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In a glance, we can perceive whether a stack of dishes will topple,
a branchwill support a child’s weight, a grocery bag is poorly packed
and liable to tear or crush its contents, or a tool is firmly attached to
a table or free to be lifted. Such rapid physical inferences are central
to how people interact with theworld andwith each other, yet their
computational underpinnings are poorly understood. We propose
a model based on an “intuitive physics engine,” a cognitive mecha-
nism similar to computer engines that simulate rich physics in video
games and graphics, but that uses approximate, probabilistic simu-
lations to make robust and fast inferences in complex natural scenes
where crucial information is unobserved. This single model fits data
fromfive distinct psychophysical tasks, captures several illusions and
biases, and explains core aspects of human mental models and com-
mon-sense reasoning that are instrumental to how humans under-
stand their everyday world.

To see is, famously, “to know what is where by looking” (ref. 1,
p. 3). However, to see is also to know what will happen and

what can be done and to detect not only objects and their loca-
tions, but also their physical attributes, relationships, and affor-
dances and their likely pasts and futures conditioned on how we
might act. Consider how objects in a workshop scene (Fig. 1 A and
B) support one another and how they respond to various applied
forces. We see that the table supports the tools and other items on
its top surface: If the table were removed, these objects would fall.
If the table were lifted from one side, they would slide toward the
other side and drop off. The table also supports a tire leaning
against its leg, but precariously: If bumped slightly, the tire might
fall. Objects hanging from hooks on the wall can pivot about these
supports or be easily lifted off; in contrast, the hooks themselves
are rigidly attached.
This physical scene understanding links perception with higher

cognition: grounding abstract concepts in experience, talking about
the world in language, realizing goals through actions, and detecting
situations demanding special care (Fig. 1C). It is critical to the
origins of intelligence: Researchers in developmental psychology,
language, animal cognition, and artificial intelligence (2–6) con-
sider the ability to intentionally manipulate physical systems, such
as building a stable stack of blocks, as a most basic sign of human-
like common sense (Fig. 1D). It even gives rise to some of our
most viscerally compelling games and art forms (Fig. 1 E and F).
Despite the centrality of these physical inferences, the compu-

tations underlying them in the mind and brain remain unknown.
Early studies of intuitive physics focused on patterns of errors in
explicit reasoning about simple one-body systems and were con-
sidered surprising because they suggested that human intuitions are
fundamentally incompatible with Newtonian mechanics (7). Sub-
sequent work (8, 9) has revised this interpretation, showing that
when grounded in concrete dynamic perceptual and action con-
texts, people’s physical intuitions are often very accurate by New-
tonian standards, and pointing out that even in the earlier studies,
the majority of subjects typically gave correct responses (10). Sev-
eral recent models have argued that both successes and biases in
people’s perceptual judgments about simple one- and two-body
interactions (e.g., judging the relative masses of two colliding point
objects) can be explained as rational probabilistic inferences in
a “noisy Newtonian” framework, assuming Newton’s laws plus
noisy observations (11–14).However, all of this work addresses only

very simple, idealized cases, much closer to the examples of in-
troductory physics classes than to the physical contexts people face
in the real world. Our goal here is to develop and test a computa-
tional framework for intuitive physical inference appropriate for
the challenges and affordances of everyday scene understanding:
reasoning about large numbers of objects, only incompletely ob-
served and interacting in complex, nonlinear ways, with an em-
phasis on coarse, approximate, short-term predictions about what
will happen next.
Our approach is motivated by a proposal first articulated by

Kenneth Craik (15), that the brain builds mental models that
support inference by mental simulations analogous to how engi-
neers use simulations for prediction and manipulation of complex
physical systems (e.g., analyzing the stability and failure modes of a
bridge design before construction). These runnable mental models
have been invoked to explain aspects of high-level physical and
mechanical reasoning (16, 17) and implemented computationally
in classic artificial intelligence systems (18–20). However, these
systems have not attempted to engage with physical scene un-
derstanding: Their focus on qualitative or propositional repre-
sentations, rather than quantitative aspects and uncertainties of
objects’ geometry, motions, and force dynamics, is better suited to
explaining high-level symbolic reasoning and problem solving. To
understand physics in the context of scene perception and action,
a more quantitative and probabilistic approach to formalizing
mental models is required.
Here we introduce such a framework, which exploits recent

