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Abstract
A modern rock climber attempting dif®cult routes will expect to take a number of falls.
Typically the falls will be from the same point on the climb, for example at a particularly
dif®cult series of moves, therefore the same part of the climbing rope will be damaged
by each fall. Since the consequences of rope failure are serious, it is important that the
climber should be aware of the number of falls the rope can withstand.

The work described in this paper was carried out to understand the mechanics of
climbing falls so as to enable predictions to be made of the tension developed in the
rope. Once the value for this tension is known, an estimation can be made of the life of
the rope measured as the number of falls to failure.

A theoretical simulation of climbing falls has been developed which includes the
nonlinearity of the rope behaviour and friction where the rope runs through
`karabiners,' the metal clips used to anchor the climbers to the rock. The results of
the simulation have been compared to experimentally measured rope tensions.

The number of falls to failure has been measured experimentally for various lengths of
fall and fall factors (the ratio of the length of fall to the length of rope). Failure of the
rope invariably occurs where the rope runs over the most heavily loaded karabiner;
therefore, the karabiner edge radius has also been varied. The experimental data have
been used to derive a failure curve for the rope that may be combined with the
theoretical simulation to predict the number of falls to failure.
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Notation

d Vertical distance above last runner
g Acceleration due to gravity
k Modulus of rope for linear elastic model

k1, k2 Moduli of rope for visco-elastic model
li Length of rope segment i
n Number of rope segments
r Runner radius
si Total slip at runner i

xi, yi Co-ordinates of runner i
C Matrix relating incremental slips to incremental strains
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_E Rate of energy dissipation at a runner due to friction
F Fall factor
I Unit matrix
K Matrix relating incremental strains to incremental tensions
L Length of rope run-out
L Matrix of slip conditions
M Mass of leader
S Critical tension in rope segment 1 for slip at belay
Ti Total tension in rope segment i
T Vector of total tensions
ei Total strain in rope segment i
gi Maximum tension ratio at runner i
k Viscous coef®cient of rope for visco-elastic model
li Coef®cient of friction at runner i
hi Angle of lap at runner i
ri Slip condition at runner i

Dsi Incremental slip at runner i
Ds Vector of incremental slips
Dt Duration of the increment of time

DTi Incremental tension in rope segment i
DT Vector of incremental tensions
Dei Incremental strain in rope segment i
De Vector of incremental strains

Introduction

The modern rock climber puts considerable trust
in the rope: falls while climbing are commonplace,
particularly for experienced climbers attempting
dif®cult routes, and the consequences of rope

failure are usually very serious. Consequently,
climbing ropes are of a sophisticated construction,
combining low mass with high strength and energy
absorbing properties. The modern climbing rope is
of a kernmantle type construction as shown in
Fig. 1, consisting of a twisted nylon kern (the load-

Figure 1 Construction of a kernmantle
climbing rope.
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bearing part of the rope) and a woven nylon mantle
to protect the kern from abrasion. The kern is
made up from a number of cords, the cords in turn
being made from several strands twisted together.
Each strand is itself formed from nylon threads,
each of about 25 lm diameter. A typical rope has
approximately ®ve million threads. The rope is
designed to decelerate a falling climber without
subjecting the body to very high forces.

Climbers should understand the effect on their
rope of any climbing falls so that they are able to
decide whether the strength of the rope has been
reduced suf®ciently for it to be retired from service.
Currently, climbers rely on rule-of-thumb methods
to assess the effects of falls on their ropes, but the
understanding of the physical processes involved
during falls is often poor. Fortunately, climbing
rope failures are not common, and when they do
occur are usually because of other factors, for
example the rope running over the sharp edge of a
rock. Nevertheless, studies have shown (Microys
1983) that even experienced climbers may have
little appreciation of the current state of their
ropes, and in some cases their ropes may be close to
the end of their useful lives.

