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ABSTRACT 

The quasi-Newton family of algorithms for minimizing functions and solving 

systems of nonlinear equations has achieved a great deal of computational success 

and forms the core of many software libraries for solving these problems. In this 

work we extend the theory of the quasi-Newton algorithms to the block case, in 

which we minimize a collection of functions having a common Hessian matrix, or 

we solve a collection of nonlinear equations having a common Jacobian matrix. 

This paper focuses on the linear algebra: update formulas, positive definiteness, 

least-change secant properties, relation to block conjugate gradient algorithms, 

finite termination for quadratic function minimization or solving linear systems, 

and the use of the quasi-Newton matrices as preconditioners. 

1. INTRODUCTION 

Algorithms in the family of block conjugate gradient methods have been 
investigated for two distinct kinds of problems: first, for solving several 
linear systems involving the same matrix, and second, for solving a single 
linear system making use of more than one initial guess in order to change 
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the rate of convergence. In either case, a major motivation for the use 
of the algorithm is the interplay between the form of the matrix and the 
computer architecture: on many computer systems, significant savings arise 
in multiplying p vectors by large sparse matrices if the matrix is accessed 
and applied to all of the vectors at once rather than accessing the matrix 
multiple times and computing the products one at a time. The block 
algorithms can exploit this fact. 

The block quasi-Newton methods can be approached from two similar 
viewpoints. First, consider the problem of finding the minimizers for the p 
functions 

with II: E Rn. For distinct values of the vectors bi, each of these functions 
has a different minimizer xr and gradient gi(x), but they share a com- 
mon Hessian matrix G(x). We would like to solve these problems, taking 
advantage of information that the solution process provides about the com- 
mon Hessian matrix. Problems of this form arise, for example, in studying 
elasticity under various loading conditions. 

For the second vizwpoint, consider the problem of finding a minimizer 
of a single function f(x). Given different initial guesses xl, x2, . . . , xp, we 
form the p functions 

fi(X) = f^(X - Xi). 

Again, the functions have different minimizers and gradient vectors but a 
common Hessian at the solution. 

In this work we develop the linear algebra behind a block variable- 
metric (quasi-Newton) family of algorithms for solving these problem. Our 
development parallels in large part that in Dennis and More [7] for the 
standard quasi-Newton family of algorithms. 

The update formulas we develop are closely related to the multiple se- 

cant updates developed in an unpublished technical report of Schnabel [ll]. 
Byrd, Schnabel, and Schultz [4] d iscuss the parallel implementation of the 
resulting secant algorithm, and Byrd, Nocedal, and Schnabel [3] discuss 
limited-memory versions. Higham and Higham [8] show an alternative 
derivation of the least-change updates. Some of our results duplicate the 
original results of Schnabel; we include them here for completeness, and 
because several of the proof techniques are new. In the final section we 
outline the similarities and differences between the approaches. 

Section 2 discusses the use of the block quasi-Newton algorithms for 
function minimization, including the double-rank update formulas, hered- 
itary positive definiteness, inverse update formulas and updates to factor- 
izations, finite termination and the relation to the block conjugate gradient 
family, and the convergence of Hessian approximations. Section 3 concerns 
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the use of block quasi-Newton algorithms for solving nonlinear equations. 
The paper concludes with numerical examples and some final remarks. 

2. THE BLOCK QUASI-NEWTON FAMILY FOR FUNCTION MINI- 
MIZATION 

We start with the problems 

mp fi(x), i = l,...,p, 

where the functions fi : Rn + 72 share a common Hessian matrix. 
We will solve the problems using a block version of the quasi-Newton 

algorithm, storing and updating an approximation B(“) to the Hessian. 
The algorithm is initialized by taking an initial guess X(O) E RnxP (column 
i is the guess for the function fi) and an initial symmetric positive definite 
approximation to the common Hessian, usually B(O) = I. At each step 
we compute the p gradients Vf(z(“)) E ‘Rnxp and the p search directions 
sck) E Rnxp. The Icth step of the algorithm is: 

1. Compute a matrix ?ck) of search directions by solving 

B(“)$(“) = -Vf(x(“)) = - [Vfl(X(“)), . . . ) Vf,(x(“))]. 

