
Chapter 7 

Longitudinal Oscillations and Sound 

Transverse oscillations of a continuous system are easy to visualize because you can see 
directly the function that describes the displacement. The mathematics of longitudinal os-
cillations of a continuous linear space translation invariant system is the same. It must be, 
because it is completely determined by the space translation invariance. But the physics is 
different. 

Preview 

In this chapter, we introduce two physical systems with longitudinal oscillations: massive 
springs and organ pipes. 

i. We describe the massive spring as the continuum limit of a system of masses connected 
by massless springs and study its normal modes for various boundary conditions. 

ii. We discuss in some detail the system of a mass at the end of a massive spring. When 
the spring is “light,” this is an important example of physics with two different “scales.” 

iii. We discuss the physics of sound waves in a tube, by analogy with the oscillations of 
the massive spring. We also introduce the “Helmholtz” approximation for the lowest 
mode of a bottle. 

7.1 Longitudinal Modes in a Massive Spring 

So far, in our extensive discussions of waves in systems of springs and blocks, we have 
assumed that the only degrees of freedom are those associated with the motion of the blocks. 
This is a reasonable assumption at low frequencies, when the blocks are very heavy compared 
to the springs, because the blocks move so slowly that the springs have time to readjust and are 
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154 CHAPTER 7. LONGITUDINAL OSCILLATIONS AND SOUND 

always nearly uniform.1 In this case, the dispersion relation for the longitudinal oscillations 
of the blocks is just the dispersion relation for coupled pendulums, (5.35), in the limit in 
which we ignore gravity, and keep only the coupling between the masses produced by the 
spring constant, K. In other words, we take the limit of (5.35) as g/` → 0. The result can be 
written as 

ω2 =
4Ka sin2 ka 

(7.1) 
m 2 

where Ka is the spring constant of the springs, m the mass of the blocks, and a the equilib-
rium separation. We have put a subscript a on Ka because we will want to vary the spring 
constant as we vary the separation between the blocks in the discussion below. 

Now what happens when the blocks are absent, but the spring is massive? We can find 
this out by considering the limit of (7.1) as a → 0. In this limit, the massive blocks and the 
massless spring melt into one another, so that the result looks like a uniform, massive spring. 
In order to take the limit, however, we must understand what variables describe the massive 
spring, and have a finite limit as a → 0. One such variable is the linear mass density, 

m 
ρL = lim . (7.2) 

a→0 a 

We must take the masses of the blocks to zero as a → 0 in order to keep ρL finite. 
To understand what happens to Ka as a → 0, consider what happens when you cut a 

spring in half. When a spring is stretched, each half contributes half the displacement. But 
the tension is uniform throughout the stretched spring. Thus the spring constant of half a 
spring is twice as great as that of the full spring, because half the displacement gives the 
same force. This relation is illustrated in figure 7.1. The spring in the center is unstretched. 
The spring on top is stretched by x to the right. The bottom shows the same stretched spring, 
still stretched by x, but now symmetrically. Comparing top and bottom, you can see that the 
return force from stretching the spring by x is the same as from stretching half the spring by 
x/2. 

The diagram in figure 7.1 is an example of the following result. In general, the spring 
constant, Ka, depends not just on what the spring is made of, it depends on how long the 
spring is. But the quantity Kaa, where a is the length of the spring, is actually independent 
of a, for a spring made of uniform material. Thus we should take the limit a → 0 holding 
Kaa fixed. 

This implies that the dispersion relation for the massive spring is 

Kaa 
ω2 = k2 , (7.3)

ρL 

where we have used the Taylor series expansion of sin x, (1.58), and kept only the first term. 

1We will say this much more formally below. 
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Figure 7.1: Half a spring has twice the spring constant. 

According to the discussion above, we can rewrite this as 

ω2 = 
K` 

k2 (7.4)
ρL 

where ̀  is the length of the spring and K is the spring constant of the spring as a whole. 
Note that in longitudinal oscillations in a continuous material in the x direction, the equi-

librium position, x, doesn’t actually describe the x position of the material. Because the 
displacement is longitudinal, the actual x position of the point on the spring with equilibrium 
position x is 

x + ψ(x, t) , (7.5) 

where ψ is the displacement. You will need this to do problem (7.1). 

