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ABSTRACT
This paper presents experimental results comparing two
different designs for a spoken language interface to email.
We compare a mixed-initiative dialogue style, in which
users can flexibly control the dialogue, to a system-
initiative dialogue style, in which the system controls the
dialogue. Our results show that even though the mixed-
initiative system is more efficient, as measured by number
of  turns, or elapsed time to complete a set of email tasks,
users prefer the system-initiative interface. We posit that
these preferences arise from the fact that the system
initiative interface is easier to learn and more predictable.
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INTRODUCTION
Debate about the utility of spoken language interfaces
(SLIs) vs. graphical user interfaces (GUIs) has been on-
going for many years. It is widely agreed that GUIs provide
immediate feedback, reversible operations, and
incrementality, that they support rapid scanning and
browsing of information, and that they are easy for novices
to use because visual information indicates the currently
available options. In contrast, SLIs have been criticized for
the inherent limitations of a sequential channel (speech) for
delivering information, for requiring the user to learn the
language the system can understand, for hiding available
command options, and for leading to unrealistic
expectations as to their capabilities.

Yet changes in both work practice and technology in the
last ten years has greatly increased the potential benefits of
SLIs. Workers are much more mobile, making remote
access to information stored on a desktop computer highly
desirable. The telephone is a lightweight and ubiquitous
form of access, and automatic speech recognition (ASR)

used in SLIs has vastly improved. These changes mean that
many interface designers now believe that SLIs for remote

access to a range of personal and public (often web-based)
information are both practical and desirable.

However, because it has only been recently possible to
build real-time SLIs, very little is known about how to
design them to mitigate current limitations in component
technologies, such as automatic speech recognition (ASR)
and text to speech synthesis (TTS), as well as inherent
limitations with SLIs [1,2,3,4,7]. The single most important
design choice is the selection of dialogue strategies that the
SLI  uses in  conversations with the user. One key factor is
whether the dialogue strategy is  system-initiative (SI) or
mixed-initiative (MI) [7].  These strategies are illustrated in
D1 and D2 for ELVIS (EmaiL Voice Interactive System),
an SLI for accessing email by phone:

(D1: System Initiative Strategy)
A: Hi, Elvis here.  You have 5 new and 0 unread messages

in your inbox. Say Read, or Summarize, or say Help
for more options.

U: Read.
A: Select by Content or Position?
U: Content.
A: Select by Sender or Subject?
U: Sender
A: Which Sender?
U: Kim.
A: The message from Kim is about Meeting Tomorrow.

The meeting tomorrow is at 10:30 in 2D-516.
(D2: Mixed Initiative Strategy)
A: Hi, Elvis here. I’ve got your mail.
U: Read me my messages from Kim.
A: The message from Kim is about Meeting Tomorrow.

The meeting tomorrow is at 10:30 in 2D-516.

The  SI strategy prompts  users what to say at each stage of
the dialogue with directive prompts [2]. Since prompts
must be short, the SI strategy typically executes actions by
small increments at each turn. The MI strategy assumes that
users know what to say, and never volunteers information.
The MI SLI is designed so that users can specify a system
function and all of its arguments in a single utterance if
they desire. While it might appear obvious that users would
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prefer the more flexible interaction style of the MI
interface, there are several complicating factors. First, MI
requires more knowledge on the part of the users about
what they can say, while the SI strategy directs the user.
Second, because SI users are directed to produce very short
utterances, the ASR performance of SI may be much better.
If more error recovery and correction dialogues are
necessary for MI, users may find this onerous. Too many
spoken language understanding errors may also make it
difficult for users to acquire a model of the system’s
behavior. Without knowing the effect of these factors, it is
impossible to predict whether the SI strategy or the MI
strategy is better.

This paper discusses the design and evaluation of ELVIS, a
research prototype SLI that supports voice access to email
by phone. We report experimental results from testing users
with both an SI and an MI version of ELVIS. Our
experimental data consists of 144 dialogues with 48 users,
consisting of a total of 6481 turns. Our results show that
even though the MI system is more efficient, as measured
by either number of turns, or elapsed time to complete a set
of email tasks, users prefer the SI interface.

