Chapter 11

Two and Three Dimensions

The concepts of space translation invariance and local interactions can be extended to sys-
tems with more than one space dimension in a straightforward way. But in two and three
dimensions, these ideas alone are not enough to determine the normal modes of an arbitrary
system. One needs extra tricks, or plain hard work.

Preview

Here, we will only be able to discuss the very simplest sort of tricks, but at least we will be
able to understand why the problems are more difficult.

Vi.

We begin by explaining why the angular wave numbelhecomes a vector in two
or three dimensions. We find the normal modes of systems with simple boundary
conditions.

We then discuss scattering from planes in two- and three-dimensional space. We derive
Snell’s law of refraction and discuss total internal reflection and tunneling.

We discuss the example of Chladni plates.

We give a two-dimensional example of a waveguide, in which the waves are con-
strained to propagate only in one direction.

We study water waves (in a simplified version of water).

We introduce the more advanced topic of spherical waves.
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Figure 11.1: A two-dimensional beaded mesh.

11.1 The k Vector

Consider the two-dimensional beaded mesh, a two-dimensional analog of the beaded string,
shown in figure 11/1All the beads have mass. The tension of the horizontal (vertical)
strings isTy (1) and the interbead distancedg (ay). There is no damping. We can

label the beads by a pair of integéfsk) indicating their horizontal and vertical positions as
shown. Alternatively, we can label the beads by their positions in, thplane according to

(z,y) = (jam, kay). (11.1)

Thus, we can describe their small transverse (out of the plane of the papet, diréiction)
oscillations either by a matrix;(t) or by a function

We will use [(11.2) because we can then extend the discussion to continuous systems more
easily. We are interested only in the transverse oscillations of this system, in which the blocks
move up and down out of the plane of the paper, because these oscillations do not stretch the
strings very much (only to second order in the small displacements). The other oscillations
of such a system have much higher frequencies and are strongly damped, so they are not very
interesting.
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As in the one-dimensional case, the first step is to remove the walls and consider the
infinite system obtained by extending the interior in all directions. The oscillations of the
resulting system can be described by a funation y, t), wherex andy are not constrained.

This infinite system looks the same if it is translatedipyvertically, or byay hori-
zontally. We can write down solutions for the infinite system by using our discussion of the
one-dimensional case twice. Because the system has translation invarianaedingtbon,
we expect that we can find eigenstates ofithie' K’ matrix proportional to

(et 7 (11.3)

for any constank,. Because the system has translation invariance i thisection, we
expect that we can find eigenstates ofthe! K matrix proportional to

eikwy (11.4)

for any constant,,. Putting (11.3) and (11.4) together, we expect that we can find eigenstates
of the M~! K matrix that have the form

— U(x,y) = Aetha® ethvy — AR (11.5)
wherek - 7 is the two-dimensional dot product
k-7 =kox + kyy . (11.6)

In other words, the wave number has become a vector.

As with the one-dimensional system, we can use [(11.5) to determine the dispersion re-
lation of the infinite system. Putting in thedlependence, we have a displacement of the
form ~

Y(x,y,t) = AetkT e, 11.7)

The analysis is precisely analogous to that for the one-dimensional beaded string, with the
result thatv? is simply a sum of vertical and horizontal contributions, each of which look
like the dispersion relation for the one-dimensional case:

2 4TH sin2 kxaH + 4TV

w? = sin? W (11.8)

mag 2 may 2

Equations(11.,7) and (11.8) are the complete solution to the equations of motion for the
infinite beaded mesh.
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11.1.1 The Difference between One and Two Dimensions

0111
So far, our analysis has been essentially the same in two dimensions as it was in one. The
next step, though, is very different. In the one-dimensional case, where the normal modes
aree®™™* there are only two modes with any given valuedf Thus, no matter what the
boundary conditions are, we only have to worry about superposing two modes at a time. But
in the two-dimensional case, there are a continuously infinite humber of solutidisétp
for anyw, because you can lowég and compensate by raisihg. Thus a normal mode
of the finite two-dimensional system with no damping (which is just some solution in which
all the beads oscillate in phase with the sainenay be a linear combination of an infinite
number of the nice simple space translation invariant modes of the infinite system.

Sure enough, in general, the two-dimensional case is infinitely harder. If fifiire
were a system with a more complicated shape, we would not be able to find an analytic
solution. But for the special case of a rectangular frame, aligned with the beads, the boundary
conditions are not so bad, because both the m¢tkes) and the boundary conditions can
be simply expressed in terms of products of one-dimensional normal modes.

The boundary conditions for the system in figlitel are;

¢(07yat) = w(LHa y7t) = @Z’(l‘, Oat) = ¢($a LV>t) =0, (119)

where
Ly =5ay, Ly=4ay. (11.10)

In the corresponding infinite system, a piece of which is shown in fiduge(11.9)implies
that the beads along the dotted rectangle are all at rest. Comparind fiduszed figurell.2,
you can see that this boundary condition captures the physics of the walls id fidure
Now to find the normal modes of the finite system in figlkel, we must find linear
combinations of modes of the infinite system that satisfy the boundary conditibAg, We
can satisfy (11!9) by forming linear combinations of just four modes of the infinite system:

Aotk gikyy (11.11)

where
ky =nm/Ly, ky=n'n/Ly. (11.12)

Then we can take the solutions to be a product of sines,

Y(z,y) = Asin(nmz/Ly) sin(n'my/Ly)

forn =1to4andn’ = 11to 3.

(11.13)

There is a symmetry at work here! The modes in whichkthector is lined up along the or y axes are
those that behave simply under reflections through the center of the rectangle.
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Figure 11.2: A piece of an infinite two-dimensional beaded mesh.

The frequency of each mode is given by the dispersion relation (11.8):

ATy . onmag 4Ty . o n'may
w? = sin? + sin? .

11.14
mag 2Ly may 2Ly ( )

These modes are animated in program 11-1.

The solution of this problem is an example of a technique called “separation of variables.”
In the right variables, in this case,andy, the problem falls apart into one-dimensional
problems. This trick works equally well in the continuous case, so long as the boundary
surface is rectangular. If we take the limit in whighanday are very small compared to
the wavelengths of interest, we can express [(11.8) in terms of quantities that make sense in
the continuum limit, just as in the analysis of the continuous one-dimensional string as the
limit of the beaded string, in chapter 6. Assume, for simplicity, that

ay =ag=a and Ty =Tyg =T (11.15)

(so that the = and directions have the same properties). The quantities that characterize the
surface in this case are the surface mass density,

m

pe=", (11.16)
a
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and the surface tension,
T, = —. (11.17)
a

The surface tension is the pull per unit transverse distance exerted by the membrane. When
these gquantities remain finite as the separatiogoes to zero, (11.8) becomes

-2
A

T T
2 s 2 2 s
wt=—(ki+k;)=— 11.18

Ps ( ’ y> Ps ( )

An argument that is precisely analogous to that for the one-dimensional case shows that in
this limit, ¢/(x, y, t) satisfies the two-dimensional wave equation,

% ) (02 & 2 2
ﬁ@b(x,y’t) =v" | 5.2 + a7 Y(x,y,t) = v VY(x,y,t). (11.19)
Note that in this limit, the special properties of thendy axes that were manifest
in the finite system have completely disappeared from the equation of motion. The wave
numbersk, and k, form a two-dimensional vectdr. The infinite number of solutions to the
dispersion relatiori (11.18) are just those obtained by rotéﬁngill possible ways without
changing its length. This makes it possible to solve for the normal modes in circular regions,
for example. But we will not discuss these more complicated boundary conditions now. It is
clear, however, that (11.13) is the solution for the rectangular region in the continuous case,
and that the corresponding frequency is

T. (nﬂ)Q (ww)Q

2 S

wi=—|{—] +|— . 11.20
Ps [ Ly Ly ( )
Now because the system is continuous, the integansln’ run from zero to infinity (though
n = n’ is not interesting), or until the continuum approximation breaks down.

11.1.2 Three Dimensions

The beaded mesh cannot be extended to three dimensions because there is no transverse di-
rection. But a system of masses connected by elastic rods can be three-dimensional, and
indeed, this sort of system is a good model of an elastic solid. This system is rather com-
plicated because each mass can move in all three directions. A two-dimensional version of
this is illustrated in figure 11.3. This system is the same as figure 11.1 except that the strings
have been replaced by light, elastic rods, so that system is in equilibrium even without the
frame. Now we are interested in the oscillations of this sygietime plane of the paper
Compared to figure 11.1, this system has twice as many degrees of freedom, because each
block can move in both the andy direction, while in figuré 11.1, the blocks moved only
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Figure 11.3: A two-dimensional solid, with masses connected by elastic rods.

in thez direction. This means that we cannot use space translation invariance alone, even to
determine the modes of the infinite system.

For each value df, there will be four modes rather than the usual two. We would have
to do some matrix analysis to see which combinationsady motion were actually the
normal modes. We will not do this in general, but will discuss it briefly in the continuum
limit, to remind you of some physics that is important for fields like geology.

Consider the continuous, infinite system obtained by taking'theery small in fig-
ure[11.3, with other quantities scaling appropriately. Consider a wave with wave rumber
The normal modes will have the form

AetRT (11.21)

for some vectord (in the three-dimensional casd,is a 3-vector, in our two-dimensional
example, it is a 2-vector). If the system is rotation invariant, then there is no direction picked
out by the physics except the directionkofThen the normal modes must be a longitudinal

or “compressional” mode

ol

Ak, (11.22)

and a transverse or “shear” mode

Eopl]

Alk. (11.23)
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Each mode will have its own characteristic dispersion relation. In three dimensions, there
will be two shear modes, because there are two perpendicular directions, and they will have
the same dispersion relation, because one can be rotated into the other.
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Figure 11.4: A two-dimensional system of beads and springs.

11.1.3 Sound Waves

In a liquid or a gas, there are no shear waves because there is no restoring force that keeps the
system in a particular shape. The shear modes have zero frequency. If we replaced the rods in
figure11.3with unstretched springs, we would get a system with the same property, shown in
figurel11.4. Without the frame, this system would not be rigid. However, the compressional
modes are still there. These are analogous to sound waves. For an approximately continuous
system like air, we expect a dispersion relation of the form

w? =2 K (11.24)

wherew is constant unlessis too large. We have already calculateih (7.43),by consid-
ering one-dimensional oscillations. It is called the speed of sound because it is the speed of
sound waves in an infinite or semi-infinite system.

We can describe the normal modes of a rectangular box full of air in terms of a function
P(z,y, z) that describes the gas pressure at the oint z). The pressure or density of the
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compressional wave is related to the displacenz?émy, z):
Vx VP, Px-V-19. (11.25)

As in the two-dimensional system described above, we can use separation of variables and
find a solution that is a product of functions of single variables. The only difference here is
that the boundary conditions are different. Becausée of (11.25), which is the mathematical
statement of the fact that gas is actually pushed from regions of high pressure to regions of
low pressure, the pressure gradient perpendicular to the boundary must vanish. The gas at
the boundary has nowhere to go. Thus the normal modes in a rectangulacbox< X,
0<y<Y,0<z<Z, have the form

P(x,y,z) = Acos(nymz/X) cos(nymy/Y) cos(n,mz/Z) (11.26)

2 2 2
2 2 Ny T Ny n,m
= — . 11.27
© “((X)*(Y)*(Z)) (1120
The trivial solution » = n,, = n. = 0 represents stationary air. If any of thie is nonzero,
the mode is nontrivial.

with frequency

11.2 Plane Boundaries

The easiest traveling waves to discuss in two and three dimensions are “plane waves,” solu-
tions in the infinite system of the form

W(r,t) = AeiET=wt) (11.28)

This describes a wave traveling the direction of the wave-number vecteith the phase
velocity in the medium. The displacement (or whatever) is constant on planes of constant
k - which are perpendicular to the direction of motiriyVe will study more complicated
traveling waves soon, when we discuss diffraction. Then we will learn how to describe
“beams” of light or sound or other waves that are the traveling waves with which we usually
work. We will see how to describe them as superpositions of plane waves. For now, you
can think of a plane wave as being something like the traveling wave you would encounter
inside a wide, coherent beam, or very far from a small source of nearly monochromatic light,
light with a definite frequency. That should be enough to give you a physical picture of the
phenomena we discuss in this section.

