   var httpContext = request.RequestContext.HttpContext; 

   var browser = base.GetBrowserCapabilities(request); 

 

   SetDefaults(browser); 

 

   browser.Capabilities.Merge(GetAdditionalCapabilities(httpContext)); 

 

   return browser; 

} 

 

public virtual IDictionary GetAdditionalCapabilities(HttpContextBase context) 

{ 

   var capabilities = new Dictionary<string, string>(); 

 

   if (BrowserOverrideStores.Current.GetOverriddenUserAgent(context) != null) return capabilities; 

 

   capabilities.Merge(DetermineCapsBy3rdPartyDatabase(context)); 

   capabilities.Merge(DetermineCapsByProfilingClient(context.Request, _encoder)); 

 



   return capabilities; 

} 

Click here to view code as image 

Detecting features on the client 

Detecting browser capabilities with JavaScript 

New devices and new browsers appear on the market every day. It becomes difficult to keep the existing server-
side databases up to date and, as a consequence, it is possible to encounter a device or browser not yet available in 
any of them. This is one reason why you might not want to rely entirely on the server-side detection of features. 

Another technique is to detect the browser’s capabilities using JavaScript code. Modernizr is a popular library that 
facilitates this approach. 

In addition, the JavaScript code can also store the detected capabilities in a cookie and pass those back to the 
server in subsequent requests. This of course will only work for devices with JavaScript and cookie support. 

The server can then use that information to extend or complement the information found in the database to 
classify the device in a specific class. Mileage Stats employs this approach to confirm features such as screen size. 

When the browser requests the first page, the server also includes a reference to a JavaScript file for detecting 
capabilities. The JavaScript file is generated based upon a manifest located in the MileageStats.Web project at 
\ClientProfile\Generic.xml. This manifest is an XML file that maps a device capability to a fragment of JavaScript 
code. The following XML fragment shows how two capabilities are mapped in the manifest file to JavaScript code. 

XML 

<profile title="Generic" id="generic" version="1.1"> 

 <feature id="width" default="800"> 

   <name>Screen Width</name> 

   <description>From window.innerWidth if available, otherwise from screen.width.</description> 

http://modernizr.com/


   <test type="text/javascript"> 

    <![CDATA[ return (window.innerWidth>0)?     window.innerWidth:screen.width; 

]]> 

    </test> 

   </feature> 

</profile> 

Click here to view code as image 

The ProfileScript action on the MobileProfileController reads the manifest and generates the fully realized 
JavaScript. In addition, the manifest contains a version number which is associated with the cookie. If the manifest 
is updated and the version changes, the server will take care of renewing the cookie as well to reflect those 
changes. 

The generated JavaScript sets a cookie containing the results of the tests defined in the manifest. On subsequent 
requests, the MobileCapabilitiesProvider collects these results using ProfileCookieEncoder. The results are then 
merged with the other device capabilities that have already been collected. 

MobileCapabilitiesProvider.cs 

public static readonly Func<HttpRequestBase, IProfileCookieEncoder, IDictionary<string, string>> 

DetermineCapsByProfilingClient = 

   (request, encoder) => 

   { 

     // The profile cookie is parsed for getting the device 

     // capabilities inferred on the client side. 

     var profileCookie = request.Cookies["profile"]; 

 

     return (profileCookie != null) 

              ? encoder.GetDeviceCapabilities(profileCookie) 



              : new Dictionary<string, string>(); 

   }; 

Click here to view code as image 

Providing content for the different identified classes 

Once all the device capabilities from different sources are combined, the server is in good shape to determine and 
categorize the device into a specific class. The three classes that Mileage Stats is concerned with correspond to the 
experiences we’ve outlined: Legacy, Works, and Wow. 

The Legacy experience is the original set of assets developed for Project Silk. For the Works experience, the server 
will simply send basic HTML markup with no JavaScript. All the implementation will rely on HTTP full postbacks. 

For the Wow experience, a more robust single page application (SPA) implementation with JavaScript will be 
provided. See Delivering the SPA enhancements for details. 

A device can be associated with the Wow class if the following capabilities are present: 

• JSON 

• XmlHttpRequest 

• HashChangeEvent 

 

HttpBrowserCapabilitiesExtensions.cs 

public static bool IsWow(this HttpBrowserCapabilitiesBase httpBrowser) 

{ 

   // We should also check for supporting DOM manipulation; however, 

   // we currently don't have a source for that particular capability. 

   // If you use a third-party database for feature detection, then 

   // you should consider adding a test for this. 



   return httpBrowser.IsMobileDevice && 

            httpBrowser.SupportsJSON() && 

            httpBrowser.SupportsXmlHttp && 

            httpBrowser.SupportsHashChangeEvent(); 

} 

Click here to view code as image 

If any of these capabilities cannot be found on the device, it is automatically associated with the Works experience. 

 

Determining which experience to deliver 

Organizing ASP.NET MVC views for desktop and mobile experiences 

Mileage Stats needs to deliver a different set of assets for the different experiences, so we wanted to generate 
markup that would be optimized for each experience. We took advantage of a new feature in ASP.NET MVC 4 
called Display Modes. MVC 4 will automatically look for a mobile-specific view if the IsMobileDevice property 
returns “true.” The mobile-specific views are designated with the file suffix .Mobile.cshtml. For example, two 
different views can be provided for the dashboard page: Index.cshtml for the desktop experience and 
Index.Mobile.cshtml for the mobile experience. 



If you are using ASP.NET MVC 3, you can easily simulate this feature using the NuGet package, Mobile View 
Engines. 

Writing ASP.NET views for the mobile experience 

In a few rare cases, such as the _Layout.Mobile.cshtml, the view will contain some conditional code for checking 
the device capabilities using the current HttpBrowserCapabilities instance available in the view context. 

For example, at the beginning of the layout we check to see if the SPA should be enabled. 

_Layout.Mobile.cshtml 

<!DOCTYPE HTML> 

@{ 

   var shouldEnableSpa = (Request.Browser.IsWow() && User.Identity.IsAuthenticated); 

   var initialMainCssClass = shouldEnableSpa ? "swapping" : string.Empty; 

} 

Click here to view code as image 

Then inside the body, we conditionally render the client-side templates used by the SPA. 

<body> 

     @if (shouldEnableSpa) 

     { 

       Html.RenderPartial("_spaTemplates"); 

     } 

Click here to view code as image 

In general, we recommend that you avoid having logic in your views. It can be difficult to discover and even more 
difficult to test. Instead, logic in views should be moved into view models or controller actions. 

http://nuget.org/packages/MobileViewEngines
http://nuget.org/packages/MobileViewEngines


False positives and caveats 

No matter what approach you take, be it server-side or client-side detection of features, you will very likely 
encounter false positives. That is, some tests for browser capabilities will report that a capability is present even 
when it is not. For example, during the development of Mileage Stats we discovered some devices that reported 
support for geolocation; however, these devices failed to return any data. Our tests indicated that the problem was 
with the device and was not a problem with Mileage Stats itself. 

We also encountered a situation in which certain tablets would provide a user-agent string that was easy to 
misinterpret as a desktop browser, though this only occurred when certain settings where enabled on the tablet. 

The unavoidable truth is that you cannot accurately detect features for all devices. There will always be 
exceptions. 

Summary 

In general, your app should not attempt to deliver a specific experience to a specific device. Instead, it should 
respond to the presence of relevant features in a browser. Even though feature detection is typically associated 
with the client, the technique can be very useful on the server as well. In ASP.NET, there exists an API to facilitate 
this detection technique and there are also several ways to extend what is available out of the box. 



Delivering the SPA enhancements 

Single page applications, also referred to as SPAs, are ideally suited to handle many of the constraints of mobile 
browsers. A single page application behaves more like a traditional desktop app, treating the browser like a 
runtime environment. Instead of requesting a full page from the server on every interaction, it will generally load 
all of its assets up front and minimize further communication with the server. There are a number of ways to 
implement a SPA, and Mileage Stats illustrates just one of them. For more information on the pattern in general 
see http://en.wikipedia.org/wiki/Single_page_application. 

Defining the single page application (SPA) requirements 

As discussed in Mobilizing the Mileage Stats Application, the default (or lowest common denominator) web app 
experience is essentially a traditional, http-request based web page experience. User actions such as clicking a link 
or submitting a form cause a full-page refresh, and are not dependent on client-side scripting to request content or 
deliver additional functionality In Mileage Stats, we referred to this experience as Works, implying that it will 
work on nearly any browser. 

In contrast, we referred to the SPA for Mileage Stats as the Wow experience. The Wow experience is designed to 
enhance the Works experience in accordance with each browser’s capabilities. The Wow technology requirements 
therefore begin with the same list of features required for the Works experience. 

• Strong HTML 4.01 support to define app and components structure. 

• Basic CSS 2.n support to provide styling and enhance information design. 

• Strong HTML form support to enable data input (this will typically go hand in hand with good HTML 
support) 

 

 

http://en.wikipedia.org/wiki/Single_page_application


These are augmented with an additional series of requirements, which will be used to implement the enhanced, 
SPA experience: 

• Support for XHR and JSON 

• Support for the hashchange event 

 

The hashchange event is fired when the hash portion of the URL changes. The hash is more formally referred to 
the fragment identifier. The hash portion of a URL is part that comes after a # character. This portion is not sent to 
the server and does not cause the browser to load a page. 

See Detecting Devices and their Features for more information about the process we used to detect these browser 
capabilities. 

Frameworks 

There are many tools you can use when building mobile web experiences. And, as always, there are advantages 
and disadvantages to each of the tools. Frameworks and libraries such as jQuery Mobile and Sencha Touch cater 
specifically to building web apps for mobile devices. We took a different approach, but it’s important to 
understand the advantages and disadvantages of the various options. You should carefully consider the benefits 
these sorts of frameworks and libraries can potentially bring to your project. 

Pros 

• Frameworks are typically designed to get you started quickly. It’s therefore often possible to get something 
running in a short amount of time. 

• Many mobile frameworks are subsets of a popular desktop framework. The ramp-up time may therefore 
be relatively quick, and you may be able to use existing skills and workflows. Due to the desktop 
component, these frameworks may also simplify your initial development and testing using desktop tools. 

http://en.wikipedia.org/wiki/Fragment_identifier


• Many frameworks have large development communities that can provide support and code samples. 

• Many frameworks offer components or patterns that have been specifically designed for modern 
smartphones. Frameworks may be particularly useful if you plan to target these devices exclusively. 

 

Cons 

• Many libraries and frameworks may not yet have been extensively tested on mobile browsers or devices. 
Others may focus exclusively on only the newest and most modern versions of these devices. This may 
limit your ability to adapt the code to expand this level of support. 

• Each framework or library you use becomes yet another aspect of your implementation that you’ll need to 
test, debug, and maintain across all your chosen devices. The amount of support required may also not 
become apparent until well into development, or until you begin to combine frameworks and have the 
opportunity to test them in a real device environment. 

• Some frameworks are exclusively for mobile devices. They do not support a “mobile first” approach where 
one web site adapts to all possible clients. 

