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Abstract

Recent developments in dilute polymer solution rheology are reviewed, and placed within the context of
the general goals of predicting the complex flow of complex fluids. In particular, the interplay between the
use of polymer kinetic theory and continuum mechanics to advance the microscopic and the macroscopic
description, respectively, of dilute polymer solution rheology is delineated. The insight that can be gained
into the origins of the high Weissenberg number problem through an analysis of the configurational changes
undergone by a single molecule at various locations in the flow domain is discussed in the context of flow
around a cylinder confined between flat plates. The significant role played by hydrodynamic interactions
as the source of much of the richness of the observed rheological behaviour of dilute polymer solutions is
highlighted, and the methods by which this phenomenon can be incorporated into a macroscopic description
through the use of closure approximations and multiscale simulations is discussed.

Keywords : dilute polymer solutions, polymer kinetic theory, continuum mechanics, hydrodynamic inter-
actions, high Weissenberg number problem, Brownian dynamics simulation, closure approx-
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1. Introduction

There have been a number of developments in the last
decade or so that have led to significant progress in our
capacity to describe the complex flow of dilute polymer
solutions. These advances have occurred both through
improvements in molecular models developed with poly-
mer kinetic theory, and through the development of sophis-
ticated numerical algorithms for continuum level descriptions.
In this paper, I will review some of these developments,
and attempt to place them within the context of the general
framework that underpins the rheological description of
any complex fluid. Though there have been many impor-
tant contributors to these developments (see for instance
Larson (2004) and Shaqfeh (2005) for recent reviews), and
their work is no sense less significant, this review will
largely use the work done by the rheology group at Monash
university as the basis for the arguments that form the main
contention of this paper, namely, that a fairly clear idea has
emerged in recent years on where the future direction of
rheology research on dilute polymer solutions should be
focussed. 
The schematic diagram in Fig. 1 is an attempt to visu-

alize the different aspects that combine together to form

what might be called “complex fluid mechanics”. Similar
diagrams have been used before for this purpose (Boger,
1996), and they wonderfully capture the essence of the
enterprise that complex fluid mechanicians are generally
embarked upon. This diagram will be referred to frequently
in the paper, and provides the context for all the discus-
sions in it.
The diagram has two parts to it, a macroscopic cycle and

a microscopic cycle. The macroscopic cycle begins with
conservation laws of continuum mechanics such as the bal-
ances of mass, momentum and energy, augmented with an
appropriate constitutive equation. For instance, as is well
known, a constitutive equation that describes the behaviour
of dilute polymer solutions is the Oldroyd-B model. These
equations, with appropriate boundary conditions, are solved
using a numerical technique such as the finite element
method (FEM), to compute both the velocity and stress
fields in the complex geometry that is of interest, arising
from the flow of the complex fluid. The predictions of
these fields are then compared with experimental obser-
vations. If the comparison is not satisfactory, phenome-
nological theories are used to improve the constitutive
equation, which is essentially a repository of information
about the particular complex fluid that is of interest. This
cycle is repeated until convergence is obtained (by which
is meant that there is agreement between theory and exper-
iment).
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In the microscopic cycle, one begins with the equations
of kinetic theory that describe the time evolution of the
configurations of the microstructure of the complex fluid.
The microstructure is usually represented by some coarse-
grained model. For instance, polymer molecules are fre-
quently represented by bead-spring chains. The motion in
time of the microstructure is computed with a mesoscopic
simulation algorithm, of which, depending on the level of
coarse-graining, there are currently a wide variety to choose
from, such as molecular dynamics, Brownian dynamics,
dissipative particle dynamics etc. With the help of an equa-
tion that relates the instantaneous configurations of the
microstructure to the stress in the fluid (such as Kramers
expression for dilute polymer solutions), rheological prop-
erties in homogeneous flows such as simple shear or exten-
sional flows can be obtained. In general, derivations of
configurational time evolution equations in kinetic theory
are restricted to homogeneous flows. A comparison is then
made between predictions and experimental observations.
If one doesn’t have agreement, additional physics at the
microscopic scale are included and the cycle is repeated
until convergence is obtained.
As is well known, kinetic theory can also be used to

derive closed form constitutive equations which can then
be used within the context of continuum mechanics to
carry out the macroscopic cycle.
The aim of this paper is to use the schematic represen-

tation in Fig. 1 to place recent work on dilute polymer
solutions in perspective. In particular, the argument will be
made that while significant progress has been made in
achieving convergence in the microscopic cycle, there is
still quite a long way to go before convergence in the mac-
roscopic cycle can be achieved. As mentioned earlier, this
review is not exhaustive, and only aims to give a flavour
of the issues involved, heavily coloured by the set of prob-
lems that have been pursued in our group. Attention is
restricted to discussing the behaviour of flexible linear
polymer molecules in θ-solutions, and none of the impor-
tant problems that arise in the context of polyelectrolyte
solutions, branched polymers, semi-flexible/rigid polymers

etc are discussed.

2. The Macroscopic Cycle

We first consider the macroscopic cycle for a dilute poly-
mer solution. As is well known, the simplest constitutive
equation which is capable of capturing some of the
observed features of a polymer solution (such as a non-
zero first normal stress difference) is the Oldroyd-B model.
The Oldroyd-B model assumes that the total stress is a sum
of the solvent and polymer contributions to stress, with the
solvent stress τs given by Newtons law of viscosity, and the
polymer contribution τp given by the upper convected Max-
well model,

(1)

(2)

(3)

where, ηs is the solvent viscosity, ηp is the polymer con-
tribution to viscosity, λ is the polymer relaxation time,
κ = v

T is the transpose of the velocity gradient, and
D = 1/2(κ + κ

T) is the rate of deformation tensor. When
written in non-dimensional form (with the velocity gra-
dient non-dimensionalised by , which is the sec-
ond invariant of D, and stress by η , where η = ηs + ηp is
the solution viscosity), these equations become,

(4)

(5)

(6)

Clearly, two non-dimensional parameters arise that char-
acterize the fluid and the flow. The first being the viscosity
ratio β = ηs/η, and the second the Weissenberg number Wi
= λ .
When combined with the conservation of mass and

σ = τs + τp

τs = 2– ηsD

τp + λ
∂τp
∂t
------- v ∇τp⋅ κ– τp⋅ τp– κ

T⋅+⎝ ⎠
⎛ ⎞  = 2– ηpD

∇

γ·  = D:D
γ·

σ = τs + τp

τs = 2– βD

τp + Wi
∂τp
∂t
------- v ∇τp⋅ κ– τp⋅ τp– κ

T⋅+⎝ ⎠
⎛ ⎞+2 1 β–( )D=0

γ·

Fig. 2. Representative benchmarks flows, with the typical critical
Weissenberg number at which breakdown of computa-
tions occurs indicated as Wic.

Fig. 1. Schematic diagram describing the macroscopic and micro-
scopic approaches to complex fluid mechanics.
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momentum, these equations have been solved numerically
and analytically over the years in a variety of situations.
Unfortunately, however, in most geometries, numerical
computations break down as the Weissenberg number
increases beyond a threshold value.
This problem, known as the high Weissenberg number

problem (HWNP), occurs due to the development of very
large stresses and stress gradients in narrow regions of the
flow field, and the challenge of overcoming this problem
has been the driving force behind the development of a
wide range of advanced numerical techniques (Keunings,
2000; Owens and Phillips, 2002). In spite of these
advances, computations disappointingly still break down at
Weissenberg numbers of O(1), and it is still not clear
whether this is because solutions do not exist at higher val-
ues of Wi, or whether it is simply due to the inadequacy of
current numerical techniques (Keunings, 2000). As a result,
one does not yet have the capability of routinely computing
viscoelastic flows. In fact, rather than compute complex
flows, the non-Newtonian fluid mechanics community has
focussed its attention on first solving benchmark problems,
typical examples of which are indicated in Fig. 2. The
basic idea is that once the origin of the HWNP is under-
stood and tamed in well characterized geometries, then
more difficult situations involving complex flows of indus-
trial relevance can be tackled. It is perhaps fair to say, con-
sequently, that far from having convergence between
theory and experiment, one is still in the stage of com-
puting velocity and stress fields reliably.

3. The Microscopic Cycle

We now consider the microscopic cycle and trace the
developments that have occurred in describing dilute poly-
mer solutions at a microscopic scale. Unlike simple New-
tonian fluids, it becomes essential to consider the role of
the microstructure in complex fluids since the microstruc-
ture significantly influences macroscopic properties and is
in turn affected by it. Fortunately, for many of the prop-
erties one is interested in, it is not necessary to account for
details at the atomistic scale. Since large scale properties,
like rheological properties, only depend on general features
of polymer molecules such as the fact that they can be
stretched, oriented and have many degrees of freedom, it is
sufficient quite often to use coarse-grained models to
describe a polymer chain. Further, since the solvent mol-
ecules are much smaller than polymer molecules, and their
motion occurs over much smaller time scales, the solvent
is frequently neglected altogether, and replaced by its net
effect on the polymer molecule. For instance, it is con-
sidered to be the seat of a Brownian force and a drag force
that act on the polymer molecule.
As is well known, the most accurate coarse-grained

model for a finite flexible polymer molecule is the bead-

rod model, with as many rods as there are Kuhn steps Nk

in the polymer chain (Bird et al., 1987b). While using a
bead-rod model for the polymer chain in mesoscopic sim-
ulations is indeed feasible for short chains (with Nk 200),
unfortunately, this is not the case for the typical polymer
molecular weights commonly encountered in practice. For
instance, a polystyrene molecule of 2 million molecular
weight has roughly 2600 Kuhn steps (Prabhakar et al.,
2004). A coarse-grained model with such a large number
of degrees of freedom is still far beyond current compu-
tational capacity. An alternative approach is to use a more
coarse-grained model such as a bead-spring chain with N
beads, with N << Nk, where each spring represents Nk/(N−

1) Kuhn steps. The limit of this approach is the Hookean
dumbbell model, indicated in Fig. 3, which represents the
entire chain with just one degree of freedom, the end-to-
end vector Q.
In the presence of a flow field, with inertia neglected, a

balance of the hydrodynamic drag force Fd, the Brownian
force Fb, and the spring force Fs on a bead, leads to the fol-
lowing equation of motion for the connector vector Q
between the beads,

(7)

where, ζ is the Stokesian bead-friction coefficient (which is
related to the bead radius a through ζ = 6πaηs), kB is the
Boltzmann constant, T is the temperature, the term con-
taining the logarithm of the configurational distribution
function ψ(Q) represents the Brownian force, and Fc is the
“connector” force between the beads (which is equal to Fs

in the direction of Q) (Bird et al., 1987b). Note that κ here
is the transpose of the velocity gradient in a homogeneous
flow field. When the equation of motion is combined with
the equation of continuity for the distribution function ψ,
the following diffusion equation for ψ is obtained (Bird et

 ∼  <

0 = ζ– Q
·

κ Q⋅–( )−2kBT
∂
∂Q
-------lnψ−2Fc

Fig. 3. The dumbbell model for a polymer molecule in a dilute
solution, with a schematic indication of the various forces
acting on the beads.
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al., 1987b),