The research described in this paper aims to
provide a more precise description of a climbing
fall and therefore give a better appreciation of the
tension developed in the rope. Such an appreciation
may be combined with a model for the degradation
of the rope so as to provide a procedure for the life
prediction assessment of a climbing rope.

Little previous work of this nature exists; how-
ever, Schubert (1986) provides some data on
tensions developed in climbing ropes and a de-
scription of what in¯uences these tensions, al-
though the work is largely descriptive. In addition,
there have been some previous reports of experi-
mental measurements of tensions developed in
climbing ropes during falls (see for example Perkins
1987).

In this paper, the procedures involved in climb-
ing and the circumstances leading to a fall are ®rst
described. A simple analysis of a climbing fall is
provided as an introduction to the subsequent
theoretical analysis. The theoretical analysis is then

presented with predictions of the tensions devel-
oped in the rope which are compared with experi-
mental tests. Finally, a series of experimental tests
are carried out to derive a failure curve for the rope
that can be used to predict the number of falls to
failure for a particular fall situation.

Background to rock climbing

Smith (1996) presented an interesting account of
the development of the procedures involved in rock
climbing. Usually climbers climb as a pair: for
example, a female leading climber (or leader) and a
second male climber (or second). The second
belays himself to the rock face, by attaching
himself, via his harness, to anchors ®xed to the
rock. These anchors take various forms, but typi-
cally they may be nuts (metal wedges) jammed into
cracks, pitons (metal spikes) hammered into cracks
or slings of rope draped over a rock spike. The
leader climbs above the second to the top of the
rock face, or until she can ®nd a safe place to belay
herself. Once the leader is belayed, the second
removes his belay and climbs to rejoin the leader.
As the second climbs, the leader takes in the rope so
as to protect the second should he slip.

The critical part of the climbing procedure is as
the leader climbs above her second. To make this
stage safer, the leader will run the rope through
karabiners (metal clips) attached to additional
anchors ®xed to the rock. These additional
anchors are known as running belays (or runners).
A situation during a climb where the leader has
®xed three running belays may then be as shown
in Fig. 2. Should the leader fall from the rock, the
distance she falls until the rope begins to decel-
erate her will be twice the distance from the last
running belay, assuming this was vertically be-
neath her. As the leader climbs, the second pays
the rope out through a belay device attached to
his harness. The belay device is designed to make
it easy for the second to hold the rope tight in the
event of a fall. The rope from second to leader is
referred to as the live rope. The remaining part of
the rope yet to be paid out by the second is
known as the dead rope.
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Experienced climbers undertaking a dif®cult
climb may expect to take a number of falls during
the climb. These falls inevitably lead to a deteri-
oration in the rope and it is therefore useful for the
climber to have an appreciation of the factors
controlling the magnitude of the tensions devel-
oped in the rope. The traditional measure of the
severity of a fall has been the fall factor, the ratio of
the length of the fall to the length of rope between
the leader and the second. The fall factor varies
from zero when the leader falls just after placing a
runner, to two when the leader falls before she has
been able to place any runners. This fall factor
approach implicitly assumes the rope behaves in a
linear elastic manner and takes no account of the
slip through the belay device and friction of the
rope over the runners.

Later in this paper, a theoretical procedure will
be developed for taking into account these effects.
First an analytical expression for the maximum
tension in the rope will be found using the standard
fall factor approach (Wexler 1950) to demonstrate
the basic mechanics of climbing falls.

Figure 3 shows a simple climbing fall where the
leader of mass M, falls from a distance d above her
last runner. The fall factor F is given by

F � 2d

L
�1�

where L is the length of live rope. The leader falls a
distance 2d before the rope begins to tighten plus a
further distance d before coming to a halt due to
stretch in the rope. The loss of potential energy of
the leader due to the loss of height is Mg(2d + d).
This potential energy is transferred into strain
energy stored in the rope of kd2/(2L). Here, g is the
acceleration due to gravity and k is the elastic
modulus of the rope. From the principle of
conservation of energy the further distance d is
calculated to be

d �M gL

k
1�

�����������������
1� 2kF

Mg

s" #

and hence the maximum tension in the rope is
found to be

T �Mg 1�
�����������������
1� 2kF

Mg

s" #
�2�

This analysis leads to the conclusion that the
maximum tension in the rope is controlled by the

Figure 3 Geometry of a simple climbing fall.

