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ABSTRACT
Botnets, networks of malware-infected machines that are controlled
by an adversary, are the root cause of a large number of security
problems on the Internet. A particularly sophisticated and insidi-
ous type of bot is Torpig, a malware program that is designed to
harvest sensitive information (such as bank account and credit card
data) from its victims. In this paper, we report on our efforts to take
control of the Torpig botnet and study its operations for a period of
ten days. During this time, we observed more than 180 thousand
infections and recorded almost 70 GB of data that the bots col-
lected. While botnets have been “hijacked” and studied previously,
the Torpig botnet exhibits certain properties that make the analysis
of the data particularly interesting. First, it is possible (with rea-
sonable accuracy) to identify unique bot infections and relate that
number to the more than 1.2 million IP addresses that contacted our
command and control server. Second, the Torpig botnet is large,
targets a variety of applications, and gathers a rich and diverse set
of data from the infected victims. This data provides a new un-
derstanding of the type and amount of personal information that is
stolen by botnets.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive soft-
ware

General Terms
Security
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1. INTRODUCTION
Malicious code (or malware) has become one of the most press-

ing security problems on the Internet. In particular, this is true for
bots [5], a type of malware that is written with the intent of tak-
ing over a large number of hosts on the Internet. Once infected
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with a bot, the victim host will join a botnet, which is a network
of compromised machines that are under the control of a malicious
entity, typically referred to as the botmaster. Botnets are the pri-
mary means for cyber-criminals to carry out their nefarious tasks,
such as sending spam mails [36], launching denial-of-service at-
tacks [29], or stealing personal data such as mail accounts or bank
credentials [16, 39]. This reflects the shift from an environment
in which malware was developed for fun, to the current situation,
where malware is spread for financial profit.

Given the importance of the problem, significant research effort
has been invested to gain a better understanding of the botnet phe-
nomenon.

One approach to study botnets is to perform passive analysis of
secondary effects that are caused by the activity of compromised
machines. For example, researchers have collected spam mails that
were likely sent by bots [47]. Through this, they were able to make
indirect observations about the sizes and activities of different spam
botnets. Similar measurements focused on DNS queries [34, 35]
or DNS blacklist queries [37] performed by bot-infected machines.
Other researchers analyzed network traffic (netflow data) at the tier-
1 ISP level for cues that are characteristic for certain botnets (such
as scanning or long-lived IRC connections) [24]. While the analy-
sis of secondary effects provides interesting insights into particular
botnet-related behaviors, one can typically only monitor a small
portion of the Internet. Moreover, the detection is limited to those
botnets that actually exhibit the activity targeted by the analysis.

A more active approach to study botnets is via infiltration. That
is, using an actual malware sample or a client simulating a bot,
researchers join a botnet to perform analysis from the inside. To
achieve this, honeypots, honey clients, or spam traps are used to
obtain a copy of a malware sample. The sample is then executed in
a controlled environment, which makes it possible to observe the
traffic that is exchanged between the bot and its command and con-
trol (C&C) server(s). In particular, one can record the commands
that the bot receives and monitor its malicious activity. For some
botnets that rely on a central IRC-based C&C server, joining a bot-
net can also reveal the IP addresses of other clients (bots) that are
concurrently logged into the IRC channel [4, 11, 35]. While this
technique worked well for some time, attackers have unfortunately
adapted, and most current botnets use stripped-down IRC or HTTP
servers as their centralized command and control channels. With
such C&C infrastructures, it is no longer possible to make reliable
statements about other bots by joining as a client.

Interestingly, due to the open, decentralized nature of peer-to-
peer (P2P) protocols, it is possible to infiltrate P2P botnets such as
Storm. To this end, researchers have developed crawlers that ac-
tively search the P2P network for client nodes that exhibit bot-like
characteristics. Such crawls are the basis for studying the num-



ber of infected machines [18, 21] and the ways in which criminals
orchestrate spam campaigns [23]. Of course, the presented tech-
niques only work in P2P networks that can be actively crawled.
Thus, they are not applicable to a majority of current botnets, which
rely mostly on a centralized IRC or HTTP C&C infrastructure.

To overcome the limitations of passive measurements and infil-
tration – in particular in the case of centralized IRC and HTTP
botnets – one can attempt to hijack the entire botnet, typically by
taking control of the C&C channel. One way to achieve this is
to directly seize the physical machines that host the C&C infras-
tructure [8]. Of course, this is only an option for law enforcement
agencies. Alternatively, one can tamper with the domain name ser-
vice (DNS), as bots typically resolve domain names to connect to
their command and control infrastructure. Therefore, by collab-
orating with domain registrars (or other entities such as dynamic
DNS providers), it is possible to change the mapping of a botnet
domain to point to a machine controlled by the defender [6]. Fi-
nally, several recent botnets, including Torpig, use the concept of
domain flux. With domain flux, each bot periodically (and inde-
pendently) generates a list of domains that it contacts. The bot
then proceeds to contact them one after another. The first host that
sends a reply that identifies it as a valid C&C server is considered
genuine, until the next period of domain generation is started. By
reverse engineering the domain generation algorithm, it is possible
to pre-register domains that bots will contact at some future point,
thus denying access to the botmaster and redirecting bot requests
to a server under one’s own control. This provides a unique view
on the entire infected host population and the information that is
collected by the botmasters.

In this paper, we describe our experience in actively seizing con-
trol of the Torpig (a.k.a. Sinowal, or Anserin) botnet for ten days.
Torpig, which has been described in [40] as “one of the most ad-
vanced pieces of crimeware ever created,” is a type of malware
that is typically associated with bank account and credit card theft.
However, as we will see, it also steals a variety of other personal
information.

As mentioned previously, the Torpig botnet makes use of domain
flux to locate active C&C servers. To take over this botnet, we
leveraged information about the domain generation algorithm and
Torpig’s C&C protocol to register domains that the infected hosts
would contact. By providing a valid response, the bots accepted our
server as genuine, and volunteered a wealth of information, which
we collected and analyzed. This is an approach that is similar to
botnet takeover attempts of the Kraken [1] and Conficker [32] bot-
nets. However, in contrast to previous takeovers, we observe that
Torpig has certain properties that make our analysis particularly in-
teresting.

First, Torpig bots transmit identifiers that permit us to distinguish
between individual infections. This is different from other botnets
such as Conficker. The presence of unique identifiers allows us to
perform a precise estimate of the botnet size. Moreover, we can
account for DHCP churn and NAT effects, which are well-known
problems when computing botnet sizes. In addition, we compare
our results to IP-based techniques that are commonly used to esti-
mate botnet populations.

Second, Torpig is a data harvesting bot that targets a wide vari-
ety of applications and extracts a wealth of information from the
infected victims. Together with the large size of the botnet (we
observed more than 180 thousand infections), we have access to
a rich data set that sheds light on the quantity and nature of the
data that cyber-criminals can harvest, the financial profits that they
can make, and the threats to the security and privacy of bot vic-
tims. The availability of this rich data set is different from previous

work where the authors could not send valid responses to the bots
(because C&C messages are authenticated [32]) or where the bots
were simply not collecting such information [1].