DESIGNING A SPOKEN LANGUAGE INTERFACE
FOR EMAIL

In addition to the dialogue strategy design, a second key
aspect of SLI design is deciding what options should be
available to the user at each point in the dialogue. Previous
work has demonstrated the utility of Wizard of Oz studies
[1,4,8,9], so we  began our design process with a Wizard of
Oz (WOZ) study where a person played the part of an SLI
for accessing email. We collected, recorded and transcribed
15 extended conversations (1200 utterances) with 6
different prototypical users, mobile professionals accessing
their email while away from their office.

We then categorized each utterance in these dialogues in
terms of its use of key email access functions.  Categories
were based on the underlying application, as well as on
language-based functionality, such as reference to
messages by their properties, such as the sender or the
subject of the message (e.g. the message from Kim), or in
context (e.g. as them, it, that), Table 1 summarizes the
functions used most frequently in the WOZ study. This
study suggests that the SLI should minimally support: (1)
reading the body of a message and the header information;
(2) summarization of the contents of an email folder by
content-related attributes such as the sender or subject; (3)
selection of individual messages by content fields such as
the sender or subject; and (4) request for clarifying help,
repetition of something that was said, and undoing of
previous actions.

Table 1: Email functions used in  Wizard of Oz study

EMAIL ACCESS N

FUNCTION

Summarization 20

Reference 101

Folder Action 10

Read Message 67

Search for a Message 8

Message Field Access 5

Repeat 4

Clarifications 37

Help 3

Reading the message and header information requires the
use of text-to-speech (TTS) since it is impossible to pre-
record messages with a human voice. Reading the body of
the message also requires filtering the message body for
things that are unpronounceable by TTS, and recognizing
attachments in the message body.

In the WOZ study, users typically requested summaries on
entering a folder and referred to messages by attributes
such as sender or subject in order to randomly select
messages of interest in that folder. We hypothesized that
summarization and selection capabilities could provide a
way to scan and browse information in SLIs. In other
words, one way to obviate the limitations of a sequential
speech channel is to give users the ability to overview the
data (with summarization) and then select the subset of
items that they are interested in (with reference).
Summarization and selection of messages by content
attributes required reproducing searching and sorting
functionality available in many email GUI interfaces. For
folder summaries, the list of messages had to be converted
into a coherent summary that was appropriate to the
context, i.e. whether the folder had been created by
selecting by sender or by subject.

Even though our WOZ subjects did not typically attempt to
access to messages in the sequence in which they were
received (or reverse chronological order), we felt that it
was necessary to provide this as an additional option
because other voice and touch-tone interfaces to voice and
email messages  provide this option [2,3,9]. Thus both the
SI and the MI system support access to messages by
relative position within a folder: users can select messages
by saying  First, Next, Previous and Last.

The WOZ study also confirms that the system should
provide help so that users can learn its capabilities. We
were particularly concerned about the design of help
messages for  the MI system. The SLI platform that we
used to build both versions of ELVIS included a facility for
specifying help messages associated with each state of the
dialogue. These context-sensitive help messages indicate to
the user what command options are available at each point
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in the dialogue, and provide a verbal analog to the visible
icons in GUIs that indicate the available command options.

Context-sensitive help was available to the user in two
ways: at the user’s initiative if the user says Help, and at the
system’s initiative with timeout messages. The system
plays timeout messages when the user doesn’t say anything,
i.e. after some expected response delay has timed out. The
system keeps track of how many times a timeout occurs in
each state, so that timeout messages can be modified to be
more informative after each timeout.

Because help messages (and email messages) can be long,
users must be able to interrupt the system to take control of
the interaction at any point, while the system is talking or
carrying out a command. This is called Barge-In.
Supporting barge-in requires that a speech recognizer is
always listening, even when the system is currently busy
recognizing something the user said previously. Barge-In
also involves the ability to abort common procedures in
midstream, e.g the system needs to be able to send TTS
instructions to stop talking in midstream.