We are most interested in waves such as light and sound. However, it is much easier to
discuss the transverse oscillations of a two-dimensional membrane, and many of our exam-
ples will be in that system. There are two reasons. One is that a two-dimensional membrane
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is easier to picture on two-dimensional paper. The other reason is that the physics is very
simple, so we can concentrate on the wave properties. We will try to point out where things
get more complicated for other sorts of wave phenomena.

Consider two two-dimensional membranes stretched i the 0 plane, as shown in
figure[11.5. Forz < 0, suppose that the surface mass density end surface tensidf.
Forz > 0, suppose that the surface mass densip/ iand surface tensiofi,. This is a
two-dimensional analog of the string system that we discussed at length in chapter 9. The
boundary between the two membranes must supply a force (in this case, a constant force per
unit length) in thex direction to support the difference between the tensions, as in the system
of figure 9.2. However, we will assume that whatever the mechanism is that supplies this
force, it is massless, frictionless and infinitely flexible.

Ts, ps Té, p;

z=0

Figure 11.5: A line of constant phase in a plane wave approaching a boundary.

Now again, we can consider reflection of traveling waves. Thus, suppose that there is, in
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this membrane, a plane wave with amplitutland wave numbek for z < 0, traveling in
toward the boundary at= 0. The condition that the wave is traveling toward the boundary
can be written in terms of the components ak

ky > 0. (11.29)

We would like to know what waves are produced by this incoming wave because of reflection
and transmission at the boundary;= 0. On general grounds of space translation invariance,
we expect the solution to have the form

Y(r,t) = AeikT=wt) | Z R, AeiRaT=wt) g0 <0

L (11.30)
W(r,t) = Z 75 Aetks Tt forxz >0
B
/
2= wQ% LR = WZ%Z : (11.31)
and
kar <0Oand k> 0forall o andp. (11.32)

Thea andgin (11.30)run over all the transmitted and reflected waves. We will show shortly
that only one of each contributes for a plane boundary condition=at0, but (11.30)is
completely general, following just from space translation invariance. Note that we have put
in boundary conditions atoco by requiring(11.29)and (11.32). Except for the incoming
wave with amplituded, all the other waves are moving away from the boundary. But we
have not yet put in the boundary condition: at 0.

11.2.1 Snell's Law — the Translation Invariant Boundary

bli1-2

As far as we know from considerations of the physicsat, the reflected and transmitted
waves could be a complicated superposition of an infinite number of plane waves going in
various directions away from the boundary. In fact, if the boundary were irregularly shaped,
that is exactly what we would expect. It is the fact that the boundary), is itself invariant

under space translations in thalirections that allows us to cut down the infinite number

of parameters ifL1.30)to only two. Because translations in ghdirection leave the whole
system invarianincluding the boundary, we can find solutions in which all the components
have the same irreducibledependence. If the incoming wave is proportional to

eFuy (11.33)
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then all the components of (11.30) must also be proportioréitc Otherwise there is no
way to satisfy the boundary conditionzat= 0 for all y. That means that

kay =ky, kg, =ky. (11.34)

But L11.34), together with (11.31) and (11.32), completely determines the wave vectors
andkg. Then(11.30) becon@s

P(r,t) = ARt | g peikTivt Y_(r,t) forz <0

o (11.35)
Y(r,t) =7 AeF T =y (1) t) forx >0
where )
ky=ky, k,=ky, (11.36)
and )
ky = —\Jw?/v2 — k2 = —ky, K, = \Jw?/v?— k2, (11.37)
with

!
v—’/ZS, v’-,/i}. (11.38)

The entertaining thing about (11.35)-(11.37) is that we know everything about the direc-
tions of the reflected and transmitted waves, even though we have not even mentioned the
details of the physics at the boundary. To get the directions, we needed only the invariance
under translations in thedirection. The details of the physics of the boundary come in only
when we want to calculate andr. The directions of the reflected and transmitted waves
are the same for any system with a translation invariant boundary. Obviously, this argument
works in three dimensions, as well. In fact, if we simply choose our coordinates so that the
boundary is the: = 0 plane and the wave is traveling in the, plane, then nothing de-
pends on the coordinate and the analysis is exactly the same as above. For example, we
can apply these arguments directly to electromagnetic waves. For electromagnetic waves in
a transparent medium, because the phase veloeity4sw/k, the index of refractiom, is

proportional tok,
n="5—-k< (11.39)
Ucp w
(11.36)-(11.3) shows that the reflected wave comes off at the same angle as the incoming
wave because the only difference betweerkthectors of the incoming and reflected waves
is a change of the sign of thecomponent. Thus the angle of incidence equals the angle
of reflection. This is the rule of “specular reflectiorFfom (11.36), we can also derive

Snell’s law of refraction for the angle of the refracted wav@.idfthe angle that the incident

2\We have definegh+ here to make it easier to discuss the boundary conditions, below.



11.2. PLANE BOUNDARIES 265

wave makes with the perpendicular to the boundary@aisdhe corresponding angle for the
transmitted wave, thenh (11.:36) implies

ksinf = k' sin@’. (11.40)
For electromagnetic waves, we can rewrite this as
nsind =n' sind’ . (11.41)

For example, when an electromagnetic wave in air encounters a flat glass surface at an angle
6, n’ > nin (11.41). The wave is refracted toward the perpendicular to the surface. This is
illustrated in figurél1.6for n’ > n.

by

AN

€T

Figure 11.6: Reflection and transmission from a boundary.
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Let us now finish the solution for the membrane problem by solvingfand = in
(11.35). To do this, we must finally discuss the boundary conditions in more detail. One is
that the membrane is continuous, which from the farm, (11.35), implies

P (r,t)]pmg = U (r1)],—p (11.42)

or
1+R=r. (11.43)

The other is that the vertical force on any small length of the membrane is zero. The force
on a small lengthj?, of the boundary at the poirif), y, 0), from the membrane far < 0 is

given by

—(r,1

i G| (11.44)

Ox =0
This is analogous to the one-dimensional example illustrated in figureT8é&.force of
surface tension is perpendicular to the boundary, so for small displacements, only the slope of
the displacement in thedirection matters. The slope in thelirection gives no contribution
to the vertical force to first order in the displacement. Likewise, the force on a small length,
d¢, of the boundary at the poirtf), y, 0), from the membrane far > 0 is given by

rae 20+0) (11.45)
Ox x=0
Thus the other boundary condition is
g 20| g 2O (11.46)
or
Tk, T = Tsk,(1 — R). (11.47)
Thus the solution is
2 gl (11.48)
T T i '
where _—
r= T (11.49)

You can see from (11.48) and (11.49) that we can adjust the surface tension to make the
reflected wave go away even when there is a change in the lengthkofeber from one
side of the boundary to the other. It is useful to think about refraction in this limit, because it
will allow us to visualize it in a simple way.#f= 1in (11.48), themR = 0 andr = 1. There
is no reflected wave and the transmitted wave has the same amplitude as the incoming wave.
Thus in each region, there is a single plane wave. Remember that a plane wave consists of


http:t)|(11.42
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infinite lines of constant phase perpendicular tdithector, moving in the direction of the

vector with the phase velocity, = w/|E\. In particular, suppose we look at lines on which

the phase is zero, so that= A. The perpendicular distance between two such lines is the
wavelength27r/|l§|, because the phase difference between neighboring liges But here

is the point. The lines in the two regions must meet at the boundary), to satisfy the
boundary condition(11.43). If the incoming wave amplitude is 1 at= 0, the outgoing

wave amplitude is also 1. The lines where- A are continuous across the boundary 0.

This situation is illustrated in figufel.'/.TheE vectors in the two regions are shown. Notice

that the angle of the lines must change when the distance between them changes in order to
maintain continuity at the boundary. In program 11-2, the same system is shown in motion.

e
NN
NN

NN

Figure 11.7: Lines of constait= 1 for a system with refraction but no reflection.

11.2.2 Prisms

The nontrivial index of refraction of glass is the building block of many optical elements. Let
us discuss the prism. In fact, to do the problem of the scattering of light waves by prisms
entirely correctly would require much more sophisticated techniques than we have at our
disposal at the moment. The reason is that the prism is not an infinite, flat surface with space
translation invariance. In general, we would have to worry about the boundary. However, we
can say interesting things even if we ignore this complication. The idea is to think not of an
infinite plane wave, but of a wide beam of light incident on a face of the prism. A wide beam
behaves very much like a plane wave, and we will ignore the difference in this chapter. We
will see what the differences are in Chapter 13 when we discuss diffraction.
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Figure 11.8: The geometry of a prism.

Thus we consider the following situation, in which a wide beam of light enters one face
of a prism with index of refraction and exits the other face. The geometry is shown in
figure/11.8 (the directions of the beams are indicated by the thick lines). The interesting
guantity isé. This describes how much the direction of the outgoing beam has been deflected
from the direction of the incoming beam by the prism. We can calculate it using simple
geometry and Snell’s layl1.40).From Snell’'s law

sin 6, = nsin 6, (11.50)
and
sinfgyt = nsinfy . (11.51)
Now for some geometry.
Oy + 61 = ¢’ (11.52)

— because the complement@f = — ¢, along withd; andé, are the angles of a triangle,
and thus add te.

é=¢ (11.53)
— becausep) and ¢’ are corresponding angles of the two similar right triangles with other
acute angle.. Thus

0 =&+ & = O+ Oout — 01 — 02 = Oiy + Oout — & (11.54)
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where we have used (11.52) and (11.53). But for small angles, from/(11.50) and (11.51),
Gin =~ n91 s gout =~ TL92 . (1155)

Thus
drmn(lL+02) —p~(n—1)¢. (11.56)

The result,[(11.56), is certainly reasonable. It must vanish whenl, because there is
no boundary fon = 1. If things are small and the answer is linear, it must be proportional
to ¢.

One of the most familiar characteristics of a prism results from the dependence of the
index of refraction;n, on frequency. This causes a beam of white light to break up into
colors. For most materials, the index of refraction increases with frequency, so that blue light
is deflected more than red light by the prism. The physics of the frequency dependence of n
is that of forced oscillation. The index of refraction of a material is related to the dielectric
constant (see (9.53)), that in turn is related to the distortion of the electronic structure of the
material caused by the electric field. For a varying field, this depends on the amplitude of
the motion of bound charges within the material in an electric field. Because these charges
are bound, they respond to the oscillating fields in an electromagnetic wave like a mass on
a spring subject to an oscillating force. We know from our studies of forced oscillation that
this amplitude has the form

Ca

2 _ 27
Wi —w

(11.57)

resonances
@

wherew,, are the resonant frequencies of the system and’thare constants depending

on the details of how the force acts on the degrees of freedom. We can estimate the order
of magnitude of these resonant frequencies with dimensional analysis, if we remember that
any material consists of electrons and nuclei held together by electrical forces (and quantum
mechanics, of course, batwill not enter into our estimate except implicitly, in the typical
atomic distance). The relevant quantities’are

The charge of the protore ~ 1.6 x 10~ C
The mass of the electronn, ~ 9.11 x 1073 kg

Typical atomic distance a ~ 1071°m = 14 (11.58)

The speed of light ¢ =299,792,458 m/s
In terms of these parameters, we would guess that the typical force inside the materials is of

2 . . 2
ord_er47riW (from Coulomb’s Igw), and thus that the spring constant is of %d;g‘{g (the
typical force over the typical distance). Thus we expect
W — (11.59)
o\ dregadme '

3Note that it is the mass of the electron rather than the mass of the proton that is relevant, because the electrons
move much more in electric fields.
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and
2me dmegadme

o &~ = ~ 27c s ~ 107 "m=10004. (11.60)
Wa e

This is a wavelength in the ultraviolet region of the electromagnetic spectrum, shorter than
that of visible light. That means that for visible light,< w,, and thus the displacement,
(11.57),increases ag increases for visible light. The distortion of the electronic structure

of the material caused by a varying electric field increases as the frequency increases in the

visible spectrum. Thus the dielectric constant of the material increases with frequency. Thus
blue light is deflected more.