In summary, the main contribution of this paper is a comprehen-
sive analysis of the operations of the Torpig botnet. For ten days,
we obtained information that was sent by more than 180 thousand
infected machines. This data provides a vivid demonstration of the
threat that botnets in general, and Torpig in particular, present to
today’s Internet. For our paper, we study the size of the botnet and
compare our results to alternative ways of counting botnet popula-
tions. In addition, the analysis of the rich and diverse collection of
user data provides a new understanding of the type and amount of
personal information that is stolen by botnets.

2. BACKGROUND
Torpig is a malware that has drawn much attention recently from

the security community. On the surface, it is one of the many Trojan
horses infesting today’s Internet that, once installed on the victim’s
machine, steals sensitive information and relays it back to its con-
trollers. However, the sophisticated techniques it uses to steal data
from its victims, the complex network infrastructure it relies on,
and the vast financial damage that it causes set Torpig apart from
other threats.

So far, Torpig has been distributed to its victims as part of Meb-
root. Mebroot is a rootkit that takes control of a machine by replac-
ing the system’s Master Boot Record (MBR). This allows Mebroot
to be executed at boot time, before the operating system is loaded,
and to remain undetected by most anti-virus tools. More details
on Mebroot can be found in [9,12,25]. In this paper, we will focus
on Torpig, introducing Mebroot only when necessary to understand
Torpig’s behavior. In particular, hereinafter, we present the life cy-
cle of Torpig and the organization of the Torpig botnet, as we ob-
served it during the course of our analysis. We will use Figure 1 as
a reference.

Victims are infected through drive-by-download attacks [33]. In
these attacks, web pages on legitimate but vulnerable web sites (1)
are modified with the inclusion of HTML tags that cause the vic-
tim’s browser to request JavaScript code (2) from a web site (the
drive-by-download server in the figure) under control of the attack-
ers (3). This JavaScript code launches a number of exploits against
the browser or some of its components, such as ActiveX controls
and plugins. If any exploit is successful, an executable is down-
loaded from the drive-by-download server to the victim machine,
and it is executed (4).

The downloaded executable acts as an installer for Mebroot. The
installer injects a DLL into the file manager process (explor-
er.exe), and execution continues in the file manager’s context.
This makes all subsequent actions appear as if they were performed
by a legitimate system process. The installer then loads a kernel
driver that wraps the original disk driver (disk.sys). At this
point, the installer has raw disk access on the infected machine.
The installer can then overwrite the MBR of the machine with Me-
broot. After a few minutes, the machine automatically reboots, and
Mebroot is loaded from the MBR.

Mebroot has no malicious capability per se. Instead, it provides
a generic platform that other modules can leverage to perform their
malicious actions. In particular, Mebroot provides functionality to
manage (install, uninstall, and activate) such additional modules.
Immediately after the initial reboot, Mebroot contacts the Mebroot
C&C server to obtain malicious modules (5). These modules are
saved in encrypted form in the system32 directory, so that, if the
user reboots the machine, they can be immediately reused with-
out having to contact the C&C server again. The saved modules



Figure 1: The Torpig network infrastructure. Shaded in gray are the components for which a domain generation algorithm is used.
The component that we “hijacked” is shown with dotted background.

are timestamped and named after existing files in the same direc-
tory (they are given a different, random extension), to avoid rais-
ing suspicion. After the initial update, Mebroot contacts its C&C
server periodically, in two-hour intervals, to report its current con-
figuration (i.e., the type and version number of the currently in-
stalled modules) and to potentially receive updates. All commu-
nication with the C&C server occurs via HTTP requests and re-
sponses and is encrypted using a sophisticated, custom encryption
algorithm [9]. Currently, no publicly available tool exists to cir-
cumvent this encryption scheme.

During our monitoring, the C&C server distributed three mod-
ules, which comprise the Torpig malware. Mebroot injects these
modules (i.e., DLLs) into a number of applications. These appli-
cations include the Service Control Manager (services.exe),
the file manager, and 29 other popular applications, such as web
browsers (e.g., Microsoft Internet Explorer, Firefox, Opera), FTP
clients (CuteFTP, LeechFTP), email clients (e.g., Thunderbird, Out-
look, Eudora), instant messengers (e.g., Skype, ICQ), and system
programs (e.g., the command line interpreter cmd.exe). After
the injection, Torpig can inspect all the data handled by these pro-
grams and identify and store interesting pieces of information, such
as credentials for online accounts and stored passwords.

Periodically (every twenty minutes, during the time we moni-
tored the botnet), Torpig contacts the Torpig C&C server to upload
the data stolen since the previous reporting time (6). This com-
munication with the server is also over HTTP and is protected by
a simple obfuscation mechanism, based on XORing the clear text
with an 8-byte key and base64 encoding. This scheme was broken
by security researchers at the end of 2008, and tools are available
to automate the decryption [20]. The C&C server can reply to a
bot in one of several ways. The server can simply acknowledge the
data. We call this reply an okn response, from the string contained
in the server’s reply. In addition, the C&C server can send a con-
figuration file to the bot (we call this reply an okc response). The
configuration file is obfuscated using a simple XOR-11 encoding.
It specifies how often the bot should contact the C&C server, a set
of hard-coded servers to be used as backup, and a set of parameters
to perform “man-in-the-browser” phishing attacks [14].

Torpig uses phishing attacks to actively elicit additional, sensi-
tive information from its victims, which, otherwise, may not be ob-
served during the passive monitoring it normally performs. These
attacks occur in two steps. First, whenever the infected machine
visits one of the domains specified in the configuration file (typi-
cally, a banking web site), Torpig issues a request to an injection
server. The server’s response specifies a page on the target domain
where the attack should be triggered (we call this page the trigger

page, and it is typically set to the login page of a site), a URL on
the injection server that contains the phishing content (the injection
URL), and a number of parameters that are used to fine tune the
attack (e.g., whether the attack is active and the maximum number
of times it can be launched). The second step occurs when the user
visits the trigger page. At that time, Torpig requests the injection
URL from the injection server and injects the returned content into
the user’s browser (7). This content typically consists of an HTML
form that asks the user for sensitive information, for example, credit
card numbers and social security numbers.

These phishing attacks are very difficult to detect, even for at-
tentive users. In fact, the injected content carefully reproduces
the style and look-and-feel of the target web site. Furthermore,
the injection mechanism defies all phishing indicators included in
modern browsers. For example, the SSL configuration appears
correct, and so does the URL displayed in the address bar. An
example screen-shot of a Torpig phishing page for Wells Fargo
Bank is shown in Figure 2. Notice that the URL correctly points
to https://online.wellsfargo.com/signon, the SSL
certificate has been validated, and the address bar displays a pad-
lock. Also, the page has the same style as the original web site.

Figure 2: A man-in-the-browser phishing attack.

Communication with the injection server is protected using the
standard HTTPS protocol. However, since Torpig does not check
the validity of the server’s certificate and blindly accepts any self-



signed certificate, it is possible to mount a man-in-the-middle at-
tack and recover the data exchanged with the injection server.