Figure 2 Description of terms used in climbing.
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fall factor, the mass of the climber and the stiffness
of the rope, but not by the absolute length of the
fall.

When the modulus of elasticity of the rope can
be assumed to be much larger than the weight of
the falling climber, a simpli®ed calculation for the
maximum tension may be written as:

T �
���������������
2kFMg

p
�3�

Theoretical analysis of climbing falls

A theoretical analysis of climbing falls is now
presented which includes slip at the belay, friction
at runners and a more realistic model for the
behaviour of the rope. The analysis uses an
incremental approach, necessitating the use of a
computer, but allowing the analysis of a fall
situation with an arbitrary number of runners.
The results give tensions in individual rope seg-

ments, loads at runners, slip through the belay
device and the position of the falling climber.

First, the geometry of a pitch is described using a
two-dimensional Cartesian co-ordinate system with
the second at the origin (Fig. 4). The leader has
placed n ) 1 runners, dividing the rope into n
segments. Runner i is located at xi, yi. The leader
falls from a point, distance d, vertically above her
last runner. Calculation provides the original
length li of rope segment i between runners i ) 1
and i, the angle of lap hi at runner i and the total
length of rope run out L. A maximum tension ratio
gi is calculated for each runner from

gi � elihi �4�

where li is the coef®cient of friction at runner i.
The tension ratio relates the tensions for rope
segments on each side of a runner when the rope
slips over the runner. Experimental measurements
of the tension in the rope segments on each side of

Figure 4 Description of pitch geometry
used in the theoretical simulation.
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the runner have been made for different angles of
lap. These measurements con®rm the exponential
form of eqn (4) and show a coef®cient of friction of
0.18±0.22 between steel and rope.

The relationship between the strain in each rope
segment and the total slip at each runner is now
considered. Taking segment i (Fig. 5):

si�1� ei� ÿ siÿ1�1� ei� � eili �5�
where ei is the strain in rope segment i and si is the
total slip at runner i, the slip being positive in the
direction from the second to the leader and
measured with zero strain in the rope. An incre-
mental form of eqn (5) may be derived:

Dsi�1� ei� ÿ Dsiÿ1�1� ei� � Dei�li � siÿ1 ÿ si�
�6�

where Dei is the incremental strain in rope segment
i and Dsi the incremental slip at runner i. Eqns (5)
and (6) are also valid for the ®rst rope segment if s0
and Ds0 are taken to be the slip and incremental slip
through the belay device. The ®nal rope segment,
between the leader and her last runner, gives a
modi®ed version of eqns (5) and (6):

sn ÿ snÿ1�1� en� � end �7�

Dsn ÿ Dsnÿ1�1� en� � Den�d � snÿ1� �8�

where sn and Dsn are the position and incremental
position of the leader measured positive downwards
relative to the point at which the rope becomes
tight. That is, the origin for sn is a distance d
vertically below the last runner. For small incre-
ments, Dsn is given by

Dsn � _snDt �9�
where _sn is the velocity of the leader and Dt the
duration of the increment of time.

A matrix equation can now be formulated giving
the vector of incremental strains in each rope
segment De in terms of the vector of incremental
slips Ds

CDs � De �10�

where DsT � �Ds0 . . . Dsi . . . Dsn� and DeT � �De0 . . .
Dei . . . Den� Note that matrix C has dimension n by
n� 1. A typical row of matrix C relating the
incremental strain in rope segment 4 to the
incremental slips at runners 3 and 4 has the form:

0 0

..

