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Problem 1: Muon decay [20 points] 

Consider the decay µ → eνµν̄ e. 

Describe the necessary steps to calculate the lifetime of the µ as given in the formula 
above and highlight assumptions you might make in the calculation. [Bonus: you 
have all tools at hand to carry out the full calculation. Challenge yourself!] 
• Assumption 1: The momentum transfer is much smaller than the W-boson mass,
so the W-boson propagator:

−i(gµν − qµqν /m
2 ) igµνW ≈ 

q2 − m2 m2 
W W 
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Summon the Feynman rules, we can write the matrix element as: � 
igW 

�2 � � igµν � � 
M = √ ū(p3)γ

µ(1 − γ5)u(p1) 2 ū(p4)γ
ν (1 − γ5)v(p2)

2 2 mW 

−igW 
2 � �� � 

= 
2 ū(p3)γ

µ(1 − γ5)u(p1) ū(p4)γµ(1 − γ5)v(p2) . 
8mW 

So, 

|M|2 = MM† � 
g2 �2 � �� � 

= W 
2 ū(p3)γ

µ(1 − γ5)u(p1) ū(p1)γ
ν (1 − γ5)u(p3)

8mW � �� � 
ū(p4)γµ(1 − γ5)v(p2) v̄(p2)γν (1 − γ5)u(p4) . 

Sum over spins, and make the second assumption that neutrinos are massless: X � 
|M|2 = Tr p/3γ

µ(1 − γ5)(p/1 + mµ)γ
ν (1 − γ5) 

spins � 
Tr p/2γ

µ(1 − γ5)(p/4 + me)γ
ν (1 − γ5) 

Invoke the results from Problem 9.2 in Griffiths, and average over the initial muon 
spin, we get: � �4 

gWh|M|2i = 2 (p1 · p2)(p3 · p4) 
mW 

Next we use Fermi’s Golden Rule for decay (Equation 6.21 in Griffiths), and carry out 
the kinematic integral calculations shown in great details by Griffiths pg. 311-314, 
we acquire the muon lifetime as given by this problem. 
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Problem 2: Neutron decay [20 points]

Consider the decay of a neutron n→ peνe.

Compare this decay with the decay of the µ. Highlight the differences between the
two processes and compare the expected electron energy spectra.
• Treating the neutron and the proton as elementary particles, the neutron decay
process is very similar to the muon decay except that the proton is massive. Details
of the neutron lifetime calculation can be found on Griffiths pg. 316-318.

Now we compare the electron energy spectrum in both cases:

dΓ

dE ∣∣µ ∝ E2

(
1− 4E

3mµ

)
(1)

dΓ

∣∣∣
∣∣

dE ∣n ∝ E
√
E2 −me

2
[
(mn −mp)− E

]2
(2)

Both distributions have a cutoff, with that of the muon decay at mµ/2 ≈ 52.5 MeV
while that of the neutron decay at mn −mp ≈ 1.29 MeV. The electron energy distri-
bution of muon decay also reaches peak near the cutoff energy while that of neutron
decay are more on the lower energy side.

Problem 3: CKM Matrix [20 points]

The purpose of this exercise is review properties of unitary matrices. How many
independent real parameters are there in a general 3× 3 unitary matrix? How about
n × n?. [Hint: It helps to know that any unitary matrix (U) can be written in the
form U = eiH , wher H is a hermitian matrix. So an equivalent question is, how many
independent real parameters are there in the general hermitian matrix.] How many
independent real parameters are there in a general 3 × 3 (real) orthogonal matrix?
How about n× n?
• For an n × n Hermitian matrix H, we have H = H† = HT ∗. So, the n diago-
nal elements satisfy: Hii = Hii

∗ , so there is 1 independent real parameter for each
diagonal element. For the off-diagonal elements, we have Hij = Hj

∗
i, which puts 2



constraints on the 4 real parameters describing each pair of them. Therefore, there 
are n2 independent real parameters in an n × n unitary matrix. That is 9 parameters 
for a 3 × 3 unitary matrix. 
For a real n×n orthogonal matrix O, we have O = O∗ and OOT = 1. So O(O∗)T = 

OO† = 1, which means O is unitary and can thus be written as O = e−iA , where A 
is a Hermitian matrix. Also, since O is real, we have −iA = iA∗, which says that A 
is purely imaginary. So there are n2 independent real parameters left. Furthermore, 
A∗ = −A, A = A† ⇒ A = (AT )∗ = −AT , which says A is antisymmetric. So, A has 
n2 

2 
−n independent real parameters, and so is O. For a 3 × 3 O, there are 3 parameters. 