In summary, Torpig relies on a fairly complex network infras-
tructure to infect machines, retrieve updates, perform active phish-
ing attacks, and send the stolen information to its C&C server.
However, we observed that the schemes used to protect the com-
munication in the Torpig botnet (except those used by the Mebroot
C&C) are insufficient to guarantee basic security properties (con-
fidentiality, integrity, and authenticity). This was a weakness that
enabled us to seize control of the botnet.

3. DOMAIN FLUX
A fundamental aspect of any botnet is that of coordination; i.e.,

how the bots identify and communicate with their C&C servers.
Traditionally, C&C hosts have been located by their bots using their
IP address, DNS name, or their node ID in peer-to-peer overlays.
In the recent past, botnet authors have identified several ways to
make these schemes more flexible and robust against take-down
actions, e.g., by using IP fast-flux techniques [17]. With fast-flux,
the bots would query a certain domain that is mapped onto a set of
IP addresses, which change frequently. This makes it more difficult
to take down or block a specific C&C server. However, fast-flux
uses only a single domain name, which constitutes a single point of
failure.

Torpig solves this issue by using a different technique for locat-
ing its C&C servers, which we refer to as domain flux. With domain
flux, each bot uses a domain generation algorithm (DGA) to com-
pute a list of domain names. This list is computed independently
by each bot and is regenerated periodically. Then, the bot attempts
to contact the hosts in the domain list in order until one succeeds,
i.e., the domain resolves to an IP address and the corresponding
server provides a response that is valid in the botnet’s protocol. If a
domain is blocked (for example, the registrar suspends it to comply
with a take-down request), the bot simply rolls over to the following
domain in the list. Domain flux is also used to contact the Mebroot
C&C servers and the drive-by-download servers. Domain flux is
increasingly popular among botnet authors. In fact, similar mech-
anisms were used before by the Kraken/Bobax [1] and the Srizbi
bots [46], and, more recently, by the Conficker worm [32].

In Torpig, the DGA is seeded with the current date and a numer-
ical parameter. The algorithm first computes a “weekly” domain
name, say dw, which depends on the current week and year, but is
independent of the current day (i.e., remains constant for the en-
tire week). Using the generated domain name dw, a bot appends
a number of TLDs: in order, dw.com, dw.net, and dw.biz. It then
resolves each domain and attempts to connect to its C&C server. If
all three connections fail, Torpig computes a “daily” domain, say
dd, which in addition depends on the current day (i.e., a new do-
main dd is generated each day). Again, dd.com is tried first, with
fallbacks to dd.net and dd.biz. If these domains also fail, Torpig at-
tempts to contact the domains hardcoded in its configuration file
(e.g., rikora.com, pinakola.com, and flippibi.com).
Listing 1 shows the pseudo-code of the routines used to generate
the daily domains dd. The DGA used in Torpig is completely deter-
ministic; i.e., once the current date is determined, all bots generate
the same list of domains, in the same order.

From a practical standpoint, domain flux generates a list of “ren-
dezvous points” that may be used by the botmasters to control their
bots. Not all the domains generated by a DGA need to be valid
for the botnet to be operative. However, there are two requirements
that the botmasters must satisfy to maintain their grip on the botnet.
First, they must control at least one of the domains that will be con-
tacted by the bots. Second, they must use mechanisms to prevent

suffix = ["anj", "ebf", "arm", "pra", "aym", "unj",
"ulj", "uag", "esp", "kot", "onv", "edc"]

def generate_daily_domain():
t = GetLocalTime()
p = 8
return generate_domain(t, p)

def scramble_date(t, p):
return (((t.month ^ t.day) + t.day) * p) +

t.day + t.year

def generate_domain(t, p):
if t.year < 2007:

t.year = 2007
s = scramble_date(t, p)
c1 = (((t.year >> 2) & 0x3fc0) + s) % 25 + ’a’
c2 = (t.month + s) % 10 + ’a’
c3 = ((t.year & 0xff) + s) % 25 + ’a’
if t.day * 2 < ’0’ || t.day * 2 > ’9’:

c4 = (t.day * 2) % 25 + ’a’
else:

c4 = t.day % 10 + ’1’
return c1 + ’h’ + c2 + c3 + ’x’ + c4 +

suffix[t.month - 1]

Listing 1: Torpig daily domain generation algorithm.

other groups from seizing domains that will be contacted by bots
before the domains under their control.

In practice, the Torpig controllers registered the weekly .com do-
main and, in a few cases, the corresponding .net domain, for backup
purposes. However, they did not register all the weekly domains in
advance, which was a critical factor in enabling our hijacking.

The use of domain flux in botnets has important consequences
in the arms race between botmasters and defenders. From the at-
tacker’s point of view, domain flux is yet another technique to po-
tentially improve the resilience of the botnet against take-down at-
tempts. More precisely, in the event that the current rendezvous
point is taken down, the botmasters simply have to register the next
domain in the domain list to regain control of their botnet. On the
contrary, to the defender’s advantage, domain flux opens up the
possibility of sinkholing (or "hijacking") a botnet, by registering an
available domain that is generated by the botnet’s DGAs and re-
turning an answer that is a valid C&C response (to keep bots from
switching over to the next domain in the domain list). As we men-
tioned, Torpig allowed both of these actions: C&C domain names
were available for registration, and it was possible to forge valid
C&C responses.

The feasibility of these sinkholing attacks depends not only on
technical means (e.g., the ability to reverse engineer the botnet pro-
tocol and to forge a valid C&C server’s response), but also on eco-
nomic factors, in particular the cost of registering a number of do-
mains sufficient to make the sinkholing effective. Since domain
registration comes at a price (currently, from about $5 to $10 per
year per .com and .net domain name), botmasters could prevent
attacks against domain flux by making them economically infeasi-
ble, for example, by forcing defenders to register a disproportionate
number of names. Unfortunately, this is a countermeasure that is
already in use. Newer variants of Conficker generate 50,000 do-
mains per day and introduce non-determinism in their generation
algorithm [32]. Taking over all the domains generated by Conficker
at market prices would cost between $91.3 million and $182.5 mil-
lion per year. Furthermore, the domain flux arms race is clearly in
favor of the malware authors. Generating thousands more domains
requires an inexpensive modification to the bot code base, while
registering them costs time and money.



In short, the idea of combating domain flux by simply acquiring
more domains is clearly not scalable in the long term, and new ap-
proaches are needed to tilt the balance away from the botmasters.
In particular, the security community should build a stronger rela-
tionship with registrars. Registrars, in fact, are the entity best po-
sitioned to mitigate malware that relies on DNS (including domain
flux), but, with few exceptions, they often lack the resources, in-
centives, or culture to deal with the security issues associated with
their roles. In addition, rogue registrars (those known to be a safe
haven for the activity of cyber-criminals) should lose their accred-
itation. While processes exist to terminate registrar accreditation
agreements (a recent case involved the infamous EstDomains reg-
istrar [2]), they should be streamlined and used more promptly.

4. TAKING CONTROL OF THE BOTNET
In this section, we describe in more detail how we obtained con-

trol over the Torpig botnet. We registered domains that bots would
resolve and setup a server to which bots would connect to find their
C&C. Moreover, we present our data collection and hosting infras-
tructure and review a timeline of events during our period of con-
trol.