. ..
.

0 . . . ÿ1ÿe4
l4�s3ÿs4

1�e4
l4�s3ÿs4

. . . 0

..

. ..
.

0 0

2666666664

3777777775

Ds0

..

.

Ds3

Ds4

..

.

Dsn

266666666664

377777777775
�

De1

..

.

De4

..

.

Den

266666664

377777775
The incremental strain in any rope segment may be
related to the incremental tension by the use of a
constitutive model for the rope. In this work a
visco-elastic model is used with a spring in series
with an in-parallel combination of another spring
and dashpot (Fig. 6). In general, the quantities
de®ning the rope model may be made a function of
strain, but here these quantities have been set to
constant values. Therefore, for rope segment i

DTi � k1Dei � Dt

k
k1k2ei ÿ Ti k1 � k2� �� �

� kiDei � DT0
i

�11�

where k1, k2 and k are the constants in the material
model. Any model for the rope may be used,

Figure 5 Notation used for tensions and slips in an individual
rope segment.

Simulation of climbing falls · M. Pavier

84 Sports Engineering (1998) 1, 79±91 · Ó 1998 Blackwell Science Ltd



provided it can be written in a form relating
increments of tension to increments of strain [as in
eqn (11)].

A matrix equation is written giving the vector of
incremental tensions DT in terms of the vector of
incremental strains

KDe � DT ÿ DT0 �12�

where DTT � �DT1 . . . DTi . . . DTn� and DT0T �
�DT0

1 . . . DT0
i . . . DT0

n �. Matrix K is of dimension n
by n and is given by K � k1 I, where I is the n by n
unit matrix.

At each runner slip may occur depending on the
magnitude of the tension in the rope segments
either side of the runner. If slip does occur the
incremental tensions vary according to the tension
ratio for the runner. These conditions for runner i
are expressed as:

DTi � giDTi�1; Dsi < 0; ri � ÿ1 if Ti � giTi�1

Dsi � 0; ri � 0; if giTi�1 < Ti <
Ti�1

gi
�13�

DTi � DTi�1

gi
; Dsi > 0; ri � �1 if Ti � Ti�1

gi

where ri is used to specify the slip condition.
It is assumed that slip occurs at the belay if the

tension in the ®rst rope segment is equal to a
critical value. The condition for slip at the belay is
expressed as:

Ds0 � 0; r0 � 0 if T1 < S

DT1 � 0; Ds0 > 0; r0 � �1 if T1 � S
�14�

where S is the critical tension in the ®rst rope
segment.

Equations (13) and (14) can be used to derive a
matrix equation relating the incremental tensions

LDT � 0 �15�

Each row of matrix L corresponds to a slip
condition where ri is nonzero. For example, if the
slip condition at runner 3, r3, is equal to �1, the
corresponding row of matrix L has the form:

0 0
..
. ..

.

0 . . . 1 ÿ1=g3 . . . 0

..

. ..
.

0 0

2666664

3777775

DT1

..

.

DT3

DT4

..

.

DTn

266666664

377777775 �
0
..
.

0
..
.

0

2666664

3777775
It has been found necessary to use a modi®ed form
of eqn (15) to avoid instabilities when the size of
increment is other than very small:

LDT � ÿLT �16�

where the vector of rope tensions TT � �T1 . . .
Ti . . . Tn�. Equations (15) and (16) are identical
provided eqn (15) has been satis®ed exactly for all
previous increments.

Equations (10), (12) and (16) may now be com-
bined to give a set of linear equations that can be
solved to ®nd the vector of incremental slips, Ds.