advances in graphics and simulation tools, as well as Bayesian
cognitive modeling (21), to explain how people understand the
physical structure of real-world scenes. We posit that human
judgments are driven by an “intuitive physics engine” (IPE), akin to
the computer physics engines used for quantitative but approxi-
mate simulation of rigid body dynamics and collisions, soft body
and fluid dynamics in computer graphics, and interactive video
games. The IPE performs prediction by simulation and incorpo-
rates uncertainty about the scene by treating its simulation runs as
statistical samples. We focus on how the IPE supports inferences
about configurations of many rigid objects subject to gravity and
friction, with varying numbers, sizes, and masses, like those typical
in children’s playrooms, office desktops, or the workshop, in Fig.
1A. In a series of experiments we show that the IPE can make
numerous quantitative judgments that are surprisingly consistent
with those of probabilistic physics simulations, but also that it dif-
fers from ground truth physics in crucial ways. These differences
make the IPE more robust and useful in everyday cognition, but
also prone to certain limitations and illusions (as in Fig. 1F).

Architecture of the IPE. We propose a candidate architecture for
the IPE that can interface flexibly with both lower-level per-
ceptuomotor systems and higher-level cognitive systems for
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planning, action, reasoning, and language (Fig. 2A). At its core is
an object-based representation of a 3D scene—analogous to the
geometric models underlying computer-aided design programs
(Fig. 1B)—and the physical forces governing the scene’s dynamics:
how its state changes over time (Fig. 2A). This representation
quantitatively encodes a large number of static and dynamic
variables needed to capture the motions and interactions of many
objects. This may include objects’ geometries, arrangements, masses,
elasticities, rigidities, surface characteristics, and velocities, as well as
the effects of forces acting on objects due to gravity, friction, colli-
sions, and other potentially unobservable sources.
The IPE thus represents the world with a reasonable degree of

physical fidelity. However, three key design elements render it
distinct from an ideal physicist’s approach and more akin to an
engineer’s. First, the IPE is based on simulation: Rather than
manipulating symbolic equations to obtain analytic solutions, it
represents mechanics procedurally and generates predicted states
based on initial ones by recursively applying elementary physical
rules over short time intervals. Second, the IPE is probabilistic
rather than deterministic: It runs stochastic (Monte Carlo) simu-
lations (22) that represent uncertainty about the scene’s state and
force dynamics and is thereby robust to the noisy and incomplete
information provided by perception. Third, the IPE is inherently
approximate: In its mechanics rules and representations of objects,
forces, and probabilities, it trades precision and veridicality for

speed, generality, and the ability to make predictions that are good
enough for the purposes of everyday activities.
To make this proposal concrete and testable, we also need to

specify the nature of these approximations and how coarse or
fine grained they are. Here the IPE likely departs from engi-
neering practice: People’s everyday interactions with their sur-
roundings often have much tighter time constraints and more
relaxed fault tolerances, leading our brains to favor speed and
generality over the degree of precision needed in engineering
problems. Our initial IPE model thus adopts the simplest gen-
eral-purpose approximation tools we know of. We used the Open
Dynamics Engine (ODE) (www.ode.org) as a mechanism for
approximate rigid-body dynamics simulations and the most naive
Monte Carlo approach of black-box forward simulation (22) as
a mechanism for representing and propagating approximate
probabilities through these physical dynamics. The ODE repre-
sents objects’ geometries as polyhedra and their mass dis-
tributions by inertial tensors, and its simulations do not enforce
the conservation of energy or momentum explicitly, but only
implicitly via coarse event detection and resolution procedures.
Our model runs the simulator on multiple independent draws
from the observer’s probability distribution over scenes and
forces to form an approximate posterior distribution over future
states over time. Even within the range of speed–accuracy trade-
offs that our initial IPE model supports, we expect that people
will tend to adopt the cheapest approximations possible (see
SI Appendix: Approximations). The IPE may dramatically simplify
objects’ geometry, mass density distributions, and physical inter-
actions, relative to what the ODE allows; and instead of running
many Monte Carlo simulations, the IPE may encode probabilities
very coarsely by using only one or a few samples (as people do in
simpler decision settings) (23).
Our central claim is that approximate probabilistic simulation