(8)

which describes the time evolution of the probability dis-
tribution for finding a dumbbell with internal configuration
in the range dQ about Q. 
The stress contribution due to the presence of the poly-

mer can be calculated by an expression that relates the
stress to the configuration of the molecules. In the case of
a dumbbell model, this is the well known Kramers expres-
sion (Bird et al., 1987b),

(9)

where, np is the number density of polymer molecules, the
angular brackets represent an ensemble average over the
distribution function ψ, and δ is the identity tensor. For
Hookean dumbbells, since Fc = HQ, with H being the
spring constant of the Hookean spring in the dumbbell, the
Kramers expression is,

(10)

where, the quantity =  is the second moment of
the end-to-end vector Q, commonly also referred to as the
conformation tensor in continuum mechanics literature.
The eigenvalues and eigenvectors of  provide insight
into the mean stretch and orientation of the polymer mol-
ecules. Clearly, if the second moment can be evaluated,
then all the rheological properties in any flow field can be
determined. 
A time evolution equation for the conformation tensor

can be derived by multiplying Eq. (8) by the dyadic prod-
uct QQ and integrating over all configurations of the
dumbbell,

 (11)

where, λH = ζ/4H is the usual dumbbell relaxation time.
The connection between the microscopic and macro-

scopic cycle can now be derived in a straightforward man-
ner. By eliminating the conformation tensor  from the
time evolution equation (11) using Kramers expression
(Eq. (10)), and making the following mappings between
microscopic and macroscopic variables: λH = λ and npkBTλH

= ηp, one gets back the Oldroyd-B model (Eq. (3)) of con-
tinuum mechanics. This suggests that essentially the
Hookean dumbbell model and the Oldroyd-B model are
two different representations of the same physics, and
whatever insight ones derives from the Hookean dumbbell
model can be applied to understanding results of using the
Oldroyd-B model. 
Notice that the conformation tensor  appears on the

left-hand-side and the righthand-side of the time evolution

equation (11). This makes it possible, as we have just
done, to eliminate  using Kramers expression and to

replace it with τp instead. In more complicated models in
which nonlinear microscopic phenomenon such as finite
extensibility or hydrodynamic interactions are incorpo-
rated, however, the right-hand-side usually has more com-
plex moments of Q. As a result, a closed form equation for
τp cannot be derived. This is origin of the need for “closure
approximations”, which will be discussed in greater detail
shortly.
As mentioned earlier, once the expression for τp is

obtained, predictions in homogeneous flows such as shear
flow and extensional flow can be obtained. In a shear flow,
as is well known, a polymer solution exhibits shear thin-
ning behaviour, with the viscosity decreasing as a function
of shear rate (Bird et al., 1987a). Unfortunately, the Hookean
dumbbell model does not predict shear thinning (Bird et
al., 1987b).
The model performs even more poorly in uniaxial exten-

sional flows. At a critical value of Weissenberg number Wi
= 0.5, the extensional viscosity is predicted to be unbounded
(Bird et al., 1987b). Since it is possible to track the mag-
nitude of the end-to-end vector at the same time, it can be
shown that this occurs because, precisely at Wi = 0.5, the
dumbbell undergoes a sharp coil-stretch transition and
stretches indefinitely (as illustrated schematically in Fig.
4). The problem is clearly due to the infinite extensibility
of the Hookean spring in the model.
This is the point at which the iterative process in the

microscopic cycle begins. Since one has failed to obtain a
sensible macroscopic prediction, there is a need to improve
the physical representation of the reality at the microscopic
scale. The most obvious solution is to make the molecules’
length finite, which would make more realistic the coarse-
grained representation of the polymer molecule. As men-
tioned earlier, using a bead-rod model, which would accu-
rately model the polymer molecules finiteness, is not a
practical option currently. A simpler solution is to use a
nonlinear spring in place of the Hookean spring, i.e., a
spring that becomes increasing difficult to stretch as the
maximum allowed stretch of the spring is approached.
Each spring in a finitely extensible bead-spring chain model
would have a maximum stretchable length Q0, such that,
Q0 = Nk bk/(N−1), where bk is the length of an individual
Kuhn step. The simplest model in this case would be a
dumbbell with a single finitely extensible spring. Different
spring force laws have been suggested in the literature,
such as the Finitely Extensible Nonlinear Elastic (FENE)
force law (Warner, 1972) or the Worm-like-chain (WLC)

∂ψ
∂t
------- = − ∂

∂Q
------- κ Q⋅[ ]ψ−

2kBT

ζ
-----------∂ψ

∂Q
-------−2

ζ
--- Fcψ

⎩ ⎭
⎨ ⎬
⎧ ⎫
⋅

⎝ ⎠
⎜ ⎟
⎛ ⎞

τp = −np Q Fc〈 〉 + npkBTδ

τp = −npHM̃ + npkBTδ

M̃ QQ〈 〉

M̃

∂M̃
∂t
-------- + v ∇M̃⋅ κ– M̃⋅ M̃– κ

T⋅  = 
1
λH

------– M̃
kBT

H
--------I–

M̃

M̃

M̃

Fig. 4. Schematic representation of a polymer molecule under-
going a coil-stretch transition.
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force law (Marko and Siggia, 1995), which reflect the dif-
ferent extents of flexibility of the chain.
With the use of a finitely extensible bead-spring chain

model, the problem of unbounded extensional viscosity
disappears. A simple demonstration of this result in the
context of a dumbbell model, where asymptotic results at
small and large extension rates can be derived analytically,
can be found in the textbook by Bird et al. (1987b). The
polymer still undergoes a coil-stretch transition at Wi = 0.5,
but the viscosity remains bounded as the spring approaches
its fully stretched value. Interestingly, as the extensibility
of the spring becomes large, the finitely extensible spring
approaches a Hookean spring, and the extensional viscos-
ity again becomes unbounded.
Since the expression for the connector force in a finitely

extensible spring is nonlinear, it is not possible to obtain a
closed form expression for the stress tensor. Under these
circumstances, it turns out there are two approaches that
can be adopted in order to evaluate the ensemble average

 in Kramers expression (9) at arbitrary values of the
extension rate (and not just at the asymptotic limits). The
first approach, which leads to an exact (albeit numerical)
evaluation of the average, consists of two steps. The first
step is to write a stochastic differential equation for the
connector vector Q, which is equivalent to the diffusion
equation (8) (Öttinger, 1996). The second step is to use
Brownian dynamics (BD) simulations to integrate the sto-
chastic differential equation in order to obtain an ensemble
of stochastic trajectories for Q. The average of any quantity
that is a function of Q can then be evaluated by carrying
out an ensemble average over all these trajectories.
An alternative approach to using BD simulations (which

can be computationally intensive), is to implement a clo-
sure scheme that enables an evaluation of . Though
this method leads to an approximate value of the average,
it has the advantage that it leads to a closed form con-
stitutive equation for τp that can then be used in the con-
tinuum mechanics context of the macroscopic cycle.
Consider for example the FENE spring. In this case, the

connector force is given by the expression,

(12)

Adopting the first of the above mentioned approaches,
the stochastic differential equation that is equivalent to the
diffusion equation (8) can be written,

(13)

where, W is a three-dimensional Wiener process. This
equation can be integrated numerically with the help of BD
simulations to generate an ensemble of trajectories of Q.
The term  in Kramers expression can then be eval-
uated as an average over these trajectories, and an exact

(numerical) prediction of all rheological properties can be
obtained (Öttinger, 1996; Prabhakar and Prakash, 2002a).
An example of the alternative closure approximation

approach is the commonly used FENE-P closure, which
consists of replacing Q2 in Eq. (12) with its average value
(Bird et al., 1980),

(14)

Once again, by multiplying Eq. (8) by the dyadic product
QQ and integrating over all configurations of the FENE-P
dumbbell, the following closed expression for the con-
formation tensor can be derived,

 (15)

where, the function  is (Pasquali and Scriven, 2004),

(16)

with, bM representing the finite extensibility parameter,
defined as bM = , and 

(17)

Note that the subscript ‘Eq’ represents a quantity evaluated
at equilibrium. 
In this case, Kramers expression for the polymer con-

tribution to the total stress is given by,

(18)

Together, Eqs. (15) and (18), make up the FENE-P con-
stitutive model. The FENE-P model can be combined with
the conservation laws of mass and momentum to lead to a
more refined macroscopic model than the Oldroyd-B model,
since it captures the finite extensibility of a polymer mol-
ecule. This model is discussed subsequently when we revisit
the macroscopic cycle in section 4. Here, we discuss the
implications of the introduction of the FENE spring in
place of the Hookean spring.
Since physically meaningful values of the extensional

viscosity can be predicted with a bead-spring chain with
finitely extensible springs, it becomes possible to compare
theoretical predictions with experimental measurements of
the extensional viscosity. Before discussing such a com-
parison however, it is worth making a few observations
about the experimental determination of the extensional
viscosity.
The accurate measurement of the extensional viscosity of

a polymeric fluid has been a significant challenge for
experimental rheologists because of the difficulty in gen-
erating a pure uniaxial extensional flow. A final resolution
of this problem was only attained in the early 1990s
through the development of the Filament Stretching Rhe-

QFc〈 〉

QFc〈 〉
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H

1 Q
2/Q0
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ζ
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H
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∂t
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1
λH

------– f trM̃( )M̃
kBT

H
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ometer (FISER) in Sridhar’s laboratory at Monash Uni-
versity (Tirtaatmadja and Sridhar, 1993). As demonstrated
by the snapshots of a stretching filament of fluid in Fig. 5,
a sample of fluid is stretched exponentially in the FISER in
the vertical direction. The change in the mid-filament
diameter is measured with a laser, while simultaneously the
forces in the filament are measured with force transducers
at the end plates. The FISER procedure has been stan-
dardized to remove various non-idealities in the flow kine-
matics and provides the most reliable measurement of the
elongational stress as a function of strain rate that is cur-
rently available, and has proved to be a very robust method
for the measurement of the extensional viscosities of a
wide array of complex fluids (McKinley and Sridhar, 2002).
The first attempt to make a direct comparison between

predictions of Brownian dynamics simulations and exper-
imental measurements in Sridhar’s laboratory of the exten-
sional viscosity of a dilute polymer solution, in the context
of a bead-spring chain model with finitely extensible
springs, was by Li et al. (2000). Fig. 6 displays the results
of their comparison for the Trouton ratio (which is a ratio
of the extensional viscosity to the zero shear rate viscosity)
as a function of time, observed during the extensional flow
of 1.95 million molecular-weight polystyrene solutions.
Clearly the simulations capture remarkably accurately all
the qualitative features of the growth in the Trouton ratio
with time, and even do a reasonable job of obtaining quan-
titative agreement. However, the discrepancy that can still
be observed between experiment and theory suggests that
including finite extensibility alone is perhaps not sufficient
to achieve convergence of theory with experiment. As will
be discussed in greater detail when we return to the micro-
scopic cycle in section 5, it turns out that there are a num-
ber of aspects of the simulations that can be improved
upon. For instance, one can make a more rational choice of

the parameters used in the simulations. More importantly,
recent experimental observations of coil-stretch hysteresis
in dilute polymer solutions have made it clear that it is cru-
cial to incorporate the nonlinear phenomenon of hydro-
dynamic interactions into the theoretical description before
an adequate description of polymer solution rheology can
be obtained. Before exploring these developments, how-
ever, it is appropriate to first discuss developments in the
macroscopic cycle that mirrored the microscopic recog-
nition of the importance of incorporating the finite exten-
sibility of the polymer molecule.