2. Update each column of the approximate solution z(~+‘) = Z(~) + 
sck), where ~(~1 = ?(lc)~(k), and the parameters LY(‘) E 7?!PxP are 
determined by (approximate) minimization of each of the p functions 
over the pdimensional subspace spanned by the columns of ~(~1. 

3. Update the approximate Hessian: B(“+l) is a function of the current 
matrix B(“), the step SC’), and the change in gradients 

y(k) = vf(x(k+l)) - Vf(x(‘C)). 

To simplify notation, we will omit superscripts whenever possible, de- 
noting the n x p matrices XC’), y(“), and sck) and the square matrix Bck) 
by x, y, s, and B respectively, and denoting x(~+‘) and B(“+l) by r~ and B 
respectively. 

We require two key properties of a quasi-Newton algorithm for mini- 
mization: 

1. The secant condition, the defining condition for this family of algo- 
rithms, Bs = y. 
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2. If B is symmetric, then B must be symmetric. 

For p > 1, these two conditions are incompatible for general functions f 
[ll], although they can both be achieved if the functions are quadratic with 
a common Hessian matrix. 

2.1. The Symmetric Double-Rank Updates 

We will derive a double-rank family of updates following a technique 
due to Powell. For quadratic minimization problems, y = Gs, where G is 
the symmetric Hessian matrix common to all of the functions, and thus 
we have the important property that sTy = yTs. Our derivation depends 
upon this property. 

ASSUMPTION 1. sTy = yTs. 

Note that we can compute a matrix satisfying the secant condition by 
setting 

Ci = B + (y - B~)(c~s)-%~, 

where c E Rnxp is any matrix such that cTs is invertible. For convenience, 
without loss of generality, we will assume that cTs = 1. Unfortunately, the 
matrix Ci fails to be symmetric. We can restore symmetry by letting 

and iterate this process: Ce = B, 

%+1 = c2j + (y - C2jS)CT, c2j+2 = 
czj+1+ cTj+l 

2 ’ 

Letting w2j = y - Czjs, we can derive a recurrence for the even terms: 

c2j+2 = C2j + 
W2jCT + cws 

2 

and 
W2j+2 = y - C2j+2S = +(I - CST)W2j E !jPWzj. 

The last two expressions rely on Assumption 1. The eigenvalues of +P are 
4 and 0, so 

03 

gW2j = c (fP)‘wo = (I- $P)-‘(9 - Bs) 
j=o j=O 
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This is enough to establish convergence of the sequence {Csj}, since 

j-1 

czj = B + C w2kcT; cwTi, 
k=O 

so we have that 

lim cam = B + (I - p)-ltuocT +;[(I - p)-lwo]T 
j,, -.I 

It is easily verified that 

( I - p-’ = 2(1- $s’), 

so 

lim Czj = B + 
2(1- ;CST)WsCT + c[2(1- ;cs’)wO]T 

j-m 2 

= B+wocT+cw~- 
CSTWOCT + cw;SCT 

2 
E B. (1) 

Note that Assumption 1 is a necessary condition in order that the for- 
mula for B, equation (l), satisfy the secant condition Bs = y, since 

(2) 

We have thus established the result analogous to Lemma 7.2 of Dennis 
and More [7]: 

THEOREM 1. Let B be symmetric, and assume that cTs = I. Then 

the sequence Czj defined above with CO = B converges to B given by (1) 

and Bs = y. 

If p = 1, this update formula satisfies an important minimization prop- 
erty (see Theorem 7.3 of Dennis and More [7]), and we now show that the 
formula for p > 1 has a similar property. 

THEOREM 2. Let B be symmetric, and assume that cTs = I. Let 

M E Rnxn be any nonsingular symmetric matrix such that MC = M-Is. 

ThenB defined by (l), is the unique solution to the problem 

rnp{]]B^ - B[[M,F : 6 symmetric,B^s = y}, 
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where llCll~,~ denotes the Frobenius norm of the matrix MCM. 

Plot Suppose that MC = M-‘s = z 2nd M is symmetric. Suppose 
that B is any symmetric matrix such that Bs = y. Let 

I?=M(B-B)M 

and 
5 = M@ - B)M. 