The behavior of the botmasters was to not register many of the
future Torpig C&C domains in advance. Therefore, we were able to
register the .com and .net domains that were to be used by the bot-
net for three consecutive weeks from January 25th, 2009 to Febru-
ary 15th, 2009. However, on February 4th, 2009, the Mebroot con-
trollers distributed a new Torpig binary that updated the domain
algorithm. This ended our control prematurely after ten days. Me-
broot domains, in fact, allow botmasters to upgrade, remove, and
install new malware components at any time, and are tightly con-
trolled by the criminals. It is unclear why the controllers of the
Mebroot botnet did not update the Torpig domain algorithm sooner
to thwart our sinkholing.

4.1 Sinkholing Preparation
We purchased service from two different hosting providers that

are well-known to be unresponsive to abuse complaints, and we
registered our .com and .net domains with two different registrars.
This provided redundancy so that if one domain registrar or hosting
provider suspended our account, we would be able to maintain con-
trol of the botnet. This proved to be useful when our .com domain
was suspended on January 31, 2009 due to an abuse complaint.
Fortunately, we owned the backup .net domain and were able to
continue our collection unabated during this period until we could
get our primary domain reinstated.

On our machines, we set up an Apache web server to receive
and log bot requests, and we recorded all network traffic1. We then
automated the process of downloading the data from our hosting
providers. Once a data file was downloaded, we removed it from
the server on the hosting provider. Therefore, if our servers were
compromised, an attacker would not have access to any historical
data. During the ten days that we controlled the botnet, we col-
lected over 8.7GB of Apache log files and 69GB of pcap data.

We expected infected machines to connect to us on January 25th,
which was the day when bots were supposed to switch to the first
weekly domain name that we owned. However, on January 19th,
when we started our collection, we instantly received HTTP re-
quests from 359 infected machines. This was almost a week before
the expected time. After analyzing the geographical distribution of
these machines and the data they were sending, we concluded that
these were probably systems that had their clock set incorrectly.

1All the collected traffic was encrypted using 256-bit AES.

4.2 Data Collection Principles
During our collection process, we were very careful with the in-

formation that we gathered and with the commands that we pro-
vided to infected hosts. We operated our C&C servers based on
previously established legal and ethical principles [3]. In particu-
lar, we protected the victims according to the following:

PRINCIPLE 1. The sinkholed botnet should be operated so that
any harm and/or damage to victims and targets of attacks would be
minimized.

PRINCIPLE 2. The sinkholed botnet should collect enough in-
formation to enable notification and remediation of affected par-
ties.

There were several preventative measures that were taken to en-
sure Principle 1. In particular, when a bot contacted our server, we
always replied with an oknmessage and never sent it a new config-
uration file. By responding with okn, the bots remained in contact
only with our servers. If we had not replied with a valid Torpig
response, the bots would have switched over to the .biz domains,
which had already been registered by the criminals. Although we
could have sent a blank configuration file to potentially remove the
web sites currently targeted by Torpig, we did not do so to avoid
unforeseen consequences (e.g., changing the behavior of the mal-
ware on critical computer systems, such as a server in a hospital).
We also did not send a configuration file with a different HTML
injection server IP address for the same reasons. To notify the af-
fected institutions and victims, we stored all the data that was sent
to us, in accordance with Principle 2, and worked with ISPs and
law enforcement agencies, including the United States Department
of Defense (DoD) and FBI Cybercrime units, to assist us with this
effort. This cooperation also led to the suspension of the current
Torpig domains owned by the cyber-criminals.

5. BOTNET ANALYSIS
As mentioned previously, we have collected almost 70GB of data

over a period of ten days. The wealth of information that is con-
tained in this data set is remarkable. In this section, we present the
results of our data analysis and important insights into the size of
botnets and their victims.

5.1 Data Collection and Format
All bots communicate with the Torpig C&C through HTTP POST

requests. The URL used for this request contains the hexadecimal
representation of the bot identifier and a submission header. The
body of the request contains the data stolen from the victim’s ma-
chine, if any. The submission header and the body are encrypted
using the Torpig encryption algorithm (base64 and XOR). The bot
identifier (a token that is computed on the basis of hardware and
software characteristics of the infected machine) is used as the sym-
metric key and is sent in the clear.

After decryption, the submission header consists of a number of
key-value pairs that provide basic information about the bot. More
precisely, the header contains the time stamp when the configura-
tion file was last updated (ts), the IP address of the bot or a list
of IPs in case of a multi-homed machine (ip), the port numbers of
the HTTP and SOCKS proxies that Torpig opens on the infected
machine (hport and sport), the operating system version and
locale (os and cn), the bot identifier (nid), and the build and ver-
sion number of Torpig (bld and ver). Figure 3 shows a sample of
the header information sent by a Torpig bot.

The request body consists of zero or more data items of different
types, depending on the information that was stolen. Table 1 shows



POST /A15078D49EBA4C4E/qxoT4B5uUFFqw6c35AKDYFpdZHdKLCNn...AaVpJGoSZG1at6E0AaCxQg6nIGA

ts=1232724990&ip=192.168.0.1:&sport=8109&hport=8108&os=5.1.2600&cn=United%20States&
nid=A15078D49EBA4C4E&bld=gnh5&ver=229

Figure 3: Sample URL requested by a Torpig bot (top) and the corresponding, unencrypted submission header (bottom).

[gnh5_229] [gnh5_229]
[MSO2002-MSO2003:pop.smith.com:John Smith: POST /accounts/LoginAuth

john@smith.com] Host: www.google.com
[pop3://john:smith@pop.smith.com:110] POST_FORM:
[smtp://:@smtp.smith.com:25] Email=test@gmail.com

Passwd=test

Figure 4: Sample data sent by a Torpig bot: a mailbox account on the left, a form data item on the right.

Data Type Data Items
(#)

Mailbox account 54,090
Email 1,258,862
Form data 11,966,532
HTTP account 411,039
FTP account 12,307
POP account 415,206
SMTP account 100,472
Windows password 1,235,122

Table 1: Data items sent to our C&C server by Torpig bots.

the different data types that we observed during our monitoring. In
particular, mailbox account items contain the configuration infor-
mation for email accounts, i.e., the email address associated with
the mailbox and the credentials required to access the mailbox and
to send emails from it. Torpig obtains this information from email
clients, such as Outlook, Thunderbird, and Eudora. Email items
consist of email addresses, which can presumably be used for spam
purposes. According to [45], Torpig initially used spam emails to
propagate, which may give another explanation for the botmasters’
interest in email addresses. Form data items contain the content of
HTML forms submitted via POST requests by the victim’s browser.
More precisely, Torpig collects the URL hosting the form, the URL
that the form is submitted to, and the name, value, and type of all
form fields. These data items frequently contain the usernames and
passwords required to authenticate with web sites. Notice that cre-
dentials transmitted over HTTPS are not safe from Torpig, since
Torpig can access them before they are encrypted by the SSL layer
(by hooking appropriate library functions). HTTP account, FTP
account, POP account, and SMTP account data types contain the
credentials used to access web sites, FTP, POP, and SMTP ac-
counts, respectively. Torpig obtains this information by exploit-
ing the password manager functionality provided by most web and
email clients. SMTP account items also contain the source and des-
tination addresses of emails sent via SMTP. Finally, the Windows
password data type is used to transmit Windows passwords and
other uncategorized data elements. Figure 4 shows a sample of the
data items sent by a Torpig bot.