4. The Macroscopic Cycle Revisited

Nearly two decades ago, Rallison and Hinch (1988) argued
in a seminal paper that in the case of the Oldroyd-B model,
the inability to compute macroscopic flows at highWeis-
senberg numbers has a physical origin in the infinite exten-
sibility of the Hookean spring that underlies the model. By
considering the simple example of a stagnation point flow

Fig. 5. Snapshots of a filament at various times as it is being
extended in a Filament Stretching Rheometer.

Fig. 6. Comparison between simulation (lines) and the experi-
mental results (symbols) for the Trouton ratio versus time
of 1.95 million molecular-weight polystyrene solutions
undergoing uniaxial extensional flow at various extension
rates. Reprinted figure with permission from L. Li, R. G.
Larson, and T. Sridhar, Journal of Rheology, 44, 291-322,
2000. (http://dx.doi.org/10.1122/1.551087) Copyright 2009
by the American Physical Society.

Fig. 7. Schematic representation of regions of high polymer
stretch along the boundary and in the wake of a cylinder
arising from the flow of a viscoelastic fluid around it.
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of an Oldroyd-B fluid, they showed that when the strain
rate is supercritical, infinite stresses can occur in the inte-
rior of a steady flow, brought about by the unbounded
stretching of polymer molecules. Based on their analysis,
they suggested the use of a constitutive equation that is
derived from a microscopic model with a nonlinear spring
force law as an obvious remedy for the HWNP.
Chilcott and Rallison (1988) examined the benchmark

complex flow problems of unbounded flow around a cyl-
inder and a sphere, using a dumbbell model with finite
extensibility, as a means of demonstrating the validity of
this analysis. In order to understand the coupling between
the polymer extension by flow, the stresses developed in
the fluid, and the resultant flow field, they deliberately
used the conformation tensor as the fundamental variable
instead of the stress, and used kinetic theory to derive a
simple closed from expression relating the conformation
tensor to the polymer contribution to the stress. This con-
stitutive model is now referred to as the FENE-CR model.
By solving the equation for the conformation tensor along
with the mass and momentum conservation laws, Chilcott
and Rallison showed that even though there existed highly
extended material close to the boundary and in the wake of
a cylinder (as indicated schematically in Fig. 7), there no
longer was an upper limit to Wi in the range of values
accessible in their computations. Because the degree of
molecular extension is directly related to the magnitude of
stress, the Chilcott and Rallison procedure established a
clear connection between high stresses and stress gradients
in the flow domain with the configurational and spatial dis-
tribution of polymer conformations. Indeed, when simu-
lations were carried out with the polymer length set to
infinity rather than a finite value, the downstream structure
could not be resolved, and the mean stretch of the poly-
mers in the flow direction continued to grow with increas-
ing Wi until the solution failed.
Despite this compelling demonstration of the physical

origin of the HWNP, the Oldroyd-B model continues to be
used extensively in computational rheology. There are per-
haps at least two reasons for this. Firstly, there is a feeling
that in a complex flow, the velocity field will adapt itself
to avoid the stress becoming singular through some kind of
“self-correction” mechanism. Secondly, even if the stresses
are large, since they are not infinite it might be possible to
develop robust numerical algorithms that finally overcome
the HWNP problem. In support of this argument, Wap-
perom and Renardy (2005) considered the case of an
ultradilute solution where the velocity field is decoupled
from the polymer stress and showed that solutions exist for
arbitrarily large Weissenberg numbers. Until very recenty,
there has been no conclusive demonstration that bounded
solutions for the viscoelastic stress do not exist in complex
flows at high values of Wi. However, several papers have
appeared in the past few years showing analytically that in
the special case of steady flows with an interior stagnation
point, or in steady stagnation point flows away from a

wall, the mathematical structure of the upper convected
Maxwell, Oldroyd-B and FENE-P models can be expected
to lead to singularities in the viscoelastic stresses and their
gradients with increasing Wi (Becherer et al., 2008, 2009;
Renardy, 2006).
The use of the conformation tensor as the fundamental

quantity rather than the stress has become common in com-
putational rheology, and the challenge of developing
numerical methods capable of resolving steep stresses and
stress gradients has been transformed to one of developing
techniques capable of resolving rapidly varying confor-
mation tensor fields. In an important recent breakthrough,
Fattal and Kupferman (2004) have shown that by changing
the fundamental variable to the matrix logarithm of the
conformation tensor, stable numerical solutions can be
obtained at values of Wi significantly greater than ever
obtained before. They argue that the need for this variable
transformation arises due to the inability of conventional

Fig. 8. Flow around a cylinder confined between two flat plates. Boundary conditions at the various boundaries are indicated. Reprinted
figure with permission from M. M. Bajaj, M. Pasquali and J. R. Prakash, Journal of Rheology 52, 197-223, 2008. (http://
dx.doi.org/10.1122/1.2807444) Copyright 2009 by the American Physical Society.
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methods based on polynomial basis functions to adequately
represent the exponential profiles that emerge in confor-
mational tensor fields in the vicinity of stagnation points
and in regions of high deformation rate. Hulsen et al.
(2005) have recently carried out a stringent test of the log
conformation representation by examining the flow of an
Oldroyd-B fluid around a cylinder confined between par-
allel plates. A schematic of this geometry is depicted in
Fig. 8. They found that with the log conformation for-
mulation, the solution remains numerically stable for val-
ues of Wi considerably greater than those obtained
previously with standard FEM implementations. However,
with regard to the behavior of the convergence of the solu-
tion with mesh refinement, they found that the log con-
formation formulation fails to achieve mesh convergence
in the entire wake region at roughly the same value (Wi
0.6) as in previous studies. Thus, the HWNP still persists
with the Oldroyd-B model, and until recently its origin
remained a mystery.
In a recent paper, however, Bajaj et al. (2008) have con-

clusively established the connection between the HWNP
and the unphysical behavior of the Oldroyd-B model, in
the benchmark problem of the steady symmetric two-
dimensional flow around a cylinder confined between par-
allel plates. Basically, insight into the HWNP has been
gained by considering: (i) the behaviour of a packet of
fluid containing an ensemble of dumbbells starting close to
the downstream stagnation point and travelling along the
the symmetry line in the wake of the cylinder, and (ii) the
implications of the form of the conformation tensor equa-
tion along the symmetry line.
Using the Newtonian velocity field computed by FEM,

Bajaj et al. (2008) have shown that material particles trav-
elling down the centreline in the cylinder wake accumulate
a significant amount of strain (of roughly eight Hencky
units) due to the extended period of time that they spend in
the neighbourhood of the stagnation point. The behavior of
individual molecules in an ultra-dilute solution as they are
subjected to this degree of straining, was also examined.
Basically, trajectories of Hookean dumbbells convected by
the flow field down the centerline, subjected to the local
strain rate, were computed using BD simulations. Nearly
all the dumbbells in the ensemble were found to be close
to their initial state of extension until approximately five
strain units, beyond which several of the dumbbells were
seen to undergo rapid extension (which is a clear signature
of a coil-stretch transition), with the extension becoming
more pronounced as the Wi increased. Very recently, Franç-
cois et al. (2008) have examined the flow around a cyl-
inder of PEO polymer solutions seeded with a small
amount of fluorescently labeled DNA molecules and have
obtained graphic visual images of the presence of narrow
regions of highly stretched DNA molecules in the vicinity
of a cylinder, which they propose implies the existence of
a coil-stretch transition.
The lack of convergence with mesh refinement for the

Oldroyd-B model is usually seen most drastically in the
failure of different meshes to yield a converged value of
the maximum that occurs in the polymeric stress compo-
nent τp,xx on the centerline in the wake of the cylinder. As
will be discussed in greater detail shortly, the results of
Bajaj et al. (2008) clearly indicate that this failure is linked
to the polymer molecules undergoing a coil-stretch tran-
sition in the wake of the cylinder, since the coil-stretch

 ∼  >

Fig. 9. (a) Dependence of the non-dimensional strain rate λκxx on Wi
−1, at the location x = x* of the maximum in Mxx in the cylinder

wake, for a dilute Oldroyd-B fluid. (b) Variation of the polymer stretch Mxx at the location of the stress maxima with λκxx|x=x*,
for Oldroyd-B and FENE-P models for the viscosity ratio β = 0.59. Reprinted figure with permission from M. M. Bajaj, M. Pas-
quali and J. R. Prakash, Journal of Rheology 52, 197-223, 2008. (http://dx.doi.org/10.1122/1.2807444) Copyright 2009 by the
American Physical Society. 
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transition is found to occur in the vicinity of the location of
the maximum in the normal stress component.
Interestingly, when Bajaj et al. (2008) compared the

magnitude of the dumbbells to the length of an element in
the finite element mesh, they found that some of the mol-
ecules were large enough to span several elements. The
possibility that under certain circumstances polymer length
scales can become comparable to the mesh size in finite
element simulations was anticipated several years ago by
Öttinger (1995). A recent study illustrating another situ-
ation in which polymer molecules stretch to a contour
length that is comparable to the characteristic dimension of
the flow is the investigation of the dynamics of dilute solu-
tions of DNA flowing in a scaled down roll-knife coating
flow by Duggal et al. (2008). As mentioned earlier, kinetic
theory models, such as the Hookean dumbbell model, are
typically built on the assumption of homogenous fields,
with negligible variation on the length scale of individual
molecules. The findings by Bajaj et al. (2008) and Duggal
et al. (2008) highlights the need to derive more refined
models that are valid in non-homogeneous fields. 
Insight into the nature of the maximum in the polymeric

stress on the centreline in the cylinder wake can be
obtained by examining the equation for the xx-component
of the conformation tensor. It is straightforward to show
that along the symmetry line equation (11) can be sim-
plified at steady state to an ordinary differential equation
for Mxx,

(19)

where, Mxx is the xx-component of the non-dimensional
conformation tensor M defined by,

(20)

Since dMxx/dx = 0 at the maximum in the wake, a simple
relationship for the value of Mxx at the maximum can be
derived, which is denoted here by x*,

(21)

This equation clearly implies that Mxx becomes unbounded
if λκxx approaches 0.5 at x = x*. Using an FEM technique,
Bajaj et al. (2008) examined the value of λκxx at the loca-
tion of the maximum for both ultra-dilute and dilute poly-
mer solutions.
For ultra-dilute solutions, their computations reveal that

λκxx|x=x* approaches 0.5 as a power-law in Wi. As a result,
Mxx → ∞ only as Wi → ∞, entirely in agreement with the
earlier work by Wapperom and Renardy (2005). On the
other hand, for dilute solutions, it was observed that
λκxx|x=x* → 0.5 linearly in Wi−1, independent of the choice
of viscosity ratio β, as displayed in Fig. 9(a). This implies

that Mxx → ∞ at a finite value of Wi ≈ 0.7. This is clearly
evident in Fig. 9(b), where the dependence of Mxx on
λκxx|x=x* is displayed for an Oldroyd-B fluid by the con-
tinuous blue line for β = 0.59. For dilute FENE-P liquids,
on the other hand, Fig. 9(b) reveals that Mxx increases rel-
atively rapidly as λκxx|x=x* approaches 0.5, but levels off and
remains bounded for higher values of λκxx|x=x*. The shape
of the curves are strongly suggestive of the occurrence of
a coil-stretch transition in the cylinder wake.
With a view to examining whether  approaches zero

at a finite value of Wi, Bajaj et al. (2008) plotted the
inverse of Mxx versus the inverse of Wi, as displayed here
in Fig. 10. The black dashed line for an ultra-dilute solu-
tion suggests that, as remarked above,  goes to zero
only as Wi → ∞. On the other hand, for dilute solutions, the
coupling of the flow and the polymer stress appears to lead
to an upper bound for the existence of solutions. The data
in Fig. 10 suggests that the maximum value is Wi = 0.683.
Thus, for the first time, Bajaj et al. (2008) have presented
evidence for an upper bound in Wi for the existence of
solutions for the steady flow of an Oldroyd-B fluid around
a cylinder confined between parallel plates. Interestingly,
there are currently no mesh-converged results beyond Wi =
0.7 for steady flow around a confined cylinder.
It is worth noting, however, that the results of Bajaj et al.