7.1.1 Fixed Ends 

.............................
...............................................................................
........
................................................................................................................................................. ... .. 7-1 

Suppose that we have a massive spring with length ` and its ends fixed at x = 0 and x = `. 
Then the displacement, ψ(x, t) must vanish at the ends, 

ψ(0, t) = 0 , ψ(`, t) = 0 . (7.6) 

The modes of the system are the same as for any other space translation invariant system. 
The linear combinations of the complex exponential modes of the infinite system that satisfy 
(7.6) are 

An(x) = sin 
nπx 

, (7.7)
` 
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with angular wave number 
nπ 

kn = (7.8)
` 

and frequency (from the dispersion relation, (7.4)) 
s 

K` 
s 

K` nπ 
ωn = kn = . (7.9)

ρL ρL ` 

However, because the oscillations are longitudinal, the modes look very different from the 
transverse modes of the string that we studied in the previous chapter. The position of the 
point on the string whose equilibrium position is x, in the nth normal mode, has the general 
form (from (7.5)) 

nπx 
x + ² sin cos(ωnt + φ) (7.10)

` 
where ² and φ are the amplitude and phase of the oscillation. 

The lowest 9 modes in (7.10) are animated in program 7-1. Compare these with the modes 
animated in program 6-1. The mathematics is the same, but the physics is very different 
because of (7.5). Stare at these two animations until you can visualize the relation between 
the two. Then you will have understood (7.5). 

7.1.2 Free Ends 

.........................................................................................
.............................

...............................................................................
........
........................................................ ... .. 7-2 

Now let us look at the situation in which the end of the spring at x = 0 is fixed, but the end at 
x = ` is free. The boundary conditions in this case are analogous to the normal modes of the 
string with one fixed end. The displacement at x = 0 must vanish because the end is fixed. 
Also, the derivative of the displacement at x = ` must vanish. You can see this by looking at 
the continuous spring as the limit of discrete masses coupled by springs. As we saw in (5.43), 
the last real mass must have the same displacement as the first “imaginary” mass, 

ψ(`, t) = ψ(` + a, t) . (7.11) 

Therefore, for the finite system with a free end at `, we have the relation 

ψ(`, t) − ψ(` + a, t) 
= 0 for all a. (7.12) 

a 

In the limit that the distance between masses goes to zero, this becomes the condition that the 
derivative of the displacement, ψ, with respect to x vanishes at x = `, 

∂ 
ψ(x, t)| = 0 . (7.13)x=` ∂x 
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Thus the boundary conditions on the displacement are the same as in (6.11) for the transverse 
oscillation of a continuous string with x = 0 fixed and x = ` free, 

∂ 
ψ(0, t) = 0 , ψ(x, t)| = 0 . (7.14)x=` ∂x 

This, in turn, implies that the normal modes are the same as for the transversely oscillating 
string, (6.15), 

An(x) = sin 
µ 

(2n + 1)πx 
¶ 

for n = 0 to ∞ . (7.15)
2` 

However, again because of (7.5), these modes look very different from those of the string. 
The first nine are animated in program 7-2 (compare with program 6-2). 

7.2 A Mass on a Light Spring 

Let us return to the system that we studied at the very beginning of the book, the harmonic 
oscillator constructed by putting a mass at the end of a light spring. We are now in a position 
to understand precisely what “light” means for this system, because we can now allow the 
spring to have a nonzero linear mass density, ρL, and find the normal modes of this system. 
We will then be able to see what happens as ρL → 0. 