plays a key role in the human capacity for physical scene un-
derstanding and can distinctively explain how people make rich
inferences in a diverse range of everyday settings, including many
that have not previously been formally studied. Given an appro-
priate geometric model (Fig. 1B) of the workshop scene in Fig. 1A,
the IPE can compute versions of many of the intuitive inferences
about that scene described above. Given a geometric model of the
scene in Fig. 1C, it can explain not only how we infer that the
stacked dishes are precarious, but also how we can answer many
other queries: Which objects would fall first? How might they
fall—in which direction, or how far? Which other objects might
they cause to fall? Everyday scenarios can exhibit great variety in
objects’ properties (e.g., their weight, shape, friction, etc.) and the
extrinsic forces that could be applied (e.g., from a slight bump to
a jarring blow), and our IPE model can capture how people’s
predictions are sensitive to these factors—including ways that go
beyond familiar experience. In Fig. 1C, for instance, we can infer
that a cast-iron skillet placed onto the dishes would be far more

Fig. 1. Everyday scenes, activities, and art that evoke strong physical intu-
itions. (A) A cluttered workshop that exhibits many nuanced physical proper-
ties. (B) A 3D object-based representation of the scene in A that can support
physical inferences based on simulation. (C) A precarious stack of dishes looks
like an accident waiting to happen. (D) A child exercises his physical reasoning
by stacking blocks. (E) Jenga puts players’ physical intuitions to the test. (F)
“Stone balancing” exploits our powerful physical expectations (Photo and
stone balance by Heiko Brinkmann).

B C DA

Fig. 2. (A) The IPE model takes inputs (e.g., perception, language, memory, imagery, etc.) that instantiate a distribution over scenes (1), then simulates the
effects of physics on the distribution (2), and then aggregates the results for output to other sensorimotor and cognitive faculties (3). (B) Exp. 1 (Will it fall?)
tower stimuli. The tower with the red border is actually delicately balanced, and the other two are the same height, but the blue-bordered one is judged
much less likely to fall by the model and people. (C) Probabilistic IPE model (x axis) vs. human judgment averages (y axis) in Exp. 1. See Fig. S3 for correlations
for other values of σ and ϕ. Each point represents one tower (with SEM), and the three colored circles correspond to the three towers in B. (D) Ground truth
(nonprobabilistic) vs. human judgments (Exp. 1). Because it does not represent uncertainty, it cannot capture people’s judgments for a number of our stimuli,
such as the red-bordered tower in B. (Note that these cases may be rare in natural scenes, where configurations tend to be more clearly stable or unstable and
the IPE would be expected to correlate better with ground truth than it does on our stimuli.)
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destabilizing than a paper plate or that placing these stacked
dishes near the edge of a table would be much less wise if there
were children running about than if the room were empty. Such
intuitions come naturally and (fortunately) do not require that we
experience each of these situations firsthand to be able to un-
derstand them. Together, these types of inferences constitute an
answer to the more general question, “What will happen?”, that
humans can answer across countless scenes and that can be read
off from the IPE’s simulations.

Psychophysical Experiments. Relative to most previous research on
intuitive physics, our experiments were designed to be more rep-
resentative of everyday physical scene understanding challenges,
similar to those shown in Fig. 1 and discussed above. These tasks
feature complex configurations of objects and require multiple
kinds of judgments in different output modalities and graded
(rather than simply all-or-none, yes-or-no) predictions, yet are still
constrained enough to allow for controlled quantitative psycho-
physical study. Our most basic task (Exp. 1) probed people’s
judgments of stability by presenting them with towers of 10 blocks
arranged in randomly stacked configurations (Fig. 2B) and asking
them to judge (on a 1–7 scale) “Will this tower fall?” under the
influence of gravity. After responding, observers received visual
feedback showing the effect of gravity on the tower, i.e., whether
and how the blocks of the tower would fall under a ground truth
physics simulation.
The critical test of our IPE account is not whether it can explain

every detail of how people respond in one such task, but whether it
can quantitatively explain the richness of people’s intuitions about
what will happen across a diverse range of tasks. Hence subse-
quent experiments manipulated elements of Exp. 1 to examine
whether the model could account for people’s ability to make
different predictions about a given scene (Exps. 2 and 4), their
sensitivity to underlying physical attributes such as mass (Exps. 3
and 4), and their ability to generalize to a much wider and more
complex range of scenes (Exp. 5).
Applying our IPE model to these tasks requires choices about