Incidentally, this is the same reason that the sky is blue. Blue light is scattered more than
red light because its frequency is closer to the important resonances of the air molecules.

11.2.3 Total Internal Reflection

The situation in which the wave comes from a region of Iggiato a region of smalleli|
has another feature that is surprising and very useful. This situation is depicted it Xi§ure
for a system with no reflection. For smdl|,as shown in figur&1.9, this looks rather

DN
R

Figure 11.9: Lines of constarit= 1 for n’ < n.

N

like figurel11.7,except that the wave is refracted away from the perpendicular to the surface
instead of toward it. But suppose that the afigtelarge, satisfying

nsinf/n > 1. (11.61)
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Then there is no solution for re@lin (11.41). Thus there can be no transmitted traveling
wave. The incoming wave must be totally reflected by the boundary. This is total internal
reflection. It happens when a plane wave tries to escape from a region kfﬂ hhaga region
of lower |E\ at a grazing angle. It is extensively used in optical equipment and many other
things. Let us investigate this peculiar phenomenon in more detail.

Suppose we start froth = 0 and increasé. As 0 increasesk, increases ané, de-
creases. This continues until we get to the boundary of total internal reflection, called the

critical angle,

n/

sinf = sinf. = —

(11.62)

The amplitudes for both the reflected and transmitted waves in|(11.48) also increase. At the
critical angle k., vanishes. The amplitude for the reflected wave is 1 and the amplitude for
the transmitted wave is 2. However, even though the transmitted wave is nonzero, no energy
is carried away from the boundary becausektiiector points in the direction.
As 6 increases beyond the critical angtg,continues to increase. To satisfy the disper
sion relation,
W =0 (K4 k) (11.63)

k. must be pure imaginary! Thedependence is then proportional to
e ™ where k=Imk,. (11.64)

Now the nature of the boundary condition at infinity changes. We can no longer require
simply thatk, > 0. Instead, we must require

Imk, > 0. (11.65)

The sign is important. [fm &, were negative, the amplitude of the wavefor 0 would
increase withz, going exponentially to infinity as — oo. This doesn’t make much physical
sense because it corresponds to a finite cause (the incoming wave foy producing an
infinite effect. As we will see below, we can also come to this conclusion by going to this
infinite system as a limit of a finite system.
We actually have three different boundary conditions at infinity for this situation:
Rek, >0forfd < 40,.,
k,=0foro =6, (11.66)

Imk, >0ford > 0,.
These three can be combined into a compound condition that is valid in all regions:

Rek, >0, Imk,>0. (11.67)
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The condition{11.67),is actually the most general statement of the outgoing traveling wave
boundary condition at infinity. It is also correct in situations in which there is damping and
both the real and imaginary partsigfare nonzero. This is the mathematical statement of
the physical fact that the wave for> 0, whatever its form, is produced at the boundary by
the incoming wave.

From (11.48)and(11.49),you see that fof > 6., the amplitude of the reflected wave
becomes complex. However, its absolute value is still 1. All the energy of the incoming wave
is reflected.

We have seen that in total internal reflections, the wave does penetrate into the forbidden
region, but the: dependence is in the form of an exponential standing wave, not a traveling
wave. They dependence is that of a traveling wave. This is one of many situations in
which the physics forces the nature of the two- or three-dimensional solution to have different
properties in different directions.

It is easy to see total internal reflection in a fish-tank, a glass block, or some other rect-
angular transparent object with an index of refraction significantly greater than 1. You can
look through one face of the rectangle and see the silvery reflection from an adjacent face, as
illustrated in figurél1.10.

\:fff'f:f':9':&5:5b|OCkfffffff/

@

Figure 11.10: Total internal reflection in glass with index of refraction 2.

11.2.4 Tunneling

Consider the scattering of a plane wave in the system illustrated in figidr®.  This
is the same setup as in figuk&.10, except that another block of glass has been added a
small distanced, below the boundary from which there was total internal reflection. We
have defined the positivedirection to be downwards for consistency with the discussion of
Snell's law, above. Now does any of the light get through to the observer below, or is the
light still totally reflected at the boundary, as in figile10?The answer is that some light
gets through. As we will see in detail in an example below, the presence of the other block of
glass means that instead of a boundary condition at infinity, we have a boundary condition at
the finite distance].

The details of this phenomenon for electromagnetic waves are somewhat complicated by
polarization, which we will discuss in detail in the next chapter. However, there is a precisely
analogous process in the transverse oscillation of membranes that we can analyze easily.
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Figure 11.11: A simple experiment to demonstrate tunneling.

In fact, we will find that we have already analyzed it in chapter 9. Consider the scattering
problem illustrated in figuré1.12. The unshaded region is a membrane with lower density.
The arrows indicate the directions of th@ectors of the plane waves. The shaded regions

Figure 11.12: Tunneling in an infinite membrane.

have surface mass densjty and surface tensiofi;. The unshaded region, which extends

fromz = 0 to x = d, has the same surface tension but surface mass deyy<ityThus the

ratio of phase velocities in the two regions is two, the same as the ratio from air to glass in

figurel11.11.The dashed lines are massless boundaries between the different membranes.
We can now ask what are the coefficiedi®sand r, for reflection and transmission. We

have done this problem for a single boundary earlier in this chapet.¥2)-11.49. We

could solve this one by putting two of these solutions together using the transfer matrix

techniques of chapter 9. In fact, we do not even have to do that, because we can read off the

result from(9.97)and(9.98)in the discussion of thin films in chapter 9. The point is that all

the terms in our solution must have the same irredugidpendence;*+¥, because of the

space translation invariance of the whole system including the boundaryjirditteetion.

This common factor plays no role in the boundary conditions. If we factor it out, what is

left looks like a one-dimensional scattering problem. Compdfifhgt7)for T, = 7. with
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(9.10), you can see that the analyses become the same if we make the replacements
ki — kg
ky — K, (11.68)
L — d
wherek,. is thex component of thé vector of the incoming wave in the shaded region and

k! is thex component of thé vector of the transmitted wave in the unshaded region. The
result is

K2+ k2 -
T = <cos Kl.d—i % sin k;d) e~ thad (11.69)
xVg
and
k2 -k, K2+ K2 -
R = (z W sin k;d) (cos K.d—i W sin k;d) : (11.70)

It may be a little easier to look at the intensity of the transmitted wave, which is proportional
to

2h2k!
(K + Ky *) sin® K d + 2k2k, 2

Note that we have not mentioned the critical angle or total internal reflection or anything like
that. The reason is that our analysis in chapter 9 was perfectly general. It remains correct
even if the angular wave number in the middle region becomes imaginary. All that happens
for 6 larger than the critical anglé,, is thatk!. becomes imaginary. But this has a spectacular
effect in (11.71). I, — ik, wherex is real, then it follows from the Euler identity, (1.57)

and (1.62), that

|72 = (11.71)

sin k.. d — isinh rd (11.72)

wheresinh is the “hyperbolic sine”, defined by

sinhz = 67 . (11.73)

Thus for angles above the critical angle, the denominator of (11.71) is an exponentially in-
creasing function ofl (the e"¢ term in (11.73) dominates for largel). The intensity of
the transmitted wave therefodecreases exponentially withi. In the limit of larged, we
quickly recover total internal reflection.

We can get some insight about what is happening by looking at the boundary conditions
atz = d for angles above the critical angle. Ror- d, the wave has the form (suppressing
the common factors ef*+¥ and Ae “?)

relke (11.74)
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For0 < x < d, the wave has the form
Trre™ ™ + Ryrre™* (11.75)

where | have called the coefficierfts; and R;; by analogy with transmitted and reflected
waves, even though these are not traveling waves. The boundary conditicasiare

Teik’xd _ TIIe—Kd + Rlleﬁd ,

A (11.76)
ikyTethed = (—Tne_“d + Rue"d) .
This looks more complicated than it really is. If we solveTfgre"¢ and R;7e"? in terms
of ret*=4_ the result is

2K

2K .
Kkd iked R]Iend — '
K+ tky

Trje "= ——7¢ ,

: rethed | (11.77)
Kk — iky

The important point is that the values of the two components of the wave, (11475),d&t
Trre "% and R;re?, are more or less the same size. These two quantities do not have any
exponential dependence @n This qualitative fact does not depend on the details of
(11.76). 1t will be true for any reasonable boundary condition at: = d.

Thus the coefficienf?;; of the “reflected” wave (in quotes because it is a real exponential
wave, not a traveling wave) must be smaller than the “transmitted” wave by a factor of roughly
e2, Notice that this justifies the statement, (11.67), of the boundary condition at infinity.
As d — oo, for any reasonable physicsdathe wave becomes a pure negative exponential.

At x = 0, for largexd, the R;; term in wave will be completely negligible, afid;
term will be produced with some coefficient of order 1, just as in the limit of total internal
reflection.

Thus what is happening in the boundary conditions for tunneling can be described qual-
itatively as follows. The incoming wave far < 0 produces the™"* term in the region
0 < x < d, with an exponentially small admixture &f. But atx = d, the two parts of the
exponential wave are of the same size (both exponentially small), and they can produce the
transmitted wave.

The rapid exponential dependence of the transmitted wavehas some interesting
consequences. It implies, for example, that the reflected wave is also very sensitive to the
value of d, for small d (energy conservation impli&s + |7|?> = 1). You can see this rapid
dependence in the example ©of (11.10) by putting your finger on the bottom surface of the
glass block or fish tank, where the wave is being reflected. You will see a ghostly fingerprint!
The reason is that the tiny indentations on your finger are far enough away from the glass that
kd is large and the wave is almost entirely reflected. But where the flesh is pressed tightly
against the glass, the wave is absorbed. This is a simple version of a tunneling microscope.
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Finally, before leaving the subject of tunneling, let us consider what happens when we
turn down the intensity of the light wave in figure 11.11 so that we see the scattering of
individual photons. The first thing to note is that each photon is either transmitted or reflected.
The meaning oR andr in this case is that tHé&|? and|7|? are theprobabilities of reflection
and transmission. You cannot predict whether any particular photon will get through. In the
guantum mechanical world, you can predict only the probabilities.

The second thing to note is that in the particle description, the whole phenomenon of
tunneling is very peculiar. A classical photon, coming at the boundary of the glass plate at
more than the critical angle could not enter at all into the air. It would be forbidden to do so
by conservation of energy and conservation ofjtbemponent of momentufhHow can the
particle get through to the > d side if it cannot exist fob < x < d? Obviously, in classical
physics, it cannot. Tunneling is, therefore, a truly quantum mechanical phenomenon. The
wave manages to penetrate into the forbidden region, but only in the form of a real exponential
wave, not a traveling wave. It is only for< 0 andxz > d, where the waves are traveling,
that they can be interpreted as particles in anything like the classical sense.

11.3 Chladni Plates

Figure 11.13: A Chladni plate.