(2008) are limited to steady symmetric two-dimensional
flow around a confined cylinder. Even though the stresses
become singular in this particular scenario, a different type
of solution to the Oldroyd-B model might arise in a dynam-
ical situation, which is probably asymmetric and time-
dependent. 
Chilcott and Rallison (1988) suggested insightfully sev-

dMxx

dx
------------ = 

1 2λκxx x( )–( )
λvx x( )

--------------------------------– Mxx + 
1

λvx x( )
---------------

M = 1

Q
2〈 〉eq/3( )

------------------------M̃

Mxx|x x*=  = 1
1 2λκxx|x x*=–
--------------------------------

Mxx

1–
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Fig. 10. Variation of the inverse polymer stretch  for the
Oldroyd-B model, at the location of the stress maxima in
the cylinder wake, with inverse Weissenberg number Wi−1,
for ultradilute and dilute solutions. Reprinted figure with
permission from M. M. Bajaj, M. Pasquali and J. R.
Prakash, Journal of Rheology 52, 197-223, 2008. (http:/
/dx.doi.org/10.1122/1.2807444).
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eral years ago that the flow modification near the rear stag-
nation point caused by the coupling of the spatial gradients
of polymer structure with the fluid velocity field could be
the source of the physical mechanism leading to the break-
down of the numerical solution. They argued that the
increased velocity gradients near the rear stagnation point
causes Mxx to grow, which in turns feeds back to cause a
greater increase in the velocity. While this cannot occur
indefinitely for a FENE-P fluid, there is no mechanism to
stop Mxx from growing indefinitely for an Oldroyd-B fluid,
leading to the ultimate breakdown of the solution.
While it is certainly true that FENE-P fluid simulations

do not breakdown at the same small values of Wi as those
observed for the Oldroyd-B fluid, they nevertheless do
inevitably breakdown as Wi increases beyond some thresh-
old value. This is because while the stress itself may not be
singular, singularities might exist in stress gradients. In
their recent paper, Becherer et al. (2009) suggest that for
all constitutive equations which include stress advection
and stress relaxation, but do not incorporate stress diffu-
sion, localization of large stresses and stress gradients, and
the existence of singular behaviour might be the typical
feature of solutions near stagnation points. Clearly, there-
fore, the incorporation of finite extensibility alone does not
lead to a resolution of all the difficulties associated with
computing the flow of viscoelastic fluids.
Before finally discussing possible future directions for

computing viscoelastic flows, additional physical phenom-
enon suggested by recent advances in the pursuit of the
microscopic cycle which must be incorporated into the the-
oretical description of polymer solutions in order to obtain
accurate predictions, are first discussed in the next section.

5. The Microscopic Cycle Revisited

We return to the microscopic cycle and continue our dis-
cussion of attempts to attain convergence between exper-
iment and predictions in homogeneous flows. Many years
of endeavour in this direction have made it clear that in
order to obtain accurate predictions, two important pieces
of physics have to be incorporated into microscopic mod-
els, namely hydrodynamic interactions (HI) and excluded
volume (EV) effects (Bird and Öttinger, 1992; De Gennes,
1979; Doi and Edwards, 1986; Larson, 2004; Prakash,
1999; Shaqfeh, 2005).
As is well known, excluded volume interactions account

for the fact that two parts of a polymer chain cannot occupy
the same place at the same time. It is crucially important to
include this phenomenon in the description of all solutions
that are not at their θ-temperature. For instance, the simple
scaling relation between the radius of gyration and
molecular weight of a polymer, Rg ~M

0.6, observed for
large molecular weight polymers in good solvents, cannot
be predicted without the incorporation of EV effects. The

theoretical treatment of EV effects in equilibrium solutions
is very advanced, and remarkably accurate predictions of
experimental observations have been obtained (De Gennes,
1979; Des Cloizeaux and Jannink, 1990; Doi and Edwards,
1986; Schäfer, 1999). While the description of EV effects
in far from equilibrium situations is still in its infancy, a
number of efforts have been made to incorporate them into
the theoretical description (Larson, 2004). In particular,
Prakash and co-workers have shown that a framework sim-
ilar to that used to describe EV effects at equilibrium can
also be used to describe their influence far from equilib-
rium, and parameter free predictions of a number of exper-
imental observations can be obtained with such an approach
(Prakash, 2001, 2002; Prakash and Öttinger, 1999; Sunthar
and Prakash, 2005, 2006). In this paper, attention is
restricted to the role played by hydrodynamic interactions
in determining the rheology of dilute polymer solutions,
and readers are referred to the review paper by Larson
(2004) and the papers by Prakash and co-workers for a
more complete description of far-from-equilibrium EV
effects.

5.1. Hydrodynamic interactions
Hydrodynamic interactions describe the disturbance of

the velocity field near all parts of a polymer chain due to
the motion of any one part of the chain (as shown sche-
matically in Fig. 11). This phenomenon couples together
the motion of all the segments in a polymer molecule, and
changes the drag force experienced by them due to their
motion relative to the solvent. It turns out to be crucial to
include HI to obtain an accurate description of any prop-
erty whose definition depends on time, i.e., any dynamic
property.
An example of a dynamic property which can be pre-

dicted accurately by including HI is the diffusivity D,
which is proportional to the mean squared displacement of

Fig. 11. Schematic representation of the effect of hydrodynamic
interactions on a coarse-grained bead-spring chain model
immersed in a solvent.
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a polymer molecule with time. If HI is neglected, it can be
shown that the total frictional resistance to motion of the
molecule is the sum of the frictional resistance from all the
polymer segments (Bird et al., 1987b). As a result, the total
frictional drag on the polymer scales linearly with molec-
ular weight M. Since diffusivity varies inversely with drag,
D scales as M−1. On the other hand, if HI is included, it can
be shown that the drag on the polymer scales as the size of
the polymer molecule (Bird et al., 1987b). In a θ-solution
at equilibrium, the size of a polymer molecule in the coiled
state scales as the square root of molecular weight, and as
a result, D ~M −1/2. This is exactly in agreement with obser-
vations.
Very roughly speaking, the inclusion of HI appears to

ensure that the drag on a polymer molecule is calculated
accurately. While the importance of estimating drag accu-
rately was demonstrated quite early in the development of
kinetic theory by Zimm (1956) for the prediction of an
equilibrium property such as the diffusivity, and for pre-
dicting linear viscoelastic properties such as small ampli-
tude oscillatory shear properties, it has recently become
clear that accurately accounting for the conformational
dependence of drag is extremely important even for prop-
erties far from equilibrium. Perhaps the most compelling
demonstration of this has come out of attempts to predict
the extraordinary manifestation of hysteresis in the behav-
iour of polymer solutions. In the subsection below, the phe-
nomenon of coil-stretch hysteresis is discussed in some
detail since it seems inevitable that an adequate recognition
of its importance will eventually have paradigm changing
implications for the modelling of polymer solution rhe-
ology. Before we do so, however, we summarize the equa-
tions used in polymer kinetic theory to describe HI within
the context of bead-spring chain models.
Under homogeneous flow conditions, the configurational

state of a bead-spring chain, with Ns springs, is completely
specified by the set of connector vectors {Qi|i = 1, ... , Ns}
(Bird et al., 1987b). The Fokker-Planck equation govern-
ing the evolution of the configurational probability dis-
tribution ψ(Q1, ..., QNs, t) in the presence of hydrodynamic
interactions is (Prakash, 1999),

(22)

where, the dimensionless diffusion tensors  are given
by,

(23)

Here, Aij = δ ij + δi+1, j+1 − δi, j+1 − δi+1, j = 2δij − δ |i−j |,1 is an ele-
ment of the Ns × Ns Rouse matrix, and Ωνµ, ν, µ = 1, ..., N,

are HI tensors, which are typically related to the inter-bead
displacement rµν between beads µ and ν, by expressions of
the form,

(24)

Models which neglect the influence of HI -such as the
original bead-spring model of Rouse (Rouse, 1953)- can be
interpreted as ones in which the tensor C is set to zero.
Early models incorporating HI (Kirkwood and Riseman,
1948; Zimm, 1956) used the Oseen-Burgers form of the HI
tensor, in which

.  (25)

Although the Oseen-Burgers description of HI is inac-
curate when the pair-wise separation between beads is
comparable to the size of the beads, the hydrodynamic
behaviour of long polymer chains is dominated by the
interactions between non-adjacent beads, and the short
range inaccuracy of the Oseen-Burgers description has
been shown to be relatively unimportant in the prediction
of properties that depend on the polymer chain as a whole
(Öttinger, 1987; Zimm, 1980). Further, its simple form is
particularly useful for the development of closure approx-
imations. In numerical simulations, however, the Oseen-
Burgers expression becomes problematic when ,
since the 3N×3N diffusion block-matrix comprising the

 tensors as its constituent blocks, can become non-pos-
itive definite (Rotne and Prager, 1969) when beads overlap.
Typically, in Brownian dynamics simulations, the Rotne-
Prager-Yamakawa (RPY) modification (Prabhakar et al.,
2004; Rotne and Prager, 1969; Yamakawa, 1971), which
ensures that the diffusion block-matrix always remains
positive-definite, is used in place of the Oseen-Burgers ten-
sor.
Kramers’ expression for the polymer contribution to the

stress tensor τp for bead-spring chains is given by (Bird et
al., 1987b),

(26)

Consequently, the key to predicting rheological proper-
ties in the presence of HI is the evaluation of the con-
figuration average , with the distribution function
ψ(Q1, ..., QNs, t) that satisfies the diffusion equation (22).
As discussed in the case of the dumbbell model with a non-
linear spring earlier, two options are available in order to
do this. The first is to write a stochastic differential equa-
tion which is equivalent to Eq. (22), and carry out BD sim-
ulations, and the other is to introduce closure approximations.
The latter option is discussed in greater detail in subsection
5.4. We refer readers to Prabhakar and Prakash (2004) for
a description of the stochastic differential equation that is
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equivalent to Eq. (22), and for details of the BD algorithm
that can be used to solve it. 
The discussion of coil-stretch hysteresis is taken up in

subsection 5.2 below. In the remaining subsections of sec-
tion 5 we continue our discussion of the treatment of HI in
the microscopic cycle, and how it can be incorporated into
theoretical descriptions in the macroscopic cycle through
the development of closure approximations.