To be specific, consider a spring with equilibrium length ` and spring constant K, fixed at 
x = 0 and constrained to oscillate only in the x direction (that is longitudinally). Now attach 
a mass, m, to the free end (with equilibrium position x = `). The spring, for 0 < x < `, can 
be regarded as part of a space translation invariant system. To find the normal modes for this 
system, we look for linear combination of the modes of the infinite spring (for a given ω) that 
reproduces the physics at x = 0 and x = `. The fixed end at x = 0 is easy. This fixes the 
form of the modes to be proportional to 

sin knx (7.16) 

with frequency s 
K` 

ωn = kn . (7.17)
ρL 

As always, kn and ωn are related by the dispersion relation, (7.4). Now to determine the 
possible values of kn, we require that F = ma be satisfied for the mass. Suppose, for 
example, that the amplitude of the oscillation is A (a length). Then the displacement of the 
point on the spring with equilibrium position x is 

ψ(x, t) = A sin knx cos ωnt , (7.18) 



158 CHAPTER 7. LONGITUDINAL OSCILLATIONS AND SOUND 

and the displacement of the mass is determined by the displacement of the end of the spring, 

x(t) ≡ ψ(`, t) = A sin kn ̀  cos ωnt . (7.19) 

The acceleration is 
∂2 

a(t) = ψ(`, t) = −ω2 A sin kn ̀  cos ωnt (7.20)n∂t2 
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Figure 7.2: The stretching of the last spring is ψ(`, t) − ψ(` − a, t). 

To find the force on the mass, consider the massive spring as the continuum limit as 
a → 0 of masses connected by massless springs of equilibrium length a, as at the beginning 
of the chapter. Then the force on the mass at the end is determined by the stretching of the last 
spring in the series. This, in turn, is the difference between the displacement of the system at 
x = ` and x = ` − a, as illustrated in figure 7.2. Thus the force is 

F = −Ka [ψ(`, t) − ψ(` − a, t)] . (7.21) 

In order to take the limit, a → 0, rewrite this as 

ψ(`, t) − ψ(` − a, t)
F = −Kaa . (7.22) 

a 
∂Now in the continuum limit, Kaa is K`, and the last factor goes to a derivative, ψ(x, t)|∂x x=`. 

The final result for the force is therefore2 

∂ 
F = −K` ψ(x, t)| = −K` kn A cos kn ̀  cos ωnt . (7.23)x=` ∂x 

2Note that we can use this to give an alternate derivation of the boundary condition for a free end, (7.14). 
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Note that the units work. K` is a force. ∂ ψ is dimensionless. ∂x 
Putting (7.20) and (7.23) into F = ma and canceling a factor of −A cos ωnt on both 

sides gives, 
K`kn cos kn ̀  = mω2 sin kn` . (7.24)n 

Using the dispersion relation to eliminate ω2 , we obtain n

ρL ̀  
kn ̀  tan kn ̀  = . (7.25) 

m 

We have multiplied both sides of (7.25) by ` in order to deal with the dimensionless 
variables kn ̀  (which is 2π times the number of wavelengths that fit onto the spring) and the 
dimensionless number 

ρL ̀  
² ≡ (7.26) 

m 
(which is the ratio of the mass of the spring, ρL ̀ , to the mass, m). The spring is light if ² is 
much smaller than one. 

The important point is that (7.25) has only one solution for kn ̀  that goes to zero as ² → 0. 
Because tan k` ≈ k` for small k`, it is 

√ 
k0 ̀  ≈ ² . (7.27) 

For all the other solutions, the smallness of the left-hand side of (7.25) must come because 
tan kn ̀  is very small, 

kn ̀  ≈ nπ for n = 1 to ∞ . (7.28) 

But (7.28) implies 

x(t) ≡ ψ(`, t) = A sin kn ̀  cos ωnt ≈ 0 for n = 1 to ∞ . (7.29) 

In other words, in all the solutions except k0, the mass is hardly moving at all, and the spring 
is doing almost all the oscillating, looking very much like a system with two fixed ends. 
Furthermore, the frequencies of all the modes except the k0 mode are large, 

s 
K 

ωn ≈ nπ 
ρL ̀  

for n = 1 to ∞ , (7.30) 

while the frequency of the k0 mode is 

ω0 ≈ 

s 
K 

. (7.31) 
m 

For small ² (large mass), the k0 mode is associated primarily with the oscillation of the mass, 
and has about the frequency we found for the case of the massless spring. The other modes 
are in an entirely different range of frequencies. They are associated with the oscillations of 
the spring. This is an important example of the way in which a single system can behave in 
very different ways in different regimes of frequency. 
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7.3 The Speed of Sound 

z = ` 

6 

z 

z = 0 

Figure 7.3: An organ pipe. 