“The boundary does not changg of the photon, because of the translation invariance iy ttlieection.
However, there is no reason why the boundary cannot exert a force dndihection and changg, of the
photon.
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Chladni plates are a very pretty and instructive example of a two-dimensional oscillating
system. A Chladni plate is simply a square metal plate that is driven transversely at its center.
It is illustrated in figuré 11.13The dot in the center shows where the plate is driven in the
transverse direction (out of the plane of the paper). The center, which we will take to have
equilibrium position” = 0, moves up and down out of the plane of the paper at a frequency
w. Let us assume that the square sits inctygplane and has sidd., and call the transverse
displacement (in the direction)

U(x,y,t) for |af |yl < L. (11.78)

In principle this is a forced oscillation problem. We could take the boundary condition at the
origin to be
1(0,0,t) = Acoswt (11.79)

and try to findy everywhere else.

To find ¢, we must know the boundary condition at the edges of the plate. This depends
on the details of the physics of the plate, because there are several ways that the plate can
deform in response to the driving force. Just for simplicity, we will assume that the dominant
deformation is shear, illustrated in figure 11.Fbr this kind of displacement, to avoid an
infinite acceleration, the slope of the plate must go to zero on the boundary in the direction
perpendicular to the boundary, or in mathematics,

RV =0 (11.80)

on the edge, whereis a unit vector in the plane perpendicular to the edge. In this case,

0 0
% ¢(x>yat)|x:|L\ = aiy 1/’(1% yvt)|y:|L| =0. (1181)

While the general case is more complicated than this, we will use|(11.81) for illustration. The
instructive thing about Chladni plates, as we will see, is not what is happening at the edges,
but what is happening in the middle!

The general solution to this forced oscillation problem is not easy to write down. How-
ever, we are primarily interested in the resonances. Those are the modes of free oscillation of

_—
J—

_— _—
— T —

= l

l T

C—

Figure 11.14: Shear.
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the plate (subject to the boundary condition (11.81)) that can be excited by the driving force.
These will be those modes that have nonzero values of the displacement at the origin.
The relevant free oscillation modes of the plate have the>form
NypTX Ny T
CO

7 Y coswt (11.82)

w(nxﬂlu) (‘T7 Y, t) - A COS

with
w? =W (k) = w? = f(n? + ng) . (11.83)

If the frequencies of these modes were unigue, (11.82) would be the wholeBstbtihe
interesting thing about this system is that the symmetry guarantees that tteggerisracy
— that is that ifn, # n,, there are two modes with the same frequency. We can get a
physically equivalent mode by interchanging < n,, because this just corresponds to a
90° rotation of the plate, which doesn’t change the physics at all. When we have degenerate
modes, then linear combinations of them are also modes, as shown in (3.117). Thus we have
to askwhich linear combinations are excited by the driving forceAnother way of saying
this is summarized in (11.83). Rotation invariance ensures thdg¢pends only on2 + nz

In particular, it is clear that the difference

nyTY Ny Ny T
— cos 0s
L L

vanishes at the origi©nly the sum couples to the driving force!

1/1(_,“ nu)(w’ y,t) =A (cos nazr:c y) coswt  (11.84)

w(tbz’ny)(x, y,t)=A <cos nng cos nyliry + cos ny[inL‘ coS nflj) coswt  (11.85)
These are the resonant modes of a Chladni plate.

One reason that this is amusing is that it is easy to see. If you excite the plate, and
sprinkle sand on it, the sand builds up in the regions where the plate is not moving — along
the displacement nodes whepe= 0. Thus we can get a visual picture of the zerog.of
Let’s look at some of these modes (in order of increasing frequency) to see what to expect.

The modeﬁao is not interesting. It corresponds to the whole plate going up and down
as a block. Obviously, the corresponding frequency is 0, because there is no restoring force.
The first interesting mode is

+ _ ™ Ty
71’(1,0)(3%%15) =A <COS I + cos I ) coswt . (11.86)
This vanishes for
y=+Ltz (11.87)

so the Chladni sand pattern looks like the diagram in figure/11.15.

®There are also modes proportionakite (n, + 1/2)wz/L and/orsin (n, + 1/2)wy/L, but these vanish at
the origin and are not excited by the driving force.
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Figure 11.15: The Chladni pattern for the medg, n,) = (1,0).

The next mode is
1/}6 1)(x, y,t) = 2A cos % cos % coswt . (11.88)

Because this mode is not degenerate, it does not give rise to a very interesting pattern. It
vanishes at

L L

which gives the pattern shown in figure 11.16. We won'’t consider any more of these boring
modes withn, = n,,.
The next mode is

2x 21y
+ _
1/1(270) (x,y,t) = A <cos I + cos L) coswt , (11.90)
which vanishes for
L 3L

y::I:E:i::z: or y::t?:lzx (11.91)

so the pattern looks like figure 11.17.

Next comes
2 2

¢(§,1)($’ y,t) =A (cos % cos % + cos % cos 77Ly> coswt . (11.92)

This vanishes for
(26, —1)+¢,(2c2 —1)=0

=(cz+¢y)(2cecy—1)=0

(11.93)
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Figure 11.16: The Chladni pattern for the mode (1,1).

Figure 11.17: The Chladni pattern for the mode (2,0).

with ¢, = cos(mz/L) andc, = cos(my/L). The pattern is shown in figure 11.18.
We could go on, but you should have the idea by now. Let us look at one last mode:
T 3Ty 3rx s

e = =2 cos 222 e
¢(371)(x,y,t)—A<cos T Cos— + cos 7 cos L) coswt (11.94)
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) .

B [ ]

Figure 11.18: The Chladni pattern for the mode (2,1).

vanishing for
Cr 4¢3 —3¢,) +ec 402—% =0
(1) = 3e) + ey (4cd — er) 1195)
:cxcy(4ci+4c§—6):0

with pattern shown in figure 11.19.

P NN

N rN O

Figure 11.19: The Chladni pattern for the mode (3,1).
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Moral: When there is more than one mode with the same frequency, look at linear
combinations to determine which are excited!

11.4 Waveguides

Generically, a “waveguide” is a device that forces a traveling wave to propagate only where
you want it to go. Typically, a waveguide is some kind of tube that allows the wave distur
bance to propagate in one direction while confining it in the other directions. In this section,
we will discuss the case of straight wave guides with simple uniform cross sections. The
really interesting physics occurs when the width of the waveguide is not much larger than the
wavelength of the wave. Then, as we will see, the physics of the waveguide has a dramatic
effect on the propagation of the wave.

The simplest situation to discuss is the case of transverse oscillations of a membrane in
the form of an infinite strip, as shown in figure 11.2Consider a membrane with surface

Figure 11.20: A section of an infinite strip of stretched membrane that acts as a waveguide.

mass density,; and surface tensidfi;, stretched in an infinite strip in they plane between
y = 0 andy = ¢ and fromx = —oo to co. The edges, at = 0 andy = ¢ are held fixed in
the plane. We are interested in the oscillations of the interior of the strip up and down out of
the plane.

This is a job for separation of variables. We can look for modes of this system which are
products of a function aof and a function of;. In particular, we can satisfy the boundary
conditions aty = 0 by combining two modes of the infinite system,

etkatoikyy  and dkat gikyy (11.96)

into '
sin(kyy) e (11.97)

Now this satisfies the boundary conditioryat ¢ if
ky = n% forn=1t0o. (11.98)
Thus the modes look like this:

nmy

Un(z,y,) = A sin == eilkaz—ct) (11.99)
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and
UVn—(x,y,t) = A sin Y E (ke —wt) (11.100)

For each value af, these look like waves traveling in the: direction!
The dispersion relation for the membrane is givefilldy18).But the modesy,,+, have
|ky| = F. Thus the dispersion relation for the traveling wa{e$.,99) and (11.100) is

w? =02k W2, (11.101)
where
v= 5 (11.102)
Ps
and -
wn == (11.103)

One interesting thing abo(t1.102)is that the dispersion relation has a low frequency
cut-off that depends on. For any givenv, the only modes that actually propagate are the
finite number of modes with

n<-—. (11.104)

For example, fow < mwv/¢, there are no traveling waves. Far/¢ < w < 27v/{, there is
only one, corresponding to= 1, etc.

The modes satisfyinfd1.104)have a simple physical interpretation. They can be thought
of as the plane wavefl1.96),of the infinite system, bouncing back and forth between the
fixed edgesy = 0 andy = ¢. The requirement(11.98),on the allowed values df,
arises because for other valueg:gfthe reflected waves get out of phase, giving destructive
interference. You might expect a zig-zag wave of this kind to propagate indinection
with a speed less than the phase velogjtgf the waves in the infinite system by a factor of

ko kx
\/]%26 + k2 \/k2 + (wn/v)?

(11.105)

because it has to go that much farther as it bounces back and forth to move a given distance
in z, as illustrated in figur@1.21. In fact, the phase velocity of the zig-zag waves for fixed

Figure 11.21: A zig-zag wave in the waveguide.
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n, w/ky, is actuallylarger than vby the factor, (11.105), rather than smaller,

12 )2
e v”k(“’/”). (11.106)
However, the group velocityw /0k,, of the zig-zag waves, the velocity with which you can
actually send signals, is smaller by just the expected factor,
ow ky
= — ACE— 11.107
Y Oke R (onf0)? ( )

For light waves, we can make a wave guide by making a tube of some conducting mate-
rial, so that the electric field is nonzero only inside the tube. However, in this case, the details
of the boundary conditions at the edges depend on the direction of the electic field. We will
return to a related question in the next chapter.

11.5 Water

Water is pretty complicated stuff. It wets things. It has viscosity. It forms whirlpools and
eddies and has nonlinear turbulent motions that we cannot hope to understand using the
techniques that we have at our disposal. In this section, we consider a somewhat idealized
fluid, that we will call “dry water” (after Feynman) that has none of this complicated structure.
It has three features that we will keep in common with the real thing. It has mass density. It
has surface tension, and it is nearly incompressible. Let's see how it waves.

Imagine an infinite universe full of an incompressible, frictionless liquid. This will allow
us to see the consequences of the incompressibility in a simple, qualitative way. Consider the
analog of a plane sound wave in such a system. That is, for example, a plane wave traveling
in thex direction (withk, = k. = 0) with longitudinal displacements in thedirection. If
the liquid is truly incompressible, thig must be zero for this wave, because any longitudinal
displacement must be accompanied by compressions and rarefactions of the medium. Thus,
for such a plane wavé,= 0. There are no nontrivial plane waves in the infinite system!
In general, we do not expect that all the components @ftketor must vanish, because even
in an incompressible liquid, displacement in one direction is allowed if it is accompanied by
appropriate motion in other directions. But what we have seen is that we cannot have a mode
that has a redi vector. That would be a plane wave, which we have seen is not compatible
with incompressibility. Instead, we expect that the constigine 0 will be replaced by
a constraint on the rotation invariant length of theector, thatt - k = 0. If some of the
components of thé vector are |mag|nary this can be satisfied for nonzero

Note that the conditiof - £ = 0 is not exactly a dispersion relation, because it makes
no reference to frequency. But it is the whole story for an infinite system of incompressible
fluid. In fact, it is clear that there are no harmonic waves in the infinite system, because there
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is nothing to produce a restoring force. Even if there is a gravitational field, the pressure in
the liquid just adjusts itself to cancel the effect of gravity. We can get a nontrivial dispersion
relation only when there is a surface. The dispersion relation then depends on the physics of
the surface. This would seem to violate our general principle that the dispersion relation is a
property of the infinite system. What is happening is this. The relatidn= 0 is really the

only dispersion relation that makes any sense for the three-dimensional infinite system. When
we introduce a surface, we hdweken the translation invariance in the direction normal to

the surface. This allows us to get a nontrivial dispersion relation for the two-dimensional
system parallel to the surface.