 

Choosing a library or framework 

Choosing a library or framework before you understand the basic needs of your app can lead to difficulties if the 
selection turns out to be a poor match. Read the documentation, look at the code, and ask questions from the 
community on sites such as StackOverflow and Twitter. In addition, consider using the candidate libraries to 
prototype the essential portions of your app. 

Look for libraries that have been extensively tested on the devices you need to support (and not just the most 
popular devices, or latest versions of a platform). Before you decide which to use, write tests for the specific 
functionality you plan to use, and test these on your target browsers and device hardware. 



Remember as well that mobile devices have much slower CPUs and significantly less RAM than their desktop 
counterparts. You may therefore not be able to use a library in the same way as you would have on the desktop. 
Just because the library supports an animation, effect, or transition, doesn’t mean it will make sense to use it in a 
production environment. This is particularly true of animations and transitions performed using JavaScript (as 
opposed to those using CSS). 

In summary, consider the following when selecting a library or framework: 

• Does it satisfy the technical requirements of your app? 

• Does it fit well with your coding style? 

• How long has it been around? Is the community active and helpful? 

• Is the licensing compatible with your app? 

 

Actual usage in Mileage Stats 

During the Mileage Stats project we explored the use of many frameworks and libraries, eventually settling on the 
following: 

• jQuery: We chose jQuery because of its popularity, maturity, and high level of distribution. During our 
testing, the jQuery features we used worked as expected on all the devices. (With the exception of setting 
the Accept header during an XHR request as mentioned below, but that was not jQuery specific.) 
Nevertheless, we had some hesitation in choosing jQuery due to the fact that we only use a portion of 
jQuery’s functionality and due to its non-trivial size (32KB, which minified and gzipped over a 2G 
connection might take 12 or more seconds to download). 

• Mustache: We chose Mustache to handle templating on the client side. Mustache is a very lightweight 
library, describing itself as “logic-less templates.” It is small, has no additional dependencies, and could 
easily be combined and minified with all of our custom JavaScript. 



 

Issues, gotchas and things we learned 

One of the challenges when working in this space is the diversity and variations in browsers, especially in places 
where specifications are unclear. With this in mind, we strongly recommend that you test early and test often. 
Ensure you get something running on a device as soon as possible, in order to evaluate whether or not it behaves 
as expected. This is particularity important, as feature detection is often not binary. That means that just because 
something says it’s supported doesn’t mean it will work as it does on other devices. 

As an example, we encountered a problem on certain devices (ones that had passed the feature tests for XHR), that 
did not include any custom HTTP headers such as Accept when making an XHR request. This problem was 
discovered late in the project and caused us to redesign the way we handled content negotiation. 

In another case, we tested on a physical device that passed the check for the GeoLocation API, but never returned 
a value when we invoked the API. We discovered later that this problem only occurred when there was no SIM 
card in the device. 

Building the single page application 

The purpose of implementing a single page interface is primarily to improve the responsiveness of the app. This 
ultimately leads to a better user experience. Improved responsiveness is generally achieved by making fewer 
network requests and by having smaller payloads for the requests that are made. 

In the case of Mileage Stats, our plan for implementing the SPA experience can be summarized as follows: 

On the initial request, after a user has authenticated, the entire HTML, CSS, and JavaScript necessary to run the app 
would be downloaded at one time. Subsequent requests would only be for data. In addition, we would cache data 
in memory to reduce the number of requests. Navigation in the SPA would make use of the hashchange event and 
reflect the corresponding URL as much as possible. Likewise, we would employ a model view controller (MVC)-
like pattern on the client side that would map the hash to a corresponding controller. These controllers would 

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html


employ client-side templating to produce HTML fragments and update the document object model (DOM). In 
addition, these controllers would retrieve any necessary data from the cache or using XHR. 

An alternative to this approach is to just load a minimal set of assets initially in order to make the startup time as 
short as possible. The choice is primarily driven by the desired user experience. In this scenario, the remaining 
assets are either loaded in the background immediately after startup or loaded just in time as they are needed. In 
the case of Mileage Stats, we felt this added complexity without a significant improvement in the user experience. 

Note: Single page applications have become very popular. As a consequence, there are many JavaScript 
frameworks and libraries that are specifically intended to support this pattern. In general, they are often referred 
to as “JavaScript MVC” and searching the web for this term yields dozens of potential frameworks. Even so, the 
label “MVC” can be somewhat misleading, as many of these frameworks are not strictly concerned with 
implementing the pattern exactly. Some popular frameworks at the time of writing are: 

* Backbone.js 

* Batman.js 

* Ember.js 

* Knockout.js 

* SproutCore 

* Sammy.js 

Some attempt to provide an end-to-end solution, while others focus on solving specific problems. Some can even 
be used in tandem. 

The architecture of Mileage Stats SPA 

The Mileage Stats app is built on the idea of progressive enhancement. This means that if we detect the minimum 
set of features necessary for enabling the SPA experience, we send additional markup to the client browser. 
Specifically, we render all of the necessary client-side templates and we include all of the necessary JavaScript. 



Our custom JavaScript is partitioned in modules, where each module is a property on the global object mstats. 
Some modules are part of a general framework and other modules are specific to certain views in the app. The file 
app.js is the entry point for our client-side logic. It is responsible for configuring and bootstrapping the modules. 
We’ll refer to modules by their file name, but with the .js extension omitted. 

The router module is responsible for listening to changes in the hash. The hash is the portion of the URL beginning 
with the character # until the end of the URL. The hash is never sent back to the server. When a change in the hash 
occurs, the router looks for a matching route and then delegates to the transition module. 

Those of you following the HTML5 specification may ask why we choose to use the hashchange event instead of 
the newer (and better) pushstate. Our reason was simply that some of our targeted devices did not support 
pushstate, whereas they all supported hashchange. There are libraries such as history.js that will attempt to use 
pushstate and fall back to hashchange only as necessary. However, we wanted to avoid taking another external 
dependency. In general though, using pushstate is preferred over using hashchange because it allows URLs to be 
consistent between SPAs and their more traditional counterparts. 

The transition module coordinates the retrieval of any necessary data, the application of the client template, the 
invocation of custom logic related to the new view, and finally updating the DOM. This coordination is governed by 
configuration registered for a route in app.js. 

The ajax module is the gateway for all communication with the server. Internally, it makes use of jQuery’s Ajax 
helper. It also handles caching of data. 

This code also makes heavy use of convention over configuration. For example, it is assumed that a hash of 
#/vehicle/1/details should request JSON from /vehicle/1/details. Likewise, it assumed that the client-side template 
to be used is named vehicle_details. 

Deeper in the SPA 

Let’s dive deeper into how the SPA was implemented. 

 

http://msdn.microsoft.com/en-us/library/cc288209(VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465800.aspx
https://github.com/balupton/History.js/
http://en.wikipedia.org/wiki/Convention_over_configuration


Altering the markup for SPA 

We begin by detecting whether the minimum set of features necessary for enabling the SPA experience are 
present. This occurs at the beginning of the layout for mobile browsers. (See Detecting Devices and their Features 
for more information on how the extension method IsWow is implemented.) 

_Layout.Mobile.cshtml 

<!DOCTYPE HTML> 

@{ 

   var shouldEnableSpa = (Request.Browser.IsWow() && User.Identity.IsAuthenticated); 

   var initialMainCssClass = shouldEnableSpa ? "swapping" : string.Empty; 

} 

… 

Click here to view code as image 

If shouldEnableSpa is set to true, then we make two changes to what is sent to the browser. 

First, we render all of the client-side templates. 

_Layout.Mobile.cshtml 

… 

<body> 

   @if (shouldEnableSpa) 

   { 

      Html.RenderPartial("_spaTemplates"); 

   } 

… 

Click here to view code as image 



All of the client side templates are referenced in a partial view in order to make the source of 
_Layout.Mobile.cshstml easier to read. 

Second, we emit the necessary JavaScript to support the SPA. 

_Layout.Mobile.cshtml 

… 

<script type="text/javascript" src="@Url.Action("ProfileScript", 

"MobileProfile")"></script> 

@if (shouldEnableSpa) 

{ 

 

    <script type="text/javascript"> 

       // allowing the server to set the root URL for the site, 

       // which is used by the client code for server requests. 

       (function (mstats) {        

          mstats.rootUrl = '@Url.Content("~")'; 

       } (this.mstats = this.mstats || {})); 

    </script> 

    <script src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.1.min.js"></script> 

    <script 

src="//ajax.aspnetcdn.com/ajax/jquery.validate/1.9/jquery.validate.min.js"></script> 

    <script 

src="//ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.js"></script> 

    <script src="//ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.unobtrusive-ajax.min.js"></script> 

    <script src="~/Scripts/mustache.js"></script> 

 

      if (HttpContext.Current.IsDebuggingEnabled) 

{ 



          <script src="~/Scripts/mobile-debug/ajax.js"></script> 

          <script src="~/Scripts/mobile-debug/app.js"></script> 

          <script src="~/Scripts/mobile-debug/charts.js"></script> 

          <script src="~/Scripts/mobile-debug/dashboard.js"></script> 

          <script src="~/Scripts/mobile-debug/expander.js"></script> 

          <script src="~/Scripts/mobile-debug/formSubmitter.js"></script> 

          <script src="~/Scripts/mobile-debug/fillup-add.js"></script> 

          <script src="~/Scripts/mobile-debug/reminder-add.js"></script> 

          <script src="~/Scripts/mobile-debug/reminder-fulfill.js"></script> 

          <script src="~/Scripts/mobile-debug/router.js"></script> 

          <script src="~/Scripts/mobile-debug/transition.js"></script> 

          <script src="~/Scripts/mobile-debug/vehicle.js"></script> 

          <script src="~/Scripts/mobile-debug/notifications.js"></script> 

      } else { 

          <script src="~/Scripts/MileageStats.Mobile.min.js"></script> 

      } 

} 

… 

Click here to view code as image 

Note that we always emit the profiling script regardless of the value of shouldEnableSpa. This is the script 
mentioned in Detecting Devices and their Features used to detect features. 

We also set a variable, mstats.rootUrl, which contains the root URL of the site. This variable is used to distinguish 
which parts of the URL are relevant to our routing logic. We’ll discuss it more later. 

Next we reference the various scripts such as jQuery that are available on content delivery networks. The scheme 
is intentionally omitted for these URLs. This allows the browser to reuse whatever scheme the page itself was 
requested with. A number of popular scripts are available on the Microsoft Ajax Content Delivery Network. 

http://en.wikipedia.org/wiki/Content_delivery_network
http://www.asp.net/ajaxlibrary/cdn.ashx


Finally, we emit references to our custom JavaScript. If we are running with a debugger attached, then we load the 
individual files. Otherwise, we reference the minified version that is generated at compile time. 

Bootstrapping the JavaScript 

The entry point for the JavaScript is app.js. Here we register the “routes,” in other words, the hash values that will 
be used for navigation. The app.js file is responsible for bootstrapping the client-side portion of the app. 