Problem 4: Neutrino generations [20 points] 
√ 

The LEP collider operated initially at s = mZ to produce the Z boson at the Z 
pole. The measurement of the cross section allows the estimate of the number of 
active neutrino generations. Explain how this information can be derived without 
the detection of Z boson decays to neutrinos. √ • The cross section for Z-boson produced at center-of-mass energy s decay to a 
fermion pair ff̄  is: 

12π ΓlΓf ¯ sΓ2 
f totσff̄ (s) = � �2 . M2 Γ2 
(s − M2 )2 + sΓtot

Z tot Z MZ 

At the Z pole s = MZ 
2 , this reduces to: 

σpole 
12π ΓlΓff̄  

= ,
ff̄  M2 Γ2 

Z tot 

where Γtot = Γhadrons + 3Γlepton + Nν Γν . Considering only the hadronic cross section, 
we have: s 

12πΓleptonΓhadrons 
= .Γtot 

M2 σpole Z hadrons 

Using the Standard Model prediction Γl/Γν = 1/2, we have: 

Γtot − Γhadrons 3 
Nν = − 

2Γlepton 2 �s � 
1 12πΓleptonΓhadrons 3 

= 
σpole 

− Γhadrons − 
2Γlepton M2 2 

Z hadrons 
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Problem 5: Deep inelastic scattering [20 points] 

The HERA collider at DESY allowed the study of collisions of 27.5 GeV electrons on 
820 GeV proton beams. Calculate the kinematic variables Q2 ,x, and y in terms of the 
scattered 3◦ < θe 

0 < 177◦ calculate the kinematic region (xmin, xmax) and (Qmin, Qmax) 
covered by HERA. 
• Let Ep and Ee be the energy of the incoming proton and electron Note that at the 
energy scale of HERA, we can neglect the particle masses and write the momenta as: 

p = EP (1, 0, 0, 1) for the incoming proton 

k = Ee(1, 0, 0, −1) for the incoming electron 

k0 = Ee 
0 (1, sin θe 

0 , 0, − cos θe 
0 ) for the scattered electron 

q = k − k0 the momentum transfer, 

which gives us: 

θ0 
Q2 = −q 2 = 2k0 = 2EeEe 

0 (1 − cos θe 
0 ) = 4EeEe 

0 sin2 e 

2 
p · q p · k0 EpE

0 (1 + cos θ0 ) E 0 θ0 e e e 2 e y = = 1 − = 1 − = 1 − cos 
p · k p · k 2EpEe Ee 2 

E 0 e sin
2 θ 
2 

0 
e 

0 
esin2 θ 
2

E 0 eQ2 Q2 4Ee 
x = = 0 

e 
= = 

2 θ .0 
e 

0 
e 

0 
e2 θ 
2 ))(1 − E

Ee 
(1 − E

Ee 
2p · q 2y(p · k) 2(2EpEe ) Epcos cos

2 

So, for the scattering angle 3◦ < θe 
0 < 177◦ we have: 

Q2 = Q2(θ0 = 3◦) = 4EeE
0 sin2 1.5◦ = 0.075E 0 GeVmin e e e 

0.00069Ee 
0 

xmin = x(θe 
0 = 3◦) = 

820(1 − 0.036Ee 
0 ) 

Q2 = Q2(θ0 = 177◦) = 4EeE
0 sin2 88.5◦ = 109.0E 0 GeVmax e e e 

0.9993Ee 
0 

xmax = x(θe 
0 = 177◦) = 

820(1 − 0.000025Ee 
0 ) 
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