11.5.1 Mathematics of Water Waves

Now let us try to make these considerations quantitative. As usual, we will label our fluid in
terms of the equilibrium positions of its parts. Then call the displacement from equilibrium
of the fluid that is at the poimtat equilibrium

(7, 1) (11.108)
for some smalt. This means that the actual position of the wafer is
R(7,t) = F+ (7 t). (11.109)

We can regard (11.109) as a kind of change of coordindttesaps us from the equilib-

rium coordinates (a rather arbitrary label because the water is free to flow) to the physical
coordinates that tell us where the water actually is. If the water is incompressible, which is
a pretty good approximation, then a small volume element should have the same volume in
equilibrium and in the physical coordinates.

dR, dR,dR. = dx dydz . (11.110)

This will be the case if the determinant of the Jacobian matrix equals 1:

ox oy 0z
OR, OR, OR, _
OR. OR. OR:

ox oy 0z

Because is small, we can expand (11.111) to lowest order in

Ot Oa O
1 +6€ Ox € 8% € a@z
_ ¢ v v
I U A (11.112)
(2 2 [ )
€ o oy 1T

=1+4eV-9+0(?).

%Here we can take to be dimensionless and let the parametdre a small displacement.
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Thus

V-=0. (11.113)
(11.113)is very reasonable. It is the statement that the flux of displacement into or out of any
region vanishe$.This is what we expected from our qualitative discussion.
To see what this means for waves, let us also assume that there are no eddies. The
mathematical statement of this is
Vxy=0. (11.114)

If we do not assum@1.114),angular momentum conservation becomes important and life
becomes very complicated. You will have to wait for courses on fluid dynamics to learn more
about it. With the simplifying assumptio(f.1.114),the displacement can be written as the
gradient of a scalar functiog,

eh = eVy. (11.115)
This simplifies our life enormously, because we can now deal with the scalar quantity,
Space translation invariance tells us that we can find modes of the form

X = ekt (11.116)
which gives a displacement of the form
) = i ek Rt (11.117)
The condition,/(11.113hen becomes
k-k=0, (11.118)

as anticipated in our qualitative discussion at the beginning of the section.

11.5.2 Depth

0J11-3

Let us now consider waves in an “ocean” of deptlignoring frictional forces, eddies and
nonlinearities. We will further restrict our attention to a two-dimensional situatiory et

the vertical direction, and consider water waves irutldirection. That is, we will také,

real, because we are interested in wave propagation indinection, and, pure imaginary
with the same magnitude, so ti{al.118)is satisfied. Then we assume that nothing depends
on the other coordinate, Having simplified things this far, we may as well assume that our
ocean is a rectangular box. Then the modes of interest of the infinite system look like

Xoo (T, y, ) = eFhodhy—ivt, (11.119)

"Note, however, that for large incompressibility is the nonlinear constraint, (111111).



11.5. WATER 287

If the ocean has a bottom @at= 0, then the vertical displacement must vanisly at 0.
Then (11.115) implies that we must combine modes of the infinite system tg gdtasey
derivative vanishes gt= 0, to get

x(x,y,t) oc eFHRETl cogh Ky | (11.120)

wherecosh is the “hyperbolic cosine.” defined by

coshz = % . (11.121)

Then from|(11.115), we get

9 .
’(/Jz (.T, Y, t) = 87X($7 Y, t) =+ eilkxilwt cosh ky )
X

(11.122)
9 +ikr—iwt _;
Vy(z,y,t) = afyx(w,y,t) =e sinh ky .
Before going further, note that we could extend these considerations by addingra
dinate. Then (11.120) would become

tikgpxtik,z)—iwt

x(z,y,t) o el cosh ky (11.123)

k= \/k2+ k2. (11.124)

These are the two-dimensional wave modes of the infinite ocean of deptiey depen-
dence is completely fixed by the boundary condition at the bottom and the cohditierD.
The only interesting dependence, from the point of view of space translation invariance, is
the dependence anandz.

Now, let us return to the rectangular ocean, anc:timelependent modes, (11.1.22). If
our ocean has sideszat= 0 andz = X, we must choose linear combinations of the modes,
(11.122), such that the displacement vanishes at the sides. We can do this for0 by
forming the combinations

where

Yy (z,y,t) = —sin kx cosh ky coswt ,

(11.125)
Yy (z,y,t) = cos kxsinh ky coswt .
Then if nr
= — 11.12
k=< ( 6)

the boundary condition at= X is satisfied as well.
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Figure 11.22: The motion of an incompressible fluid in a wave.

Now we know the mathematics of the displacement of the dry water. Before we go
on to discuss the dispersion relation, let us pause to consider what this actually looks like.
Imagine that we put a regular rectangular grid of points in the water in equilibrium. Then in
figure/11.22, we show what the grid looks like in the mode, (11.125) with n

Each of the little rectangles in (11.22) was a square in equilibrium position {inhaeb).

Note the way incompressibility works. When the water is squeezed in one direction, it is
stretched in the other. You can see this in motion in program 11-3.

=0 T =g z=X

Bk

Figure 11.23: The surface of a water wave, with horizontal displacement suppressed.

Having stared at this, we can now forget about it for a while, and concentrate just on the
surface. That is what matters for the dispersion relation. For ease of presentation in the dia-
grams below, we will exaggerate the displacement in the veytdiadction and forget about
the displacement of the surface in théirection (which won't matter anyway). Then the
wave looks like the picture in figure 11.23. We will use energy arguments to get the disper
sion relation. There are three contributions to the total energy of the standing wave/ (11.125)
— gravitational potential energy, energy stored in surface tension, and kinetic energy. Let us
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consider them in turn.

3
D
Il

EaE]

z=0 T = s5¢ T =

Figure 11.24: Water is removed from the rectangl¥ in = and raised to the rectanglexat

Gravitational Potential

In the diagram in figure 11.24, you can see that the overall effect of the displacements in
the mode((11.125) is to take a chunk of the water ffm z, raise it byey, (z, L, t) (the
vertical displacement of the surface), and move it over. td he volume of this chunk is

W dx ey (z, L, t) wheredz is the length of chunk arid is the width in the: direction (into

the paper). Thus the total gravitational potential is

Vaw =pg [ aV Ah=pgW [* dolew (o, L0 +O(E)
. 0
=pgW /Qk dx €% cos® kx sinh? kL cos® wt + - - - (11.127)
0

= %ngEQ sinh? kL cos® wt + - - - .

Surface Tension

The energy stored in surface tensiorilistimes the difference between the length of the
surface and the equilibrium lengti(). This requires that we be a little careful about the
position of the surface, going backto (11.109). The position of the surface is

Ry(z,t) =z +ey(x,L,t), Ry(z,t)=ey(x,L,t). (11.128)
The length is then

2 2
Ok, +% . (11.129)
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But

ﬁzpy . (11.130)
a

Thus
Vowrtace = T' X (Area - Areao)

=TW /OZ da <\/(1 + €0, /0x)? 4 (€01, /O0x)? — 1) (11.131)
=TW /O ; dz <68¢$/3m + %(eawy/axf + 0(63)) .

The order term in (11.131) cancels when integrated: 0o

* 1
=TW ¢ /k d:cf k? sin? kx sinh? kL cos® wt + - - -
(11.132)

@TWE k? sinh? kL cos® wt + -

Kinetic Energy

The kinetic energy is obtained by integrat%w@v2 over the whole volume of the liquid:

1
KE:Q,O/dvﬁ2

i L (11.133)
1 z 9 9
S / dz / dy ((e0s/01)? + (i, /01)?)
2 0 0
1 > [* L 2 . 2
=—pWe / dx / dy w* sin” wt
2 0 0 (11.134)
. <C082 ka sinh? ky + sin? kx cosh? ky)
4ka€ / dy w? sin® wt (smh ky + cosh? k:y)
4ka€ / dy w? sin® wt cosh 2ky (11.135)
_ 2,2
= @pWG w? sinh 2kL sin® wt .
Dispersion Relation
The total of[(11.127)-(11.135) is
Verav + Vsurface + KE = ul pgW €2 sinh? kL cos® wt
dk (11.136)

—|—4kTW6 k% sinh? kL cos® wt + @pWWQ €2 sinh 2kL sin® wt + -
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This must be constant in time, which implies

12 T 13
. 9sinh? kL (gk+ Lk )
inh 2kL (11.137)
= (gk + = k3) tanh kL
p

wheretanh is the “hyperbolic tangent,” defined by

: r _ ,—T
tanhx = sinh _c-c (11.138)
coshx e*+4e7®

Note that in the twin limit of long wavelength and shallow water, the water waves become
nondispersive — fokL < 1, andpgk > T k®> — tanh kL — kL

w? ~ gL k?. (11.139)

Gravity versus Surface Tension

The dispersion relation, (11.139), involves a competition between gravity and surface ten-
sion. For long wavelengths gravity dominates andgthterm is most important. For short
wavelengths, surface tension dominates andzgguderm is more important. The cross-over
occurs for wave numbers of order

kako =422 (11.140)
T

The cross-over wavelength is actually a familiar distance. There is a much more familiar
process that involves a similar competition between gravity and surface tension. Consider a
water drop on a low friction surface, such as a teflon frying pan. A very tiny drop is nearly
spherical. But as the size of the drop increases, it begins to flatten out. Then when the drop
increases above a critical size, the height of the drop does not increase. It spreads out with a

fixed height/, as shown in cross-section in figure 11.25.
- N\

Figure 11.25: The cross-section of a water droplet on a frictionless surface.

As with the dispersion relation, we can understand what is going on by considering the
energy. The total energy of the drop is a sum of the gravitational potential energy and the
energy due to surface tension.

1
Vgrav ~ §pghv7 (11141)
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wherev is the volume of the drop and

T
Vsurface & Tv . (11142)

The volume is fixed, so the equilibrium valuehahinimizes the sum

1 T
Vgrav + Vsurface = § pghv—+ T?) . (11.143)
The minimum occurs for )
T=5pgh. (11.144)

The measured surface tension of watéf is 72 dynes/cm. This gives the familiar height of
a water droph ~ 0.4 cm. This height is related g by

/1Pg V2
= e — 11.14
ko T h ( %)

11.6 Lenses and Geometrical Optics

Geometrical Optics

The idea of geometrical optics is to understand the effects of refraction and reflection on
beams of light, ignoring the effects of diffraction. This is really only Snell's law and geome-
try. One application of these ideas will be in the discussion of the rainbow in the next section.
There we use what is called “ray tracing” which as the name suggests is simply keeping track
of what each ray of light does as it passes through the drop. A spherical drop is a “thick lens.”
Obviously, there is no sense in which a sphere could be regarded as “thin.” In this section we
are going to see how to give a simpler approximate description of what a “thin lens” does. In
fact, if we were designing a very precise optical instrument, we would still use ray tracing to
get the fine details right. But the thin lens analysis is a good approximate starting point and
will help us understand what is happening in some important situations.

Tecnically, what “thin” means in this context is that if a narrow beam of light approxi-
mately perpendicular to the plane of the lens comes into the lens at some point on one side, it
comes out at about the same point on the other side. If we ignore the small change in position,
this simplifies the analysis and gives us the thin lens formula.

Thin Spherical Lenses

In Chapter 11, we derive the formula for the angular change in a narrow (we are ignoring
diffraction) beam of light due to a prism. The analysis is uses the geometrical construction
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Figure 11.26:

shown in figurél1.26 and gives

5:01n+90ut_‘91_92
~n(f+6)—op=(n—1)¢

(11.146)

where the first is exact and the second follows in the limit in which #mgles are small. In
this limit, the angular deflection is independent of the incoming angle.