In addition, app.js defines a function, require, that is responsible for resolving dependencies. The require function 
is passed into each module when it is initialized and provides a means for modules to declare external 
dependencies. This approached is inspired by NodeJS and CommonJS, but is very simple in its implementation and 
not meant to imply compatibility with any other module loading systems or specifications. 

app.js 

… 

function require(service) { 

   if (service in global) return global[service]; 

 

   if (service in app) { 

       if (typeof app[service] === 'function') { 

           app[service] = app[service](require); 

       } 

       return app[service]; 

   } 

 

   throw new Error('unable to locate ' + service); 

} 

… 

http://nodejs.org/
http://wiki.commonjs.org/wiki/Modules


Click here to view code as image 

Note that this implementation does not check for circular dependencies. 

After the DOM is loaded, app.js uses require to initialize all of the modules. 

app.js 

… 

var registration, 

   module; 

 

for (registration in app) { 

 

     module = app[registration]; 

   if (typeof module === 'function') { 

       app[registration] = module(require); 

   } 

} 

… 

Click here to view code as image 

In this context, the variable app points to the global object mstats. It is the responsibility of each module to 
register itself with mstats before the DOM is loaded. Again, our implementation is very simple. We iterate over the 
properties of app (that is, of mstats), and if the property is a function, then we invoke it passing in the require 
function. The property is then overwritten with the result of the function. 

The assumption here is that each module sets a property on mstats to a function that will create an instance of the 
module. If the property happens to be an object already, we simply leave it alone. 

After all of the modules have been initialized, app.js begins the configuration of the router module. 



app.js 

… 

app.router.setDefaultRegion('#main'); 

var register = app.router.register; 

… 

Click here to view code as image 

The router module is now accessible to us as app.router. The router expects there to be a single element in the 
DOM that will act as a container for all of the views. We refer to this element as the default region and we set it 
using the CSS selector “#main”. This means that our markup must contain an element with an id of “main”. 

_Layout.Mobile.cshtml 

… 

<div id="main" class="@initialMainCssClass"> 

     @RenderBody() 

</div> 

… 

Click here to view code as image 

We also create a convenience variable for referencing the register function. 

The following snippet contains three different route registrations: 

app.js 

… 

register('/Vehicle/:vehicleId/Details'); 

register('/Dashboard/Index', app.dashboard); 

register('/Vehicle/:vehicleId/Fillup/List', { postrender: function (res, view) { app.expander.attach(view); 



} }); 

… 

Click here to view code as image 

Let’s examine these one at a time, beginning with: 

register('/Vehicle/:vehicleId/Details'); 

Click here to view code as image 

This registration has only the route. Internally, the router will convert this string into a regular expression for 
matching the hash value. Notice that we identify the parameter of vehicleId by prefixing it with a colon. It will also 
extract the actual value of vehicleId from any matching route and make it available for binding to the template. 

Since we don’t pass a second argument, the router makes the following assumptions: 

It needs to fetch data to bind to a template. 

The data should be requested from /Vehicle/vehicleId/Details (where vehicleId matches the actual vehicle id 
found in the hash). 

Once the data is retrieved, it should be bound to a template with an id of “vehicle_details”. 

This is an example of convention over configuration. The app makes assumptions based on these conventions as 
opposed to requiring explicit configuration for each route. 

register(’/Dashboard/Index’, app.dashboard); 

Click here to view code as image 

The second registration takes a route and an object. In this case, it takes an instance of the dashboard module. The 
second parameter can have the following properties, all are optional: 

fetch – (true or false) Should it request data before navigating to the view? Defaults to true. 

route – (a URL) The URL to use to request data. Defaults to the first argument. 



prerender – (function) Custom logic to be executed before the data is bound to the view. The function receives an 
instance of the model. By model, we mean the JavaScript Object Notation (JSON) representation of the data 
received from the server. 

postrender – (function) Custom logic to be executed after the template has been rendered and the DOM has been 
updated. This function receives the model, the jQuery-wrapped element that was added to the DOM, and metadata 
about the selected route. 

region – (css selector) Identifies the container whose content will be replaced when transitioning to the new 
view. 

Let’s examine the dashboard module: 

dashboard.js 

(function (mstats) { 

   mstats.dashboard = function (require) { 

 

     var expander = require(’expander’); 

 

     function highlightImminentReminders(res, view) { 

         // omitted for brevity 

    } 

 

    return { 

         postrender: function (res, view) { 

             highlightImminentReminders(res, view); 

             expander.attach(view); 

         } 

     }; 



   }; 

} (this.mstats = this.mstats || {})); 

Click here to view code as image 

When dashboard is initialized, it returns an object with a single property called postrender. This function is 
invoked whenever the user navigates to the dashboard, generally, by clicking Dashboard on the main menu. First, 
it executes a helper function that cycles through the reminders highlighting corresponding elements in the view. 
Second, it invokes the expander module and attaches it to the view. The expander module finds any collapsible 
lists on the view and wires up the necessary logic for expanding and collapsing the lists. Notice also that we use 
the require function to retrieve the instance of the expander module. 

register(’/Vehicle/:vehicleId/Fillup/List’, { postrender: function (res, view) 

{ app.expander.attach(view); } }); 

Click here to view code as image 

This registration takes an object literal as the second argument instead of a module. In the case of this route, it felt 
like overkill to create an entire module to expose such a simple function. Instead, we chose to simply provide the 
function inline. The router doesn’t know the difference; as far as JavaScript is concerned they are all just objects. In 
this case, we simply wanted to attach the expander module to view after rendering. 

There were a few enhancements that we considered but did not have time to explore. We considered generating 
the route registrations on the server, using the routing data for ASP.NET MVC. Likewise, we thought about having 
the registration automatically associate modules to routes based on naming. This would have taken the 
convention over configuration even further. For example, if we had used this approach, we might have named the 
dashboard module “dashboard_index” and then we could have omitted it from the registration. 

After all of the routes have been configured, we start the app with 

app.js 



… 

app.router.initialize(); 

… 

Click here to view code as image 

Routing and transitioning 

When we initialize the router, it searches the entire DOM for any links that match registered routes. When it finds 
a link, it modifies the href to use the SPA version of the URL. 

router.js 

… 

function overrideLinks() { 

 

   $('a[href]', document).each(function (i, a) { 

     var anchor = $(a); 

     var match; 

     var href = anchor.attr('href').replace(rootUrl, '/'); 

    if (href.indexOf('#') === -1 && (match = matchRoute(href))) { 

        anchor.attr('href', rootUrl + '#' + match.url); 

     } 

   }); 

} 

… 

Click here to view code as image 

For example, if we assume the app is running at /MileageStats, then a URL such as 
/MileageStats/Vehicle/1/Details would be modified to /MileageStats /#/Vehicle/1/Details. 



 

The interaction of the modules for the SPA 

This means that instead of requesting a new page from the server whenever the user selects an anchor, the 
hashchange event will fire. When this event fires, the router finds a match and delegates to the transition module. 

router.js 

… 

window.onhashchange = function () { 

   var route = window.location.hash.replace('#', ''), 

     target = matchRoute(route); 

 

   if (target) { 

       transition.to(target, defaultRegion, namedParametersPattern, function () { 

          overrideLinks(); 

       }); 



   } 

   … 

}; 

… 

Click here to view code as image 

The transition module exports the function to. Inside the module however, the function is named transitionTo. 
This function is at the heart of the SPA. 

transition.js 

… 

// this function is exported as mstats.transition.to 

function transitionTo(target, defaultRegion, namedParametersPattern, callback) { 

   var registration = target.registration, 

     region = registration.region || defaultRegion, 

     host = $(region, document), 

     route = registration.route; 

 

   var template = getTemplateFor(route, namedParametersPattern); 

   var onSuccess = success(host, template, target, callback); 

 

   host.removeClass(cssClassForTransition).addClass(cssClassForTransition); 

 

   if (registration.fetch && !mstats.initialModel) { 

 

      ajax.request({ 

          dataType: 'json', 

          type: 'GET', 



          url: appendJsonFormat(makeRelativeToRoot(target.url)), 

          success: onSuccess, 

          cache: false, 

          error: error(host) 

      }); 

   } else { 

      var response = { 

          Model: app.initialModel 

      }; 

      app.initialModel = null; 

      onSuccess(response); 

   } 

} 

… 

Click here to view code as image 

Let’s examine how this function works. The variable region is a CSS selector for identifying the container that will 
host the view. We use jQuery to find the region and store it in host. Next, we use getTemplateFor to locate the 
DOM element that contains the corresponding template. All of the templates are stored in the DOM as script 
elements with a type of text/html. The type attribute prevents the script from being executed, and we can treat the 
content as simply text. 

Here’s an example of a client-side template being included. We’ll examine this more later. 

_spaTemplates.cshtml 

… 

<script id="dashboard-index" type="text/html"> 

   @{ Html.RenderAsMustacheTemplate("~/Views/Dashboard/Index.Mobile.cshtml"); } 



</script> 

… 

Click here to view code as image 

The function getTemplateFor derives the id of the script element from the route and then returns the contents of 
the script element as text. 

Next, we call another helper function, success, that returns a function itself. This allows us to create a closure 
capturing the necessary state we’ll need after our Ajax request completes. For more information on closures in 
JavaScript see Use Cases for JavaScript Closures. 

We remove the CSS class to trigger an animation. In this context, cssClassForTransition has a value of 
“swapping”. The CSS transition only works for browsers that support the transition property. We establish a rule 
saying “if the opacity property is changed, it should take 1 second to transition from its current value to the new 
value, interpolating any intermediate values along the way.” We define this rule on the host element and then add 
and remove the “swapping” class to trigger the animation. 

enhanced.css 

… 

#main { 

   -moz-transition: opacity 1s; 

   -webkit-transition: opacity 1s; 

   -o-transition: opacity 1s; 

   -ms-transition: opacity 1s; 

   transition: opacity 1s 

} 

 

.swapping { 

   opacity: 0.2 

http://msdn.microsoft.com/en-us/magazine/ff696765.aspx


} 

… 

Click here to view code as image 

Next, we check to see if the route has been configured to fetch data from the server. If so, we use the ajax module 
to request the data. If we don’t need to fetch the data, then we manually invoke the onSuccess function we created 
earlier. 

We also have a special condition checking for and using initialModel. This is an optimization that only applies for 
the very first view that was loaded. Rather than having the server load all of the initial assets and then 
immediately send a new request for the data of the first view, we simply include the data on the initial load and 
have the server look for it. 

Let’s examine the helper function, success. 

transition.js 

… 

function success(host, template, target, callback) { 

 

   var registration = target.registration; 

 

   return function (model, status, xhr) { 

 

     var view, el; 

 

     model.__route__ = target.params; 

 

     if (registration.prerender) { 

         model = registration.prerender(model); 



     } 

 

     view = templating.to_html(template, model); 

     host.empty(); 

     host.append(view); 

     el = host.children().last(); 

 

     if (registration.postrender) { 

         registration.postrender(model, el, target); 

     } 

 

     notifications.renderTo(host); 

 

 

     host.removeClass(cssClassForTransition); 

 

     if (callback) callback(model, el); 

   }; 

} 

… 

Click here to view code as image 

This function returns another function. However, it uses a closure to capture several important variables in order 
to have the appropriate state. 