Finally, the SLI must provide some way of undoing a
previous command. This is useful in two cases: (1) if the
user simply decides they would rather do something
different; and (2) if the SLI misunderstand the user. ELVIS
supports reversibility by providing an always available
cancel command that returns the user to the dialogue state
before the previous interaction.

EXPERIMENTAL DESIGN
The experiment required users, randomly assigned to either
the MI or the SI version of ELVIS, to complete three tasks
involving telephone access to email. All of the users
regularly used computers in the course of their everyday
work and were familiar with email.  In one study, the 12
users were administrative assistants or researchers whose
area of research was not related to SLIs. We reported
results from this study elsewhere [5]. Subsequently, we
noticed that response delay was longer than we wanted and
that there was a different way of  communicating with the
email application layer that would significantly reduce it.
After implementing the improved version, we then tested
another 36 users in both versions of ELVIS. These
subjects were summer interns, with little exposure to SLIs,
many of whom were not native speakers of English. Below
we discuss results from these 36 users.

Experimental instructions were given on three web pages,
one for each experimental task. Each web page consisted of
a brief general description of Elvis, a list of hints for using
Elvis, a task description, and information on calling
ELVIS. Subjects read the instructions in their offices
before calling ELVIS from their office phone.

Each user performed three tasks in sequence, and each task
consisted of two subtasks. Thus the  results consisted of
108 dialogues representing 216 attempted subtasks. The

task scenarios that the subjects were given were as follows,
where subtasks 1.1 and 1.2 were done in the same
conversation, similarly for 2.1 and 2.2, and 3.1 and 3.2.

•  1.1: You are working at home in the morning and plan
to go directly to a meeting when you go into work.  Kim
said she would send you a message telling you where and
when the meeting is. Find out  the Meeting Time and  the
Meeting Place.

•  1.2: The second task involves finding information in a
different message. Yesterday evening,  you had told Lee
you might want to call him this morning.  Lee said he
would send you a message telling you where to reach
him.  Find out Lee’s Phone Number.

•  2.1: When you got into work, you went directly to a
meeting. Since some people were late, you’ve decided to
call Elvis to check your mail to see what other  meetings
may have been scheduled. Find out the day, place and
time of any scheduled meetings.

•  2.2: The second task involves finding information in a
different message. Find out if you need to call anyone. If
so, find out the number to call.

•  3.1: You are expecting a message telling you when the
Discourse Discussion Group can meet.  Find out the
place and time of the meeting.

•  3.2: The second task involves finding information in a
different message. Your secretary has taken a phone call
for you and left you a message. Find out   who called and
where you can reach them.

These tasks were based on representative tasks from the
WOZ study, involving the use of summarization and
reference as in Table 1. Each subtask specified the
information about criteria for selecting messages, and
information within the message body, that the user and the
system had to exchange. For example, in scenario 1.1, the
user is expecting email from Kim about a meeting and
needs to find out the time and place of that meeting (as in
Dialogue D1 and D2). Following [6], this scenario is
represented in terms of the attribute value matrix (AVM) in
Table 2. The AVM representation for all six subtasks is
similar to Table 2. Note that the task’s information
exchange requirement represented in the AVM is
independent of the dialogue strategy used to accomplish the
task. The use of the AVM to calculate task success is
discussed below.

We designed the experimental email folders so that for
each task, the desired messages were not among the first
two messages (as ordered chronologically). Thus users who
accessed messages by chronological order would often
have to listen to all five messages  in order to complete the
task, while users who accessed messages using selection by
content could complete the task by listening to two
messages. Thus accessing messages by relative position
should have led to inefficient dialogues, while the
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instructions  specified that users should be as efficient as
possible and avoid listening to messages unnecessarily.

Table 2: Attribute Value Matrix: Email Scenario Key
for Dialogues D1 and D2

ATTRIBUTE VALUE
Selection Criteria Kim or Meeting
Email.att1 10:30
Email.att2 2D 516

The general description and the hints on the web page for
each task were identical. The subjects were asked to
impersonate a different user for each task and were told
that they needed to talk to ELVIS to find out some
information that had been sent to them in an email message.
We decided not to include any specific examples of what
users could say  in the hints for using ELVIS for three
reasons: (1) we wanted the instructions to be identical for
both SI and MI; (2) users could get information as to what
they could say from the context-sensitive help messages;
(3) we wanted to be able to quantify the frequency with
which users accessed information on what they could say,
and would not have been able to do so if this information
had been presented visually. The hints were:

•  Anytime you need help with what to say or with what
Elvis is doing, you can say Help.