5.2. Coil-stretch hysteresis
In a seminal paper more than three decades ago, De

Gennes (1974) proposed arguments to suggest that under
certain circumstances, the time history of deformation
experienced by the solution might have a crucial bearing
on the steady-state value of stress attained for a given
deformation rate. The extraordinary implications of De
Gennes contention for the modelling of polymer solutions
was recognized at about the same time by Hinch and Tan-
ner (Hinch, 1974; Tanner, 1975). Serious early doubts,
however, about the theoretical validity of De Gennes argu-
ments (Fan et al., 1978; Wiest et al., 1989), and the
absence until recently of any supporting experimental evi-
dence, has implied that the need for a fundamental change
in the modelling of polymer solution rheology has not been
widely recognized so far.
Recently, in ground breaking experiments, Shaqfeh and

coworkers have shown that ultradilute solutions of DNA
molecules subjected to planar elongational flow at identical
rates of deformation, can have individual DNA molecules
that are in two widely disparate conformational states −

either coiled or highly stretched − depending on the time
history of the solution’s deformation (Schroeder et al.,
2003, 2004). Since the stress in a polymer solution has its
origin predominantly in the entropic resistance of indi-
vidual polymer molecules to deformation from their equi-
librium coiled state, the Stanford group’s results clearly
validate De Gennes hypothesis (albeit indirectly) of dif-
ferent deformation histories leading to disparate states of
stress. In addition, theoretical work by these authors and
others (Darinskii and Saphiannikova, 1994; Hsieh et al.,
2005; Schroeder et al., 2003, 2004) has also helped place
the original arguments of De Gennes, Hinch and Tanner on
a more rigorous footing.
The design of the flow cell used in the Stanford exper-

iments, while being ideal for the observation of single mol-
ecules for extended periods of time, does not currently
enable the simultaneous measurement of fluid stresses. In
a recent paper, however, Sridhar et al. (2007) have reported
for a synthetic polymer solution undergoing uni-axial elon-
gational flow, the measurement of bulk stresses with appre-
ciably different magnitudes at identical values of strain
rate, depending on the time history of the solution’s defor-
mation. This demonstration has been achieved by extend-
ing the operation of the filament stretching rheometer from

its usual constant strain rate mode, in two significant ways:
(i) to a ‘quench’ mode of operation, where the strain rate
is made to undergo a step change downwards from an ini-
tially high value, and (ii) to a constant stress mode of oper-
ation, where a uniform elongational flow field is generated
in which a desired value of stress is achieved and main-
tained constant, while measurements of the resultant strain
rate are made. Computer simulations have also been car-
ried out by Sridhar et al. (2007) to mirror the experiments
and are shown to support and enable the interpretation of
the experimental observations, and indicate as conjectured
originally by De Gennes, that the origin of the deformation
history dependence of stress lies in the conformation
dependence of hydrodynamic forces.
De Gennes original conclusions can be summarized quite

simply with the help of the schematic in Fig. 12, where σ
is the steady state value of the stress in a dilute solution
subjected to an elongational flow with strain rate . At
small values of , polymer molecules are predominantly in
a coiled state. However, with increasing  a critical value
of strain rate  is reached at which the molecules
undergo a sharp transition from a coiled to a stretched
state, with a concomitant steep increase in the value of the
steady-state stress. The rapidity of the transition increases
greatly with increasing polymer molecular weight M. De
Gennes’ insight was to recognize that when the strain rate
is incrementally decreased, on the other hand, from an ini-
tial value at which polymer molecules are in a stretched
state, the critical strain rate  at which the molecules
return to a coiled state is not the same as  but is notice-
ably smaller, with a difference that grows as the square root
of molecular weight. As a result, for strain rates that lie
between these two critical values, the solution’s stress
could correspond either to the coiled state value, or to the
stretched state value, depending on the time history of
deformation. Indeed, a third value of stress was also shown

ε·

ε·

ε·

ε·max

ε·min

ε·max

Fig. 12. Sketch of steady-state stress versus strain rate proposed
by de Gennes, demonstrating the existence of hysteretic
behaviour.
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to be possible in principle, that lies between these two
states, but which is unstable. This hysteretic behaviour was
attributed by De Gennes to arise due to the large change in
the hydrodynamic drag force experienced by a polymer as
it is unraveled from a coiled state to a stretched state. In the
coiled state, the drag on a polymer is approximately equal
to that on a sphere whose radius is equal to the radius of
gyration of the polymer, Rg. In the stretched state, however,
the drag is approximately equal to that on a slender cyl-
inder, whose length is equal to the fully stretched length of
the polymer chain, L.
A simple understanding of the origin of coil-stretch hys-

teresis for a single molecule subjected to an elongational
flow, in the absence of Brownian forces, can be obtained
by representing a polymer molecule by a dumbbell (Tan-
ner, 1975). As indicated in Fig. 3, the hydrodynamic drag
force on the polymer (modelled by the frictional force on
the beads), is balanced by the resistance of the polymer
molecule to deformation (modelled by the spring force
between the beads). Equilibrium separation between the
beads is attained when the drag force on the beads exactly
balances the spring force between them. Since both the
drag force and the spring force vary non-linearly with bead
separation, it turns out that for strain rates between the crit-
ical values  and , three distinct solutions to the
force balance exist. This is illustrated schematically in Fig.
13 as the points of intersection between the curves rep-
resenting the spring and drag force, respectively (including
the one at the origin, which corresponds to a coiled state).
For strain rates in this hysteresis window, both the coiled
and stretched state solutions are stable, with the interme-
diate solution being unstable. As a result, for an initially
stretched molecule, as the strain rate is decreased below

 from above, the force balance is satisfied with the

polymer remaining in a stretched state, with a transition to
a coiled state only occurring when the strain rate falls
below  (see Fig. 12). Such is not the case for strain
rates below  or above , where only a single solu-
tion for the equilibrium bead separation is stable, corre-
sponding to either the coiled or the stretched state,
respectively. For an initially coiled molecule, as the strain
rate is increased incrementally above  from below, the
force balance is satisfied with the polymer remaining in a
coiled state for < < , with a rapid transition to the
stable stretched state solution, when > .
A serious and valid argument against the possible exist-

ence of multiple steady-states proposed by De Gennes was
made by Fan et al. (1978), who pointed out that since the
Fokker-Planck equation governing the distribution of con-
figurations of a chain is linear in the distribution function,
only a unique distribution function is admissible as a solu-
tion at any particular extension rate, leading to a unique
steady-state value for any macroscopic property. Accord-
ing to Fan et al. (1978), it was the use by De Gennes of
approximations that made the governing equations non-
linear in the distribution function, that was the source of
the incorrect postulation of the existence of multiple
steady-states.
In his original paper, De Gennes had also proposed an

alternative framework within which it is possible for hys-
teretic behaviour to be observed, which does not suffer
from the shortcomings pointed out by Fan et al. (1978).
Fig. 14 is a schematic representation of this alternative pic-
ture within which a polymer molecule’s behaviour is
examined in terms of its conformational free energy. For
strain rates > , the stretched state is the lowest energy
state, while for strain rates < , the coiled state is the
lowest energy state. However, for strain rates between 
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Fig. 13. Origin of coil-stretch hysteresis in the absence of Brown-
ian forces. Nonlinear dependence of the spring and drag
forces on polymer extension Q, at a particular value of
strain rate within the hysteresis window, < < .
Points of intersection indicate the three possible solu-
tions to the force balance.
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Fig. 14. Energy landscapes for strain rates in the neighbourhood

of the hysteresis window, < < , indicating sta-
ble, kinetically frozen and unstable states.
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and , even though the coiled state (at the origin) is a
lower energy state, an initially stretched molecule is kinet-
ically “frozen” in a stretched state because of a large
energy barrier that separates the stretched and coiled states.
As a result, when the strain rate is decreased from a value
above  to a value within the hysteresis window, and
provided that the energy barrier between the two stable
states is sufficiently large, the measured stress in a polymer
solution undergoing extensional flow would correspond to
an ensemble of molecules that are not distributed according
to the “ergodic” steady-state distribution at that strain rate,
but rather are distributed over an ensemble of “frozen”
configurations. Since this “frozen” ensemble would be
entirely different when the solution is extended at the same
strain rate but starting with initially coiled molecules, stress
hysteresis would be observed.
It is worth noting that within this picture of the dynamics

of coil-stretch transition, there are two scenarios in which
hysteresis will not be observed. The first is one in which
the energy barrier separating the coiled and stretched states
is not large relative to thermal energy. In this case, mol-
ecules would rapidly transit between the two states, leading
to an ergodic sampling of all possible conformational
states, and a unique value for any property obtained as a
conformational average. The second is one in which the
experimental observation is made over an infinitely long
period of time. In this case, even though polymer mole-
cules are “frozen” in certain conformational states, with a

significant slowing down in their dynamics, ultimately the
ensemble of molecules will be distributed over all possible
states, with a unique conformational average. These argu-
ments suggest therefore that the size of the hysteresis win-
dow is a function both of the energy barrier between states,
and the duration of experimental observation.
The experimental observations by Shaqfeh and cowork-

ers (Schroeder et al., 2003, 2004) of the simultaneous
existence of both coiled and stretched states of E-coli
DNA, for as many as ε = 15 Hencky strain units (where,

), and the clear delineation of the hysteresis window
at ε = 15, lends strong support to De Gennes visualization
of coil-stretch hysteresis in terms of polymer molecules
hopping between states in the conformational energy land-
scape. 
In addition, results of Brownian dynamics simulations of

bead-spring chains, in which hydrodynamic interactions
are included along with finitely extensible springs, carried
out by Shaqfeh and coworkers (Beck and Shaqfeh, 2006;
Schroeder et al., 2003, 2004) and Hsieh and Larson (Hsieh
et al., 2005), are entirely consistent with the interpretation
of experimental observations within this framework. If the
critical Weissenberg number for coil-stretch transition Wic
is defined as , where λ1 is the longest relaxation
time of the polymer, then simulations and experiments
indicate that  (Hsieh et al., 2005; Schroeder et al.,
2003, 2004). For simulations very close to Wic, Shaqfeh
and coworkers observed the simultaneous existence of

ε·max

ε·max

ε ε· t≡

Wic λ1ε·max≡

Wic 0.5≈

Fig. 15. Glassy dynamics at the critical Weissenberg number. (a) Stress evolution. The dotted and dashed lines indicate the evolution
of the total stress as a function of Hencky strain during the imposition of a constant non-dimensional strain rate Wi = 0.5, start-
ing from equilibrium and 90% fully-stretched initial configurations, respectively. In the quench simulations, an initial strain rate
corresponding to Wi0 = 10 is imposed until a desired value of the strain (indicated by the arrows) is reached, and then Wi is
instantaneously decreased to 0.5. (b) Hysteresis in the total stress at a Hencky strain of ε = 15. Filled black circles are obtained
from simulations with the extension rate maintained constant, with the chains initially stretched to 90% of their fully stretched
length. Empty circles are from simulations with a constant extension rate, with the initial configuration of the ensemble of
chains chosen from the equilibrium configurational distribution. Symbols within the hysteresis window correspond to quasi-
steady-state values of stress attained with simulations that quench to various values of the Weissenberg number, from Wi0 = 10.