LKCDs � ÿL�T � DT0� �17�

At the end of each increment, the incremental
strains are calculated from the incremental slips by
eqn (10). The incremental tensions are then found

Figure 6 Visco-elastic model of a rope.
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by eqn (12) and the current rope tensions incre-
mented, taking account that the rope tensions must
be always greater than or equal to zero. Finally the
new velocity of the leader m can be found from

m � _sn � �g ÿ Tn=M�Dt:

A computer program has been written to carry out
the calculations described above. The duration of
the time increment Dt is set small enough to
achieve good accuracy, but it is found that the
numerical calculations are well-behaved and largely
insensitive to the duration of the increment,
provided it is small enough.

Comparison of theoretical and experimental
simulations

The theoretical analysis of climbing falls presented
above are now used to simulate climbing falls,
providing predictions of the tension developed in
the rope. These predictions are compared with

measurements of tension taken from experimental
simulations of climbing falls.

The experimental apparatus consisted of a
trolley running on a vertical steel column as
shown in Fig. 7. Extra lead bars could be added to
alter the mass of the trolley up to a maximum of
80 kg. A catch at the top of the steel column held
the trolley in the raised position until a test was
carried out.

Two belay mounts equipped with strain gauges
were used, one to represent a running belay bolted
to the column, the other to represent the second's
belay, bolted to the ¯oor. The belay mounts were
manufactured so as to have similar cross sections to
standard karabiners. Strain gauges were attached to
the belay mounts in a full-bridge con®guration and
connected to Fylde type FE-492-BBS bridge con-
ditioners and FE-254-GA ampli®ers. The output
from the strain gauge ampli®ers was recorded
during a test using a Datalab DL1200 datalogger
with a sampling interval of 500 ls. The tensions in

Figure 7 Details of experimental appara-
tus.
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the two rope segments during the test were derived
from the loads measured by the belay mounts.

The rope used was Edelweiss M/W V.31 of
diameter 8.7 mm. The rope was tied to the trolley,
fed through the running belay then back to the
belay device. The grip of the second's hand on the
rope wass simulated using a pneumatic gripper as
shown in Fig. 7. The gripper allowed different
tensions to be applied to the rope running through
the belay device and different angles to be set for
the rope either side of the belay device. The gripper
was designed so as to be able to apply a higher load
than a human second would ®nd possible.

Before a theoretical simulation could be
undertaken, the parameters used to model the
mechanical behaviour of the climbing rope had to
be derived by experiment. The behaviour of the
rope could not be measured using a conventional
tensile test machine since the rope can suffer large
strains and exhibits a strong strain rate dependency.
The method used here wass to load the rope
dynamically using the falling trolley and record the
tension in the rope as a function of time. No
running belay was used and the rope was tied off at
the belay so that the measurements related purely
to the behaviour of the rope. The acceleration of
the trolley could be calculated from the tension in
the rope and hence the position of the trolley and
therefore the strain in the rope could be derived by
a process of double integration.

The tension vs. strain response for a typical test
is shown in Fig. 8. This test used a 2.1-m length of
rope, a fall factor of 1.3 and a trolley mass of 40 kg.
One test provided the complete response since the
rope was loaded to the maximum tension and then
relaxed to zero as the trolley returned upwards.
The rope behaved in a signi®cantly nonlinear
fashion and exhibited considerable hysterisis. The
nonlinearity of the rope was most noticeable at low
strains due to the ®bres in the rope aligning
themselves with the loading direction. The hyster-
isis was a result of the friction between adjacent
®bres and the damping behaviour of the nylon
®bres themselves. The experimental trace shows a
superimposed oscillation which is believed to be a
result of tension waves in the rope.

For the purposes of the theoretical analysis of
climbing falls conducted here, it was felt to be
suf®cient to model the rope using the linear visco-
elastic model shown in Fig. 6, but including an
initial strain offset so that the rope only begins to
take tension once a certain value of strain has been
exceeded. This provides a straightforward method
of including the signi®cant nonlinearity of the rope
at low strains. Values for the spring and dashpot
parameters in the model were chosen to give an
adequate match with the measured tension vs.
strain curve in Fig. 8. No direct procedure exists to
derive values directly for the various parameters,
since the strain rate varies during the test. The
values for the chosen parameters are:

k1 � 35.0 kN
k2 � 20.0 kN
k � 3.0 kN s)1

e0 � 0.05
where e0 is the initial strain offset. The strain offset
can be included in the existing theoretical simula-
tion, merely as a factor on the initial length of the
rope.