Now, .zTz = I, and using (l), we see that 

and since 
Mwo = M(y - Bs) = M@ - B)s = &T, 

we have wrs = .z~E.z and 

E = EZZT + ZZTE - zzTEzzT + zzTEzzT 

2 

It is easy to verify that 
Et = Ez, 

and, if v E Rnx* satisfies uTz = 0, then Ev = zzTEv, so 

IlJWF = IlzzT~vllF 2 IIZZTl1211~~llF I Il~VllF. 

Thus, 3 is the minimizer. w 

2.2. Hereditary Positive Definiteness 

We now establish conditions under which we can guarantee that if B is 
positive definite, then B is also positive definite. 

The standard argument for the quasi-Newton algorithm with p = 1 is 
based on verifying that the determinant of B is positive, and noting that 
the update could have changed the sign of at most one eigenvalue. This 
argument fails for p > 1, so we adopt a different approach here. 

From the definition (1) for B, using the assumption that sTy = yTs, 
we have 

B = B + (y - Bs)cT + c(y - Bs)~ - csT(y - Bs)cT 
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= B - BscT - csTB + csTBscT + ycT + cyT - csTy2 

= (I - csT)B(I - scT) + ycT + cyT - csTycT 

= P@PT + ycT + cyT - csTycT. 

For the block generalization of the Davidon-Fletcher-Powell (DFP) update 
formula, we have c = yr for 7 = (sTy)-l, so 

B = PBPT + y(sTy)-lyT (3) 

is the sum of two symmetric positive semidefinite matrices. Consider zTBz. 
Both summands are nonnegative if z is nonzero, and, in fact, at least one 
of the terms is positive: if PTz = 0, then the second term is positive, 
while if PTz is nonzero, the first is positive. Therefore we have proven the 
following result. 

THEOREM 3. The block-RFP update formula can be expressed as (3) 
with P = I - y(sTy)-‘sT, and if B and sTy are positive definite, then B 
is also positive definite. 

2.3. Inverse Update Formulas and Updates to Factors 

Since it is necessary to solve linear systems involving the approximate 
Hessian matrix B, we need to have a representation that allows this to be 
performed economically. Typically, rather than storing the matrix B, we 
store H E B-l or triangular factors of B. 

A development similar to t,hat of Section 2.1 can be carried out using 
the matrices H rather than B. The secant condition becomes 

Hy = s. 

We can conclude that the double-rank updates are members of the family 

g = H + zdT + dzT _ dyTzdT ; dzTydT, (4) 

where z = s - Hy, and d E Rnxp is chosen so that dTy = I. 
The inverse updates also satisfy a minimization property: 

THEOREM 4. If H is symmetric, dTy is a positive definite matrix, an,d 
M E RnX” is any nonsingular symmetric matrix such that Md = M-ly, 

then H defined by (4) is the un.ique solution to the problem 

rnp{jiH - Hll~,p : g symmetric, &y = s} 
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The block form of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) up- 
date (i.e., the complementary block-DFP formula) results from the choice 
d = ST, where 7 = (yTs)- i. This update has the same hereditary positive 
definiteness properties as does block-DFP and can be expressed in the form 

77 = [I - S(y*s)-lyT]HII - y(sTy)%T] + s(sTy)%? (5) 

The Cholesky factors UT for B can also be updated in a simple way, 
and update formulas can be derived that preserve the sparsity of L while 
achieving the secant condition. We leave the discussion of these updates 
to a future paper. 

Various choices of c in the update of B and of d in the update of H 
result in block generalizations of some well-known algorithms: 

j 

2.4. Finite Termination and Relation to the Block Conjugate Gradient 
Algorithm 

The block-BFGS method and the block DFP methods have the property 
of finite termination on quadratic functions, while the block Greenstadt and 
the PSB (like the original Greenstadt and PSB algorithms) do not. We will 
establish the property for the BFGS version in a proof analogous to that 
of Broyden [a]. 