Micro and macro in the dynamics of dilute polymer solutions: Convergence of theory with experiment

Korea-Australia Rheology Journal December 2009 Vol. 21, No. 4 259 

coiled and stretched states for over 50 Hencky strain units
(Schroeder et al., 2003, 2004). On the other hand, for
Weissenberg numbers slightly larger (smaller) than Wic,
initially coiled (stretched) molecules gradually unravel
(collapse) to a stretched (coiled) state. By considering a
single molecule’s trajectory over nearly 1000 strain units,
Hsieh et al. (2005) were able to observe the dependence of
the hopping frequency between coiled and stretched states
on the Weissenberg number, and found the behaviour to be
in qualitative agreement with the simulation results of
Schroeder et al. (2003, 2004). More recently, Beck and
Shaqfeh (2006) have shown that the hysteretic behaviour
of a polymer molecule tethered at a surface stagnation
point can be systematically understood in terms of state
hopping within a double-welled potential, and have used
this model to derive an analytical expression for the hop-
ping rate based on Kramers rate theory. Interestingly, in
this case, the non-linearity in the drag experienced by the
unraveling polymer molecule is caused by the presence of
a non-uniform flow on the length-scale of the polymer
molecule.
It is appropriate to note here that both Beck and Shaqfeh

(2006) and Hsieh et al. (2005) show through simulations
that the width of the hysteresis window increases with
increasing chain length. Additionally, the former authors
have also shown that the window width decreases with
increasing duration of observation, and that the energy bar-
rier between the two stable states increases exponentially
with chain length.
The experiments and computational results of Shaqfeh

and coworkers present a compelling picture of the dynam-
ics of coil-stretch transition. However, they are all restricted
to single molecule studies. The recent work by Sridhar et
al. (2007) addresses a number of important issues that can
be examined more fruitfully from the perspective of bulk
measurements. For instance, it is not clear from single mol-
ecule experiments whether the existence of disparate con-
formational states is sufficient to cause observable hysteretic
behaviour in measurements of the bulk stress, which is a
property that is evaluated over an ensemble of molecules
that are likely to be distributed over a range of conformations.
Secondly, since hopping between coiled and stretched
states occurs across large energy barriers within the hys-
teresis window, the time evolution of all macroscopic prop-
erties can be expected to be considerably slowed down in
this regime. Finally, if the rate of deformation of a polymer
solution is suddenly quenched into the hysteretic regime,
then the population of molecules immediately after the
quench can be expected to be rapidly partitioned into the
two wells corresponding to the coiled and stretched states,
followed by a slow evolution depending on the strain rate
after quenching. This would lead to a strong dependence of
the measured stress on the distribution of chain configu-
rations at the instant prior to quenching, and consequently,

even though the strain rates are identical after the quench,
a wide variety of stresses can be expected depending on the
deformation history. Sridhar et al. (2007) have carried out
experiments and computer simulations to examine these
issues, and their results are summarized below.
Since the results of BD simulations assist considerably in

the interpretation of experimental observations, these are
discussed first. A bead-spring chain model with finitely
extensible springs and hydrodynamic interactions has been
used by Sridhar et al. (2007), and details of the BD algo-
rithm used by them can be found in Prabhakar and Prakash
(2004). Basically, three different protocols have been adopted
by Sridhar et al. (2007) for the simulation of uniaxial elon-
gational flow, as described in the caption to Fig. 15.
Fig. 15(a) displays the total stress in the polymer solution

as a function of strain in uniaxial extensional flow. The
dotted line, corresponding to the transient response of an
ensemble of initially coiled molecules, can be seen to grad-
ually increase and level off to a value that remains constant
for a large number of strain units, representing a quasi-
steady-state. The dashed line in Fig. 15(a) represents the
stress evolution of an ensemble of initially stretched chains.
After a rapid decrease at small strains because of a reduc-
tion in the stretch of the molecules from their initial nearly
fully stretched values, the stress remains constant for a
large number of strain units at a quasi-steady-state value
significantly higher than that corresponding to the coiled
state stress. As a result, the simulations clearly indicate the
existence of hysteresis in the bulk stress analogous to the
coil-stretch hysteresis observed earlier in simulations and
experiments.
The quench simulations clearly show the existence of

glassy dynamics within the hysteresis window. All the stress
profiles have a common pattern of a rapid drop in stress
subsequent to the quench, followed by a nearly constant
value for an extended period of time. As may be expected,
with increasing strain chains become increasingly stretched,
and the distribution of conformations changes from being
predominantly coiled to predominantly stretched. A quench
from each of these strains therefore corresponds to a dif-
ferent initial population of chain conformations. For instance,
a quench at ε = 1, where the chains are still mostly coiled,
leads to a quasi-steady-state stress value close to that
obtained from a constant strain rate simulation carried out
with initially coiled molecules. In contrast, the initially
high Weissenberg number, Wi0 = 10, leads to a population
of predominantly stretched chains by ε = 5, such that a
quench at this value of strain leads to a quasi-steady-state
stress which is close to that obtained from a constant strain
rate simulation carried out with initially nearly fully
stretched molecules. Quenches carried out at intermediate
strains lead to quasi-steady-state stresses that lie between
these two extremes. The final value of stress is clearly
related to the ratio in which the chains are partitioned into
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the two energy wells. In short, at a Weissenberg number of
0.5, depending on the time history of deformation, the
quasi-steady-state stress value can lie anywhere between
the two limiting values attained with constant strain rate
simulations that start with initially coiled or initially
stretched molecules, respectively.
Fig. 15(b) graphically demonstrates both the existence of

hysteresis in the bulk stress, and the multiple values of
stress that can be attained at any particular Weissenberg
number within the hysteresis window. While the filled
black and empty circles were obtained with constant strain
rate simulations that start with initially stretched and ini-
tially coiled molecules, respectively, symbols lying between
them were obtained with simulations that quench from
Wi0 = 10 to various values of the Weissenberg number
within the hysteresis window.
It is important to bear in mind that Fig. 15(b) is a snap-

shot of the dynamics of coilstretch transition at ε = 15, and
that a similar set of data displayed at a larger value of ε
would be different. This can be understood by considering
Fig. 15(a). If the various lines representing quasi-steady-
state values of stress were extended indefinitely to the
right, then they would all converge to a single line, rep-
resenting the unique steady state value of stress at Wi = 0.5.
This is because molecules that are trapped in the two wells
at ε = 15 will slowly hop and redistribute themselves
ergodically, giving rise to a unique value of stress. This
would translate in Fig. 15(b) to a shrinking of the hys-
teresis window with increasing observation strain ε until a
unique sigmoidal stress versus Weissenberg number curve
is obtained. The central issue from a practical point of view
of course is the rate at which this final ‘true’ steady state
is obtained, which is clearly a function of the height of the
energy barrier between the coiled and stretched states, and
is reflected in the post-quench slope of the various stress
versus strain lines in Fig. 15(a). Simulation results of the
Stanford group clearly indicate that the energy barrier is a
very strongly increasing function of the length of the mol-
ecule, and that the true steady state for typically encoun-
tered molecular weights may be unreachable in any time
scale of experimental interest.
Fig. 16(a) is a composite plot of data for quasi-steady

dimensionless stress σ* = σ/(npkBT) against the Weissen-
berg number Wi = λ1 , reported by Sridhar et al. (2007)
for a solution of polystyrene of molecular weight 1.12×106.
The data in Fig. 16(a) were obtained using three different
experimental protocols which mirror the simulation pro-
tocols, as described in the caption to Fig. 16.
The white circles form a lower bound for the quasi-

steady stress measurements. This is consistent with the De
Gennes’ picture, as initially coiled molecules are likely to
remain in the coiled-state energy basin and thus manifest
lower values for the stress. At high strain rates [Fig. 16(a)
inset], the data from the constant stress experiments (black

squares) are close to those obtained in the constant strain-
rate experiments. In sharp contrast, however, at the lower
strain rates, we see that the data from the two protocols do
not collapse onto a single curve. This suggests that the
polymer solutions at these strain rates have not reached
true steady states within the experimental observation time,
and that hysteresis is manifested in this regime of strain
rates. The profile of the evolution of the stress in Fig. 16(b)
in all the quench experiments, is very similar to that
observed earlier with BD simulations (see Fig. 15(a)), with
a rapid drop in stress after the quench, followed by a period
of nearly constant stress which corresponds to a quasi-
steady-state. The triangle symbols in Fig. 16(a) denote the
post-quench plateau stress/strain-rate data obtained in these
experiments. The numbers alongside the triangle symbols
indicate the Hencky strains at quench. Fig. 16(a) displays

ε·

Fig. 16. (a) Quasi-steady state stress measurements demonstrate
glassy dynamics associated with the coil-stretch tran-
sition. The grey lines in (a) outline the coil-stretch hys-
teresis window. The inset in (a) shows data at high strain
rates. The data shown in (a) have been obtained with
three different protocols: constant imposed strain-rate
(white circles), constant imposed total stress (black
squares) and strain-rate quench (grey triangles). The
numbers alongside the grey triangles report the Hencky
strains at quench. (b) Transient dimensionless stress in
strain-rate quench experiments. (c) Slowing down of
post-quench dynamics with decrease in quenched strain-
rate. Reprinted figure with permission from T. Sridhar,
D. A. Nguyen, R. Prabhakar and J. R. Prakash, Physical
Review Letters, 98, 167801, 2007. (http://link.aps.org/
doi/10.1103/PhysRevLett.98.167801). Copyright 2009
by the American Physical Society.
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the experimental confirmation of the presence of multiple
quasi-steady-states, and closely mirrors the results of sim-
ulations reported in Fig. 15(b).
Fig. 16(c) shows the evolution of stress in one particular

quench experiment where the post-quench Wi >Wic. The
stress is observed to rapidly decrease after the quench in line
with expectation. However, after dropping to a minimum, it
again begins to gradually increase giving rise to the appear-
ance of an undershoot. Both the rapid drop in stress, and the
slow increase can be understood by considering the con-
figurations of a chain prior to quench in the context of the
energy landscape in Fig. 14. Clearly, chains stretched
beyond the effective stretched-state energy minimum prior
to quenching appear to fall back into the stretched state
energy well during the post-quench period, giving rise to the
rapid drop in stress immediately after quench, observed in
all the quench simulations and experiments. On the other
hand, chains between the coiled and stretched-state energy
wells are partitioned between the two depending on their
configurations prior to quenching. These chains contribute
to the slow evolution of stress in the post-quench period.
For Wi >Wic, since the energy barrier for coil-to-stretch
transitions is expected to be less than that for stretch-to-coil
transitions, the stress will increase as the chains slowly hop
from the coiled state into the stretched state, while the
reverse behaviour can be expected for Wi <Wic.
Nearly all currently popular models in polymer rheology