Thin lenses and small angles

We can use this result to understand how a lens focuses light. A lens is a device in which
the angular change given to the beam is proportional to the distance from the axis for small
angles and distances —

S~ h/f (11.147)

wheref is length. This is approximately true for a piece of glass with surfaces that are parts
of spheres. In figur@1.27is a diagram showing how this works for a lens which is flat on
one side and a partial sphere with radiuen the other. In the diagramh, is the angle of the
“effective prism” seen by the part of a beam at distanfrem the axis. It should be clear
from the figure that i, is small, it is proportional té.
_ h
01 ~sinf; = — (11.148)

™
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Figure 11.27:

More often, the lens is curved on both sides. If the radi;aaedrs, the result looks like
figurel11.28. Figurell.28shows the beam at the very tip of the lens for convenience, but as

Figure 11.28:

the previous diagram should make cléart 6 is the “effective prism” angle for arly. The

figure also exaggerates the curvature of the two sides, so that the lens pictured is not really
“thin.” A thin lens looks more like figurgl1.29.This is important because if the lens is fat,

the heighth is not very well-defined because if the light inside the lens is not horizontal, we
might have oné where the light enters the lens and a very diffeliemhere it come out. But

if the lens is thin and if the light rays are not too far from the perpendicular, this ambiguity in
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Figure 11.29:

h can be ignored just like other corrections to small angle relationssiflikex 0).
Putting together the geometry from figiie 28with the formula fow in a prism, we get
the constanf for a thin spherical lens:

0= (n — 1)(91 —|—92)

L h h (11.149)
ELICEE R
and thus ) . )
=1 (Tl L r2> (11.150)

This is called the “lens-maker’s formula”

Figure 11.30:

A lens of this kind focuses parallel rays of light, as shown in fi@ir80. This works
becaus®d ~ h/f as shown in figurd1.31. Parallel rays at any angle are focused onto
a “focal plane” a distancé¢ from the lens as shown in figutd.32. The analytical way of
explaining how this works is to note that the difference in the slopes of the rays on the two
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Figure 11.31:

sides of the lens is proportional to the height. Thus the in this case, because the slopes on one
side are the same, the difference in slopes on the other side is proportional to the difference
in height, and that means that they all come together at theasame

Figure 11.32:

Another way to see that this focusing must work is illustrated in fidur@&8and11.34.
Note that if the parallel rays are coming in at an angléhe ray a distanck; = ¢ f above
the center of the lens is bent to the horizontal, as shown in fidgu88with the solid line.
Then for the rays on either side of that ray (shown as dashed lines), because the dependence
of the bending on the height in the lens is linear, the total angularfendl, is f multiplied
by the total distance from the center+ h,, but thenh, = 6, f, which is the condition for
focusing. This is illustrated in figuiiel.34.

For a bundle of parallel rays at any angle, you can determine where they hit the focal
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Figure 11.34:

plane by tracing any ray, the easiest being the one through the center of the lens, which is not
bent at all, as shown in figud..35. The parallel rays (a part of a plane wave — we know
this is impossible, but we are ignoring diffraction) can be thought of as coming from a point
source at infinity. If there is a point source closer to the lens, it focuses farther away. Now
play with the animation LENS.EXE.

To find the relation betweefy andd,, consider the diagram in figutd.37— the sum
of the angles of deflection on the two sides equals

S1+0, =16 (11.151)
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Figure 11.37:
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which for small angles is equivalent to

h h h

—+— == 11.152

di dy f ( )
or 1 1 1

—t — == 11.153

d  dy f ( )

This is called the “thin lens formula.”

So far, we have discussed “converging” or “convex” lenses for whishpositive, but
there are also “diverging” or “concave” lenses, for whids negative. In this case, parallel
rays are not focuses, but defocused, and appear to diverge from a plane a-digtaviteh
is a positive humber) beyond the lens, as shown in fidu@8: The point from which the

Figure 11.38:

outgoing rays diverge is called a “virtual image.” In this case it is a virtual image of the point
at infinity. Shown in figurd1.39is the effect of a concave lens on a point source. Again
there is a virtual image. Here the thin lens formula is still satisfied, butfbetia d, are
negative.



300 CHAPTER 11. TWO AND THREE DIMENSIONS

Figure 11.39:

Images

The focusing property of a lens can be used to project an image of an object on a surface,
as shown in figurd1.40. What is happening is that light fanning out from each point on

screen

Figure 11.40:
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the object is focused back to a single point on the screen. As in fiduBésand11.37,the
distances satisfy the thin lens formula,

11 1
— === (11.153)

d dy f
This tell you where to put the screen. Note also that it is easy to see where on the screen
the image of a particular point on the object appears because a ray of light that goes right
through the center of the lens is not deflected at all (we also used this for parallel rays above
figure/11.35). This plus simple geometry then implies that the ratio of the size of the image
to the size of the object b /d;.

size of image d

! iac Al 11.154
size of object d; ( )

If the screen in figuré&1.40is removed, you can see that the light to the right of where the
screen was is a copy of the light coming from the object, but upside down, and changed in
size bydsy/d;. If you have played with lenses, you know this.

virtual )
Image object
<d >
-~ —dy ——
Figure 11.41:

Notice that(11.153)implies that neithetl; nor ds can be less that. If you bring the
object too close to the lens, you do not get a real image on the other side. thdteadmes
negative and you get a “virtual image” on the same side of the lens as the object, and the light
to the right of the lens is diverging as if it came from the virtual image. This situation is
illustrated in figurel1l.41. As we will discuss further below, this is how a magnifying glass
works.
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The image formation illustrated in figutd.40is what happens in a camera, and in your
own eyeball. The lens focuses light from outside points onto points on the film, or your
retina. Of course, the retina is not actually a plane. For the same reason, your eye lens is not
a spherical lens, but some more complicated shape instead. The ray tracing has been done by
evolution, however, so that objects in a plane get focused properly onto the retina.

Because the distance from your eye lens to your retina is fixed by the geometry of your
eye, you must be able to adjust the shape of your lens. By doing so, you can change the focal
length of your lens and thus change the distance at which points are perfectly in focus (this is
called “accommodation”).

The formation of an image on your retina is illustrated in the diagram in fidudé.

Again as in figure 11.40 the image is upside down. You cannot focus on objects that are too

Figure 11.42:

close to your eye lens because the amount of accommodation you can do is limited. If you
bring the object too closer than the smallest focal length your eye lens can produce, the real
image is beyond your retina, the object will look fuzzy, as shown in flouds.

A magnifying glass works by allowing you to produce a larger image of the object on your
retina. It does this in two ways, both of which are illustrated in the diagram in [fifié
(with fewer light rays shown now because the diagrams are getting too busy).

Obviously, the image is larger. But note also that the magnifying glass changes the
amount of accommodation required by your eye lens. Your eye is actually focusing on the
virtual image which is much farther away, and that is easier. Thus when you look at an object
in a magnifying glass, you can bring it much closer to your eye then you could without the
glass. This further increases the magnifying effect, because closer objects look bigger. In this
diagram you can also see a third salutary effect of the magnifying glass — more of the light
from the object reaches your eye.

One of the magnifying effects of a lens can be obtained without a lens in a very simple
way — with a pinhole. If you look at a nearby object through a pinhole, you can bring it
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Figure 11.43:
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Figure 11.44:

much closer to your eye. The reason is that only a narrow beam of light get through the
pinhole from each point on the object you are looking at, so not much focusing is required.

The size of the image on your retina is not increased when you look at the object through a
pinhole at the same same distance as without the pinhole, but with the pinhole, you can bring
it much closer to your eye without fuzziness, and therefore you make it appear bigger.

You may also have played with pinhole cameras, in which you form an image on a screen
in a dark box without a lens, as shown in figlite45.

One disadvantage to a pinhole camera is that you need a very bright object. You throw
away most of the light coming from the object. You can get more light by making the pinhole
larger, but that makes the image fuzzier. Actually, however, you cannot make the pinhole too
small anyway. Ultimately, as we will see in chapter 13, diffraction limits the resolution of a
pinhole camera. If you try to make the image very sharp by making the pinhole very tiny, the
beam you get inside the camera will be spread by diffraction. The best you can do is choose
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<

Figure 11.45:

the size of your pinhole so that the spreading at the screen due to diffraction just matches the
size of the pinhole.

While we are on the subject, note that diffraction and the finite size of your pupil limits the
angular resolution of your eye. As we will understand in detail in chapter 13, the finite size,
s of your pupil introduces an angular spread of ortjex for light of wavelength\. Unless
you have huge eyesjs less than .25 cm, so for green light with wavelength 500 nanometers
(550 is about the middle of the visible spectrum), the angular resolution is greater than about
2 x 1074, At a distance of 10 meters, for example, even if your eyes are perfect, you will not
be able to resolve two objects less than a few millimeters apart.

You can use a pinhole to study your eyes in rather interesting ways. Put the pinhole close
to your eye and look at a bright diffuse source of light. We will do this in lecture, but you
can make your own pinhole by punching a small hole in a piece of aluminum foil with a pin
and try this out. If you wear glasses, take them off. You won't need them. You should see
a circular spot of light. This is the image of your pupil on your retina, as shown below:

TR

pinhole

Figure 11.46:
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You can watch the size of your pupil change with this arrangement. Just cover or close your
other eye. Because you are now getting less light, both pupils will expand. Uncover the other
eye and look at the bright light again and the pupils will contracts. Can you notice a short
time-lag?

Now carefully bring a pen or pencil point up from below in between the pinhole and
your eye, until it just begins to obscure your view. What do you see? This should convince
you, if you were not sure before, that the image on your retina is upside down, as shown in
figure11.47. The bottom half of the image on your retina is missing. Your brain, being used

TR

pinhole

A

Figure 11.47:

to seeing images on the retina upside down, interprets this as an object coming down from
above!

Magpnification, telescopes, microscopes, and all that

By combining lenses in various ways, you can construct all sorts of interesting optical instru-
ments. The simplest way to think about magnification is just to consider the angular size of
the observed image, compared to the angular size you would see without the instrument.
A simple telescope is illustrated in figuté.48. The distances are somwhat distorted.

In a real telescope the object would be much farther way and the sizes of the lenses much
smaller. When you look at a distant object (lafgewith your telescope, the light arrives
at the first (“objective”) lens as a nearly parallel bundle of rays. We know from the thin lens
formula

E + .1 (11.153)

di dy f '
with dy = L > f that a real image forms at a distance from the objedtijast slightly
larger than its focal lengtfy. The “eyepiece” is then placed a distance just beyond its focal
length, f5, from the real image, to make the light from the image into a nearly parallel bundle
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objective eyepiece

<—L>>f17f2—>e%fle<%f2>

Figure 11.48:

again. Essentially what you are doing with the eyepiece is looking at the light from the real
image with a magnifying glass.

We can understand how (and how much) a telescope magnifies distant objects by looking
at the angles involved. If the object has dizgits angular size without the telescope is

ho ho
—2 _~2 11.155
L+fi+fs L ( )
By similar triangles, the size of the real image is
ho
— - 11.156
i3 1 ( )

and thus the angular size of the real image at the eyepiece (and your eye) is

ho fl
— = 11.157
L h ( )
Thus the magnification is approximately
i1 (11.158)
P

Note that the telescope image appears upside down because what you are actually seeing
is the real image.

A microscope looks something like what is shown in fidiirgl9(with even fewer light
rays drawn because you should be getting used to them by this time.

The sample is placed just a little more than the focal lerfgtlaway from the objective
so that a real image forms that is much bigger than the sample. Then you look at the real
image with the eyepiece as a magnifying glass, again positioned a little more than its focal
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objective eyepiece

~<rRfi=<—"7"L>f1fi ——<= fo>

Figure 11.49:

length, f>, away, to be able to view the image comfortably with your eyes relaxed. If the
sample has sizk,, the size of the real image is

L. ho (11.159)
N
and the angular size of the image at the eyepiece (and your eye) is
Lh,
11.160
Jife ( )

This should be compared with the angular size of the object at some referencellgngth,
25 cm, at which you can view the object comfortably with your unaided eye, which is

ho
— 11.161
i (11.161)
Thus the magnification is
L Ly
— 11.162
Jife ( )

11.7 Rainbows

Most elementary physics books either do not explain the rainbow at all, or explain-t incor
rectly (sometimes embarrassingly so). Obviously, it has something to do with the refraction
of light by raindrops. We ought to be able to explain it just using Snell’s law and geometrical
optics — ray tracing. But it is a little subtle, as you will see.