The theoretical technique may now be used
to provide predictions of tension vs. time that

Figure 8 Tension vs. strain from a dynamic test on a rope
compared with the model.
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can be compared with the experimental results.
Figure 9(a,b) shows two such comparisons. The
tension given refers to the segment of rope between
the running belay and the trolley. The mass of
trolley, length of rope and fall factor for these
comparisons are given in Table 1.

A typical trace of tension for the case of the rope
tied off at the belay is shown in Fig. 9(a). The
tension rises quickly to a maximum of 2.6 kN, then
decays more gradually to zero. Two smaller peaks
then occur, after which the tension remains con-
stant at a value corresponding to the weight of the
trolley. The theoretical simulation agrees well with
the experimental measurements, particularly for
the maximum tension.

Figure 9(b) shows a typical trace with a Stitch
plate, a common belay device. The tension rises
quickly to a maximum of 1.9 kN, then drops
slightly to a small plateau of 1.6 kN before falling
to zero. There is then a small second peak after
which the tension remains at a constant value equal
to the weight of the trolley. The cause of the small
initial peak is the behaviour of the pneumatic
gripper where the tension to initiate slip through
the gripper is higher than that for slip to continue.
The theoretical simulation assumes a constant
value for the critical tension for slip at the belay
and is therefore unable to predict the small drop in
load after the initial peak that occurs in the test
results. The theory is thus unable to provide a
wholly accurate simulation when slip through the
belay occurs.

Prediction of rope failure

The theoretical simulation of climbing falls pro-
vides predictions of the tension in rope segments
and the slip at running belays. A useful simulation
would provide additional information concerning
the damage to the rope that could be used to assess
the lifetime of a rope. The precise mechanisms of
rope damage are largely unknown, therefore a
programme of experimental work has been under-
taken using the same apparatus as has already been
described.

Figure 9 Comparison of experimental and theoretical simula-
tions of the tension in the rope (a) for the case of a fall with the
rope tied off at the belay and (b) for the case of a fall with a
Stitch plate at the belay.

Table 1 Test details for comparisons between experimental and
theoretical simulations

Figure Belay Length of Fall Mass Runner

condition rope (m) factor (kg) radius (mm)

9(a) Tied off 4.0 0.50 40 6.0

9(b) Stitch plate 4.9 0.54 40 6.0
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Rope failure inevitably occurs where the rope
runs through the running belay. Typically, several
falls are required to cause rope failure depending
on the fall factor, length of fall, mass of climber and
whether a belay device was used or the rope tied
off. A critical factor was identi®ed as the edge
radius of the belay mount used to represent the
running belay. Belay mounts were manufactured
with different radii varying from 2 mm to 6 mm.
The smaller radius was designed to simulate the
rope running over a sharp rock edge, whereas the
larger radii were intended to match the cross
section of standard karabiners.

It is proposed that the damage to the rope as it
runs over the running belay depends on the rate of
energy dissipation through frictional losses. The
tension T2 in the rope segment due to friction
between the running belay and falling climber is
greater than the tension T1 in the segment between
the running and ®xed belays (Fig. 3). These tensions
are related by the tension ratio g for the running
belay so that T2 � gT1. The rate of energy dissi-
pation _E at the running belay therefore is given by

_E � _sT2 1ÿ 1

g

� �
�18�

where _s is the rate of slip. However, any one section
of rope dissipates an amount of energy proportional
to T2(1 ) 1/g) since, although the rate of energy
dissipation increases with _s, so too does the rate at
which the rope runs through the belay. Therefore, it
is proposed that the damage to the rope depends on
the maximum value of tension generated during a
fall. However, since the energy dissipation by any
section of rope is increased by a smaller radius of
runner this dependency on tension will be altered
with a different radius of runner.