The resulting function first copies over the parameters extracted from the route. It sets these to a well-known 
variable __route__. This name was chosen because it’s unlikely that it will collide with other properties on the 
response sent from the server. 



Next, we check for the presence of a prerender function and execute it if found. 

After that, we invoke the templating engine to produce a DOM element by binding the model to our template. In 
this context, the variable templating points to Mustache. We then replace the contents of the host element with 
the new view we’ve just created. 

Next, we check for the presence of a postrender function and execute it if found. 

After the view has been added to the DOM, we render any notifications. These are messages such as “vehicle 
successfully updated.” We also remove the CSS class, which triggers the reciprocal animation for the transition. 
Finally, we check for and invoke a callback. 

Client-Side templates 

Let’s turn our attention to the client-side templates for a moment. As we’ve mentioned, we decided to use 
Mustache for templating. Mustache templates are very simple. They are standard HTML with placeholders for 
values identified in the template using double curly braces. 

example of a Mustache template 

<p>{{person.name}}</p> 

Click here to view code as image 

We could combine this template with the JSON data: 

example JSON data 

{ person: { name: 'Antonio Bermejo' } } 

Click here to view code as image 

 

 

http://mustache.github.com/


The result would be the following markup: 

example of resulting markup 

<p>Antonio Bermejo</p> 

Click here to view code as image 

Additionally, Mustache has support for conditionals and loops. Both use the same syntax. 

example of Mustache section 

{{#has_items}} 

<ul> 

    {{#items} 

         <li>{{#name}}</li> 

    {{/items}} 

</ul> 

{{/has_ items }} 

Click here to view code as image 

The template above could be combined with: 

example JSON data 

{ 

   has_items: true, 

   items: [ 

    { name: 'ninja' }, 

   { name: 'pirate' } 

   ] 

} 



Click here to view code as image 

The result would be: 

example of resulting markup 

<ul> 

     <li>ninja</li> 

     <li>pirate</li> 

</ul> 

Click here to view code as image 

By this point, you may have noticed that Mustache templates differ significantly from Razor templates. This 
presented us with an interesting problem. We wanted the client-side templates to match the server-side templates 
exactly. In addition, we wanted to avoid having to maintain two sets of templates. That is, one set for the Works 
experience and another for the Wow experience. 

We decided to create a set of HTML helpers that would allow us to build a template with Razor and render either a 
Mustache template or simple markup. This allowed us to have one source template to maintain while providing us 
with both client-side and server-side templates. 

This was an experimental aspect of our project. The result worked well for us, but we had to create Mustache-
aware helpers to mirror many of the standard helpers. We only implemented the helpers that we needed. 

Below is a snippet from one of the templates. Notice that any value that would potentially be rendered as a 
placeholder in a Mustache template uses a custom helper. The custom helpers all begin with Mustache. 

ReminderForm.Mobile.cshtml 

… 

@{ 

    var today = DateTime.Now; 



} 

<ul> 

    <li> 

       @Html.LabelFor(model => model.Title) 

       @Html.ValidationMessageFor(model => model.Title) 

       @Mustache.TextBoxFor(model => model.Title, new { id = "ReminderTitle", maxlength = "50" }) 

    </li> 

    <li> 

       @Html.LabelFor(model => model.Remarks) 

       @Html.ValidationMessageFor(model => model.Remarks) 

       @Mustache.TextAreaFor(model => model.Remarks, new { wrap = "soft" }) 

    </li> 

    <li class="psuedo-date"> 

       <label for="DueDate">Date</label> 

       @Html.ValidationMessageFor(model = >model.DueDate) 

       @Html.DropDownListFor(model => model.DueDateMonth, SelectListFor.Month(i => 

today.Month == i)) 

       @Html.DropDownListFor(model => model.DueDateDay, SelectListFor.Date(i => 

today.Day == i)) 

       @Html.DropDownListFor(model => model.DueDateYear, SelectListFor.Year(i => today.Year == i)) 

    </li> 

    <li> 

       @Html.LabelFor(model => model.DueDistance) 

       @Html.ValidationMessageFor(model => model.DueDistance) 

       @Mustache.InputTypeFor(model => model.DueDistance) 

    </li> 

</ul> 

… 



Click here to view code as image 

This template can be rendered as the result of a controller action just as you would render any view. However, 
when we want to render this as a Mustache template we would need to use another helper, as demonstrated 
below: 

@{ Html.RenderAsMustacheTemplate(“~/Views/Reminder/ReminderForm.Mobile.cshtml”); } 

Click here to view code as image 

In the actual source for Mileage Stats, ReminderForm.Mobile.cshtml is only rendered using Html.Partial. However, 
this occurs in Add.Mobile.cshtml, which in turn is rendered with Html.RenderAsMustacheTemplate. The rendering 
context is passed on the partial so that the complete view renders as expected. 

It is worth mentioning that we had to be careful to handle the differences between Mustache and Razor with 
respect to iterating over enumerables. We had to introduce helpers that could emit the closing identifier required 
by Mustache for rendering lists. Consider this snippet from \Views\Reminder\List.Mobile.cshtml: 

List.Mobile.cshtml 

… 

@foreach (var item in Mustache.Loop(m => m)) 

{ 

<dl class="fillup widget"> 

      <dt><h2><a href="#">@Mustache.Value(item, m => m.StatusName)</a></h2></dt> 

      <dd> 

              <table> 

                    <-- omitted for brevity --> 

              </table> 

      </dd> 

</dl> 



} 

… 

Click here to view code as image 

In this snippet, the model’s type is List<ReminderListViewModel>. Our helper, Mustach.Loop, returns an 
instance of a custom class MileageStats.Web.Helpers.Mustache.DisposableEnumerable<T>. This class wraps 
any enumeration that we give and emits the necessary Mustache identifiers before and after the code block inside 
the foreach loop. It’s able to do this because it’s automatically disposed by the foreach statement. We emit the 
opening identifier in its constructor and the closing identifier when it’s disposed. 

One of the most beneficial side effects of using Razor to produce the Mustache templates is that it forced us to 
simplify our views. We found that there were lots of places where presentation logic (such as formatting values) 
had bled into the views. Since we didn’t want to implement this same logic in JavaScript, we moved it into the 
corresponding view models. In the end, this made the views easier to maintain without having a negative impact 
on the view models. Additionally, we were able to reuse the built-in ASP.NET MVC validation (driven by the 
DataAnnotation attributes). 

Summary 

Use of the Single Page Application pattern can produce fast and responsive apps. However, you should always be 
aware of which browsers your app needs to support and test extensively on actual devices to ensure that the 
features supporting you SPA work as expected. If you are considering a third-party framework or library to 
support your SPA, you should prototype the types of features you anticipate your app will need and test on actual 
devices. 

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx


Testing mobile web experiences 

One of the first challenges we faced was deciding on a comprehensive way to test Mileage Stats across its 
experiences and devices. There are a number of options in the area of testing, and each option comes with its own 
advantages and disadvantages. 

Mobile testing tools/options 

Testing a web app on the desktop is challenging enough, but doing so on mobile can easily become costly and 
overwhelming. The key to maximizing your test budget is having a good understanding of which browsers and 
devices are indispensable to your project, and which can be replaced by desktop tools and emulators. It’s also 
important to understand the benefits of each mobile testing option. 

There are three primary options when testing on mobile devices. 

• Testing and debugging on desktop browsers 

• Testing on emulators and simulators 

• Testing on hardware devices 

 

Testing on desktop browsers 

Desktop browsers can be extremely useful when developing mobile web sites and apps. Although they are no 
replacement for testing on actual devices, they do provide robust debugging options and can be used to simulate 
mobile screen sizes. 

Pros 

• Desktop browsers are free, familiar, and require no special hardware. Testing on desktop browsers can 
also be automated using tools such as Visual Studio 2011, or Selenium and Watir. 

http://seleniumhq.org/
http://watir.com/


• Modern desktop browsers can easily be resized to mimic an average smartphone screen (although several 
can only be resized down to approximately 480px. Due to the popularity of responsive design, there are 
also a growing number of tools and extensions to assist in triggering a specific screen size. It’s important to 
remember, however, that due to the width and position of scroll bars (and other browser chrome), resized 
desktop browser can only provide an approximation of the final mobile viewport size. 

• Most desktop browsers provide tools or extensions to swap the default user agent string. This is useful to 
trigger mobile-specific styling and business logic in cases where these are dependent on the presence of a 
specific user agent. 

• Desktop browsers can also be used in conjunction with developer tools or proxies such as Charles (on Mac) 
and Fiddler (on .NET) to monitor and debug network traffic and performance issues. 

 

Cons 

• Desktop browsers are almost always more powerful than a mobile equivalent. They are more frequently 
updated, so they include the latest HTML specifications and are also installed on devices with much faster 
processors. For these reasons, they will never accurately simulate the environment of a smaller, more 
constrained device. 

 

Testing on emulators and simulators 

Emulators and simulators are often free of charge, and so can prove a useful and economical addition to your test 
routine. It is important, however, to understand the differences between an emulator and a simulator. 

 

 

http://www.charlesproxy.com/
http://fiddler2.com/fiddler2/


Emulators 

An emulator is a piece of software “that translates compiled code from an original architecture to the platform 
where it is running” (see “Programming the Mobile Web.” O’Reilly, 2010). Emulator’s don’t simply simulate a 
device’s operating system; they provide a means to run a virtual version of it on your computer (often down to the 
specific version number). Emulators therefore provide a useful and accurate environment to test and debug your 
mobile app. 

Pros 

• Emulators reflect the true web browser (and operating system) environment, so are ideal for testing and 
debugging visual design, overall rendering, and the execution of simple client-side interactions. 

• Many emulators are provided free of charge by the OEM or platform manufacturer. 

 

Cons 

• Emulators cannot provide emulation of individual devices from a hardware and CPU point of view. They 
cannot reveal, for example, that animations will perform poorly due to limited CPU power, or that link 
buttons will not respond as expected due to poor screen touch sensitivity. 

• Likewise, emulators may not represent real-world conditions such as network latency, limited bandwidth, 
or determining the device’s location. 

• Emulators are typically bundled into an operating system SDK and they can take considerable time to 
install and learn to use correctly. They also require regular updates to ensure they always include the most 
up-to-date operating system versions. 



• Most emulators do not work with automation tools and so must be used manually. The user agent strings 
provided by emulators often differ from those of the actual devices. Logic that relies on specific user agent 
strings may not behave as expected on emulators. 

 

Simulators 

A simulator is a far less sophisticated tool that is only designed to provide a reasonable facsimile of the experience 
on a device. Simulators vary greatly in their ability to represent the true device environment. Some, such as the 
iOS simulator, provide an excellent facsimile of the overall environment, including simulation of the native iOS 
font. Others may simply simulate the screen size of popular devices. 