To begin with, consider the refraction of a narrow ray of light from a spherical drop of
water, illustrated in figur@1.50.The index of refraction of watet, varies from about 1.332



308 CHAPTER 11. TWO AND THREE DIMENSIONS

for red light to about 1.343 for violet light. The ray enters somewhere on the drop, which
can parameterize by the angléetween the direction of the incoming light and the radius
from the center of the drop to the point where the light enters. The isgédso the angle
between the light ray and the perpendicular to the surface of the drop, so it is the appropriate
to use in Snell’s law. Thus the angl®f the refracted ray inside the drop is given by

sin ¢ = % sin # (11.163)

or

¢ = sin~! (8129> (11.164)

Figure 11.50:

Some of the light is also reflected from the drop. Note that the reflected light is reflected
specularly. Fop = 0, the light is reflected directly backwards. Acreases fronl the
reflected ray is rotated counter-clockwise with respect to the incoming ray by am aritfle
until atd = 7 /2 it just kisses the sphere and is not rotated at all.

The important geometrical fact that makes the problem fairly simple is that the angle
between the ray and the perpendicular to the surface is the same when it comes out of the
drop as when it comes in. Snell’s law works in reverse, and the ray coming out of the drop
makes an anglé with the perpendicular. As you can see from figlites1, this means
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Figure 11.51:

that the refracted ray coming out of the drop This is just a version of the reflected ray in
figure[11.50 rotated by — 2¢. This means that is it rotated by

6y = (1 — 2¢) — (r — 260) = 20 — 2¢ (11.165)

from the original direction of the incoming light.

The trouble with this is that it has nothing to do with the rainbow. The problem is that the
direction of the refracted ray is basically forward and it depends sa that no particular
value off is picked out. There are three mysterious things about the rainbow that this effect
cannot explain.

i. The primary rainbow occurs at a definite angle, and

ii. the angle is in thbackwards direction — at an angle of about*4(about .7 radians)
from the incoming light ray — that is rotated by about 2.4 radians from the original
direction, and

iii. there is a second rainbow outside the first in which the colors go applositedirec-
tion!
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0.25 0.5 0.75 1 1.25 1.5
Figure 11.52Plot of §; versus 6 for red light and blue light.

So what does this refraction do? The answer is almost nothing! The refracted ray is spread
over a large range of angles, as shown in the graph inffigure 11.52. At any particular outgoing
angle, the light from this effect is very faint and hardly noticeable. Not only are the colors
not separated very much, but all of them are spread more or less evenly over outgoing angle,
so you don’t see any rainbow from this refraction.

So where does the rainbow come from? The answer is that in addition to being refracted
from the inside surface of the drop, the ray can also be reflected, and then come out at a still
larger angle. The result looks like the picture in figure 1.1.53.

Comparing figure 11.5%igure 11.53 and equation (11.165), it is clear that for this path
the light is rotated by

Oy = 2(m — 2¢) — (1 — 20) = 20+ 7 — 46 (11.166)

And now here is the critical point. If we plot tifisversug), the graph has a minimum! This
is shown in figure 11.54.

Now the outgoing angle has a minimum fiorz 1.05 (which is the value of illustrated
in the diagrams). The outgoing angle = 6, corresponding to thi8 gives the angular
position of the rainbow. Here, becadsaloes not change much for a small changg you
see the sum of the refracted light from a rangtsaround the minimum. The angle is about
what we expectl,,: ~ ™ — .7, where.7 radians: 41° is the angle between a vector from the
water drop to the sun and the same drop to your eye, as shown in figure 11.55. The negative
sign inT — .7 means that the light has not rotated by afg&ll°, so the light reaching your
eye entered the refracting water drop on the side farther away from you.
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Figure 11.53:

You can also see from the graph in figliie54that the colors are spread out. The red
light is on the outside (farther away fr@m) and the blue light on the inside.

Mathematically, why does the light pile up at the edge? The energy from sunlight falling
on a small part of the surface of the water drop betwesmd + df is proportional tal do
(there are other factors, likes 6, but they vary slowly, so let's forget them). The angle of the
outgoing rayf..: is a function ob, and the energy I; df is spread over an angular region
betweer),,+ andf,,; + df,.. Thus the outgoing intensity is proportional to

incoming
energy betweerx 1i df (11.167)
6 and 6 +df
outgoing
energy between X Lo dfout (11.168)
eout and ‘%ut + daout
I;do I;
I, x = —— 11.169
deout % ( )



312 CHAPTER 11. TWO AND THREE DIMENSIONS

sun

eye

Figure 11.55:



11.7. RAINBOWS 313

Whendb,,:/df = 0, the intensity goes to infinity! The edge is infinitely more bright than
the interior. That is why we see it!

Figure 11.56:

We can now check this picture by seeing how it explains the second rainbow. As you
might guess, this comes from yet another reflection, as shown in btk
Now the light ray is rotated by

03 = 3(m — 2¢) — (7 — 20) = 20 + 27 — 6¢ (11.170)

This is shown, along witl,, in the plot in figurell.57. The minimum offs is the
position of the second rainbow. But now because the angle is greater, ttinlight is
reaching your eye from the side of the drop that is closer to you, and it is bending completely
around.

This is why the colors are reversed. Again the blue is refracted more, but this time that
means that the blue is on the outside, while the red in on the inside.

By accident, the minima faf, and 63 are almost equally (within about .13 radians)
displaced fromr, though on opposite sides. This is why the two rainbows are fairly close
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0.25 0.5 075 1 1.25 1.5
Figure 11.57Plot of 65 and 65 versus @ for red light and blue light.

together in the sky.

Another prediction of this picture that can often be seen is “Alexander’s dark band” that
appears between the rainbows. The light that is not concentrated at the minimum value of
0 is spread inside the first rainbow but outside the second rainbow, thus the region between
the two rainbows (or outside the first if the second cannot be seen) is darker. If we plot the
angular distance away fromas a function of the angle at the which the incoming sunlight
enters the water drop, the first and second rainbows look like figure 11.58 (as usual, | have
exagerated the difference in index of refraction between red and blue. Here you clearly see
that the angle of first rainbow is smaller, and the dark band between the two.

11.8 Spherical Waves

Consider sound waves in a very large room with absorbing walls. In the middle of the room
(we will take the middle of the room to be the origin of our coordinate systea)) is a
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1.4¢

0.25 0.5 0.75 1 1.25 5

0.8y

0.6

Figure 11.58Both rainbows.

spherical loudspeaker, a sphere that produces an oscillating pressure at its surface (at radius
R) of the formpg coswt. What sort of sound waves are produced? It seems rather silly to
use our plane wave solutions with space translation invariance for this problem, because this
system has a symmetry under rotations about the origin. Instead, let us look directly at the
wave equation and make use of the spherical nature of the problem. That is, assume that
the solution has the form(7,t) = x(|7],t). Putting this into the wave equation gives (with
r= |y

Lo = V2x(r,t) =V -V x(rt

”zfﬁgf(ng; x(nﬂ B 8Xfﬁ ) (11.171)

=V (Vr) 5 ox(r,t) = V- (7/r) 5 x(r,0)

8If you have seen spherical coordinates, you may remember that you cannot compute the Lﬁplai‘i,an,
simply as%. You don't need to remember the details here because we compute it from scratch for the function,

x(I71,8).
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2
= (9 7r) (1) + (Fr) - (/) (1)
- - 0 0?
= (V-7 /r 47 V()] 2ox(r8) + (7r) - (7/r) 5 () (11.172)
2 0 0*
= ; EX(n t) + ﬁX(Ta t) .
We can rewrite this in the following useful form:

1 92 1 9
02 @X(Ta t) = - ﬁrx(r, t). (11.173)

Thusrx(r, t) satisfies the one-dimensional wave equation.

We can now solve the problem that we posed above. The solutiong fuave the
form sin(kr + wt) andcos(kr + wt), wherek = w/v. Because the pressurerat= R is
po coswt, we are interested in the combinatiens(kr — kR — wt) andcos(kr — kR + wt).
These describe waves going outward from and inward toward the origin respectively. The
appropriate boundary condition at infinity is to take the outgoing wave, so that the disturbance
is produced entirely by the speaker. Thus

w(rt) = PR costhr — kR — wt). (11.174)
T

The general features of the solution, (11.174), are easy to understand. The wave-fronts, along
which the phase of oscillation is constant, are spheres centered about the origin, as they must
be because of the rotational symmetry. The waves move out from the origin at speed

they move outward, their local intensity must decrease, because the same amount of energy
is being spread over a larger area. This is the reason fofitie (11.174). If the amplitude

falls as1/r, the intensity of the wave falls agr2, as it must. Though the physics is clear,

the precise form of this solution is deceptively simple. In two dimensions, for example, it

is not possible to find a solution to an analogous problem using the functions that you know
from high school. In two dimensions, the amplitude of the wave must decrease roughly as
1/4/r. The solutions to the two-dimensional wave equation with this property are called
Bessel functions. You will learn about them in more advanced courses.

11.9 Chapter Checklist

You should now be able to:

i. Interpret plane waves in two- and three-dimensional space in terms wdcor, an-
gular wave number;

ii. Analyze the scattering of a plane wave from a plane boundary between regions with
different dispersion relations;
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iii. Derive and use Snell's law;

iv. Understand the phenomenon of total internal reflection, along with the general state-
ment of the boundary condition at infinity for complex

v. Understand the physics and mathematics of tunneling phenomena;

vi. Understand how degeneracy of the frequencies of the normal modes affects the forced
oscillation problem and find the sand patterns on square Chladni plates;

vii. Understand the propagation of waves in waveguides, using separation of variables to
construct the modes and interpret the result in terms of zig-zag waves;

viii. Be able to analyze water waves, ignoring viscosity and angular momentum.

iX. Solve problems involving spherical waves where the displacement involves amdy
4

Problems

11.1. Consider the free transverse oscillations of the two-dimensional beaded string
shown in figure 11.59. All the horizontal strings have tengjgrall the vertical strings have
tensionT’,, all the solid circles are beads with massThe square frame is fixed in the= 0

plane.

a. Find the normal modes and their corresponding frequencies.

b. Suppose thaf, = 1007}. Draw nine diagrams, one for each normal maderder

of increasing frequencyindicating which beads are moving up (by a + sign), which are
moving down (by & sign), and which are not moving (by a 0). You can interchange + and
— and still have the right answer by changing the setting of your clock, or multiplying your
normal mode vector by 1. For example, the lowest frequency mode looks like

+ + +
+ + +
++ +

while the mode with the fifth highest (and also the fifth lowest — in other words the one in
the middle) looks like

+0O |
0O
| o+
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y=1L —
. . . j=3
° . . j=2
. ° 3 j=1
y=0 —
a:‘:O :c:‘L

Figure 11.59: A two-dimensional beaded string.

Do the rest andet the order right. You should be able to do this even if you got confused
by the details of part a.