Table 2 provides results of the number of falls-
to-failure and the maximum tension recorded in
the rope between the running belay and the trolley.
A measurement of four falls-to-failure, for example,
means that the rope failed during the fourth fall.
For severe falls, the rope mantle and kern of the
rope fail together as seen in Fig. 10(a). For less
severe falls, however, the mantle of the rope fails
before the kern [Fig. 10(b)]. Following mantle

failure, a number of extra falls are required to
cause failure of the kern. The number of falls-to-
failure in Table 2 relates to complete failure of the
rope: kern and mantle. Various conditions for a fall
were considered: different trolley mass, runner
radius, fall factor and length of rope. Most of the
tests were carried out with the rope tied off at the
belay, but for two tests a Stitch plate was used in
conjunction with the pneumatic gripper. The two
test results for the Stitch plate were derived using
different gripper pressures.

The test results support the implications of the
simple analytical model that the maximum tension,
and hence the number of falls-to-failure, principal-
ly depend on the fall factor, mass of climber and
runner radius. It is particularly noticeable how the
use of a belay device reduces the maximum tension
and greatly increases the number of falls to failure.

Table 2 Number of falls to failure for various fall conditions

Belay Runner Mass Fall Length of Falls to Maximum

condition radius

(mm)

(kg) factor rope (m) failure tension

(kN)

Tied off 6.0 60 0.86 2.50 15 5.7

Tied off 6.0 60 1.32 2.50 5 7.1

Tied off 6.0 60 1.77 2.50 4 8.2

Tied off 6.0 70 0.40 2.50 18 4.3

Tied off 6.0 70 0.80 2.50 10 5.9

Tied off 6.0 70 0.86 2.50 9 6.2

Tied off 6.0 70 0.87 1.50 4 6.1

Tied off 6.0 70 0.90 1.50 4 6.4

Tied off 6.0 70 0.90 1.50 9 6.2

Tied off 6.0 70 0.90 1.50 7 6.3

Tied off 6.0 70 0.97 2.50 8 6.5

Tied off 6.0 70 1.00 1.00 11 6.5

Tied off 6.0 70 1.00 1.33 9 6.6

Tied off 6.0 70 1.00 2.00 9 6.8

Tied off 6.0 70 1.32 2.50 5 7.6

Tied off 6.0 70 1.77 2.50 3 8.8

Tied off 6.0 80 0.86 2.50 7 6.6

Tied off 6.0 80 0.97 2.50 8 7.0

Tied off 6.0 80 1.32 2.50 4 8.2

Tied off 6.0 80 1.77 2.50 3 9.4

Tied off 4.0 70 0.40 2.50 11 4.2

Tied off 4.0 70 0.40 2.50 10 4.3

Tied off 4.0 70 0.90 1.50 7 6.3

Tied off 4.0 70 0.90 1.50 3 6.2

Tied off 4.0 70 1.33 2.00 4 7.7

Tied off 2.0 70 0.40 2.50 5 4.3

Tied off 2.0 70 1.33 2.00 2 7.8

Stitch plate 6.0 70 0.22 4.50 43 2.6

Stitch plate 6.0 70 0.22 4.50 27 4.0
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Figure 11 shows the data of Table 2 plotted as the
maximum tension vs. the number of falls to failure
for the three different runner radii considered in the
tests. Error bars of plus or minus one fall are
included since it is not known how close to failure
the rope is after each fall. The data is plotted in a
similar manner to a conventional stress amplitude vs.
cycles to failure fatigue curve. It can be appreciated
that reducing the radius of the runner for the same
maximum tension generated in the fall substantially
reduces the number of falls-to-failure.