Pros 

• Most (but not all) simulators are provided free of charge by the OEM or platform manufacturer. 

 

Cons 

• Simulators cannot emulate the actual operating system, or web browser found on the device, so they 
cannot be relied on to test or debug front-end design or functionality (the excellent iOS simulator is an 
exception and provides an excellent browser simulator). 

• Similar to emulators, simulators will not reflect differences in device hardware, performance, CPU, fonts, 
color gamut, display density, network speed. 

 



Note: A comprehensive list of mobile simulators and emulators can be found on Maximiliano Firtman’s Mobile 
Web Programming site. Note that many of these are incorporated into an operating system’s SDK and are 
therefore not web specific. 

Testing on device hardware 

Testing on actual device hardware can be costly, but will always provide the most accurate results. 

Pros 

• Testing on actual devices provides access to real device capabilities and constraints. These include device 
CPU, physical size, manipulation options, screen size, dpi, screen quality, and overall device 
responsiveness. Testing on devices (using a network SIM card) will also enable you to determine the 
impact of network speed and latency. 

 

Cons 

• Testing on actual devices is expensive. Unless you have access to a local test lab (or a community through 
which you can borrow devices), you will need to purchase the devices you need. 

 

Note: Even when testing on actual devices with SIM cards, keep in mind that network speed and latency can vary 
significantly depending on your location and carrier. If this is crucial to your user experience, you should likewise 
consider testing your app from different locations. 

 

 

 

http://www.mobilexweb.com/emulators


Using a remote device service 

An alternative to purchasing or borrowing devices is to pay a monthly or hourly fee to access remote devices 
through services such as Device Anywhere and Perfecto Mobile. These services enable you to choose from large 
collections of devices that are hosted remotely and accessible using a proxy app. 

Pros 

• These services offer a vast collection of devices and enable you to request devices running on specific 
operator (cellular) networks. This enables you to test on specific network environments (and witness the 
impact of network speed, transcoding (designed to compress scripts and markup) and enables you to test 
on specific operator variants of a device. 

 

Cons 

• Remote services can be slow to use and subject to network latency, making it difficult to accurately test 
features such as asynchronous loading, transitions, and animations. And although touch is supported 
(using the mouse as proxy), it can be difficult to accurately test the performance of complex gestures such 
as swipes, long-taps/presses or multi-touch interactions. 

• If used regularly, the cost these services can be comparable to that of purchasing your own devices, 
without the benefit of being able to fully manipulate an actual device. 

 

Note: Another cost to factor is network access. Although most modern smartphones support Wi-Fi, it’s important 
to also test on an actual operator network. Doing so will enable you to determine the true impact of network 
speed (e.g. 2G, 3G) on your design and overall app functionality. 

 

http://www.keynotedeviceanywhere.com/mobile-application-testing.html
http://www.perfectomobile.com/


Choosing test browsers and devices 

It’s important to carefully choose test devices, browsers, and even emulators, as this will enable you to maximize 
the value of your testing budget. The devices you choose should enable you to test the key features your app 
requires (such as location detection or HTML5 video) while also reflecting the various platforms and browser 
versions that will access your app. 

The following steps are recommended when determining the most appropriate test browsers and devices for your 
project. Each step builds on the information derived from the previous step, enabling you to gradually compile a 
prioritized list of candidate browsers and devices. The final step in the process is to determine how this list maps 
to the resources at hand. Emulators may, at that point, be substituted for browsers that you are unable to acquire 
by purchasing, borrowing or remotely leasing actual hardware. 

1. Existing traffic 

If your mobile app has a desktop equivalent, review that site’s analytics. These will provide a good indication of 
popular platforms and devices within your existing user base and general region of operation. Where 
possible, try to also determine the most popular platform versions. This is important, as new devices don’t 
necessarily ship with the newest OS. Users may also not be aware that they can upgrade their device (or, in some 
cases won’t have the option to do so). Your analytics package should be able to provide some platform version 
data, and regularly updated platform version stats can also be found on the Android and BlackBerry developer 
sites. 

Note: Be aware that analytics can be deceptive. Many analytics packages rely on JavaScript (or set this option as 
default) so may not report accurate traffic from devices with poor JavaScript support. If your analytics provider 
offers a mobile friendly (typically server-side) version, it may be worth trying it out for a few months. This will 
enable you to analyze a more representative segment of your traffic patterns. 

2. Regional traffic and market 

Next, review overall market share and traffic in your region (or the regions you operate in) so that you can focus 
on the platforms that are most likely to access the site. Certain brands are more popular in certain regions, so this 

http://developer.android.com/resources/dashboard/platform-versions.html
http://us.blackberry.com/developers/choosingtargetos.jsp


step helps ensure that you don’t spend time testing on platforms that your users aren’t likely to be using. Regional 
platform data will typically reinforce the data in your desktop site’s analytics. 

Good sources for this type of data include Statcounter’s mobile browser stats and the regular releases of market 
share statistics published by the likes of Comscore and Nielsen (although these will often be US only). Jason 
Grigsby from Cloud Four has also compiled this huge list of traffic and market share resources. 

Based on these first two steps, you should be able to devise a list of candidate devices/browsers while also 
eliminating devices that are completely unrelated to your market or product conditions. 

3. Device-specific factors 

The next step is to map your device list against the factors that make a good test device. This will help you pick the 
most useful models rather than simply opting for the cheapest (or sexiest) on the list. A great resource during this 
step is Device Atlas’ Data Explorer (login required) which enables you to query common device properties across 
thousands of devices. Another useful tool is GSM Arena which includes comprehensive (consumer-facing) device 
specifications, a robust, advanced search/filter option, and a popularity meter providing a glimpse of the interest 
level for each device. 

Here are the device-specific factors you should consider: 

a) Form factor 

Touch screens are increasingly popular, but a good 30% of smartphones also have a keyboard, trackball, or other 
indirect manipulation mechanism, so you want to make sure to test on multiples of these. 

b) Screen size 

This is obviously a big one. You want to be certain that you can test on a range of representative sizes (and 
orientations). Android devices are particularly handy as you can easily spoof the default viewport size by 
adjusting the zoom Level. This is a great stop-gap if you only have a few devices on hand. 

http://gs.statcounter.com/#mobile_browser-ww-monthly-201012-201112
http://www.comscore.com/Press_Events/Press_Releases/2011/12/comScore_Reports_November_2011_U.S._Mobile_Subscriber_Market_Share
http://blog.nielsen.com/nielsenwire/online_mobile/40-percent-of-u-s-mobile-users-own-smartphones-40-percent-are-android/
http://www.cloudfour.com/a-comprehensive-guide-to-mobile-statistics/
http://deviceatlas.com/resourcecentre/Explore+DeviceAtlas+Data/Data+Explorer#_/filter/877430/2705616/True/1
http://www.gsmarena.com/htc_chacha-3787.php
http://www.gsmarena.com/htc_chacha-3787.php


c) Performance 

Devices vary greatly in CPU, memory, and overall performance (including factors such as quality of touch screen) 
so you want to ensure you don’t simply test on only really high- or low-end devices. 

d) DPI 

Screen dpi also varies quite a bit and can greatly impact legibility. Although it’s hard to mitigate poor dpi displays, 
testing on such devices can be hugely useful to get a feel for the many ways your site will look. 

e) Screen conditions 

This is also one that you can’t do much about, but is good to keep in mind. Screen condition factors can include 
overall screen quality (which impacts sensitivity to touch input), variations in colour gamut, and the ability for 
users to adjust contrast. In general, the cheaper the display, the more potential for this type of variation. 

4. Project-specific factors 

Next you want to double-check your list of browsers and devices, accounting for any project-specific factors. If, for 
example, your app revolves around venues and business that are nearby, you will likely need to test support for 
the HTML geolocation API. 

5. Budget 

Rounding out the list is budget. In many cases, this will remain a primary consideration, but following 
the preceding steps should enable you to better justify each purchase and convey to stakeholders the value of 
testing on each browser or device. At this point, you should also be able to prioritize devices, and understand 
when it’s safe to simply use an emulator. 

Note: Review steps 1 and 2 every few months to ensure conditions have not changed. Don’t presume that a 
platform or device that is popular today will remain popular. Newly released platforms (and platform versions 
such as Android 2.2) can take as long as 3-6 months to begin appearing in your logs and analytics. 



Why and how to test 

The ideal test environment is one that saves time and minimizes unnecessary or redundant testing—especially on 
actual hardware devices (which can be expensive to purchase and time consuming to test on). This requires not 
only a good mix of tools, but also a clear understanding of which aspects of your app require the most exhaustive 
testing, and which tools will enable you to test these features most effectively. 

An obvious overall goal is to confirm that application features work as expected on the browsers and devices that 
are most likely to access your site. What working as expected actually means will be largely dependent on the 
nature of each bug or problem you uncover. 

• Feature testing of key functionality. Ideally, all users, on all browsers should be able to perform key 
application tasks. The usability may vary, but no user should be prevented from completing a task due to 
app error or lack of support for their browser. 

• Feature testing enhancements. Many web apps also include non-critical features that are implemented 
as enhancements through feature detection. For example, Mileage Stats requires that users input the name 
of their local gas station during a fill up. On browsers that support the HTML5 geolocation API, this input 
field is replaced with a prompt to “use my location” to detect nearby gas stations. A list of these stations is 
populated into a select menu, saving valuable time for users on more capable browsers. 

• Look and experience. Testing the look and experience will also be highly dependent on the browser or 
device. For example, if the design has been implemented using media queries, certain layout and stylistic 
enhancements will only appear at certain screen sizes. Other aspects of the design may be implemented 
across the board, but only work on certain browsers. For example, many Mileage Stats input forms use the 
placeholder attribute to provide hints within form elements. Browsers that don’t support this specification 
will simply ignore it (and that’s ok so long as the same information is available in other ways). This is not a 
bug; it’s simply the natural input field behavior and should be communicated to your test team to avoid 
unnecessary testing and the filing of unresolvable bugs. 



• Performance. Testers should also keep an eye out for performance problems. All devices are not alike, and 
even smartphones can vary greatly in screen quality, memory, and processor speed. An underpowered 
device will always perform more poorly than a more capable one, but testing may uncover cases where the 
performance difference is unacceptable. 

• Usability. Testers should also flag any usability concerns. These may include: 

° Text that is too small or difficult to read due to poor contrast (especially on lower-end devices). 

° Buttons and links that are too close together, or too small to manipulate. 

° Custom widgets and controls such as sliders or carousels that don’t work as expected. 

 

Your test environment should ideally provide a means to test for all these factors, and include tools to debug 
problems as you discover them. Although testing on device hardware provides the most accurate results, devices 
don’t necessarily provide the best debugging environment. It’s therefore perfectly ok to use desktop browsers 
throughout the test process. 

• Aim to discover and resolve routine problems (related to layout, look and feel, and client-side 
functionality) on the desktop, where you have access to the robust easy-to-use debugging tools. 