how to formalize each task’s inputs and outputs—how each stim-
ulus gives rise to a sample of initial object states and force dynamics
for the simulator and how the effects of simulated physics on this
sample are used to make the task’s judgment—as well as choices
about the specifics of the simulation runs. Although the “Will it
fall?” task primarily involved visual inputs and linguistic outputs,
later tasks (Exps. 2–5) examined the flexibility of the IPE’s in-
terfaces with other cognitive systems by adding linguistic inputs,
symbolic visual cues, and sensorimotor outputs. To allow the
same core IPE model to be testable across all experiments, we
made the following simplifying assumptions to summarize these
other interfaces.
We set the IPE’s input to be a sample from a distribution over

scene configurations, object properties, and forces based on ground
truth, but modulated by a small set of numerical parameters that
capture ways in which these inputs are not fully observable and
might vary as a function of task instructions. The first parameter, σ,
captures uncertainty in the observer’s representation of the scene’s
initial geometry—roughly, as the SD of a Bayesian observer’s
posterior distribution for each object’s location in 3D space, con-
ditioned on the 2D stimulus images. The second parameter, ϕ,
reflects the magnitude of possible latent forces that the observer
considers could be applied (e.g., a breeze, a vibration, or a bump) to
the objects in the scene, in addition to those forces always known to
be present (e.g., gravity, friction, and collision impacts). The third
parameter, μ, captures physical properties that vary across objects
but are not directly observable—specifically, the relative mass of
different objects—but other properties such as elasticity or surface
roughness could be included as well.
Given such an input sample, our IPE model simulated physical

dynamics to produce a sample of final scene configurations. In
some cases the objects moved due to gravitational or external
forces or ensuing secondary collisions, whereas in others they
remained at their initial state. The model’s output consists

of aggregates of simple spatial, numerical, or logical predicates
applied to the simulation runs, as appropriate for the task and
judgment (SI Appendix: IPE Model). For example, for the Will it
fall? query, we took the IPE’s output to be the average pro-
portion of blocks that fell across the simulation runs.
Each manipulation in Exps. 1–5 tested the IPE model in in-

creasingly complex scenarios, which the model accommodates by
adjusting its manipulation-sensitive input parameters or output
predicates; all manipulation-irrelevant model components are
fixed to previously fitted values. We also contrasted the model
with variants insensitive to these manipulations, to assess how
fully the IPE represents these physical, scene, and task features.
Finally, we explored several ways in which the human IPE might
adopt even simpler approximate representations.

Results
Exp. 1: Will It Fall? Exp. 1 measured each subject’s ðn= 13Þ Will it
fall? judgments about 60 different tower scenes, repeated six times
over separate blocks of trials (see SI Materials and Methods, Fig.
S1, and Table S1). Fig. 2C shows the correlation between the
model’s and people’s average judgments (ρ= 0:92½0:88; 0:94�,
where ½l; u� indicates lower/upper 95% confidence intervals) under
the best-fit input parameters: σ = 0:2, or 20% of the length of
a block’s shorter side, and ϕ= 0:2, corresponding to very small
applied external forces, on the scale of a light tap. Nearby values
of σ and ϕ also had high correlations because state and force
uncertainty influenced the model’s predictions in similar ways (Fig.
S3). The μ parameter was set to 1 because all objects had identical
physical properties. We analyzed subjects’ responses for improve-
ments across trial blocks and found no effects of either the amount
of feedback or the amount of practice (Fig. S7 and SI Appendix:
Analysis of Learning). We also replicated the design of Exp. 1 on
a new group of subjects ðn= 10Þ who received no feedback and
found their mean responses to be highly correlated with those in
the original feedback condition ðρ= 0:95½0:95; 0:95�Þ, confirming
that any feedback-driven learning played at most a minimal role.
To assess the role of probability in the IPE simulations, we also

compared people’s judgments to a deterministic ground truth
physics model (the same simulations that were used to provide
posttrial feedback). This ground truth model corresponds to a
variant of the IPE model where σ = 0 and ϕ= 0 (i.e., each simu-
lation is run with initial states identical to the true objects’ states
and uses no forces besides gravity, friction, and collisions). The
task was challenging for subjects: Their average accuracy was 66%
(i.e., percentage of their thresholded responses matching the
ground truth model), and their correlation with the ground truth
predictions was significantly lower (ρ= 0:64½0:46; 0:79�, P< 0:001;
Fig. 2D) than with the IPE model. This demonstrates the crucial
role of including state and force uncertainty in the model’s sim-
ulations and explains illusions like the surprisingly balanced stones
in Fig. 1F: The ground truth scene configuration is in fact bal-
anced, but so delicately that most similar configurations (and
hence most of the IPE’s probabilistic simulations) are unbalanced
and fall under gravity. We included an analogous illusory stimulus
in the experiment, a delicately balanced tower (Fig. 2B, red bor-
der) that in fact stands up under ground truth physics but that the
IPE model’s probabilistic simulations predict is almost certain to
fall. As predicted by the IPE model, but not the ground truth
variant, people judged this to be one of the most unstable towers
in the entire stimulus set (Fig. 2 C and D, red circle).
Is it possible that people’s judgments did not involve any mental