Suppose we are minimizing p quadratic functions with common Hessian 
matrix G and linear coefficient vectors bi, . . . , bp. Let C be a positive 
definite matrix satisfying C2 = G. Define the n x p matrix e by 

e = C(X - 2*), K = CHC, 

where the ith column of x* is the optimal solution to the ith minimization 
problem. In this notation, we have 

Gx-b=Ce, 

-HCea, 

(eTK2e)-leTKe, 

Gs = -CKea, 

Cz = -(Ke - K2e)cu, 
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ii- E Cd, 

zTy = -2-KeCX, 

dTKe = -dTya-l = -a-‘, 

K = K + 2dT + d^ZT + ikTKeadT, 

Z = e- Kea. 

We see that 

and 

ETKe = (eT - cYTeTK)Ke = 0 

KKe = Ke 

This sets up an induction argument. Assume that 

e(i)TK(j)e(j) = 6, l<j<i-1, 

K(i)K(deb) = K(de(d, l<j<i-1. 

(6) 

(7) 

It is easy to show that 

It is in the proof of this last statement that we need to use the spe- 
cial form of the BFGS parameters: choosing d = ST ensures that for j < 

i,d^(i)TK(j)e(j) = 0. These equations, plus (6) and (7), complete the in- 
duction. 

Now, noting that for j < i 

we have established conjugacy of the search directions. Thus if the search 
directions are linearly independent (i.e., if the p columns of each matrix s(‘) 
are linearly independent), then the algorithm must terminate in at most 
[n/p] iterations. The algorithm minimizes the same quantities as the block 
conjugate gradient algorithm, and if H (‘1 = I, then it minimizes over the 
same subspace as the block conjugate gradient algorithm, and the iterates 
must be identical. 

The proof for finite termination of the block-DFP method and conju- 
gacy of the directions is similar, using the representation 

H = H - Hy(yTHy)-‘yTH + s(sTy)-‘sT 
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for the inverse of the block-DFP matrix B. 

THEOREM 5. The block-BFGS and the block-DFP algorithms termi- 
nate with the optimal solution in at most [n/p] iterations when applied to 
a quadratic function, assuming that the search directions remain linearly 
independent. 

2.5. Convergence of the Hessian Approximations 

It is known that, for quadratic functions, the sequence {Bk} for any 
members of the so-called Broyden family of updates (including the BFGS 
and the DFP algorithms) converges to the Hessian matrix G on a subspace 
corresponding to the search directions. Thus, if the algorithm does not 
terminate prematurely, after n iterations B is equal to G. The block- 
Broyden family seems to have similar properties. Here we establish the 
result only for the block-BFGS update. 

The property arises from using (5) and the fact that y = Gs to derive 
the formula 

x - G-l = jj(J$ - G-l)pT, 

where F = I - s(sTGs)-‘yT. We see that 

(?? - G-l)Gs = 0, 

and since the search directions s are conjugate, 8i)Ts(j) = 0 for j 2 i. 
A similar result holds for the sequence {Bck)} as an approximation to 

G when the block-DFP update is used. The argument parallels the one 
above. 

THEOREM 6. For the block-BFGS algorithm, the matrix Hck) agrees 
with G-l on the subspace spanned by {Gs(‘), . . . , Gs(‘“-‘)} for k = 1,2,. . . 
For the block-DFP algorithm, the matrix B(“) agrees with G on the subspace 
spanned by {s(O), . . , s(~-‘)} for k = 1,2,. . . . 

3. SOLVING NONLINEAR EQUATIONS USING BLOCK QUASI- 
NEWTON ALGORITHMS 

Block quasi-Newton algorithms can also be derived for the solution to 
linear or nonlinear equations 

Si(X) = f-4 i = l,...,p, 
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where the functions gi : 72” -+ R”, share a common Jacobian matrix 
J(X). The secant condition that Bs = 51 remains, but the requirement of 
symmetry is removed. 