5.2 Botnet Size
In this section, we address the problem of determining the size

of the Torpig botnet. More precisely, we will be referring to two
definitions of a botnet’s size as introduced by Rajab et al. [34]: the
botnet’s footprint, which indicates the aggregated total number of
machines that have been compromised over time, and the botnet’s

live population, which denotes the number of compromised hosts
that are simultaneously communicating with the C&C server.

The size of botnets is a hotly contested topic, and one that is
widely, and sometimes incorrectly, reported in the popular press [7,
13, 26–28, 30]. Several methods have have been proposed in the
past to estimate the size of botnets. These approaches are modeled
after the characteristics of the botnet under study and vary along
different axes, depending on whether they have access to direct
traces of infected machines [6] or have to resort to indirect mea-
surements [11, 34, 35, 37], whether they have a complete or partial
view of the infected population, and, finally, whether individual
bots are identified by using a network-level identifier (typically, an
IP address) or an application-defined identifier (such as a bot ID).

In particular, we briefly compare our measurement technique to
those described by Rajab et al. [34] and Kanich et al. [23], who
have discussed in detail the methodological aspects of measuring a
botnet’s size.

Rajab et al. focus on IRC-based botnets. They propose to query
DNS server caches to estimate the number of bots that resolved the
name of a C&C server and to infiltrate IRC C&C channels with
trackers that record the channel activity, in particular, the IDs of
channel users. Both methods rely on indirect measurements of bot
traffic and are based on active querying and probing. DNS cache
querying is partial, since, in its basic form, it only determines if
a network contains infected bots, while IRC monitoring can poten-
tially reveal all the bots that connect to a given channel. Finally, the
authors observe that IRC identifiers (i.e., nicknames) were found to
overestimate the actual size of the botnet,

Kanich et al. focus on P2P botnets. In particular, they measure
the size of the Storm network by active probing and crawling the
Overnet distributed hash table (DHT). They confirm that the Storm
botnet is not ideal for measuring its footprint and live population
due to many factors such as protocol aliasing between infected and
non-infected Overnet hosts and adversarial aliasing where nodes
purposely poison the network to disrupt or impair its operation.
The authors also caution that the application IDs used in Overnet
were not a good bot identifier, due to a bug in the way they were
generated by Storm.

In comparison to these studies, the Torpig C&C’s architecture
provides an advantageous perspective to measure the botnet’s size.
In fact, since we centrally and directly observed every infected ma-
chine that normally would have connected to the botmaster’s server
during the ten days that we controlled the botnet, we had a com-
plete view of the machines belonging to the botnet. In addition, our
collection methodology was entirely passive and, thus, it avoided
the problem of active probing that may have otherwise polluted the
network that was being measured. Finally, Torpig generates and



transmits unique and persistent IDs that make for good identifiers
of infected machines.

In the next section we discuss the characteristics of the botnet
that enabled us to determine an overall range for the number of
infected machines. We will then compare different methodologies
to count the Torpig botnet’s footprint and live population.

5.2.1 Counting Bots by nid
As a starting point to estimate the botnet’s footprint, we analyzed

the nid field that Torpig sends in the submission header. Our hy-
pothesis was that this value was unique for each machine and re-
mained constant over time, and that, therefore, it would provide an
accurate method to uniquely identify each bot.

By reverse engineering the Torpig binary, we were able to recon-
struct the algorithm used to compute this 8-byte value. In particular,
the algorithm first queries the primary SCSI hard disk for its model
and serial numbers. If no SCSI hard disk is present, or retrieving the
disk information is unsuccessful, it will then try to extract the same
information from the primary physical hard disk drive (i.e., IDE
or SATA). The disk information is then used as input to a hashing
function that produces the final nid value. If retrieving hardware
information fails, the nid value is obtained by concatenating the
hard-coded value of 0xBAD1D222 with the Windows volume se-
rial number.

In all cases, the nid depends on (software or hardware) charac-
teristics of the infected machine’s hard disk. Therefore, it does not
change, unless the hard disk is replaced (in which case the machine
would no longer be infected), or the user manually changes the sys-
tem’s volume serial number (which requires special tools and is not
likely to be done by casual users). This gave us confidence that the
nid remains constant throughout the life of an infected machine.

We then attempted to validate whether the nid is unique for
each bot. Therefore, we correlated this value with the other in-
formation provided in the submission header and bot connection
patterns to our server. In particular, we were expecting that all sub-
missions with a specific nid would report the same values for the
os, cn, bld, and ver fields. Unfortunately, we found 2,079 cases
for which this assumption did not hold.

Therefore, we conclude that counting unique nids underesti-
mates the botnet’s footprint. As a reference point, between Jan 25,
2009 and February 4, 2009, 180,835 nid values were observed.

5.2.2 Counting Bots by Submission Header Fields
As a more accurate method to identify infected machines, we

used the nid, os, cn, bld, and ver values from the submis-
sion header that Torpig bots send. As we have seen, the nid
value is mostly unique among bots, and the other fields help dis-
tinguishing different machines that have the same nid. In par-
ticular, the os (OS version number) and cn (locale information)
fields are determined by using the system calls GetVersionEx
and GetLocaleInfo, respectively, and do not change unless the
user modifies the locale information on her computer or changes
her OS. The values of the bld and ver fields are hard-coded into
the Torpig binary.

We decided not to use the ts field (time stamp of the configu-
ration file), since its value is determined by the Torpig C&C that
distributed the configuration file and not by characteristics of the
bot. Also, we discarded the ip field, since it could change depend-
ing on DHCP and other network configurations, and the sport
and hport fields, which specify the proxy ports that Torpig opens
on the local machine, because they could change after a reboot.

By counting unique tuples from the Torpig headers consisting of
(nid, os, cn, bld, ver), we estimate that the botnet’s footprint
for the ten days of our monitoring consisted of 182,914 machines.

5.2.3 Identifying Probers and Researchers
Finally, we wanted to identify security researchers and other cu-

rious individuals who probed our botnet servers. These do not cor-
respond to actual victims of the botnet and, therefore, we would
like to identify them and subtract them from the total botnet size.

We used two heuristics to identify probers and (likely) security
researchers. First, we observed that the nid values generated by
infected clients running in virtual machines is constant. This is be-
cause the nid depends essentially on physical characteristics of the
hard disk, and, by default, virtual machines provide virtual devices
with a fixed model and serial number. Since virtual machines are
often used by researchers to study malware in a contained environ-
ment, we assume that these bots in reality correspond to researchers
studying the Torpig malware. In particular, we were able to deter-
mine the nid values generated on a standard configuration of the
VMware and QEMU virtual machines and we found 40 hosts using
these values. Second, we identified hosts that send invalid requests
to our C&C server (i.e., requests that cannot be generated by Torpig
bots). For example, these bots used the GET HTTP method in re-
quests where a real Torpig bot would use the POST method. Using
this approach, we discounted another 74 hosts. We further ignored
background noise, such as scanning of our web server and traffic
from search engine bots. After subtracting probers and researchers,
our final estimate of the botnet’s footprint is 182,800 hosts.