simulation at all, probabilistic or otherwise? We also tested an
alternative account in the spirit of exemplar-based models and
simple heuristics that have been proposed in previous studies of
physical judgments (8–11): that people might instead base their
judgments exclusively on learned combinations of geometric fea-
tures of the initial scene configuration (e.g., the numbers, posi-
tions, and heights of the objects; see Table S2) without explicit
reference to physical dynamics. This “feature-based” account
consistently fared worse at predicting people’s judgments than the
IPE model—sometimes dramatically worse (Fig. S4)—in Exp. 1
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and a controlled follow-up experiment (Exp. S1) (SI Appendix:
Model-Free Accounts) in which the towers were all of the same
height, as well as in Exps. 2–5 described below. This is not to claim
that geometric features play no role in physical scene understand-
ing; in SI Appendix: Approximations, we describe settings where
they might. However, our results show that they are not viable
as a general-purpose alternative to the IPE model.

Exp. 2: In Which Direction? To test the IPE model’s ability to explain
different judgments in different modalities, we showed subjects
ðn= 10Þ scenes similar to those in Exp. 1, but instead asked them
to judge the direction in which the tower would fall (Fig. 3A and
Fig. S2). The IPE model’s output predicate for this “In which
direction?” query was defined as the angle of the average final
position of the fallen blocks; input parameters (σ = 0:2, ϕ= 0:2)
and all other details were set to those used in modeling Exp. 1.
Model predictions were very accurate overall: Subjects’ mean di-
rection judgments were within ± 45° of the model’s for 89% of
the tower stimuli (Fig. 3B). As in Exp. 1, capturing uncertainty was
crucial: The circular correlation with people’s judgments was sig-
nificantly higher for the IPE model ðρcirc = 0:80½0:71; 0:87�Þ than
for the ground-truth (σ = 0, ϕ= 0) model (Fig. 3C; ρcirc =
0:61½0:46; 0:75�, P< 0:001). These results show how a single set of

probabilistic simulations from the IPE can account for qual-
itatively different types of judgments about a scene simply by
applying the appropriate output predicates.

Exps. 3 and 4: Varying Object Masses. To test the sensitivity of
people’s predictions to objects’ physical attributes and the IPE
model’s ability to explain this sensitivity, Exps. 3 and 4 used
designs similar to Exps. 1 and 2, respectively, but with blocks that
were either heavy or light (10:1 mass ratio, indicated visually by
different block colors; Fig. 3 D andG). We created pairs of stimuli
(“state pairs”) that shared identical geometric configurations, but
that differed by which blocks were assigned to be heavy and light
(Fig. 3 D and G) and thus in whether, and how, the blocks should
be expected to fall. Again the IPE model’s input parameters and
output predicates were set identically to those used in Exps. 1 and
2, except that the mass parameter, μ, could vary to reflect people’s
understanding of the ratio between heavy and light blocks’ masses.
At the best-fitting value fromExp. 3, μ= 8, model fits for Exp. 3 (Will
it fall? judgment; Fig. 3E, ρ= 0:80½0:72; 0:86�) and Exp. 4 (In which
direction? judgment; Fig. 3H, ρcirc = 0:78½0:67; 0:87�) were compa-
rable to those in Exps. 1 and 2, respectively; the true mass ratio
ðμ= 10Þ yielded almost identical predictions and fits. By contrast,
using the mass-insensitive ðμ= 1Þ model variant yielded significantly
worse fits for both Exp. 3 (Fig. 3F, ρ= 0:63½0:50; 0:73�, P< 0:001)
and Exp. 4 (Fig. 3I, ρcirc = 0:41½0:27; 0:57�, P< 0:001). Differences in
judgments about towers within each state pair also covaried signifi-
cantly for people and the IPE model in both experiments (Exp. 3,
ρ= 0:73½0:62; 0:81�; Exp. 4, ρcirc = 0:50½0:18; 0:75�), whereas for the
mass-insensitive model variants these correlations were 0 by defini-
tion. Together, these results show that people can incorporate into
their predictions a key latent physical property that varies across
objects (and is indicated only by covariation with a superficial color
cue), that they do so in a near-optimal manner, and that the same
IPE model could exploit the richer aspects of its scene representa-
tions to explain these inferences at a similar level of quantitative
accuracy to that for the simpler tasks of Exps. 1 and 2 in which all
objects were identical.