The block-Broyden (“good”) update 

?? = B + (y - Bs)(?s)-%~ (8) 

satisfies a minimization property: 

THEOREM 7. Given. B E Rnxn, y E R”, and a nonzero s E 77, the 

B defined by (8) is the unique solution to the problem 

Other update formulas are of the form 

B = B + (y - Bs)& 

where v satisfies cTs = I. 
As before, the algorithm can be implemented by updating the inverse 

of B: 
p = H + (s - Hy)dT, 

where d is chosen so that dry = I. There are two common choices for c 
and d: 

Met hod B update H update 

Block-Broyden “good” method c = ST d = HTsr 

Block-Broyden “bad” method c = BTyr d = yr 

The algorithm can also be implemented by updating factors of B. In 
this case, the QR factors are to be preferred to the LU. 

In contrast to the symmetric updates, the Jacobian approximations B(“) 
do not converge to the Jacobian matrix. For simplicity, we will assume that 
2n/p is an integer. The argument exactly parallels that in [lo], and it can 
be shown that if G is constant, independent of z (i.e., each gi(x) = 0 is a 
linear system of equations), then the matrix 

$‘@I E I _ GH(“) 
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has rank n - p as long as: 

1, d(dTy(j-l) h as no zero columns, j = 1,2,. . . , k, and y(“) has full 
rank, 

2. d(O) is in the range of F(‘jT. 
3. Ic 5 2n/p is odd. 

Thus, the approximations to G always differ on a subspace of dimension 
n - p. 

The algorithm does possess finite termination when used to solve linear 
systems, however. Let 

Then 

p(k) = F(‘C)Fu+1) . . F. = jTwp(“-1). 

Thus, the character of the product matrices PC’) determines the behavior 
of the residuals g(“) in the course of the iteration. The key to this behav- 
ior is the nature of the left null vectors of Pck), the vectors z for which 
zTP(“) = 0. In particular, the factor matrices F(“) are defectiwe, having 
p Jordan blocks of size [/c/21 corresponding to zero eigenvalues. The lin- 
early independent left principal vectors of PC”), the columns of Z, E RnXP 
satisfying 

do not depend on k, and in fact each column is a left eigenvector of P(‘) 
corresponding to a zero eigenvalue. 

THEOREM 8. The vectorg(k+l) as orthogonal to the space spanned by 

the columns of the matrices {zi} (i odd and i 5 k) and, after at most 2n/p 
steps, is forced to be zero. 

Proof The argument parallels that in [lo]. n 
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4. SOME NUMERICAL EXAMPLES 

We concentrate here on solving linear systems of equations, leaving 
the application to function minimzation and nonlinear equations to future 
work. Our motivation is to study the use of the block quasi-Newton ma- 
trices to generate preconditioners for other nearby problems. 

Our example problems are related to finding stationary vectors of Markov 
chains arising in overflow queuing networks. We consider the problem in 
null-vector form 

Gz = 0 

For each queue, we specify arrival and service rates, and overflow is allowed 
from each queue to its successor. As noticed by Kaufman [9] and Chan [5], 
there are many analogies between these systems and those arising from 
discretization of elliptic partial differential equations. The resulting matrix 
has a regular sparsity structure: a five-point operator for two queues, a 
seven-point operator for three queues, etc. If overflow is eliminated, then 
the problem is separable, and the matrix is a tensor product, for which 
linear systems can easily be solved. 

The matrix is determined by the specification of a relatively small num- 
ber of parameters: the arrival and service rates. Often parametric studies 
are desirable, in which, for example, the behavior is studied for an en- 
tire range of parameters. In order to develop efficient algorithms for these 
parametric studies, we propose using the block quasi-Newton algorithms 
with p different initial guesses to solve the problem Gt = 0 for one set of 
parameters, and use the resulting H matrix and z vectors as initial guesses 
for other problems. 

We find the stationary vector using three algorithms, using the separa- 
ble problem as a preconditioner for each [5]. This reduces the problem to 
an identity matrix plus a low-rank correction, and through a capacitance 
matrix technique, we iterate only on the low-rank problem of dimension n 
much less than the number of states. The algorithms are: 