The physics of sound waves is obviously a three-dimensional problem. However, we can 
learn a lot about sound by considering motion of air in only one-dimension. Consider, for 
example, standing waves in the air in a long narrow tube like an organ pipe, shown in cartoon 
form in figure 7.3. Here, we will ignore the motion of the air perpendicular to the length of 
the pipe, and consider only the one-dimensional motion along the pipe. As we will see later, 
when we can deal with three-dimensional problems, this is a sensible thing to do for low 
frequencies, at which the transverse modes of oscillation cannot be excited. If we consider 
only one-dimensional motion, we can draw an analogy between the oscillations of the air in 
the pipe and the longitudinal waves in a massive spring. 

It is clear what the analog of ρL is. The linear mass density of the air in the tube is 

ρL = ρA (7.32) 

where A is the cross-sectional area of the tube. The question then is what is K` for a tube of 
air? 

Consider putting a piston at the top of the tube, as shown in figure 7.4. With the piston at 
the top of the tube, there is no force on the piston, because the pressure of the air in the tube 
is the same as the pressure of the air in the room outside. However, if the piston is moved in 
a distance dz, as shown figure 7.5, the volume of the air in the tube is decreased by 

− dV = Adz . (7.33) 



161 7.3. THE SPEED OF SOUND 

z = ` 
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z 

z = 0 

Figure 7.4: The organ pipe with a piston at the top. The air in the tube acts like a spring. 

− z = ` 
dz − 

6 

z 

z = 0 

Figure 7.5: Pushing in the piston changes the volume of the air in the tube. 

If the piston were moved in slowly enough for the temperature of the gas to stay constant, 
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then the pressure would simply be inversely proportional to the volume. However, in a sound 
wave, the motion of the air is so rapid that almost no heat has a chance to flow in or out of 
the system. Such a change in the volume is called “adiabatic.” When the volume is decreased 
adiabatically, the temperature goes up (because the force on the piston is doing work) and the 
pressure increases faster than 1/V , like 

p ∝ V −γ (7.34) 

where γ is a positive constant that depends on the thermodynamic properties of the gas. More 
precisely, γ is the ratio of the specific heat at constant pressure to the specific heat at constant 
volume:3 

CP /CV (7.35) 

In air, at standard temperature and pressure 

γair ≈ 1.40 (7.36) 

Now we can write from (7.34), 

dp dV 
= −γ (7.37) 

p V 

or 
dV γAp0 γp0

dp = −γp ≈ dz = dz (7.38)
V V ` 

where p0 is the equilibrium (room) pressure. Then the force on the piston is 

γ A2 p0 γ Ap0
dF = A dp = dz = dz (7.39)

V ` 

so that 
dF γ A p0

K = = (7.40)
dz ` 

and K` is 
K` = γ A p0 . (7.41) 

Thus we expect the dispersion relation to be 

2 K` γ p0
ω2 = vsoundk

2 = k2 = k2 (7.42)
ρL ρ 

where we have defined the “speed of sound”, vsound, as 

2 γ p0 
v = (7.43)sound ρ 

3See, for example, Halliday and Resnick. 
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For air at standard temperature and pressure, 

vsound ≈ 332 
m 

. (7.44)
s 

As we will see in the next chapter, this is actually the speed at which sound waves travel. For 
now, it is just a parameter in our calculation of the normal modes. 

In the pipe shown in (7.3), the displacement of the air, which we will call ψ(z, t), must 
vanish at z = 0, because the bottom of the tube is closed and there is nowhere for the gas to 
go. 

The z derivative of ψ must vanish at z = `, because the excess pressure is proportional 
to − ∂ ψ. The pressure is proportional to the force in our analogy with longitudinal waves in ∂z 
the massive spring. Using (7.41) and (7.23), we expect the longitudinal force to be 

∂ ± γA p0 ψ (7.45)
∂z 

or the excess pressure to be 
∂ 

p − p0 = −γ p0 ψ . (7.46)
∂z 

∂We want the negative sign because for ψ > 0, the air is spreading out and has lower ∂z 
pressure. 