•  If Elvis misunderstands you and does the wrong thing,
you can undo it by saying Cancel.

•  If you wait too long to tell Elvis what to do, Elvis will
tell you what you can do.

•  When you are finished with a task, you can go back to
the previous context by saying I’m done here.

•  You don’t have to wait for Elvis to finish talking if
you’ve heard enough or you know what you want to
do; you can interrupt at any time.

 
We collected four types of data and extracted a number of
variables. First, all dialogues were recorded. The recording
supports utterance transcription and measuring aspects of
the timing of the interaction, such as whether there were
long system response delays, and whether users barged-in
on system utterances (the variable named BargeIn).
BargeIn may reflect learning; as users learn what they can
say, they can barge in over the system’s utterances.  In
addition, the recording was used to calculate the total time
of the interaction (the variable named Elapsed Time).

Second, the system logged its dialogue behavior on the
basis of entering and exiting each state in the state
transition table for the dialogue.  For each state, the system
logged the number of timeout prompts (Timeout
Prompts), the number of times the confidence level for
ASR was too low and the system played a special rejection
messages, e.g. Sorry, I didn’t understand you (ASR
Rejections), and the times the user said  Help (Help
Requests). The number of  System Turns and the number

of User Turns were calculated on the basis of this data. In
addition, the results of ASR for the user’s utterance was
logged. A measure of the system’s understanding (concept
accuracy) was calculated from the recordings in
combination with the logged ASR result for each utterance.
Mean concept accuracy was then calculated over the whole
dialogue to provide a Mean Recognition Score (MRS) for
the dialogue.

Third, users were required to fill out the web page forms
after each task specifying whether they had completed the
task and the information they had acquired from the agent
(Task Success), e.g. the values for Email.att1 and
Email.att2 in Table 2. This supported the use of the Kappa
statistic to measure Task Success [6], where Kappa is
defined as:

K = P(A) – P(E) / 1- P(E)

P(A) is the proportion of times that the AVM for the
dialogue agrees with the AVM for the scenario key, and
P(E) is the proportion of times we would expect the AVMs
for the dialogues and keys to agree by chance.  When
agreement is perfect (all task information items are
successfully exchanged), then Kappa=1. When agreement
is only at chance, then Kappa=0.

Finally, users responded to a survey on their subjective
evaluation of their performance and their satisfaction with
the system’s performance with the following questions:

•  Did you complete the task? (Comp)
•  Was Elvis  easy to understand in this conversation?

(TTS Performance)
•  In this conversation, did  Elvis  understand what you

said? (ASR Performance)
•  In this conversation, was it easy to find the message

you wanted? (Task Ease)
•  Was the pace of interaction with Elvis appropriate in

this conversation? (Interaction Pace)
•  In this conversation, did you know what you could say

at each point of the dialogue? (User Expertise)
•  How often was Elvis sluggish and slow to reply to you

in this conversation? (System Response)
•  Did Elvis  work the way you expected him to in this

conversation? (Expected Behavior)
•  In this conversation, how did  Elvis’s voice interface

compare to the touch-tone interface to voice mail?
(Comparable Interface)

•  From your current experience with using Elvis to get
your email, do you think you’d use Elvis  regularly to
access your mail when you are away from your desk?
(Future Use).

The user satisfaction survey was multiple choice, and the
possible responses to most questions ranged over values
such as (almost never, rarely, sometimes, often, almost
always), or an equivalent range.  Each of these responses
was mapped to an integer between 1 and 5. Some questions
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had  (yes, no, maybe) responses. Each question emphasized
the user’s experience with the system in the current
conversation, with the hope that satisfaction measures
would indicate perceptions specific to each conversation,
rather than reflecting an overall evaluation of the system
over the three tasks. A Cumulative Satisfaction (CSAT)
score for each dialogue was calculated by summing the
scores for each question. The survey also included a free
text field where users were encouraged to enter any
comments they might have.