If the proposed mechanism of rope failure is valid,
the data for one radius of runner should be shrunk
onto one curve. The data is reasonably consistent
with this proposed mechanism; a line is superim-
posed on the graph showing a linear ®t to the data for
a runner radius of 6 mm. Fall conditions below this
line can be thought of as safe, while for those above
this line, rope failure is likely to occur.

Discussion

The theoretical simulation of climbing falls that
has been developed in this paper includes the
major phenomena in¯uencing the tension devel-
oped in a climbing rope. In the case of the rope
tied off at the belay, the theoretical predictions
match closely the observed experimental behav-
iour. Predictions are less good when slip at the
belay occurs, largely because a simple model has
been used for the behaviour of the belay device.
Certainly a more sophisticated model could be
used, for example by including a critical tension to
initiate slip at the belay followed by a lower value
for slip to continue.

The visco-elastic model used for the rope is
characterized by three constant parameters, with a
strain offset to allow some account to be taken of
nonlinearity at low strains. The derivation of the
parameters of the rope model is currently achieved
using an ad hoc approach. A more systematic
method is required to derive a rope behaviour
model, but this is likely to require special purpose
test equipment to allow dynamics tests to be carried
out under constant strain rate conditions.

Since the mass of the rope itself was not included
in the analysis, the model is unable to predict the

Figure 10 Ropes showing (a) kern failure and (b) mantle failure.

Figure 11 Maximum tension vs. the number of falls to failure.
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size of tension waves in the rope. For a linear elastic
rope the magnitude of these tension waves can be
predicted from Timoshenko & Goodier (1982):

T � vcm �19�
where T is the magnitude of the wave, v is the
velocity of the climber just before the rope becomes
tight, c is the velocity of propagation of waves in the
rope given by c � ���������

k=m
p

and m is the mass per unit
length of the rope. Using typical values, the
magnitude of the tension waves may be found to
be much less than the predicted tensions neglecting
the mass of the rope. Conversely, tension waves in
polymer ropes used for mooring ships are signi®-
cant, but the behaviour of these ropes is very
different from a climbing rope (Leeuwen 1981).

It has been proposed that the failure of a rope is
related to the dissipation of friction as the rope runs
over the running belay. Certainly, evidence exists
that melting and abrasion of the mantle does occur.
Experimental data of the maximum tension vs. the
number of falls-to-failure does support this pro-
posed failure mechanism and enables a safe working
envelope to be constructed to ensure rope failure
does not occur. However, no account is taken of
environmental factors such as grit working its way
into the kern. Tests have been carried out to examine
such effects, demonstrating considerable differences
between new and environmentally damaged ropes in
the number of falls to failure (Pavier 1998).

The severity of damage to the rope has been
assessed by the number of falls to failure. Although
this approach appears to work for the case of a
number of identical falls it is dif®cult to extend it to
the more general situation where one rope experi-
ences a number of different falls. Not only do
different falls create different magnitudes of ten-
sion, but also different falls do not damage the same
section of the rope. Although in principle the effect
of different falls could be taken into account, it is
unlikely that a climber would record the history of
the rope in suf®cient detail to allow an accurate
assessment of remaining life to be made. The work
that has been described in this paper is likely to be
of most practical use in giving a better qualitative

understanding of the factors that determine the
lifetime of a rope.

Conclusions

A theoretical simulation of climbing falls has been
developed, allowing good predictions to be made of
the tension generated in the rope. The simulation
includes slip of the rope through the belay device,
friction at runners and a visco-elastic model for the
rope. The simulation can be extended to account for
more general nonlinearity of the rope behaviour and
a more sophisticated simulation of the belay device.

Experimental testing has provided information
on the number of falls-to-failure for different fall
situations. The data show that the number of falls
can be related to the tension developed at the
running belay. The theoretical simulation may
therefore be used to enable predictions to be made
of the number of falls-to-failure for a general fall
situation.
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