Thus for a standing wave in the pipe, (7.3), we expect the boundary conditions 

∂ 
ψ(0, t) = 0 , ψ(z, t)| = 0 , (7.47)z=` ∂z 

for which the solution is 
ψ(z, t) = sin kz cos ωt (7.48) 

(n + 1/2)π 
k = , ω = vk , (7.49)

` 
where v = vsound, for nonnegative integer n. In particular, the lowest frequency mode of the 
tube corresponds to n = 0, 

vπ ω v 
ω = , ν = = . (7.50)

2` 2π 4` 

7.3.1 The Helmholtz Approximation 

Let’s consider a slightly different problem. What is the lowest frequency mode of a one-liter 
soda bottle, shown in figure 7.6? A typical set of parameters is given below: 

A ≈ 2.85 cm2 : area of neck 

` ≈ 5.7 cm : length of neck 
(7.51) 

L ≈ 25 cm : length of bottle 

V0 ≈ 1000 cm : volume of body 
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` 

»»»» XXXX 

L 

V0 

Figure 7.6: A one liter soda bottle. 

Putting the length, L, of the bottle into (7.50) gives ν ≈ 332hertz. In American standard 
pitch (see table 7.1), this is an E above middle C. 

This is obviously wrong. If you have ever blown into your soda bottle, you know that 
the frequency of the lowest mode is much lower than that. The problem, of course, is that 
the soda bottle is not shaped anything like the tube. To determine the modes is a complicated 
three-dimensional problem. It turns out, however, that we can find the lowest mode to a 
decent approximation rather easily. 

The idea is that in the lowest mode, the air in the neck of the bottle is moving rapidly, but 
in the body of the bottle, the air quickly spreads out so that it is not moving much at all. The 
idea of the Helmholtz approximation to try is to treat the air in the neck as a single chunk 
with mass 

ρA` , (7.52) 

and to treat the body as a spring, that contributes restoring force but no inertia (because the 
air is not moving much). Then all we must do is to compute the K of the “spring.” That is 
easy, using (7.38). In this case, 

dV = A dz , (7.53) 

so 

dp = −γp 
A dz 
V 

≈ −γp0 
A dz 
V0 

(7.54) 
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Table 7.1: American standard pitch (A440) — frequencies are in Hertz. 

Equal-temperament Chromatic Scale 
note ν note ν note ν 
A 880 A 440 A 220 
G] 
G 

831 G]
784 G 

415 G]
392 G 

208 
196 

F ] 
F 

740 F ] 
698 F 

370 F ] 
349 F 

185 
175 

E 659 E 330 E 165 
E[ 
D 

622 E[ 
587 D 

311 E[ 
294 D 

156 
147 

C] 
C 

554 C] 
523 C 

277 C] 
262 C 

139 
131 

B 494 B 247 B 123 
B[ 466 B[ 233 B[ 117 

and 
A2 dz 

F ≈ −γp0 (7.55)
V0 

or 
A2 

“K ” = γp0 . (7.56)
V0 

Then using ω2 = K/m, we expect 

s 
γA2 p0/V0 

s 
A 

ω = = v . (7.57)
ρA` `V0 

For the soda bottle, (7.6), this gives 

ν ≈ 118hertz (7.58) 

or roughly a B[ below low C. This is just about right (see problem 7.5). 

7.3.2 Corrections to Helmholtz 

There are many possible corrections to (7.57) that might be considered. One is to include the 
so-called “end effect.” The point is that the velocity of the air in the lowest mode does not 
drop to zero immediately when you go past the ends of the neck. Thus the actual mass is 
somewhat larger than ρA`. The lore is that you can do better by replacing 

` → ` + 0.6 r (7.59) 
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where r is the radius of the neck. 
Here we will discuss another correction that can be dealt with systematically using the 

methods of space translation invariance and local interactions. If the bottle has a long neck, 
it is probably not a good idea to treat the air in the neck as a solid mass. Furthermore, there 
is a simple alternative. A better analogy for the neck is a massive spring with K` = γA p0. 
Because the neck is a space translation invariant, essentially one-dimensional system, we 
expect a displacement of the form 