• If something is broken on the desktop, you can safely assume it will be broken on mobile as well, so there’s 
no point wasting time retesting it on actual hardware. Fix the problem on the desktop, then test the feature 
in question on your target devices. 

• Be sure to test on a WebKit-based desktop browser, and at least one browser that uses an alternate 
rendering engine. Opera is an excellent choice as its proprietary Presto rendering engine is also found in 
the very popular Opera Mobile and Opera Mini mobile browsers. Unlike Safari and Chrome, Opera’s 
desktop browser can also be resized to widths of as little as 50px. You can therefore easily use it to 
simulate almost any device screen size. 

 



It’s important however not to presume that just because a feature works on the desktop, it will test on mobile. 
Start testing on hardware (or emulators) as soon as working code is available. Mobile devices have varying levels 
of HTML, CSS and JavaScript support. They also operate on slower networks that may periodically time out or 
deliver scripts and content much more slowly than expected. Some network operators also implement 
transcoders, which may compress and sometimes even alter scripts and mark-up, in an effort to improve page 
load performance. These factors impact the experience and may introduce unexpected bugs, so the sooner you 
identify them the better. 

To ensure you catch all relevant bugs, be sure to test in a variety of environments: 

• Test using wi-fi and (if possible on several) operator networks. This is particularly important if your app is 
data-sensitive and may fail if latency causes content to load too slowly, or not at all. 

• Be sure to test at both portrait and landscape orientations. On Android devices, it’s also possible to trigger 
alternate viewport sizes using the zoom Level feature (in Settings). Resetting the zoom level on a few 
devices will quickly help you determine how well your design adapts to changing conditions. 

• Touch screens are increasingly popular, yet approximately 30% of smartphones have a keyboard 
(sometimes along with a touch screen). Other devices may include a track ball or joystick. Your app should 
work regardless of the manipulation method the user will choose. 

• If your app is popular, users may share a link to it with their friends using social networks. Some of these 
friends may open that link in an embedded web view, directly within a native app. Embedded web views 
aren’t always implemented with the same level of web standards support or functionality. Testing in 
embedded web views can therefore prevent unfortunate surprises. 

• If possible, also test on several of the most popular standalone browsers. These include: 

° Opera Mini and Opera Mobile (available for most feature phones, smartphones, and now also on a 
tablet-optimized version) 

° Firefox Mobile (available for Android) 

http://www.opera.com/mobile/features/tablets/
http://www.mozilla.org/en-US/mobile/


° Dolphin (available for Android and iOS) 

° UC Web (a popular Chinese proxy browser, available for most feature phones and smartphones) 

Debugging on mobile devices 

Mobile debugging can be time-consuming, so always pretest mobile bugs on the desktop, just in case there is an 
obvious solution. It’s also wise to reconfirm support levels related to the feature that has failed. Certain browsers 
may simply not support that HTML element, attribute, or CSS property. This may need to be explained to a client 
or other stakeholder, and in extreme cases, the feature may need to be redesigned, but this should not be 
considered an actual bug. 

If you find that you still can’t resolve the problem, you may want to try one of the following remote debugging 
tools. 

• Mobile Perf Bookmarklet is a collection of performance and debugging bookmarks for mobile browsers. 
Included are links to handy tools such as YSlow. DOM Monster and the Firebug Lite DOM inspector. These 
tools can be fiddly to use on small screens, so are most useful on tablets and larger devices (approximately 
480px and up). 

• Adobe Shadow is a remote debugger compatible with recent versions of Android and iOS. 

• Opera Dragonfly is a cross-device, cross-platform debugging environment for Opera browsers. 

 

Performing automated testing with Visual Studio 2010 

Visual Studio 2010 Ultimate has a feature known as Coded UI Tests. This feature can be used to automate the 
testing of a mobile web site using a desktop browser. 

 

http://www.dolphin-browser.com/
http://stevesouders.com/mobileperf/mobileperfbkm.php
http://labs.adobe.com/technologies/shadow/
http://www.opera.com/dragonfly/
http://msdn.microsoft.com/en-us/gg465252


Pros 

• Most desktop browsers can spoof a user agent string automatically during browser initialization in the 
coded UI automation, allowing you to simulate a device and test main user scenarios. It also allows you to 
use the automation as a build validation test process, which allows you to eliminate bugs before releasing 
code to the test team. 

• Many problems are often easy to replicate on the desktop, and can often be resolved through tweaking or 
refactoring of markup and styles. Automation can help catch those easy defects early before releasing to 
test. 

• Coded UI automation uses a WaitForReady mechanism, which waits for asynchronous Ajax calls to return, 
allowing you to test web apps with JavaScript. 

• The desktop size screen can be set up by the test automation to validate the UI elements on various screen 
sizes. 

• JavaScript exceptions can be trapped by the test automation, flagging errors that might occur during user 
scenarios. 

• Test automation can be used to validate UI design if one is present, or if the website has been wireframed, 
you can write assertions to validate common design elements. 

 

Cons 

• Desktop browsers cannot reproduce device behavior to catch functional defects that are very specific to 
devices and platform operating systems 

• UI and/or design changes may pose a constraint in automation productivity, given the time necessary to 
write and maintain tests. 



 

Summary 

Testing is crucial to success when targeting mobile devices. Making assumptions about what will work is risky. 
Testing on actual devices is always preferable, but reasonable options exist when there are time and budget 
constraints. 



Appendix A: Changes to the server-side code 

Reducing duplication in the controller actions 

In the early stages of the project, while the team was reviewing the source of the original Mileage Stats app from 
Project Silk, we decided that there was an opportunity to reduce the amount of code in the app without affecting 
the functionality. We were still operating under the self-imposed constraint of changing the original app as little as 
possible; however, making modifications to the controllers resulted in simplifying many of the problems we were 
facing for the mobile version of Mileage Stats. 

In the original version of Mileage Stats there was a separate set of actions for delivering the JSON results needed 
for the single page application (SPA) experience. These actions were similar to their counterparts that were 
responsible for rendering markup. However, they differed in two significant ways. The first difference was 
variations in the models themselves. The second and closely related difference was that the actions returning 
markup needed to compose data from multiple sources in order to render the complete view. 

For example, the original VehicleController contained the following two actions, both responsible for returning a 
list of vehicles: 

VehicleController.cs (original) 

… 

public JsonResult JsonList() 

{ 

   var list = Using<GetVehicleListForUser>() 

       .Execute(CurrentUserId) 

       .Select(x => ToJsonVehicleViewModel(x)) 

       .ToList(); 

   return Json(list); 

} 

http://silk.codeplex.com/


 

public ActionResult List() 

{ 

   AddCountryListToViewBag(); 

 

   var vehicles = Using<GetVehicleListForUser>() 

       .Execute(CurrentUserId); 

 

   var imminentReminders = Using<GetImminentRemindersForUser>() 

       .Execute(CurrentUserId, DateTime.UtcNow); 

 

   var statistics = Using<GetFleetSummaryStatistics>() 

       .Execute(CurrentUserId); 

 

   var model = new DashboardViewModel 

           { 

                User = CurrentUser, 

                VehicleListViewModel = new VehicleListViewModel(vehicles), 

                ImminentReminders = imminentReminders, 

                FleetSummaryStatistics = statistics 

           }; 

   return View(model); 

} 

… 

Click here to view code as image 

Notice first that both actions make use of the same GetVehicleListForUser command. This command returns the 
primary data that both actions are concerned with. The JSON version projects the data to a new model using 



ToJsonVehicleViewModel. Whereas the markup version of the action collects additional data and then composes 
everything into an instance of the DashboardViewModel class. In fact, the class DashboardViewModel only 
exists to aggregate this data and to support IntelliSense in the corresponding view. 

For the mobile version of Mileage Stats, we anticipated needing the same set of JSON endpoints. However, we 
knew after our initial design work that actions for the markup would be different. Specifically, the mobile version 
of the actions did not need the same data composed into the view model. For example, the original version of the 
Details action for the ReminderController included a list of vehicles: 

ReminderController.cs (original) 

… 

public ActionResult Details(int id) 

{ 

   var reminder = Using<GetReminder>() 

      .Execute(id); 

 

   var vehicles = Using<GetVehicleListForUser>() 

      .Execute(CurrentUserId); 

 

   var vehicle = vehicles.First(v => v.VehicleId == reminder.VehicleId); 

 

   var reminders = Using<GetUnfulfilledRemindersForVehicle>() 

      .Execute(CurrentUserId, reminder.VehicleId, vehicle.Odometer ?? 0) 

      .Select(r => new ReminderSummaryModel(r, r.IsOverdue ?? false)); 

 

   var viewModel = new ReminderDetailsViewModel 

            { 

                 VehicleList = new VehicleListViewModel(vehicles, 

vehicle.VehicleId) { IsCollapsed = true }, 



                 Reminder = ToFormModel(reminder), 

                 Reminders = new 

SelectedItemList<ReminderSummaryModel>(reminders, × => x.First(item => 

item.ReminderId == id)), 

            }; 

   return View(viewModel); 

} 

… 

Click here to view code as image 

In the final version of the action however, we only needed an instance of ReminderSummaryModel. 

Rather than create a third set of actions with viewmodels specific to the mobile version of the app, we choose to 
consolidate all of the actions together and solve the problem of composition another way. 

Using RenderAction 

We decided to keep actions focused on their primary concern. Likewise, the name of the action should reflect this 
concern. For example, the List action of the ReminderController should return a list of reminders and nothing else. 
However, the view the desktop version would still need additional data. We could allow the view to compose the 
data itself using the RenderAction helper. 

RenderAction allows a view to invoke additional actions and to include the results of those actions back in the 
originating view. 

http://msdn.microsoft.com/en-us/library/system.web.mvc.html.childactionextensions.renderaction.aspx


 

Using RenderAction can be a bit confusing; it helps to understand the workflow. An incoming request is handled 
normally, the action produces a model, and that model is passed to the view engine to render a view. When the 
view invokes RenderAction, Razor locates and executes the corresponding action (often called a child action). The 
child action produces a model, which is then used to render a secondary view. This secondary view is then 
inserted back into the original view at the point where RenderAction was invoked. 

Using RenderAction, we were able to untangle the responsibilities in our actions and reuse the same set of actions 
between the original legacy version of Mileage Stats and the new mobily-friendly version. 

A few caveats 

There are few drawbacks to this approach. For example, you are invoking another controller action and there is 
always some performance cost when executing additional code. Though overall, the benefits greatly outweighed 
the problems in the context of Mileage Stats. Some additional considerations are as follows: 

RenderPartial 

It’s easy to confuse RenderAction with RenderPartial. RenderAction is for invoking a completely independent 
action. RenderPartial is simply for rendering a view based on a model passed to it. In most cases, the model 
passed to it is derived from the main view model. 

 

http://msdn.microsoft.com/en-us/library/system.web.mvc.html.renderpartialextensions.renderpartial.aspx


Rendering forms 

Avoid using RenderAction to render forms. It likely won’t work the way you’d expect because RenderAction 
essentially passes through the model view controller (MVC) lifecycle a second time. This means that any form 
rendering will need to occur in your primary view. 