1. The block-BFGS algorithm on the problem symmetrized by multi- 
plying by the transpose operator. 

2. The block-Broyden algorithm on the nonsymmetric problem. 
3. The single-vector Arnoldi algorithm. 

The test problems were three-, four-, and five-queue problems with arrival 
rates of Xi = 0.9, X2 = 0.7, Xs = X4 = X5 = 0.5 and service rates of 
pi = 0.1, /Q = 0.4, p3 = p4 = p5 = 0.5. We solved both the original 
problem and a perturbed problem formed by modifying the arrival and 
service rates by random perturbations uniformly distributed on [0, 0.11. 
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TABLE 1. Number of Iterations for Various Algorithms 

Problem Number of iterations 

Queues States Unknowns BFGS-2 Broyden-2 BFGS-1 Broyden-1 Arnoldi-l 

3 252 102 16 13 21 15 13 

No restart 6 8 7 10 13 

Smart restart 14 9 16 9 11 

4 144 108 15 11 20 13 11 

No restart 6 7 7 8 11 

Smart restart 11 6 12 7 9 

5 108 100 17 11 20 12 11 

No restart 5 6 9 8 11 

Smart restart 12 5 13 4 8 

4 500 308 24 15 28 17 14 

No restart 8 11 10 14 14 

Smart restart 16 9 19 9 11 

5 360 312 24 15 30 16 13 

No restart 6 10 8 11 13 

Smart restart 13 7 15 5 9 

For the block-BFGS and block-Broyden algorithms, there were two ways 
to solve the perturbed problem: 

1. Save the H matrix and the stationary vector for the original problem 
and reuse them (“no restart”). 

2. Reuse only the stationary vector for the original problem (“smart 
restart”). 

The iterations were halted when the norm of the residual was less than 
10F4. The result of the experiment are shown in Table 1. Saving the 
Broyden matrix is often worse than discarding it and using the identity 
matrix, as we might predict from the results in Section 3, since the Broyden 
algorithm does not terminate with H = G-l. On the other hand, using the 
BFGS matrix as a preconditioner can sometimes save as much as 2/3 of 
the iterations, because this matrix is an increasingly good approximation 
to G-l. 
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5. CONCLUDING REMARKS 

We have derived block forms of variable-metric algorithms for solving 
nonlinear equations and unconstrained optimization problems, and demon- 
strated their use for the special case of solving symmetric linear systems. 

Further work needs to be done in making the algorithms useful for 
general nonlinear functions. 

One interesting application of the method is in deriving preconditioners 
for linear systems of equations; a few steps of the block algorithm produce 
an approximation to the inverse of the Hessian matrix, and this approxima- 
tion is the original guess plus a low-rank correction. *Such preconditioners 
can be quite useful in solving additional linear systems involving the same 
matrix or a similar one. 

The work of Schnabel [ll] is closely related to the work presented here, 
but has quite different motivation. In place of our p new search direc- 
tions sck) used in the secant condition, he used the latest p changes ~(~1, 
&-11,. . ) s(h+l), where each s is a single vector. He determined update 
formulas for Broyden’s “good” method, the Powell symmetric Broyden 
method, DFP, and BFGS, and showed least-change secant properties. He 
also showed a q-superlinear convergence rate under the usual conditions 
and discovered that preserving positive definiteness, symmetry, and the 
secant condition are generally incompatible-possible if and only if y*s is 
symmetric positive definite. Schnabel note that the methods generalize the 
“projected” updates of Davidon [6] and a method of Barnes [I]. 

Further work was done in Byrd, Schnabel, and Shultz [4], which gives 
a short discussion of parallel implementation, and in Byrd, Nocedal, and 
Schnabel [3], which discusses limited-memory versions. 

It should be noted that the method of Schnabel et al. does not give the 
n/p or 2n/p-step termination on linear problems achieved by the block 
quasi-Newton family. 

The block quasi-Newton methods are quite appropriate for parallel com- 
putation. They replace the vector-vector products in the overhead of the 
quasi-Newton algorithm by a smaller number of matrix-vector products, 
permitting greater utilization of vector pipelines and fewer global synchro- 
nization points. They also induce parallelism in the function evaluations 
and minimizations over p-dimensional subspaces. For linear problems, sev- 
eral matrix-vector products by G are performed each iteration, increas- 
ing the amount of computation relative to memory traffic. For general 
problems, the function evaluations can be done independently, as can the 
minimization of each of the p functions over the subspaces. 
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