The goal of the experiment was to evaluate the usability of
an SLI for accessing email by phone and to compare the
MI dialogue design to the SI dialogue design when the task
is held constant. We wished to investigate how users would
adapt to the version of the system they were using as they
performed a sequence of three similar tasks. Our primary
experimental variable was dialogue strategy:  whether the
user interacted with the SI or the MI version of ELVIS.
However, we were also interested in whether the
availability of summarization and selection by content
increased the functionality of the system.  Our hypotheses
were:
•  H1:  The MI strategy is potentially much more

efficient than the SI strategy, but its efficiency depends
on ASR performance, and the lower the ASR
performance the less efficient it will be.

•  H2: Users will have trouble knowing what they can say
to the MI SLI and this will reduce ASR performance.

•  H3: Users’ knowledge of what they can say to the MI
SLI will improve over the three tasks.

•  H4: Because of H1, H2, and H3, Cumulative
Satisfaction for the system initiative SLI will be
greater  for the first task, but Cumulative Satisfaction
for the MI SLI will be greater by the third task.

•  H5:  Use of summarization will increase Cumulative
Satisfaction and improve efficiency.

•  H6: Use of selection by content will increase
Cumulative Satisfaction and improve efficiency.

These hypotheses concern the relation between dialogue
strategy, Mean Recognition Score, the utilization of the
summarization and selection by content options, and the
users’ ability to learn what options are available at each
point of the dialogue and to acquire a model of the system.

EXPERIMENTAL RESULTS
Our experimental design consisted of two factors; strategy
and task.  Each of our result measures were analyzed using
a two-way ANOVA for these factors. For each result, we
report F and p values indicating its statistical significance.
Effects that are significant as a function of strategy (SI vs.
MI) indicate differences between the two strategies. Effects
that are significant as a function of task are potential
indicators of learning. We discuss results for each of these
factors as they relate to our hypotheses.

We first calculated Task  Success  in terms of Kappa to see
whether task completion rates and scores were affected by
dialogue strategy [7]. The average Kappa value over all
subjects and tasks was .82, indicating that the task was
almost always completed successfully. An ANOVA with
Kappa as the dependent variable revealed no significant
differences for Kappa as a function of  task or strategy.

Hypothesis H1 focuses on the relation between Mean
Recognition Score (MRS) and efficiency.  We examined
efficiency with three efficiency measures: User Turns,
System Turns and Elapsed Time. An ANOVA for each of
the measures as a function of strategy and task showed that
strategy was a significant predictor of efficiency in each
case, and that MI was more efficient than SI: User Turns
(F(1,34)=31.9, p<.0001), System Turns (F(1,34) =14.3,
p=.0006)  and Elapsed Time (F(1,34)=3.92, p=.05).
Means for these measures are given in Table 3.

Table 3: Efficiency measures for SI versus MI

SYSTEM  (SI) MIXED  (MI)

User Turns 25.94 17.59

System Turns 28.18 21.74

Elapsed Time 328.59 s 289.43 s

Hypothesis H2 concerns the relation between MRS and
efficiency. MRS was significantly lower for the MI strategy
(F(1,34)= 27.2, p<.0001), with a mean of .72 for MI as
compared with .88 for the SI strategy. The correlation
between MRS and Elapsed Time is  -.25.

Hypothesis H3 concerned the effect of learning on MRS
for the MI interface, and on efficiency as a result. As we
hypothesized, MRS did improve as users learned the
system (F (1,70)=6.37, p<.01). The MRS of the MI
strategy was .68 for task 1, .74 for task 2 and .76 for task 3,
while MRS for the SI strategy was .88 for task 1, .87 for
task 2 and .92 for task 3. Furthermore, efficiency was also
directly affected by users’ learning of the system. There
was an interaction between strategy and task for both
Elapsed Time (F(1,70)=4.85, p=.03) and System Turns
(F(1,70)=5.23, p=.03). For the SI system, the mean Elapsed
time for task 1 was 321.7s, for task 2 was 345.9s, and for
task 3 was 318.2s. In contrast, the MI system started out
taking more time on average (task 1=332.6s), but Elapsed
Time was reduced significantly over the subsequent tasks,
with task 2 taking 302.8s on average and task 3 taking
232.8s. System Turns showed a similar pattern: for the SI
system, System Turns for task 1 averaged 26.7, 29.7 for
task 2 and 28.1 for task 3. System Turns were reduced for
each task for the MI system: task 1 took an average of 25.4
turns, task 2 averaged 22.3 turns and task 3 averaged 17.5
turns.