Hidden duplication 

Since your controller actions are completely independent, it’s easy to unnecessarily duplicate expensive 
operations. For example, perhaps you have a view composing two actions that both need to look up details about 
the selected vehicle. If the data was aggregated at the controller level, it could consolidate the lookup. However, 
when the aggregation happens in the view, you might retrieve the same data twice. 

Following the pattern 

Using RenderAction breaks the model view controller pattern. It is generally assumed in MVC that the view does 
nothing more than render a model. It is the responsibility of a controller to invoke a view, but the view knows 
nothing about the controller. Using RenderAction breaks this rule. 

Using content negotiation 

RenderAction allowed us to consolidate the actions related to markup, but it did not address the fact that we had 
a separate set of similar actions for retrieving the JSON data. In fact, after redesigning the actions and views using 
RenderAction the resulting actions were even more similar to the JSON actions. 

We decided to employ a technique known as content negotiation. Content negotiation allows a browser to specify 
the representation it would like for the resulting data. According to the HTTP specification, a client can identify a 
format that it prefers using the Accept header when making a request. 

We created a custom ActionResult that would examine this header and render the result accordingly. Using this, 
the Details action on the ReminderController is able to handle requests for both JSON and markup. 

http://en.wikipedia.org/wiki/Content_negotiation


ReminderController.cs 

… 

public ActionResult Details(int vehicleId, int id) 

{ 

   var reminder = Using<GetReminder>().Execute(id); 

   var viewModel = new ReminderSummaryModel(reminder); 

 

   return new ContentTypeAwareResult(viewModel); 

} 

… 

Click here to view code as image 

Internally, the ContentTypeAwareResult examined the Accepts header of the incoming request for a value of 
“application/json”. If this was found, then the viewModel was rendered using the standard JsonResult. 

The following snippet demonstrates the flow of logic that the custom result uses to determine how to render its 
data. Note that WhenJson and WhenHtml are delegates used to perform the actual rendering. These delegates 
return a JsonResult and ViewResult, respectively. 

ContentTypeAwareResult.cs 

… 

// comments have been removed for brevity 

private ActionResult GetActionResultFor(ControllerContext context) 

{ 

   _supportedTypes = new Dictionary<string, Func<object, 

ViewDataDictionary, TempDataDictionary, ActionResult>> 

         { 

             {"application/json", WhenJson}, 



             {"text/html", WhenHtml}, 

             {"*/*", WhenHtml}, 

         }; 

   var types = (from type in context.HttpContext.Request.AcceptTypes 

         select type.Split(';')[0]) 

         .ToList(); 

 

   if (types.Count == 0) 

   { 

     var format = context.HttpContext.Request.QueryString["format"]; 

     var contentType = GetContentTypeForFormat(format); 

 

     if (!string.IsNullOrEmpty(contentType)) 

     { 

      types.Add(contentType); 

     } 

   } 

 

   var providers = from type in types 

           where _supportedTypes.ContainsKey(type) 

           select _supportedTypes[type]; 

   if (providers.Any()) 

   { 

     var getResult = providers.First(); 

     return getResult(_model, context.Controller.ViewData, context.Controller.TempData); 

   } 

   else 

   { 



var msg = string.Format("An unsupported media type was requested. The supported content types are : {0}", 

String.Join(",", types)); 

     return new HttpStatusCodeResult(406, msg); 

   } 

} 

… 

Click here to view code as image 

It’s important to note that ContentTypeAwareResult was written to handle the specifics of Mileage Stats and is not 
meant to reflect a general purpose solution for content negotiation. 

Caveats 

The first caveat is that implementing content negotiation correctly is a large task. The problem itself seems trivial 
at first, but there are many edge cases. For example, our solution does not properly handle the weights associated 
with the accepted formats. If you want to use content negotiation, and especially if your API is consumed by clients 
outside of your control, then you should consider using a framework such as ASP.NET Web API. 

The most significant problem we encountered, however, was the fact that certain mobile browsers would not 
allow us to set the Accept header on a request. Otherwise, these browsers met all of our requirements for 
delivering the SPA experience. Ultimately, we could not rely on the Accept header to accurately reflect the format 
that the client wanted. We resorted to appending the request format to the query string. You can see this fact in 
the snippet above, where we look for the presence of “format” in the query string. 

http://www.asp.net/web-api


Appendix B: Implementing geolocation 

Geolocation has been become a fundamental feature in many apps over the last few years. 

Many of the devices on the market today have been fitted with GPS hardware that can produce reliable 
geographical data. In addition, the HTML5 specification has recently included geolocation as one of the main 
features, which means any web browser supporting that specification will be able to retrieve geographic 
positioning information with the use of JavaScript. 

Many online services and apps (such as Microsoft Bing Maps) provide valuable use of such geolocation 
information. Displaying the user location on a map or providing directions are some of the more useful services 
these capabilities can enable. 

Geolocation in HTML5 

HTML5 introduced a new set of JavaScript APIs that can be used to determine the user’s location. There are 
multiple techniques that a device may use to determine this data and provide it to the browser. These include the 
use of GPS, IP address, and cell tower triangulation. 

The actual technique used by the device is hidden from the app consuming the API. Not knowing how the location 
information was obtained might not be a problem, but it’s important for developers to understand that the 
accuracy of the information might vary considerably, depending on the technique used. 

Another important aspect of the geolocation API is that it runs completely asynchronously on the browser. Any 
attempt to access geolocation data will typically result in a dialogue being presented to the user asking them for 
their permission to allow the geolocation lookup. You must handle the case in which the user does not grant 
permission. If permission is granted by the user, the API will return the data via a callback when the operation is 
complete. 

 

 



The API in detail 

Any web browser with support for geolocation will provide access to the intrinsic global object navigator 
available in the windows object. The privacy settings on the browser for disabling geolocation will not affect the 
availability of this object. 

We will start by discussing the first and most important method available in this object, getCurrentPosition. 

JavaScript 

void getCurrentPosition(successCallback, errorCallback, options); 

Click here to view code as image 

The getCurrentPosition method asynchronously attempts to acquire a new Position object. If successful, it will 
invoke the success callback by passing the Position object as an argument. If the attempt fails, it will try to invoke 
the error callback by passing an object with the error details. If the user intentionally disabled geolocation in the 
browser privacy settings, the error callback will be invoked as well. The following example illustrates how this 
method is called by a script block in the browser. 

JavaScript 

function get_geolocation() { 

  navigator.geolocation.getCurrentPosition(function(position) { 

     alert('Lat: ' + position.coords.latitude + ' ' + 'Lon: ' + position.coords.latitude); 

  }); 

} 

Click here to view code as image 

The code above does not handle any error condition that might happen while trying to get the user’s location. The 
error callback must be used in that case for addressing the error. 

JavaScript 



function get_geolocation() { 

  navigator.geolocation.getCurrentPosition(function(position) { 

    alert('Lat: ' + position.coords.latitude + ' ' + 'Lon: ' + position.coords.latitude); 

  }, function(error) { 

   switch(error.code) 

   { 

    case error.PERMISSION_DENIED: 

     alert("user did not share geolocation data"); 

     break; 

    case error.POSITION_UNAVAILABLE: 

     alert("could not detect current position"); 

     break; 

    case error.TIMEOUT: 

     alert("retrieving position timed out"); 

     break; 

    default: 

     alert("unknown error"); 

     break; 

   } 

  }); 

} 

Click here to view code as image 

As part of the position object returned by the getCurrentPosition method call, two pieces of information are 
available, the geographic coordinates and a timestamp. The timestamp simply denotes the time at which the 
instance of geolocation data was created. 

The geographic coordinates also include their associated accuracy, as well as a set of other optional attributes, 
such as altitude and speed. 



The other two available methods, watchPosition and clearPosition, work pretty much together. As the name 
states, the watchPosition method asynchronously starts watching the device location and invoking a callback 
with the new position. This allows the app to get real-time data about the device location. On the other hand, the 
clearPosition method stops acquiring any new position fixes and invoking any callbacks. 

JavaScript 

long watchPosition(success, error, options); 

void clearWatch(long watchId); 

Click here to view code as image 

The app can create multiple watchers, which are correlated and identified by the number returned when the 
function is invoked. The same identifier can also be used as the argument for destroying that watcher with the 
clearWatch method. 

Browsers with no geolocation support 

You might run into scenarios in which geolocation is not available as a native feature on the device you are 
targeting. In those cases, the obvious question concerns finding the best possible solution to provide a similar user 
experience. 

An external geolocation service is a well-known solution to this problem. These services typically map the IP 
address of a device to geographic locations using geolocation databases. Usually they do a good job, but at times 
they may suffer from the following issues: 

• The IP address cannot be mapped to any record in the database, so the location cannot be determined. This 
typically happens for IP addresses not commonly used on the Internet. 

• The IP address is associated with a very large geographic area such as a big city or state, which means the 
exact location in terms of latitude and longitude, cannot be determined. 

• The IP address is associated with a wrong location. 



 

The rule of thumb in this scenario is that an external geolocation service is not as reliable as the native geolocation 
support in the device, and in some cases it might be completely inaccurate. In addition, these services do not 
provide additional information such as altitude, speed, or heading of the device. Nevertheless, IP address-based 
location is still a good solution when GPS or triangulation are not supported. 

Please note that this may raise some privacy concerns if the geolocation capability was intentionally disabled by 
the user, so it is always a good idea to get the user’s consent before performing any location-aware operation. 

Online services: Microsoft Bing Maps 

Bing Maps provides a set of online services for integrating rich geographic capabilities into any existing web app. 
In a nutshell, it enables users to search, discover, explore, plan, and share information about specific locations. 

The Bing Maps platform includes a map control for web-based apps as well as a set of REST and SOAP-based 
services for incorporating both location and local search features into a web app. 

The REST and SOAP services differ in the way they are consumed and in some of the functionality they provide. 
Some of the features they provide include: 

• A locations API for finding a location based on a point, address, or query. This service basically matches 
addresses, places, and geographic entities to latitude and longitude coordinates on the map, and return 
location information for a specified latitude and longitude set of coordinates. The SOAP API also provides a 
way to search for points of interests, which is not available in the REST version, and can be used for 
example to search all the nearby gas stations. 

• An imagery API for getting a static map which might contain a route, or for getting imagery metadata. 

• A routes API for finding a walking, driving, or transit route, or more specific information about routes 
(such as the route for going to a specific location). 

• A traffic API for getting traffic information for a geographical area. (Only available in the REST API) 



 

The following code illustrates how the SOAP service for searching locations can be used to find any nearby gas 
station. 