assume that the stress in a polymer solution is uniquely
determined by the rate of deformation to which the solu-
tion is subjected. Yet, as clearly demonstrated by the exper-
imental observations and computer simulations discussed
above, under certain circumstances, the time history of
conformational changes experienced by the molecules in a
solution has a significant bearing on the value of stress
attained for a given deformation rate. The demonstration
recently by François et al. (2009) of the existence of stress
and conformational hysteresis in the transcient flow around
a cylinder of PEO polymer solutions suggests that stress
hysteresis might be ubiquitous in complex flows. The
accurate estimation of the relationship between stress and
strain in a solution lies at the heart of being able to develop
a realistic description of the flow of polymer solutions.
Clearly, there is a need for a fundamental change in the
modelling of polymer solution rheology. In particular, there
is a need to recognize that constitutive equations that
account for the conformational dependence of the drag
experienced by individual molecules must be adopted in
order to be able to predict more accurately the rich behav-
iour observed in the flow of polymer solutions. It turns out
that it is indeed possible to develop constitutive equations
at the macroscopic scale that account for hydrodynamic
interactions, and thus the conformation dependence of
drag. This will be discussed shortly in section 5.4 below.
Before we do so, however, we first consider the rational

choice of parameters in the bead-spring chain models that
have been shown to be so successful in obtaining qual-
itative agreement with the experimental observations of
hysteresis described above.

5.3. Successive fine graining
It is clear from the discussion so far that the incorporation

of excluded volume effects is necessary in order to accu-
rately predict properties in good-solvents, while the incor-
poration of hydrodynamic interactions, is required to
predict dynamic properties. In addition, far from equilib-
rium, it has been found necessary to replace the Hookean
springs of the beadspring chain model with finitely exten-
sible springs in order to capture the shear thinning exhibited
by the shear viscosity, and the boundedness of the elon-
gational viscosity (Bird et al., 1987b). The incorporation of
each of these phenomena, leads to the introduction of at
least one new parameter into the theory. For instance, the
pairwise strength of excluded volume interactions between
any two beads in the bead-spring chain, is typically rep-
resented by the non-dimensional parameter z*, which is
proportional to (1−Tθ /T), where, T is the solution temper-
ature, and Tθ is the θ-temperature of the polymer-solvent
system. The strength of hydrodynamic interactions, on the
other hand, is usually measured in terms of the magnitude
of the parameter h*, the non-dimensional bead radius.
Finally, the inclusion of finitely extensible springs, intro-
duces the parameter bM, which, as we have seen, is a non-
dimensional measure of the fully stretched length of a
spring. Not surprisingly, for any particular choice of the
number of beads N, a proper choice of the values of these
parameters, turns out to have a crucial bearing on the accu-
racy of the predictions of any theory. Often, the correct val-
ues of the parameters to use in simulations is determined by
essentially finding a best fit to experimental data, in some
limiting regime of behavior (Hsieh et al., 2003; Jendrejack
et al., 2002; Larson et al., 1999). While this procedure is a
reasonable scheme for parameter estimation, it is not clear
that the chosen set of values is unique, and that an alter-
native set of parameter values will not yield equally accu-
rate predictions of either equilibrium or non-equilibrium
properties. Furthermore, a simultaneous fit of all the param-
eters to experimental results does not recognize the fact that
a few of the parameters have no influence on some of the
experimental variables. For instance, the parameter h* has
no influence on static equilibrium properties.
An alternative approach to the problem of parameter esti-

mation has been developed by Prakash and coworkers by
exploiting the universal behavior exhibited by dilute poly-
mer solutions (Prabhakar et al., 2004; Sunthar and Prakash,
2005). As is well known, the observed universal behavior
has its origins in the self-similar nature of long chain flex-
ible macromolecules in the coiled state. For equilibrium
static and dynamic properties, Kröger et al. (2000) and
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Kumar and Prakash (2003) have previously established the
methodology for obtaining exact predictions of universal
properties from Brownian dynamics simulations. Both these
procedures require the accumulation of data for increasing
values of the number of beads N, and the subsequent
extrapolatiion of the finite chain data to the limit N → ∞.
Basically, as more and more springs are included in the
bead-spring chain, local details of the chain become imma-
terial, leading to parameter free predictions in the infinite
chain length limit. Prakash and coworkers (Prabhakar et
al., 2004; Sunthar and Prakash, 2005) have adopted a mod-
ified version of this procedure for predicting behaviour in
far from equilibrium situations since the finite contour
length of the chain is a crucial determinant of solution
properties in both shear and extensional flows at high
deformation rates. In the case of finite chains, the simu-
lation data for various increasing values of N is extrap-
olated to the limit Ns → Nk, rather than to the limit N → ∞,
since the maximum number of springs, Ns, that one can use
is equal to the number of Kuhn steps Nk in the underlying

chain. Since increasing values of N represent more fine-
grained versions of the underlying chain, the procedure is
called “successive fine-graining (SFG).” A schematic rep-
resentation of the SFG procedure is shown in Fig. 17. Note
that an important aspect of SFG is that certain key vari-
ables, such as the Weissenberg number Wi etc, are kept
invariant in the fine-graining process (Prabhakar et al.,
2004; Sunthar and Prakash, 2005). By showing that pre-
dictions obtained with bead-spring chains and SFG agree
very well with the BD results in shear and extensional
flows obtained by Liu et al. (2004) using a bead-rod model,
Pham et al. (2008) have recently convincingly established
the validity of the SFG procedure.
Interestingly, experimental observations suggest that for

a very large number of polymer-solvent systems, universal
static and dynamic properties, independent of molecular
weight and chemistry, are attained by relatively small val-
ues of molecular weight M. By comparing finite chain
results with predictions in the universal long chain limit
(through a careful examination of the role of finite size
effects, and sensitivity to the choice of parameter values),
Sunthar and Prakash (2005) have established using SFG
that, even in the presence of flow, parameter free behaviour
is obtained for finite chains with relatively small values of
chain length Nk.
Fig. 18 compares predictions using SFG with the exper-

iments of Gupta et al. (2000) on polystyrene solutions
undergoing extensional flow. The excellent agreement
between theory and experiments, obtained without any arbi-
trary choice of simulation parameters, suggests that at least
with regard to treatment of finite extensibility and hydro-
dynamic interactions we are close to achieving convergence
between theory and experiment in the microscopic cycle.
The question then is how does one translate this success

to the macroscopic cycle. One of the ways is to use closed
form constitutive equations.

5.4. Closure approximations
The need for a closure approximation upon the incor-

poration of finitely extensible springs and hydrodynamic
interactions into the bead-spring chain model can best be
seen from the following set of evolution equations for the
second moments of the probability distribution ψ:

(27)

d

dt
---- QiQj〈 〉 = κ QiQj〈 〉⋅ + QiQj〈 〉 κ
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Fig. 17. Schematic representation of the SFG procedure.

Fig. 18. Comparison of parameter-free predictions obtained with
SFG of the growth of the dimensionless extensional vis-
cosity with the experimental data of Gupta et al. (2000)
(small circles). Simulations have been carried out for two
different values of the hydrodynamic interaction param-
eter. Reprinted figure with permission from R. Prab-
hakar, J. R. Prakash and T. Sridhar, Journal of Rheology,
48, 1251-1278, 2004. (http://dx.doi.org/10.1122/1.1807841).
Copyright 2009 by the Journal of Rheology.
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which can be derived from Eq. (22) by multiplying both
sides by QiQj and integrating over all configurations of the
chain. Clearly, these equations are not closed for the sec-
ond moments  because of the appearance of com-
plex moments on the right-hand-side, which involve both
the nonlinearities introduced by the spring force law and
HI.
Interestingly, nearly all the closure approximations that

have been introduced in the literature so far can be derived
from Eq. (27) by making the appropriate assumptions and
simplifications. For instance, the first closure approxima-
tion for HI within the context of bead-spring chain models,
the well known Zimm theory (Zimm, 1956), can be
derived from Eq. (27) by using Hookean springs (so that
Fc, j = HQj), and replacing the Oseen tensor Ωνµ with its
equilibrium average. The limitation of the accuracy of
Zimm theory to linear viscoelastic property predictions has
been the motivation for the development of more sophis-
ticated treatments of HI. For instance, while the consistent
averaging approximation (Öttinger, 1987) replaces the equi-
librium averaged Oseen tensor in Zimm theory with a non-
equilibrium average, the Gaussian approximation (Öttinger,
1989; Wedgewood, 1989) further accounts for fluctuations
in HI. The Gaussian approximation, which is the most
sophisticated approximation to date, has been shown to be
highly accurate by comparing its predictions of viscometric
functions with exact Brownian dynamics simulations (Zylka,
1991). We have previously discussed the Peterlin approx-
imation for finitely extensible chains, which enables the
derivation of closed form equations in the absence of HI.
Wedgewood and Öttinger (1988) introduced a closure
approximation for the situation when both finitely exten-
sible springs and HI are present by combining the con-
sistent averaging scheme for HI with a FENE-P approximation
for the springs. More recently, Prabhakar and Prakash
(2006) have introduced an approximation that extends the
previously established Gaussian approximation by account-
ing for fluctuations in both HI and the spring forces. The
accuracy of this model has been verified by comparison
with BDS in a number of both transient and steady, shear
and extensional flows.
Of all the various dilute polymer solution properties that

can be accurately predicted by closure approximations for
chains with HI, the ability of the more sophisticated
approximations to predict multiple steady-state values for
the extensional viscosity for a range of values of the non-

dimensional extension rate  is perhaps one of the most
compelling reasons for adopting them more widely in mac-
roscopic simulations. Fig. 19 displays a comparison of the
predictions of coil-stretch hysteresis by various closure
approximations with the results of exact BD simulations.
The meanings of the different acronyms used in the figure
are given in Table 1. It is seen that with the notable excep-
tion of the EA-P model (Zimm + FENE-P), the predicted
non-dimensional polymer contribution to the extensional
viscosity ( ) versus  curve exhibits coil-stretch hys-
teresis for all the other approximations for chains with HI.
The predictions of the GA-P model are quite close to the
BD simulation data.
The BDS results obtained by Schroeder et al. (2003), and

those in Fig. 19 suggest that the exact distribution of the
steady-state extensional stress in finitely extensible bead-
spring (FEBS) chains with HI is bi-modal. The linearity of

QiQj〈 〉

ε· *

ηp
* ε· *

Table 1. Acronyms used for referring to various closure approximations in Fig. 19

Treatment of HI Acronym Treatment of Finite Extensibility Acronym

Free-draining FD Hookean springs H

Equilibrium-averaging EA Peterlin P
Consistent-averaging CA Peterlin/Gaussian PG
Gaussian approximation GA