5.2.4 Botnet Size vs. IP Count
It is well-known that, due to network effects such as DHCP

churn and NAT, counting the number of infected bots by counting
the unique IP addresses that connect to the botnet’s C&C server
is problematic [34]. In this section, we examine the relationship
between the botnet size and the IP counts in more detail.

As we discussed, during our ten days of monitoring, we observed
182,800 bots. In contrast, during the same time, 1,247,642 unique
IP addresses contacted our server. Taking this value as the botnet’s
footprint would overestimate the actual size by an order of mag-
nitude. We further analyzed the difference between IP count and
the actual bot count by examining their temporal characteristics.
In particular, Figure 5 displays the number of unique IP addresses
observed during the ten days that we were in control of the Tor-
pig C&C. After the initial spike when the bots started to contact
our server, there was a consistent diurnal pattern of unique IP ad-
dresses with an average of 4,690 new IPs per hour. In contrast, the
average number of new bots observed was 705 per hour, with a very
rapid drop-off after the first peak, as shown in Figure 6. Therefore,
the number of cumulative new IP addresses that we saw over time
increased linearly, as shown in Figure 7. On the other hand, the
aggregate number of new bots observed decayed quickly. Figure 8
shows that more than 75% of all new Torpig bots during the ten-day
interval were observed in the first 48 hours.

While the aggregate number of total unique IP addresses dis-
torts the botnet’s footprint and live population, the number of IP
addresses can be used to closely approximate the botnet’s size us-
ing other metrics. The median and average size of Torpig’s live
population was 49,272 and 48,532, respectively. The live popula-
tion fluctuates periodically, where the peaks correspond to 9:00am
Pacific Standard Time (PST), when the most computers are simul-
taneously online in the United States and Europe. Conversely, the
smallest live population occurs around 9:00pm PST, when more
people in the United States and Europe are offline. When we com-



Figure 5: New unique IP addresses per hour. Figure 6: New bots per hour.

Figure 7: CDF – New unique IP addresses per hour. Figure 8: CDF – New bots per hour.

Figure 9: Unique Bot IDs and IP addresses per hour. Figure 10: Unique Bot IDs and IP addresses per day.



pare the observed number of unique bot IDs per hour with the num-
ber of unique IP addresses, they are virtually identical (as shown in
Figure 9). On average, the bot IDs were only 1.3% less than the
number of IP addresses per hour. Thus, the number of unique IPs
per hour provides a good estimation of the botnet’s live population.
The similarity between bot IDs and IPs per hour is a consequence of
each infected host connecting to the C&C every 20 minutes, which
occurs more frequently than the rate of DHCP churn. Hence, the
more often a bot connects to the C&C, the more accurate an IP
count will be to the live population on an hourly scale. In com-
parison, the number of IPs per day does not accurately reflect the
botnet’s live population (as shown in Figure 10), with a difference
of 36.5% between IP addresses and bot IDs. The median number
and average number of IPs per day during our ten days of control-
ling the C&C was 182,058 and 179,866 respectively. Interestingly,
both of these statistics provide a reasonable approximation to the
botnet’s footprint in comparison to the bot IDs.

The difference between IP count and the actual bot count can be
attributed to DHCP and NAT effects. In networks using the DHCP
protocol (or connecting through dial-up lines), clients (machines
on the network) are allocated an address from a pool of available
IP addresses. The allocation is often dynamic, that is, a client is
not guaranteed to always be assigned the same IP address. This
can inflate the number of observed IP addresses at the botnet C&C
server. Short leases (the length of time for which the allocation is
valid) can further magnify this effect. This phenomenon was very
common during our monitoring. In fact, we identified the presence
of ISPs that rotate IP addresses so frequently that almost every time
that an infected host on their network connected to us, it had a new
IP address. In one instance, a single host had changed IP addresses
694 times in just ten days! In some cases, the same host was associ-
ated with different IP addresses on the same autonomous systems,
but different class B /16 subnets. We observed this DHCP churn
on several different networks with the most common being, in de-
scending order: Deutsche Telekom, Verizon, and BellSouth. Over-
all, there were 706 different machines that were seen with more
than one hundred unique IP addresses. At this point, we can only
speculate why these ISPs recycle IP addresses so frequently.

Country IP Addresses Bot IDs DHCP Churn
(Raw #) Factor

US 158,209 54,627 2.90
IT 383,077 46,508 8.24
DE 325,816 24,413 13.35
PL 44,117 6,365 6.93
ES 31,745 5,733 5.54
GR 45,809 5,402 8.48
CH 30,706 4,826 6.36
UK 21,465 4,792 4.48
BG 11,240 3,037 3.70
NL 4,073 2,331 1.75
Other 180,070 24,766 7.27
Totals: 1,247,642 182,800 6.83

Table 2: Top 10 infected hosts by country.

Furthermore, by comparing the number of bots we observed and
their IP addresses, we can determine the effect of DHCP churn at a
country level. Interestingly, the IP address count significantly over-
estimates the infection count in some countries, because the ISPs
in those regions recycle IP addresses more often in comparison to
others as shown in Table 2. For instance, a naïve estimate per coun-
try would consider Italy and Germany to have the largest number
of infections. However, the ISPs in those countries assign IP ad-
dresses much more frequently than their U.S. counterparts. In fact,
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Figure 11: New infections over time.

Germany had less than half the number of infected hosts, yet dou-
ble the number of IP address connections. Furthermore, the ratio
of IPs to hosts in Germany was four times higher than that of the
United States. Because Torpig spreads through drive-by-download
web sites, we believe the clustering by country reflects that most of
the malicious sites use English, Italian, or German, since these are
the top affected countries.

The information provided in the Torpig headers also allows us
to estimate the impact of NAT, which is commonly used to en-
able shared Internet access for an entire private network through
a single public access (masquerading). This technique reduces the
number of IPs observed at the C&C server, since all the infected
machines in the masqueraded network would count as one. By
looking at the IP addresses in the Torpig headers we are able to
determine that 144,236 (78.9%) of the infected machines were be-
hind a NAT, VPN, proxy, or firewall. We identified these hosts by
using the non-publicly routable IP addresses listed in RFC 1918:
10/8, 192.168/16, and 172.16-172.31/16. We observed 9,336 dis-
tinct bots for 2,753 IP addresses from these infected machines on
private networks. Therefore, if the IP address count was used to
determine the number of hosts it would underestimate the infection
count by a factor of more than 3 times.

5.2.5 New Infections
The Torpig submission header provides the time stamp of the

most recently received configuration file. We leveraged this fact
to approximate the number of machines newly infected during the
period of observation by counting the number of distinct victims
whose initial submission header contains a time stamp of 0. Fig-
ure 11 shows the new infections over time. In total, we estimate
that there were 49,294 new infections while the C&C was under
our control. New infections peaked on the 25th and the 27th of
January. We can only speculate that, on those days, a popular web
site was compromised and redirected its visitors to the drive-by-
download servers controlled by the botmasters.