Exp. 5: Varying Object Shapes, Physical Obstacles, and Applied Forces.
Exp. 5 was designed to be a comprehensive and severe test of the
IPE model, evaluating how well it could explain people’s judg-
ments on a more novel task in much more complex and variable
settings—scenes with different sizes, shapes, numbers, and con-
figurations of objects, with variable physical constraints on objects’
motion due to attached obstacles and with added uncertainty
about the external forces that could perturb the scene. Each scene
depicted a table on which a collection of blocks were arranged
(Fig. 4 A and B), half of which were red and the other half of
which were yellow. Subjects ðn= 10Þ were asked to imagine that
the table is bumped hard enough to knock one or more of the
blocks onto the floor and to judge which color of blocks would be
more likely to fall off, using a 1–7 scale of confidence spanning
“definitely yellow” to “definitely red”. The 60 different scenes
were generated by crossing 12 different block configurations—
varying the numbers and shapes of the blocks and the numbers,
heights, and positions of the stacks in which they were arranged—
with five different tables, one with a flat surface and four others
each with two short obstacles rigidly attached to different edges
that interacted with the objects’motions in different ways (Fig. 4A).
Two conditions differed in what information subjects received about
the external bump: In the “cued” condition, a blue arrow indicated
a specific direction for which subjects should imagine a bump; in
the “uncued” condition, no arrow was shown and subjects had to
imagine the effects of a bump from any possible direction (Fig. 4B).
In the cued condition, each scene was shown with two different
bump cue directions (“cue-wise pairs”). In 10 initial trials, subjects
were familiarized with the task and the effects of a random bump
strong enough to knock off at least one block, using simpler scenes
for which the red–yellow judgment was obvious and the effect of the
bump (applied for 200 ms) was shown after each judgment. Anal-
ogous feedback was also shown after every fifth experimental trial.

B C

D E F

G H I

A

Fig. 3. (A) Exp. 2 (In which direction?). Subjects viewed the tower (Upper),
predicted the direction in which it would fall by adjusting the white line
with the mouse, and received feedback (Lower). (B) Exp. 2: Angular dif-
ferences between the probabilistic IPE model’s and subjects’ circular mean
judgments for each tower (blue points), where 0 indicates a perfect match.
The gray bars are circular histograms of the differences. The red line indi-
cates the tower in A. (C) The same as B, but for the ground truth model. (D)
Exp. 3 (Will it fall?: mass): State pair stimuli (main text). Light blocks are
green, and heavy ones are dark. (E) Exp. 3: The mass-sensitive IPE model’s vs.
people’s judgments, as in Fig. 2C. The black lines connect state pairs. Both
model and people vary their judgments similarly within each state pair (lines’
slopes near 1). (F) Exp. 4: The mass-insensitive model vs. people. Here the model
cannot vary its judgments within state pairs (lines are near vertical). (G) Exp. 4
(In which direction?: mass): State pair stimuli. (H) Exp. 4: The mass-sensitive IPE
model’s vs. people’s judgments, as in B. The black lines connect state pairs. The
model’s and people’s judgments are closely matched within state pairs (short
black lines). (I) Exp. 4: The mass-insensitive IPE model vs. people. Here again, the
model cannot vary its judgments per state pair (longer black lines).
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The IPE model was identical to that in Exps. 1 and 2 ðσ =
0:2; μ= 1Þ, except for two differences appropriate for this task.
To incorporate instructions about how the table is bumped, the
magnitude of imagined external forces ϕ was increased to a range
of values characteristic of the bumps shown during the famil-
iarization period. The model simulated external forces under a
range of magnitudes, varying in their effects from causing only a
few blocks to fall off the table to causing most to fall off. For the
uncued condition the model simulated all bump directions, whereas
for the cued condition it simulated only bumps with directions
within 45° of the cued angle (Fig. 4 C and D). The model’s output
predicate was defined as the proportion of red vs. total blocks
that fell off the table, averaged across simulations.
Model predictions were strongly correlated with people’s judg-