Hypothesis H4 posited that users’ Cumulative Satisfaction
(CSAT) for the SI system would be greater for task 1, but
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that as users learned the MI system over the three tasks,
that the flexibility of the interface and the gains in
efficiency would cause MI to be preferred. CSAT was
greater for SI for task 1: mean CSAT for task 1 for SI was
27.2 while mean CSAT for MI for task 1 was 23.8.
However, despite the fact that the MI strategy was clearly
more efficient than the SI strategy by the third task, there
was no interaction between strategy and task. There was a
significant difference in CSAT as a function of strategy
(F(1,34)= 23.59, p=.02), with mean CSAT being higher for
SI (26.6) as compared with MI (23.7). The increases in
CSAT for the MI strategy were not significant: mean
CSAT for task 1 was 23.7, for task 2 was 22.7 and for task
3 as 24.4. Thus even with the effects of learning, CSAT for
MI by the third task was still lower  than CSAT for SI on
the first task.  (See Table 4). Thus Hypothesis H4 is
disconfirmed. It appears that, contrary to H4, users’
preferences are not determined by efficiency per se, as has
been commonly assumed. One  interpretation of our results
is that users are more attuned to qualitative aspects of the
interaction.

To explore this idea further, we first analyzed the
relationship between CSAT and our other measures,
drawing on the PARADISE framework [6], and its use of
multivariate linear regression.  We first normalized all
measures to their Z scores to ensure that the magnitude of
the coefficients in the regression equation would reflect the
magnitude of the contribution of that factor to CSAT.  An
initial regression over a range of measures suggested that
Users’ perception of task completion (Comp), Mean
Recognition Score (MRS) and Elapsed Time (ET) were the
only significant contributors to CSAT. A second regression
including only these factors resulted in the following
equation:

CSAT =  .21*Comp + .47 * MRS - .15 * ET

with Comp (t=2.58, p =.01), MRS (t =5.75, p =.0001) and
ET(t=-1.8, p=.07) significant predictors, accounting for
38% of the variance in R-Squared (F (3,104)=21.2,
p<.0001). This equation demonstrates that while efficiency
and task completion are both factors in predicting CSAT,
that they are not as significant as MRS. It is plausible that
the qualitative behaviors that are correlated with poor MRS
have a greater effect on CSAT.

Table 4: Qualitative measures for SI versus MI

SYSTEM  (SI) MIXED  (MI)

MeanRecog (MRS) .88 .72

Time Outs 2.24 4.15

Barge Ins 5.2 3.5

ASR Rejects .98 1.67

CSAT 26.6 23.7

This interpretation is supported by measures that more
directly reflect the quality of the interaction. See Table 4.
First, as discussed above, there were significant differences
in Mean Recognition Score  (MRS) as a function of
strategy.  Furthermore, even though users of the MI system
were not more likely to ask for help using the always
available Help command (F(1,34)=1.47, NS), they were
much more likely to trigger Timeout Prompts
(F(1,34)=10.87, p=.002). Remember that Timeout Prompts
are system turns that suggest to the user what they can say,
which are triggered by occasions in which the user says
nothing after a system utterance. This may happen because
the user does not know what they can say, or because the
user is confused by what the system just did. The mean
number of timeouts was 4.15 per dialogue for users of the
MI system as opposed to 2.24 for the SI users. Another
qualitative aspect of the interaction is the system’s
production of diagnostic error messages. In our study, it
was much more common for the system to reject the
utterances of users of the MI system (ASR Rejects),
because of low ASR confidence scores (F(1,34)=4.38, p=
.04), leading the system to produce a diagnostic error
message asking the user to repeat himself or telling him
what he could say. Finally, there was an interaction in the
use of BargeIn between strategy and task (F (1,70)=14.18,
p=.0003). Remember that BargeIn may reflect learning; as
users learn what they can say, they can barge in over the
system’s utterances.  SI users increased their use of
BargeIn over the three tasks, with the number of BargeIns
for task 1 at 3.55, task 2 at  4.61 and task3 at 7.33,
suggesting that they were learning the interface and
becoming more confident. In contrast, users of the MI
system started out using BargeIn more (task 1=4.17) but
the use of BargeIn decreases with task 2 at 3.89 and task 3
at 2.6. One explanation for the decrease in BargeIns is that
users lost confidence in knowing what to say to the MI
system.