5.3 Botnet as a Service
An interesting aspect of the Torpig botnet is that there are indi-

cations that different groups would be dividing (and profiting from)
the data it steals. Torpig DLLs are marked with a build type rep-
resented by the bld field in the header. This value is set during
the drive-by download (the build type is included in the URL that
triggers the download) and remains the same during the entire life
cycle of an infection. The build type does not seem to indicate dif-
ferent feature sets, since different Torpig builds behave in the same
way. However, Torpig transmits its build type in all communica-
tions with the C&C server, and, in particular, includes it in both the
submission header (as the bld parameter) and in each data item
contained in a submission body (for example, in Figure 3 the build



Country Institutions Accounts
(#) (#)

US 60 4,287
IT 34 1,459
DE 122 641
ES 18 228
PL 14 102
Other 162 1,593
Total 410 8,310

Table 3: Accounts at financial institutions stolen by Torpig.

type was gnh5). Therefore, the most convincing explanation of
the build type is that it denotes different “customers” of the Torpig
botnet, who, presumably, get access to their data in exchange for a
fee. If correct, this interpretation would mean that Torpig is actu-
ally used as a “malware service”, accessible to third parties who do
not want or cannot build their own botnet infrastructure.

During our study, we observed 12 different values for the bld
parameter: dxtrbc, eagle, gnh1, gnh2, gnh3, gnh4, gnh5,
grey, grobin, grobin1, mentat, and zipp. Not all builds
contribute equally to the amount of data stolen. The most active
versions are dxtrbc (5,432,528 submissions), gnh5 (2,836,198),
and mentat (1,582,547).

6. THREATS AND DATA ANALYSIS
In this section, we will discuss the threats that Torpig poses and

will turn our attention to the actual data that infected machines sent
to our C&C server. We will see that Torpig creates a considerable
potential for damage due not only to the shear volume of data it
collects, but also to the amount of computing resources the botnet
makes available.

6.1 Financial Data Stealing
Consistent with the past few years’ shift of malware from a for-

fun (or notoriety) activity to a for-profit enterprise [10, 15], Torpig
is specifically crafted to obtain information that can be readily mon-
etized in the underground market. Financial information, such as
bank accounts and credit card numbers, is particularly sought af-
ter. For example, the typical Torpig configuration file lists roughly
300 domains belonging to banks and other financial institutions that
will be the target of the “man-in-the-browser” phishing attacks de-
scribed in Section 2.

Table 3 reports the number of accounts at financial institutions
(such as banks, online trading, and investment companies) that were
stolen by Torpig and sent to our C&C server. In ten days, Torpig ob-
tained the credentials of 8,310 accounts at 410 different institutions.
The top targeted institutions were PayPal (1,770 accounts), Poste
Italiane (765), Capital One (314), E*Trade (304), and Chase (217).
On the other end of the spectrum, a large number of companies had
only a handful of compromised accounts (e.g., 310 had ten or less).
The large number of institutions that had been breached made no-
tifying all of the interested parties a monumental effort. It is also
interesting to observe that 38% of the credentials stolen by Torpig
were obtained from the password manager of browsers, rather than
by intercepting an actual login session. It was possible to infer that
number because Torpig uses different data formats to upload stolen
credentials from different sources.

Another target for collection by Torpig is credit card data. Using
a credit card validation heuristic that includes the Luhn algorithm
and matching against the correct number of digits and numeric pre-
fixes of card numbers from the most popular credit card companies,
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Figure 12: The arrival rate of financial data.

we extracted 1,660 unique credit and debit card numbers from our
collected data. Through IP address geolocation, we surmise that
49% of the card numbers came from victims in the US, 12% from
Italy, and 8% from Spain, with 40 other countries making up the
balance. The most common cards include Visa (1,056), Master-
Card (447), American Express (81), Maestro (36), and Discover
(24).

While 86% of the victims contributed only a single card number,
others offered a few more. Of particular interest is the case of a
single victim from whom 30 credit card numbers were extracted.
Upon manual examination, we discovered that the victim was an
agent for an at-home, distributed call center. It seems that the card
numbers were those of customers of the company that the agent
was working for, and they were being entered into the call center’s
central database for order processing.

Quantifying the value of the financial information stolen by Tor-
pig is an uncertain process because of the characteristics of the un-
derground markets where it may end up being traded. A report by
Symantec [43] indicated (loose) ranges of prices for common goods
and, in particular, priced credit cards between $0.10–$25 and bank
accounts from $10–$1,000. If these figures are accurate, in ten days
of activity, the Torpig controllers may have profited anywhere be-
tween $83K and $8.3M.

Furthermore, we wanted to determine the rate at which the bot-
net produces new financial information for its controllers. Clearly,
a botnet that generates all of its value in a few days and later only
recycles stale information is less valuable than one where fresh data
is steadily produced. Figure 12 shows the rate at which new bank
accounts and credit card numbers were obtained during our moni-
toring period. In the ten days when we had control of the botnet,
new data was continuously stolen and reported by Torpig bots.

6.2 Proxies
As we mentioned previously, Torpig opens two ports on the lo-

cal machine, one to be used as a SOCKS proxy, the other as an
HTTP proxy. 20.2% of the machines we observed were publicly
accessible. Their proxies, therefore, could be easily leveraged by
miscreants to, for example, send spam or navigate anonymously. In
particular, we wanted to verify if spam was sent through machines
in the Torpig botnet. We focused on the 10,000 IPs that contacted
us most frequently. These, arguably, correspond to machines that
are available for longer times and that are, thus, more likely to be
used by the botmasters. We matched these IPs against the ZEN
blocklist, a well-known and accurate list of IP addresses linked to
spamming, which is compiled by the Spamhaus project [44]. We
found that one IP was marked as a verified spam source or spam op-
eration and 244 (2.45%) were flagged as having open proxies that
are used for spam purposes or being infected with spam-related
malware. While we have no evidence that the presence of these IPs



Network IP Addresses Bot IDs DHCP Churn
Speed (Raw #) Factor
Cable/DSL 356,428 50,535 7.05
Dial-up 129,493 9,923 13.05
Corporate 40,818 17,217 2.37
Unknown 677,434 105,125 6.44

Table 4: Network speed of infected hosts.

on the ZEN blocklist is a consequence of the Torpig infection, it is
clear that Torpig has the potential to drag its victims into a variety
of malicious activities. Furthermore, since most IPs are “clean”,
they can be used for spamming, anonymous navigation, or other
dubious enterprises.