ments in both the uncued and the cued bump conditions (Fig. 4E,
ρ= 0:89½0:82; 0:93�, and Fig. 4G, ρ= 0:86½0:80; 0:90�, respectively).
Fits were both qualitatively and quantitatively better than for
model variants that did not take into account the obstacles (Figs.
4F, ρ= 0:68½0:51; 0:81�, P< 0:002; Fig. 4H, ρ= 0:64½0:47; 0:77�,
P< 0:001), the bump cues (Fig. 4I, ρ= 0:82½0:75; 0:87�, P< 0:2), or
either factor (Fig. 4J, ρ= 0:58½0:41; 0:72�, P< 0:001), suggesting
both factors played causal roles in the IPE model’s success. The
model could also predict the effects of different obstacles and bump
cues on people’s judgments, with correlations of ρ= 0:88½0:81; 0:93�
between people’s and the model’s obstacle-wise differences in the
uncued condition and ρ= 0:64½0:46; 0:77� between their cue-wise
differences in the cued condition. That the IPE model predicted
judgments for these variable and complex scenarios at such high
levels, comparable to the simpler experiments above, provides the
strongest evidence yet that our model captures people’s capacity for
rich mental simulations of the physical world.

Approximations. Whereas the IPE model tested above attempts to
represent scene structure, physical dynamics, and probabilities
faithfully, given the constraints of a simple simulation engine and
Monte Carlo inference scheme, the human IPE is likely bounded
by further resource constraints and may adopt even coarser

approximations. For example, instead of using many simulation
samples to represent a full posterior predictive distribution,
people might base their predictions on only very few samples.
We estimated the number of samples that contribute to a subject’s
judgment by comparing the variance in subjects’ responses to the
variance in the model’s responses, under the assumption that as
the IPE pools more samples its trial-by-trial variance will decrease,
and found that people’s judgments were consistent with having
been based on roughly three to seven stochastic simulation samples
(SI Appendix: Approximating Probabilities and Fig. S6 A–E). We
also compared IPE model variants that were limited to these small
sample sizes to the large-sample models tested above and found that
even these small sample sizes were sufficient to approximate well
the predictive probability distributions in our tasks (Fig. S6 F–J).
In other analyses, we found that people may fall back on non-
simulation–based heuristics when simulations would require too
much time and precision to be useful (SI Appendix: Approximating
Physics) and that biases in how people predict the motions of
nonconvex objects (10, 24) can be explained by an IPE that esti-
mates objects’ unknown mass distributions cheaply, using simplified
geometric priors. Although preliminary, these results suggest that
across a range of scenes and tasks, even a small number of coarse
probabilistic simulations over short time intervals can support
effective physical inferences and predict well people’s judgments.

Discussion
We proposed that people’s physical scene understanding can be
explained by a simulation-based IPE that we formalized and tested
in a wide range of experiments. This IPE model accounted well for
diverse physical judgments in complex, novel scenes, even in the
presence of varying object properties such as mass and uncertain
external forces that could perturb the scene. Variants of the IPE
model that were not sensitive to these physical differences consis-
tently fit less well, as did combinations of special-purpose geometric
features that did not model physics and had to be tailored to each
experiment (Fig. S4 and SI Appendix: Model-Free Accounts), further
supporting the case that human intuitions are driven by rich

Fig. 4. Exp. 5 (Bump?). (A) Scene stimuli, whose tables have different obstacles (T0–T4). (B) In the uncued bump condition, subjects were not informed about
the direction from which the bump would strike the scene; in the cued bump conditions, a blue arrowhead indicated the bump’s direction. (C) The disk plot
shows IPE model predictions per bump direction (angle) and ϕ (radius) for the stimulus in the image; the blue arrowheads/arcs indicate the range of bump
angles simulated per bump cue, and the green circle and arrowheads represent the uncued condition. Inset bar graphs show the model’s and people’s
responses, per cue/condition. (D) The same block configuration as in C, with different obstacles (T1). (E–J) IPE model’s (x axis) vs. people’s (y axis) mean
judgments (each point is one scene, with SEM). The lines in G–J indicate cue-wise pairs. Each subplot show one cue condition and IPE model variant (cor-
relations in parentheses, with P value of difference from full IPE): (E) Uncued, full IPE. (F) Uncued, obstacle insensitive (model assumes T0). (G) Cued, full IPE.
(H) Cued, obstacle insensitive. (I) Cued, cue insensitive (model averages over all bump angles). (J) Cued, obstacle and cue insensitive.
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physical simulations. That these simulations are probabilistic
was strongly supported by the systematic deviations of people’s
judgments from ground truth physical simulations (the σ = 0;ϕ= 0
model), as well as the existence of certain stability illusions (Fig.
1F and Fig. 2 B–D), all of which are naturally explained by the
incorporation of uncertainty. Other illusions and patterns of error
(Exp. S2 and Fig. S5) point to other ways in which these simu-
lations approximate physical reality only coarsely, yet effectively
enough for most everyday action-planning purposes. Probabilistic
approximate simulation thus offers a powerful quantitative model
of how people understand the everyday physical world.
This proposal is broadly consistent with other recent proposals