Other evidence suggests that it was difficult for users to
acquire a model of how the MI system worked. Even
though the MI system made more errors, users of the SI
system were much more likely to use the Cancel command
(F(1,70)=18.41, p=.0001), which undoes the effects of the
previous command. One plausible explanation of this
difference is that SI users acquired a model of the dialogue
flow, making it possible for them to use the cancel
command effectively, while MI users did not.

Further insight into the factors that affect CSAT can be
found by examining the individual satisfaction measures
that CSAT is composed of. Users perceive it to be easier to
find a message (Task Ease) in the SI condition
(F(1,34)=9.11, p=.005. This is probably because MI users
perceived that ELVIS was much less likely to understand
what they said (ASR Performance) (F(1,34)=6.56, p=.02).
SI users perceived that the system often or almost always
understood them, while MI users thought the system only
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sometimes understood them. As we hypothesized, MI users
were more confused about what they could say (User
Expertise) (F(1,34=4.02), p=.04). MI users were much
more likely to say that they only rarely or sometimes knew
what to say, whereas SI users often knew what they could
say. MI users were also much less likely to say that ELVIS
worked the way they expected him to (Expected Behavior)
(Χ2=4.6, p<.05). In only 26 out of 54 dialogues did the MI
users say that ELVIS behaved as they expected, in
comparison with 37 out of 54 for the SI users. This resulted
in many fewer MI users saying they would be willing to use
ELVIS regularly to access their mail when they are away
from their desk (Χ2=4.97, p<.05): in 30 out of 54 MI
dialogues users responded yes or maybe to this question,
while the SI users responded yes or maybe in 41 dialogues
out of 54.

Hypotheses H5 and H6 were that users who made use of
the summarization and selection by content options
provided in both the SI and the MI interfaces would have
greater Cumulative Satisfaction (CSAT) and be more
efficient than those who chose to listen to their messages in
chronological order. In order to test hypotheses H5 and H6,
we analyzed the experimental logs and transcriptions for
summary use (Suse), next use (Nuse), and content-selection
use (Csuse).

Both SI and MI users utilized one of the summarization
options that were provided in the system, averaging 1.4
summaries per dialogue.  While some users did not use
summarization at all, other users summarized up to 5 times
in a single dialogue. However, contrary to H5, Suse did not
lead to higher CSAT, nor did it lead to greater dialogue
efficiency. In fact, our results demonstrate an opposite
pattern. An ANOVA with CSAT as the independent
variable and Suse as a dependent variable showed Suse a
significant predictor of CSAT (F(5,67)=3.45, p=.008).
However CSAT goes down as Suse goes up as shown  in
Table 5. Furthermore, Suse is highly correlated with
Elapsed Time: the correlation coefficient is .49. Thus the
more subjects summarized, the less efficient their dialogues
were.  Analysis of the dialogue transcripts for users who
requested the most summaries shows that summaries were
used as an error recovery strategy. Users would summarize
when the system misunderstood one of the sender or
subject values that they had specified when attempting to
select by content. Since the sender and subject values were
provided in the summary, users would listen to the
summary again to make sure that they had specified the
values correctly. Thus an increase in the use of
summarization indicates a user who was having recognition
problems.