Fig. 19. Prediction of coil-stretch hysteresis in the steady-state
extensional viscosity by closure approximations for finitely
extensible bead-spring (FEBS) chains with HI. The upright
and inverted triangle symbols represent BDS data obtained
by successively stepping up, and stepping down, the
extension rate, respectively. Meanings of the different
acronyms are given in Table 1. Reprinted figure with
permission from R. Prabhakar and J. R. Prakash, Journal
of Rheology, 50, 561-593, 2006. (http://dx.doi.org/
10.1122/1.2206715). Copyright 2009 by the Journal of
Rheology.
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the Fokker-Planck equation [Eq. (22)] in the configura-
tional probability distribution function further guarantees
that its exact solution is unique. The introduction of any
mean-field approximation however leads to a modified
Fokker-Planck equation that is nonlinear in the probability
distribution function, since the coefficients in the modified
Fokker-Planck equation are functionals of the distribution
function. While the solution of this modified equation is a
uni-modal Gaussian distribution, the nonlinearity in the
distribution function means that the solution may no longer
be unique. Thus, the exchange of the nonlinearities due to
FENE and HI for a nonlinearity in the distribution function
destroys the multi-modal nature of the original solution,
but allows the modified Fokker-Planck equation to have
multiple solutions. In spite of this fundamental difference
between the exact and approximate probability distribu-
tions, the results presented in Fig. 19 above indicate that
the multiple steady-states obtained with the approximations
can closely follow the long-lived kinetically trapped states
in the original model. Therefore, closure approximations
for FEBS chains with HI can prove to be useful in a
detailed exploration of hysteretic phenomena caused by
ergodicity-breaking in dilute polymer solutions.
It is appropriate to note here that the Gaussian approx-

imation has also been developed for the treatment of
excluded volume interactions, and predictions have been
compared with exact BD simulations. While the qualitative
behaviour of a range of material functions is captured
accurately, quantitative agreement is found only within a
certain range of parameter values (Prakash, 2001, 2002;
Prakash and Öttinger, 1999). It is also possible to treat the
combined influence of HI and EV effects with a closure
approximation, as demonstrated by Prabhakar and Prakash
(2002b), who developed a Gaussian approximation for a
dumbbell model. A comprehensive closure model for all
the three nonlinear phenomenon of finite extensibility,
excluded volume and hydrodynamic interactions has not
been developed so far.
As an example of a complex fluid mechanical problem

that can be addressed with the help of a sophisticated clo-
sure approximation, Prabhakar et al. (2006) have recently
examined the elasto-capillary thinning and break-up of a
thin filament of a dilute polymer solution, using a closure
approximation which includes the effects of finite chain
extensibility and configuration-dependent intramolecular
hydrodynamic interaction. Their results clearly indicate
that the configuration dependence of intramolecular hydro-
dynamic interactions plays an important role in determin-
ing the thinning dynamics. In a seminal study, Entov and
Hinch (1997) had shown previously, using a simpler con-
stitutive model that does not account for configuration-
dependent hydrodynamic interactions, that during the period
where the elastic polymer stresses are dominant, the fil-
ament radius decreases exponentially with time, and the

Weissenberg number extracted from the rate of decrease of
the filament radius reaches a plateau value of 2/3. In con-
trast, Prabhakar et al. (2006) observe that when the influ-
ence of configuration-dependent hydrodynamic interactions
is accounted for in the constitutive model, the plateau value
of Wi does not approach any clear limiting value, but is
dependent on the key parameters characterizing the solu-
tion. Indeed, Wi appears to dip below the critical value for
the coil-to-stretch transition in extensional flows, with a
stabilization of the filament at sub-critical values of Wi due
to coil-stretch hysteresis. Most interestingly, configuration-
dependent hydrodynamic interactions are shown to cause
the time-constant in the exponential-decay to depend on
concentration. This dependence has been observed in
recent experiments, and has been the source of some puz-
zlement (Clasen et al., 2006, 2004).

6. Micro-macro Simulations

So far we have discussed progress and problems in the
development of complex fluid mechanics within the con-
text of the microscopic and macroscopic cycles. In recent
years an alternative approach to complex fluid mechanics
has arisen that completely sets aside the paradigm
described in Fig. 1. In this approach, which is called the
micro-macro simulation approach, the microscopic scale of
kinetic theory is coupled directly to the macroscopic scale
of continuum mechanics, as illustrated in the schematic
diagram displayed in Fig. 20. Typically, in most numerical
algorithms that adopt this methodology, the conservation
laws are solved by a standard finite element method for the
velocity and pressure fields, with the polymer contribution
to the stress, τp, taken to be a known body force term in the
momentum balance. In turn, the value of τp is calculated

by carrying out an average over an ensemble of coarse-
grained model molecules distributed over the flow domain,
whose instantaneous configurations are computed by inte-
grating stochastic differential equations subject to the flow
field obtained by solving the conservation laws. The first
implementation of this micro-macro simulation approach

Fig. 20. Schematic representation of the micro-macro simulation
methodology.
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was by Laso and Ottinger (1993) with the so-called CON-
NFFESSIT method. A number of difficulties associated
with this approach were resolved through the development
of the Brownian configuration fields method by Hulsen et
al. (1997). A comprehensive discussion of the state of the
art in micro-macro simulation techniques can be found in
the recent review article by Keunings (2004).
The major advantage of the micro-macro simulation tech-

nique is that one can include all the relevant physics at the
microscopic scale without the need for any closure approx-
imations. In this context, Bajaj et al. (2006) in their recent
computation of the slot coating of viscoelastic fluids using
a micro-macro simulation algorithm, have shown the sig-
nificant influence on the predicted values of a number of
different properties caused by the inclusion of fluctuating
hydrodynamic interactions and finite extensibility in a
dumbbell model. It is also worth noting that the issue of the
inability of closure approximations to distinguish between
true and frozen steady states does not arise with micro-
macro simulations. 
Our discussion of nonlinear phenomena at the micro-

scopic scale has clearly indicated that it important to account
for the large number of degrees of freedom in a polymer
molecule in order to accurately capture all the aspects of
the observed behaviour of polymer solutions. Currently,
multiscale simulation techniques based on the micro-macro
approach are largely confined to dumbbell models, with a
single degree of freedom. The extension of these algorithms
to bead-spring chain models with many beads represents a
major computational hurdle. Thus, although nonlinear micro-
scopic phenomenon can in principle be incorporated directly
into the computational algorithm, CPU time considerations
have so far prevented a thorough examination of the role of
these phenomena in complex flows. Overcoming this prob-
lem will make multiscale simulation algorithms a powerful
tool in computational rheology in the future.

7. Discussion and Conclusions

The key points that have arisen so far from the discussion
of the current situation in the pursuit of micro and macro
in complex fluid mechanics can be summarized as follows:
1. The computation of complex fluid flows in the mac-

roscopic cycle has focussed largely on solving benchmark
flow problems, in order to understand and tame the high
Weissenberg number problem. While increasingly sophis-
ticated numerical algorithms have been developed over the
years, numerical simulations still break down for relatively
small values of Wi. In the case of flow around a cylinder
confined between two flat plates, it has been shown that a
coil-stretch transition in the wake of the cylinder is respon-
sible for the break down of computations in dilute Old-
royd-B fluids. The unbounded stretching of the Hookean
spring that underlies the Oldroyd-B model might also be

the source of the HWNP in other benchmark flows.
2. Recent studies of steady flows with an interior stag-

nation point, and steady stagnation point flows away from
a wall, suggest that the mathematical structure of the upper
convected Maxwell, Oldroyd-B and FENE-P models can
be expected to lead to singularities in the viscoelastic
stresses and their gradients with increasing Wi. The exist-
ence of singular behaviour might be the typical feature of
solutions for all constitutive equations which include stress
advection and stress relaxation, but do not incorporate
stress diffusion.
3. Complex flow situations in which polymer molecules

stretch to a contour length that is comparable to the mesh
size in finite element simulations, and even to the char-
acteristic dimension of the flow, call into question the
assumption of homogenous flow fields with negligible
variation on the length scale of individual molecules, com-
monly made in kinetic theory based constitutive models.
4. It is crucial to incorporate the finite extensibility of

polymer chains, excluded volume interactions between seg-
ments of a chain, and solvent mediated hydrodynamic
interactions in order to capture all the rich diversity of
behaviour exhibited by dilute polymer solutions.
5. By using a successive fine-graining procedure, it is

possible to avoid the arbitrary specification of parameters
in bead-spring chain models, and to obtain, with the help of
BD simulations, nearly quantitative agreement with exper-
imental observations in homogeneous flows of a range of
different material properties, both at the microscopic and
the macroscopic scales.
6. Constitutive equations that reflect the complex physics

that is present at the microscopic scale can be developed
with the help of closure approximations. The accuracy of
these approximations, for some of the microscopic phe-
nomena, have been tested against exact BD simulations,
and have been shown to be in good qualitative agreement,
and in many cases, even quantitatively accurate.
7. The only constitutive equations based on closure

approximations that are currently widely used in the com-
putation of complex flows are those that account for the
finite extensibility of polymer chains. Even though con-
stitutive equations that account for other complex micro-
scopic phenomenon such as EV and HI have been around
for some years, they have not been used so far for com-
puting complex flows.
8. An alternative approach to complex fluid mechanics

can be developed through the use of micro-macro simu-
lations in which nonlinear microscopic physics can be
incorporated into the description without the invocation of
closure approximations. However, computational time lim-
itations arise for simulations of large bead-spring chains.
Clearly, there are a large number of challenges which

must to be tackled before we can successfully compute
complex flows of dilute polymer solutions. While signif-
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icant progress has been made in achieving convergence of
theory with experiment in the microscopic cycle, there are
many issues that remain to be resolved in the macroscopic
cycle. A mere extension of the capacity of constitutive
equations to account for HI and EV will not solve the
HWNP. On the other hand, not accounting for these phe-
nomenon will surely lead to poor predictions of experi-
mental observations. There is evidently a need to develop
kinetic theory based constitutive models for non-homo-
geneous flows and to adopt them in complex flow sim-
ulations. Further, constitutive equations that account for
stress diffusion are necessary to alleviate the development
of large stresses and stress boundary layers. A mechanism
for accounting for stress diffusion at the microscopic scale
would be to allow for centre-of-mass motion across stream-
lines. The presence of non-homogenous flow fields would
also give rise to centre-of-mass motion across streamlines
(Bhave et al., 1991). Recently, in this context, Schieber
(2006) has proposed a generalized Brownian configuration
fields method that accounts for centre-of-mass diffusion in
the bulk flow, but which is not valid in the vicinity of
walls. To our knowledge, this algorithm has not yet been
applied to the solution of a complex flow problem. In the
context of microfluidic flows, Hernández-Ortiz et al.
(2007) have recently developed an algorithm for efficient
simulation of hydrodynamic interactions between polymer
segments in a confined geometry, and have applied it to
examining the concentration distributions of polymers in
slits and grooved channels (Hernández-Ortiz et al., 2008).
The larger problem of computing complex flows in com-
plex geometries of general industrial relevance remains a
challenging goal that will provide fruitful research oppor-
tunities for years to come.
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