6.3 Denial-of-Service
To approximate the amount of aggregate bandwidth among in-

fected hosts, we mapped the IP addresses to their network speed,
using the ip2location2 database. This information is summarized
in Table 4. Unfortunately the database does not contain records for
about two-thirds of the IP addresses, but from the information that
it provides, we can see that cable and DSL lines account for 65% of
the infected hosts. If we assume the same distribution of network
speed for the unknown IP addresses, there is a tremendous amount
of bandwidth in the hands of the botmaster, considering that there
were more than 70,000 active hosts at peak intervals. In 2008, the
median upstream bandwidth in the United States was 435 kbps for
DSL connections [42]. Since the United States ranks as one of the
slowest in terms of broadband speeds, we will use 435 kbps as a
conservative estimate for each bot’s upstream bandwidth. Thus,
the aggregate bandwidth for the DSL/Cable connections is roughly
17 Gbps. If we further add in corporate networks, which account
for 22% of infected hosts, and consider that they typically have sig-
nificantly larger upstream connections, the aggregate bandwidth is
likely to be considerably higher. Hence, a botnet of this size could
cause a massive distributed denial-of-service (DDoS) attack.

6.4 Password Analysis
A recent poll conducted by Sophos in March 2009 [41], reported

that one third of 676 Internet users neglect the importance of using
strong passwords and admitted that they reused online authentica-
tion credentials across different web services. While it is reason-
able to trust the results of a poll, it is also important to cross-validate
these results, as people may not always report the truth. Typically,
this validation task relies on the presence of ground truth, which is
generally missing or very hard to obtain.

Interesting enough, our effort to take over the Torpig botnet over
a ten-days period offered us the rare opportunity to obtain the nec-
essary ground truth to validate the results of the Sophos poll. The
benefits of the credential analysis we performed are twofold. First,
it is possible to rely on real data, i.e., data that had been actually
collected, and not on user-provided information, which could be
fake. Second, the data corpus provided by the Torpig-infected ma-
chines was two orders of magnitude bigger than the one used in the
Sophos poll, and results derived from a large data corpus are usu-
ally less prone to outliers and express trends in a better way than
those performed on a smaller one.

Torpig bots stole 297,962 unique credentials (username and pass-
word pairs), sent by 52,540 different Torpig-infected machines,
over the period we controlled the botnet. The stolen credentials
were discovered as follows. For each infected hostH, we retrieved
all the unique username and password pairs c submitted byH. Af-
2http://www.ip2location.com

terward, the number wc of distinct web services where a credential
c was used was obtained. Finally, we concluded that c had been
reused across wc different web services, if wc was greater than or
equal to 2.

Our analysis found that almost 28% of the victims reused their
credentials for accessing 368,501 web sites. While this percentage
is slightly lower than the results reported in the poll conducted by
Sophos, it is close enough to confirm and validate it.

In addition to checking for credential reuse, we also conducted
an experiment to assess the strength of the 173,686 unique pass-
words discovered in the experiment above. To this end, we created
a UNIX-like password file to feed John the Ripper, a popular pass-
word cracker tool [31]. The results are presented in Figure 13.
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Figure 13: Number of passwords cracked in 90 minutes by the
John the Ripper password cracker tool. Vertical lines indicate
when John switches cracking mode. The first vertical line rep-
resents the switching from simple transformation techniques
(“single” mode) to wordlist cracking, the second from wordlist
to brute-force (“incremental”).

About 56,000 passwords were recovered in less than 65 minutes
by using permutation, substitution, and other simple replacement
rules used by the password cracker (the "single" mode). Another
14,000 passwords were recovered in the next 10 minutes when the
password cracker switched modes to use a large wordlist. Thus, in
less than 75 minutes, more than 40% of the passwords were recov-
ered. 30,000 additional passwords were recovered in the next 24
hours by brute force (the "incremental" mode).

7. RELATED WORK
Other analyses of both Mebroot and Torpig have been done [9,

12, 25]. These primarily focus on the Master Boot Record (MBR)
overwriting rootkit technique employed by Mebroot. We comple-
ment this work, since the focus of our analysis has been on the
Torpig botnet.

Torpig utilizes a relatively new strategy for locating its C&C
servers, which we refer to as domain flux. Analyses of other bot
families like Kraken/Bobax [1], Srizbi [46], and more recently,
Conficker [32], have revealed that the use of the domain flux tech-
nique for bot coordination is on the rise. We present domain flux
in detail and discuss its strengths and weaknesses, and we propose
several remediation strategies.

Botnet takeover as an analysis and defense strategy have been
considered elsewhere. Kanich et al. infiltrated the Storm botnet by
impersonating proxy peers in the overlay network. They demon-
strated their control by rewriting URLs in the spam sent by the



bots [22]. Recent efforts to disrupt the Conficker botnet have fo-
cused on sinkholing future rendezvous domains in order to disable
the botmaster’s ability to update the infected machines [19]. Our
takeover of Torpig is closest in spirit to the latter effort, as we also
took advantage of the shortcomings of using domain flux for C&C.

Determining the size of a botnet is difficult. Many studies have
used the number of unique IP addresses to estimate the number of
compromised hosts [34]. Recently, Conficker has been reported
to have infected between one and ten million machines using this
heuristic [32]. The Storm botnet’s size was approximated by crawl-
ing the Overnet distributed hash table (DHT) and counting DHT
identifiers and IP address pairs [18]. We believe many of these stud-
ies overestimate the actual bot population size for the reasons we
detailed previously. On the contrary, we have provided a detailed
discussion of how we determine the size of the Torpig botnet.

There has been work focused on understanding the information
harvested by malware. For example, Holz et al. analyzed data
from 70 dropzone servers containing information extracted from
keyloggers [16]. Also, a Torpig server was seized in 2008, resulting
in the recovery of 250,000 stolen credit and debit cards and 300,000
online bank account login credentials [38]. Furthermore, Franklin
et al. classified and assessed the value of compromised credentials
for financial and other personal information that is bought and sold
in the underground Internet economy [10]. Unlike these studies, we
analyzed live data that was sent directly to us by bots. This allows
us to gain further insights, such as the timing relationships between
events.

8. CONCLUSIONS
In this paper, we present a comprehensive analysis of the op-

erations of the Torpig botnet. Controlling hundreds of thousands
of hosts that were volunteering Gigabytes of sensitive information
provided us with the unique opportunity to understand both the
characteristics of the botnet victims and the potential for profit and
malicious activity of the botnet creators.

There are a number of lessons learned from the analysis of the
data we collected, as well as from the process of obtaining (and
losing) the botnet. First, we found that a naïve evaluation of botnet
size based on the count of distinct IPs yields grossly overestimated
results (a finding that confirms previous, similar results). Second,
the victims of botnets are often users with poorly maintained ma-
chines that choose easily guessable passwords to protect access to
sensitive sites. This is evidence that the malware problem is fun-
damentally a cultural problem. Even though people are educated
and understand well concepts such as the physical security and the
necessary maintenance of a car, they do not understand the conse-
quences of irresponsible behavior when using a computer. There-
fore, in addition to novel tools and techniques to combat botnets
and other forms of malware, it is necessary to better educate the
Internet citizens so that the number of potential victims is reduced.
Third, we learned that interacting with registrars, hosting facilities,
victim institutions, and law enforcement is a rather complicated
process. In some cases, simply identifying the point of contact for
one of the registrars involved required several days of frustrating
attempts. We are sure that we have not been the first to experience
this type of confusion and lack of coordination among the many
pieces of the botnet puzzle. However, in this case, we believe that
simple rules of behavior imposed by the US government would go
a long way toward preventing obviously-malicious behavior.
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