Table 5: Cumulative Satisfaction as a function of
Summary Use

SUSE=0 SUSE=2 SUSE=4 SUSE=5

CSAT 26.0 24.97 22.17 18.5

To test Hypothesis H6, we examined the relationship
between Nuse (use of the Next command), Cuse (use of the
content selection options), and both Cumulative
Satisfaction (CSAT) and Elapsed Time (ET). Nuse is not a
significant predictor of CSAT  (F(1,106)=3.45,NS). There
was also no effect for Cuse, the use of selection by content
options. Further investigation reveals that the main reason
for this is likely to arise from the poor performance of ASR
for selection by content in the MI condition. In the MI
condition, the probability of being correctly understood
when using the Read option was only .63. Half of the time
if the user specified a selection criteria for reading, e.g.
Read my messages from Owen, the system misunderstood:
sender values were misunderstood 43% of the time. In
contrast, MI users  who selected messages in chronological
or reverse chronological order were correctly understood
81% of the time. Thus there was a great incentive for MI
users to not use the selection by content options.

On the other hand, if a user chose to access messages by
content rather than by order in the SI condition, it took at
least three interchanges to say so (see D1). However the
overall probability of correct understanding when
specifying selection by sender was .76, and for selection by
subject was .78. The probability of success for selection by
position was .82. Thus there was little difference in the SI
condition between system performance for selection by
content versus by order.

Table 6: Relationship of Cumulative Satisfaction to use
of the selection by Content options in the SI SLI.

CUSE=0 CUSE=2 CUSE=4 CUSE>5

CSAT 21.0 28.2 26.0 20.0

In order to see whether selection by content is useful when
ASR performs appropriately, we analyzed Cuse for the SI
strategy alone. An ANOVA of CSAT as a function of Cuse
shows Cuse to be highly predictive of CSAT
(F(6,47)=3.89, p=.003).  Table 6 shows that CSAT is
greatest when Cuse matches optimal performance on the
task, i.e. since each task required access to only 2
messages, when Cuse is 2. Thus H6 is disconfirmed for the
MI condition, but confirmed for the SI condition.

CONCLUSIONS

This paper evaluates a mixed-initiative (MI) dialogue
design in comparison with a system-initiative (SI) dialogue
design in ELVIS, a spoken language interface for accessing
email by phone. It has been commonly assumed that
spoken language interfaces that constrain the user will be
less preferred than unconstrained interfaces. Our
hypotheses were that users would initially prefer the SI
system, which controls the interaction so that the options
available to the user are obvious at each point of the
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dialogue, and that ASR (automatic speech recognition)
would perform better with the SI grammars. However, we
hypothesized that as users performed successive tasks, they
would learn how to use the MI system, which does not
constrain the user, and which is more efficient. We
hypothesized that as users learned how to use the MI
system, their confidence with the system would increase,
and that  ASR performance would also increase. Thus, by
the end of three tasks, we hypothesized that the satisfaction
of MI users would be greater than that of the SI users.

Our results show that the additional flexibility of the MI
interface leads to user confusion about their available
options and poor performance by ASR. While user
expertise and ASR performance did increase for MI over
three tasks, these increases did not result in a preference for
the MI interface. Despite the fact that the MI interface is
more efficient in terms of both turns and elapsed time, the
SI users  report higher user satisfaction. A multivariate
linear regression with user satisfaction as the dependent
variable shows that ASR performance, user perception of
task completion, and elapsed time are significant
contributors to user satisfaction, but that ASR performance
is the greatest contributor. We interpret these results to
mean that the qualitative behaviors associated with poor
ASR performance, the predictability of the system, and the
ability of users to acquire a model of system performance,
are more important than the commonly assumed
performance factors of efficiency and task success.

A user preference for SI style interfaces are also suggested
by the results of other work. Previous work has found that
directive prompts, and dialogue strategies that structure the
interaction with the user, in a similar way to our system
initiative interface, are more successful and preferred by
users [2,4]. However, in all of these studies, ASR
performed worse in the less constrained interface. Future
work should examine the role of learnability and
predictability with improved ASR performance. In
addition, future work should include a longer term study of
daily users in the field to determine whether MI interfaces
might be preferred by some (expert) users.
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