ωz 
y cos (7.60) 

v 
in the neck, where z = 0 is the open end and y is the displacement of the air at z = 0. Thus, 
where the neck attaches to the body, the displacement is 

ω` 
y cos . (7.61) 

v 
The force at this point from the compression of the air in the neck is (from (7.45)) 

∂ψ γA p0ω ω` 
Fneck = −γA p0 = y sin . (7.62)

∂z v v 
This must be the negative of the force from the air in the body, from (7.39), 

γA2p0− Fbody = 
V0 

y cos ω`/v , (7.63) 

or 
ωV0 

Av 
tan 

ω` 
v 

= 1 . (7.64) 

You will explore the consequences of this in problem 7.5. 
This analysis does not distinguish between the area of the top and bottom of the neck. 

Perhaps the area at the bottom is more appropriate. What matters is the area at the bottom 
that determines the force per unit area where the wave in the neck matches onto the body. 

Chapter Checklist 

You should now be able to: 

i. Find the motion of a point on a continuous spring oscillating longitudinally in one of 
its normal modes for various boundary conditions; 

ii. Solve for the normal modes of a system of a mass attached to a massive spring; 

iii. Be able to derive the dispersion relation for sound waves and find the normal modes 
for oscillations of air in a tube; 

iv. Be able to use the Helmholtz approximation to estimate the frequency of the lowest 
mode of bottle. 
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Problems 

7.1. Derive (7.45) directly by considering the volume of the chunk of air in the tube 
between z and z + dz, and using (7.38). 

7.2. Use an analogy with (7.16)-(7.31) to find (approximately!) the normal modes and 
corresponding frequencies of the system shown in figure 6.1, but with a massive ring of mass 
m sliding on the frictionless rod. 
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Figure 7.7: A hanging spring. 
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Figure 7.8: Problem 7.3. 

7.3. A massive continuous spring with mass m, length L and spring constant K hanging 
vertically. The system is shown at rest in its equilibrium configuration in figure 7.7. The 
spring constant is large, satisfying KL À mg, so gravity plays no important role here except 
to keep the spring vertical. Now suppose that the supporting hanger is driven up and down so 
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that the top of the spring moves vertically with displacement ² cos ωt, as shown in figure 7.8. 
Find the z position of the bottom of the spring as a function of time. Ignore damping. 

z = L 

z = 0 

Figure 7.9: Problem 7.4. 

7.4. A system analogous to that in problem 7.3 is a tube of air with a piston at the top 
and the bottom open, as shown in figure 7.9: If the cross sectional area of the tube is A, what 
is the analog in this system of the spring constant, K, in problem 7.3? Make sure that your 
answer has units of force per unit distance. 

7.5. PERSONAL EXPERIMENT — Show that when ω`/v is small, (7.64) reduces to 
the Helmholtz approximation, (7.57), while for V0 ≈ 0, when the bottle is all neck, it reduces 
to the result for the modes of a uniform tube with one open and one closed end, (7.50). 

Do the experiment! Find a selection of at least four bottles, at least one of which has a 
very long neck. Measure the frequency of the lowest mode of each, and describe how you 
did it. For each bottle, tabulate the following (in cgs units): 

i. A description (ie. soda bottle, 1000 ml) 
ii. At (the area of the top of the neck) 

iii. Ab (the area of the bottom of the neck) 
iv. r (the radius of the neck) 
v. ` (the length of the neck) 

vi. Vbody (the volume of the body) 
vii. ν (the frequency of the lowest mode) 

viii. ω (the angular frequency of the lowest mode) 
ix. ω2V0`/av2 (=1 in the Helmholtz approximation) 
x. (ωV0/Av) tan(ω`/v) (=1 in the approximation (7.64)) 

See whether you can see the end effect, (7.59), or distinguish the area of the top of the 
neck from the bottom — that is, see which works better in (7.57). Comment, as quantitatively 
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as you can, on the errors in your experiment, and on the relative merits of the approximate 
expressions that you have tested. 
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