BingMapService.cs 

public IEnumerable<string> SearchKeywordLocation(string keyword, double latitude, double longitude) 

{ 

 

   var results = new List<string>(); 

 

   var searchRequest = new SearchRequest(); 

 

   // Set the credentials using a valid Bing Maps key 

   searchRequest.Credentials = new SearchService.Credentials(); 

   searchRequest.Credentials.ApplicationId = GetBingMapsApplicationKey(); 

 

   //Create the search query 

   var ssQuery = new StructuredSearchQuery(); 

   ssQuery.Keyword = keyword; 

   ssQuery.Location = string.Format("{0}, {1}", latitude, longitude); 

   searchRequest.StructuredQuery = ssQuery; 

 

   //Make the search request 

   SearchResponse searchResponse; 

   using (var searchService = new 

SearchServiceClient("BasicHttpBinding_ISearchService")) 

   { 

       searchResponse = searchService.Search(searchRequest); 



   } 

 

   foreach (var searchResult in searchResponse.ResultSets[0].Results) 

   { 

       results.Add(string.Format("{0} ({1})", searchResult.Name, 

searchResult.Distance)); 

   } 

   return results; 

} 

Click here to view code as image 

Both the SOAP and REST services require an application key for authenticating the caller application. A new 
application key can be obtained by following the instructions on Getting a Bing Maps Key on MSDN. 

Geolocation in the real world: Finding a nearby gas station in Mileage Stats 

The Mileage Stats app uses geolocation for finding all nearby gas stations based on the device location. 

In terms of implementation, this feature combines the geolocation API available in the browser for determining 
the device location and an online service like Bing Maps for finding the nearest gas stations. The Bing Maps REST 
service did not provide an API for locating points of interest, so we used the SOAP service instead. 

Both the REST and the SOAP services require the use of an API key for authentication. The API key should be kept 
secret. If you embed this key in the JavaScript code, it will become visible to anyone. 

In Mileage Stats, the functionality for consuming the Bing Maps API is encapsulated on the server side, and 
exposed to the browser through a façade using REST services. In that way, the key does not need to be exposed on 
the client side. Another advantage is that the REST service can hide many of the complexities involved in dealing 
with the Bing Map APIs or even make it possible to use the SOAP services on the server side as well. 

A specific controller, GeoLocationController, was created for exposing this façade to the browser. 

http://msdn.microsoft.com/en-us/library/ff428642.aspx


GeoLocationController.cs 

public class GeoLocationController : Controller 

{ 

   private readonly IMapService mapService; 

   public GeoLocationController(IMapService mapService) 

   { 

     this.mapService = mapService; 

   } 

   public JsonResult GetFillupStations(double latitude, double longitude) 

   { 

     return Json(this.mapService.SearchKeywordLocation("Gas Stations", latitude, longitude), 

JsonRequestBehavior.AllowGet); 

   } 

} 

Click here to view code as image 

GetFillupStations is an action that can be invoked on the browser by using regular Ajax calls. This method receives 
the device latitude and longitude (which can be obtained from the geolocation API), and returns a JSON message 
with the expected response. 

IMapService is another abstraction on top of Bing Maps that hides many of the implementation details for 
simplifying unit testing and allowing a possible replacement by another online service in the future. 

The MileageStats app is configured to use a MockMapService that provides sample data. If you wish to use the 
BingMapService instead, you must update the UnityContainerFactory.cs class to register the BingMapService 
instead of the MockMapService. 

UnityContainerFactory.cs 



… 

public IUnityContainer CreateConfiguredContainer() 

{ 

   var container = new UnityContainer(); 

 

   // other registrations omitted for brevity 

 

   // remove the following line: 

   // RegisterPerRequest<IMapService, MockMapService>(container); 

   // and uncomment this line: 

   RegisterPerRequest<IMapService, BingMapService>(container); 

 

   return container; 

} 

… 

Click here to view code as image 

In addition, you will need to provide a valid Bing Maps key in the web.config appSettings 
“BingMapsApplicationKey”. 



Appendix C: Delivering mobile-friendly charts 

Rationale and approach 

Delivering charts to mobile browsers presents a different set of challenges compared to delivering charts to 
desktop browsers. Mobile browsers are constrained by bandwidth limitations as well as varying support for 
HTML5 canvas or JavaScript-based charting frameworks. 

In addition to client-side canvas-based charting frameworks, server-side charting libraries provide an option for 
browsers that do not support JavaScript. 

Implementation 

The legacy Mileage Stats web app used a combination of server-rendered images and client-rendered charts. To 
support browsers that are not JavaScript enabled, server-rendered chart images are delivered to the browser. The 
System.Web.Helpers.Chart class provides this server-side charting functionality. For JavaScript-enabled 
browsers, the jqPlot library was used to render charts on the browser. 

However, the jqPlot library was not used in the Mileage Stats Mobile web app due to its size (more than 200KB 
minified and gzipped). Charting libraries such as flot and Flotr2 were also considered but were not utilized in 
Mileage Stats Mobile due to limited support across the set of target browsers. 

In order to provide a consistent and predictable solution to all target browsers, the server-side rendered chart 
technique was chosen. The chart image generated on the server ranges from 15KB to 20KB. This solution requires 
no client-side charting libraries to be loaded since all chart generation occurs server side. One drawback to this 
solution is that new chart images are frequently downloaded to the client. These chart images cannot be cached 
due to changes to the back-end data. This makes poor use of bandwidth. 



 

Average fuel efficiency chart generated server side 

Another challenge with rendering charts for a mobile browser is that mobile device screen widths vary 
dramatically. Some small devices are less than 200 pixels wide. Larger devices and tables can be more than 1000 
pixels wide. It is important to appropriately size the chart based on the width of the device. Images can be 
automatically scaled to shrink or enlarge to fit a given area. However, if the image is reduced too much, the text 
and numerical values in the axis markers will be too small to read. If the image is enlarged too much, the image 
will look grainy. It is important to provide the charting API a close approximation of the width the image will 
eventually occupy. 

Determining screen width 

The ASP.NET MVC framework provides basic browser capability properties. One such property is 
ScreenPixelWidth, which can be accessed from Request.Browser.ScreenPixelWidth. For more information on 
how this property is populated, see Detecting devices and their features. 

http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcapabilitiesbase.screenpixelswidth.aspx


This ScreenPixelWidth property is then used to render mobile charts: 

C# 

if (Request.Browser.IsMobileDevice) 

{ 

   chartWidth = Math.Min(Request.Browser.ScreenPixelsWidth, MOBILE_CHART_MAXWIDTH); 

   … 

} 

… 

var myChart = GetChartInstance(chartWidth, chartHeight, theme); 

Click here to view code as image 



Appendix: Code and Table Images 

 

Click here to view table as text 



 

Click here to view table as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 



 

Click here to view code as text 


	Table of Contents
	Developing Modern Mobile Web Apps
	Building Modern Mobile Web Apps
	Summary
	Authors and contributors
	Related titles
	Feedback and support

	Choosing between a web and native experience
	Platform options
	Influencing factors
	Native solutions
	Web solutions
	Hybrid solutions
	Using third-party frameworks
	Summary
	Further reading

	Defining the mobile web app experience
	Lightweight and responsive
	Designed to suit device capabilities and constraints
	Rich, platform-agnostic user interface
	Forward thinking
	Summary
	References

	Choosing devices and levels of support
	Determining which browsers and devices to support
	Considering features
	Experience and context of use
	Market penetration within your audience
	Budget

	Summary
	References

	Options for building mobile web experiences
	Improving the mobile-friendliness of your existing app
	Page weight and latency
	Scripts and interactivity
	Augmenting the experience with mobile-specific capabilities
	Pros
	Cons

	Using a proxy-based solution
	Pros
	Cons

	Developing a standalone mobile solution
	Pros
	Cons

	Developing a responsive experience
	Pros
	Cons

	Summary
	Resources

	Mobilizing the Mileage Stats app
	What is Mileage Stats Mobile?
	The default app experience
	The single page app
	Experience categories and enhancements
	The Whoops device group

	Summary

	Delivering mobile-friendly styles and markup
	Goals when developing mobile-friendly markup
	Structuring your HTML
	Setting the viewport tag
	Structuring your CSS
	Use flexible values
	Consider browser diversity
	Consider performance
	Create modular, reusable styles


	Embracing browser diversity
	Knowing when and what to reuse
	Reusing markup
	Reusing CSS
	Reusing JavaScript


	Summary

	Developing mobile-friendly forms
	Goals when developing mobile-friendly forms
	Form element implementation in Mileage Stats
	Improving the input of numbers
	Specifying placeholders
	Form validation
	Improving the input of dates
	Specifying date ranges

	Styling form elements
	Fallback strategies and false positives
	Inputting a date
	Providing input field hints

	Creating custom input widgets
	Summary

	Delivering mobile-friendly images
	Major considerations
	Improving clarity and legibility
	Reducing payload size
	Reducing the number of HTTP requests
	Using CSS sprites
	Embedding an image using a data URI
	Using canvas and SVG
	Delivering high-resolution images

	Summary

	Delivering a responsive layout
	Why use responsive design?
	Targeting features and capabilities
	Managing expectations
	Evolving your design process
	Defining breakpoints and structuring style sheets
	Choosing the number of style sheets

	Delivering responsive images
	Creating flexible inline images
	Resizing background images
	Image replacement techniques


	Summary

	Additional usability enhancements
	Navigating large recordsets
	Providing access to the desktop experience
	Summary

	Detecting devices and their features
	Detecting features on the server
	Built-in feature detection in ASP.NET
	Extending ASP.NET with a third-party database
	Detecting features on the client
	Detecting browser capabilities with JavaScript

	Providing content for the different identified classes
	Organizing ASP.NET MVC views for desktop and mobile experiences
	Writing ASP.NET views for the mobile experience

	False positives and caveats
	Summary


	Delivering the SPA enhancements
	Defining the single page application (SPA) requirements
	Frameworks
	Pros
	Cons
	Choosing a library or framework
	Actual usage in Mileage Stats
	Issues, gotchas and things we learned


	Building the single page application
	The architecture of Mileage Stats SPA
	Deeper in the SPA
	Altering the markup for SPA
	Bootstrapping the JavaScript
	Routing and transitioning
	Client-Side templates


	Summary

	Testing mobile web experiences
	Mobile testing tools/options
	Testing on desktop browsers
	Pros
	Cons

	Testing on emulators and simulators
	Emulators
	Pros
	Cons

	Simulators
	Pros
	Cons


	Testing on device hardware
	Pros
	Cons

	Using a remote device service
	Pros
	Cons

	Choosing test browsers and devices
	1. Existing traffic
	2. Regional traffic and market
	3. Device-specific factors
	a) Form factor
	b) Screen size
	c) Performance
	d) DPI
	e) Screen conditions

	4. Project-specific factors
	5. Budget

	Why and how to test
	Debugging on mobile devices
	Performing automated testing with Visual Studio 2010
	Pros
	Cons


	Summary

	Appendix A: Changes to the server-side code
	Reducing duplication in the controller actions
	Using RenderAction
	A few caveats

	Using content negotiation
	Caveats


	Appendix B: Implementing geolocation
	Geolocation in HTML5
	Browsers with no geolocation support
	Online services: Microsoft Bing Maps
	Geolocation in the real world: Finding a nearby gas station in Mileage Stats

	Appendix C: Delivering mobile-friendly charts
	Rationale and approach
	Implementation
	Determining screen width


	Appendix: Code and Table Images