that intuitive physical judgments can be viewed as a form of prob-
abilistic inference over the principles of Newtonian mechanics (the
noisy Newton hypothesis) (11–14). Previous noisy Newton models
have been restricted to describing few judgments in simple scenarios
(e.g., one or two point-like objects moving in one or two dimen-
sions). Our work differs primarily in its focus on simulation—spe-
cifically rich, 3D, object-based simulations—as the means by which
physical knowledge is represented and probabilistic inference is
carried out. Our model can describe numerous judgments about
complex natural scenes, both familiar and novel, and offers a plau-
sible algorithmic basis for how people can make these judgments.
How else might people’s physical scene understanding work, if

not through model-based simulation? Much recent research in
computer vision is based on model-free, data-driven approaches,
which depend heavily on learning from past experience, either by
memorizing very large labeled sets of exemplars or by training
combinations of compact image features to predict judgments of
interest. We do not argue against a role for memory or learned
features in physical scene understanding, yet our results suggest
that combinations of the most salient features in our scenes are
insufficient to capture people’s judgments (SI Appendix: Model-
Free Accounts and Fig. S4). More generally, a purely model-free
account seems implausible on several grounds: It would have to
be flexible enough to handle a wide range of real-world scenes
and inferences, yet compact enough to be learnable from people’s
finite experience. It would also require additional control mech-
anisms to decide which features and judgment strategies are
appropriate for each distinct context, and it would be challenged
to explain how people perform novel tasks in unfamiliar scenes
or how their physical understanding might interface with their
rich language, reasoning, imagination, and planning faculties. In
contrast, model-based reasoning is more flexible and general

purpose and does not require substantial task-specific learning.
We know of no other approach that is a plausible competitor for
making physical inferences and predicting What will happen? in
everyday scenarios—let alone one that can quantitatively match
the IPE model’s consistency with people’s judgments across our
range of experiments. However, we encourage alternatives that
can compete with our account and have made our stimuli and
data freely available online for that purpose.
The generality of a simulation-based IPE goes well beyond the

settings studied here. A more realistic visual front end can be
added to capture people’s perceptual uncertainty (due to view-
point, lighting, or image occlusions; SI Appendix: Bayesian Vision
System and Fig. S8) and working memory and attentional con-
straints (25). In ongoing work we are finding that the same IPE
model can explain how people learn about the latent properties
of objects (e.g., mass and friction) from observing their dynamics,
how people infer attachment relations among objects in a scene,
and how people plan actions to achieve desired physical out-
comes. Its underlying knowledge of physics can also be extended
to make inferences about the dynamics of other entity types
(nonrigid objects, nonsolid substances, and fluids) that are not
handled by the ODE, but can be instantiated in more sophisti-
cated simulation engines such as Bullet or Blender.
More broadly, our work opens up unique directions for con-

necting people’s understanding of physical scenes with other
aspects of cognition. Probabilistic simulations may help explain
how physical knowledge influences perceived scene layouts (26–
28), movement planning (29), causal inferences (11, 12), language
semantics, and syntax (e.g., “force dynamics”) (4) and infants’
expectations about objects (2, 30). Most generally, probabilistic
simulation offers a way to integrate symbolic reasoning and sta-
tistical inference—two classically competing approaches to for-
malizing common-sense thought. The result is a framework that is
both more quantitative and more amenable to rigorous psycho-
physical experimentation than previous accounts of human mental
models and also better able to explain how people apprehend and
interact with the physical environments they inhabit.
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