11.2. Consider the forced transverse oscillations of the two-dimensional beaded string
shown in figuré 11.60. All the strings have tensigrll the solid circles are beads with mass

m. The frame is held fixed in the= 0 plane. The open circles are moved up and down out
of the plane of the paper with the same transverse displacement,

21(t) = 22(t) = 23(t) = dcoswt

where
T
w=24—".
ma
Find the displacement for each of the beads. You can do this by solving for the displacement,

z;(t), of the bead whose horizontal position is



PROBLEMS 319

y=1L —
® ® ® ® o j=3
] ® ® ® o0 j=2
® ° ° ® o j=1
y=0 —
x‘:0 x:‘L

Figure 11.60: A two-dimensional beaded string.

for all relevantj andk. All displacements will be proportional tbcos wt, SO write your
answer in the form of a table of the coefficientd abs wt for each jandk:

k
J 1 2 3 4
1 2 92 2 9
2 2 92 2 9
3 2 97 2 9
11.3. Consider the forced transverse oscillations of the semi-infinite two-dimensional

beaded string shown in figure 11.64ll the strings have tensidh, all the solid circles are
beads with mass:. The equilibrium separations of the blocks arerallhe frame ay = 0
andy = 4a is held fixed in thee = 0 plane. The open circles at= 0 are moved up and
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y =4a —
G L 4 @ L 4 L 4
G L 4 L L 4 4
G L 4 @ L 4 L 4
y=0 —
x‘:O :E:‘4CL

Figure 11.61: A semi-infinite two-dimensional beaded string.

down out of the plane of the paper with transverse displacement,

d
z1(t) = z3(t) = —=coswt, z2(t) = —dcoswt,

V2
for the values ofv given below. For each find the displacement for each of the beads as

a function of its equilibrium position. That is, determipgr, y,t). Assume that the entire
system is oscillating with frequencyand that the displacement is well-behaved at +oc.

a. Findy(x,y,t) for
W24 VE )
am

In botha andb, assume thatis a small real number, small enough so that you can approxi-
mate

~
~

sinh

N
N

b. Findy(x,y,t) for
w? = £(6+\/§+62).
am
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11.4. A flexible membrane with surface tensieg and surface mass densijty is
stretched so that its equilibrium position is the- 0 plane. Attached to the surface of the
membrane at = 0 is a string with tension;, and linear mass densip;,. Consider a
traveling wave on the membrane with transverse displacement

’(/J(.T, y,t) — ,(/}_ (x,y,t) —_ Aefithrikszrikyy + RAefiwtfikszrikyy

forz <0, and o |
b(x,y,t) = Py (z,y,1) = T Ae~witikeatiky

forxz > 0.

In what direction is the reflected wave (fok 0) traveling?Easy!

Newton’s law for a small element of the string of lengthwith equilibrium position
(0,,0)is

2

0 0 0
Ts dy %1%(0, Y, t) - %1#— (07 Y, t) + 7L dy Tygq/}:t(ov Y, t)

62
= prdy @wi(& y,t).

Explain the physical significance of the term above, proportiong).t&What is pulling on
what? Why does it have the form shown above?

11.5. Consider the transverse oscillations of an infinite flexible membrane stretched in
the z = 0 plane with surface tensidf, and surface mass densiB;. Along thez = 0,
x = 0 line, a string with linear mass densify, but no tension of its own is attached to the
membrane.

Consider a wave of the form:

Aei(kxcos@+kysin97wt) + RAei(szcose+kysin97wt) forr <0

TAei(k:’J: cos 0’ +k'y sin 0’ —wt) forz >0

wherecos § > 0 and cost’ > 0.

Findsin & in terms ofsin 6 (TRIVIAL!).

FindR and T

Hint: ConsiderF’ = ma for an infinitesimal piece of the weighted string, remembering
that it has no tension of its own.

11.6. Two semi-infinite flexible membranes are stretched inzthe0 plane. The first
has surface tension 1 dyne/cm and mass density 169°gritns fixed along the: = 0,
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y = 0 axis and thee = 0, y = a axis and extends from = 0 to co in the 4z direction.
The second has the same surface tension but mass density 180 frisralso fixed along
thez = 0, y = 0 axis and the = 0, y = a axis and extends from = 0 to —co in the—z
direction. The two membranes are joined together with massless tapeatConsider the
transverse oscillations of this system of the following form:

w(xvy’t) — Asin(kyy)(e—i(wt—kxac) + Re—i(wt—&-kwx)) for z < 0
w(xvyvt) = ASln(kyy)T e*i(wtfk;m) forz >0

wherek, = 12r cm ! andw = 7 s L.
Find k, andk.,.

Find R and T!
fixed rod
y=a
elastic membrane
y=0
z=0 fixed rod

Figure 11.62: A forced oscillation problem in an elastic membrane.

11.7. A uniform membrane is stretched in the= 0 plane, as shown in figure 11.62. It
is attached to fixed rods alogg= 0, z = 0 andy = a, z = 0 from z = 0 to co. ¥(z,y,t)

is thez displacement of the point on the membrane with equilibrium podition 0). For
small oscillationsy) satisfies the two-dimensional wave equation,

»? 5?
2 - - —_
0 <8x2 " 6y2> Y=

If this system is extended to an infinite system by continuing it to negatsteow that
the normal modes of the infinite system take the form:

Y(z,y) = Asin(nkgy) e .
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Find ky. Suppose that the end of the membrane-=ato is driven as follows:
¥(0,y,t) = cos(bvkot)[B sin(3koy) + C sin(13koy)]

The boundary condition ab is such that there is no wave traveling in thedirection
along the membrane. Fintx, y, t).

Explain the following statement: Far < 2vkg, the system acts like a one-dimensional
wave carrier with the dispersion relatioh = v?k? + wg. What iswy?

11.8. Consider a rigid spherical shell of inner radiusiled with gas in which the speed

of sound isv. In this sphere there astanding wavenormal modes of many kinds. We will
be interested in those in which the pressure depends only on the digtdrare, the center

of the sphere. Suppose thdt”, t) = x(r, t) is the difference between the pressure of the gas
in such a mode and the equilibrium pressure. We know from (11HaA3)r, ¢t) = r x(r, t)
satisfies the one-dimensional wave equation:

2

0 0?
@f(ra t) = UQ ﬁg(ht) :

Explain the physics of the boundary conditiom at 0.

In terms of an unknown wave numblerfind a form fory (r, ¢) that satisfies the boundary
condition atr =0 .

Explain the physics of the boundary conditiom at L.

Write down the mathematical statement of the boundary conditios dt, the solutions
of which give the allowed values bffor the normal modes.

Hints:. Remember that it ig and not¢ that is the physical pressure difference. The
lowest nontrivial mode has/avalue which satisfieg . ~ 4.4934. The amplitude of the
pressure oscillations in this mode as a functionisfshown in the graph in figufel.63.

r=20 r=1L

Figure 11.63: Amplitude of pressure oscillation vensus

11.9. Consider a boundary between two semi-infinite membranes stretchedriy the
plane. The membrane far < 0 has surface tension and surface mass densjty. The
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membrane forr > 0 has the same surface tensiarbut a different surface mass density
p.. Along the boundary there is a device (I don’t know exactly how it works) that produces
a vertical frictional force, proportional to minus the vertical velocity of the membrane at the
boundary. In other words, if(z, y, t) is thez displacement of the membrane as a function
of (z,y), then the force (in thedirection) on a small chunk of the boundary stretching from
the point(0, y) to (0, y + dy) is

0
dF' = —dy~y (0, y,1).
Y atw( ,Yst)
On the membrane there is a plane wave of the form shown below, with displacement:
w(xﬂ Y, t) - Aei(kaOS 0+ky sin 97(_01‘,)

w(l’ y t) — 421(1€,$C()bel+k/ysin 0/ )

for x > 0. The setup is shown in figutd..64.The dispersion relation far < 0 is

Te —.
W= 252,
Ps

Find &'
Find ¢’
Find~. You should findy — 0 for p; — p’.. Explain why.

11.1003 11-4 Instead of an open ocean, consider a system with a bottgra-a0
and a fixed top ay = 2L, half full of water and half full of paint-thinner, another nearly
incompressible fluid which is lighter than water and floats in the top half without mixing with
the water.

Show that waves in this system have the form of (11.ft22) < L (in the water) and

Vo, y,t) = FieF =4 cosh[k(2L — y)],

o (11.175)
by(w,y,t) = R sinh[k(2L - y)],
for L < y < 2L (in the paint-thinner), by arguing th¢tl.175)and (11.122)satisfy the
appropriate boundary conditionssat= 0 andy = 2L and (for small displacements) at
y = L, and show thgfl1.175)Jike (11.125),s consistent with incompressibilitﬁ(-zﬂ = 0).

Show thaty,. is discontinuous af = L and explain physically what is happening at this
boundary and why. When you have done this, take a look at program 11-4, in which this
system is animated. If you look carefully, you will notice the effect of the breakdown of
linearity for large displacements.
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6/

ky K,

z=0
Figure 11.64: Scattering from a boundary in an elastic membrane.

Now suppose that the liquids are contained within vertical walls=ab and z= X.

What boundary conditions are satisfied at the vertical boundarie$, andx = X?

Find the form of the displacements for the normal modes in this system. You may want
to check that they satisfy - 1/ = 0.

Show that the dispersion relation for this system is

_ k3
w2 = PW — pPp gk + TS
pPW + pp pPw + pp

tanh kL (11.176)

wherepp is the density of the paint-thinngry is the density of the water, and is the
surface tension of the boundary between the water and the paint-thiimer.You use an
energy argument analogous(id.127)-(11.13), and just discuss how the various contribu-
tions change when you go from (11.187)11.176).
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11.11 Consider the reflection of sound waves from a massless, infinitely flexible mem-
brane that separates two gases with the same equilibrium pregsbrg,different densities.

The membrane is in the= 0 plane. The gas in region 1, fer< 0 has equilibrium density

p1, ratio of specific heat at constant pressure to specific heat at constantyglantgsound
speed\/~1po/p1 While the gas in region 2, far > 0 has density,, specific heat ratig,

and sound speeg~,po/p2. A pressure wave in the system has the following form:

P(r,t)/6p = AeiFr =it 4 R Acikri—iwt

in region 1, forx < 0, and )
P(r,t)/0p = T Aeik2m—iwt

in region 2, forx > 0, whereP(r,t) + po is the pressure of the gas whose equilibrium
position isi”. The small pressurép, describes the amplitude of the pressure wavendT
are the reflection and transmission coefficients.
The kvectors are
k1 = (k cosf,k sin#,0)

ER = (*k‘R COS QR, k:R sin@R,O)
EQ = (k’Q COS 92, kz sin 92,0)

wherek, kg, ko, cosf, cosfg, and cod), are all positive.

Find kr andcos 0 in terms ofk and @

Find k2 andcos 65 in terms ofk andé.

Show that ifp; /v1 > p2/72, there is a critical value éfabove which the wave is totally
reflected, and find the critical angle.

To find R andT’, we need the boundary conditionsgat 0. One condition follows from
the fact that the membrane is massless and infinitely flexible. That implies that there can be
no force on it transverse to its surface.

Find this boundary conditiotdint: Where does the force transverse to the surface come
from?

The other condition involves the transverse displacement of the membrane. The displace-
ment can be obtained from the pressure:

-

W(r,t) = ﬁP(r, t),

pjw?

Whereqﬁ(r, t) is the displacement of the gas whose equilibrium positionaisd j is the
region label.
Thus

1;(7*, 1)/op = 7 . (E1 eiﬁl-ﬂiwt i RER ez’%-ﬂ@t)
1w
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in region 1, forx < 0, and

iA TEQ eiEz-’F—iwt

Y(r,t)/6p =

paw?

in region 2, forz > 0.
Find the other boundary conditiodint: Assume that the amplitude is small.
Find Rand T.

11.12 Consider a universe filled with material that has a honzero conductivitjhat
is, in this material, there is a current proportional to the electric field (Ohm’s law),

J(7t) = o E(7,t). (11.177)

We will assume that the material has no other electrical properties, in particular that there
is no polarization or magnetization, and that no charge builds up anywhere, go=that
Consider the propagation of a plane electromagnetic wave in this universe. Because this
universe is perfectly space translation invariant and rotation invariant, and because (11.177)
is linear, we would expect that there will be plane wave solutions in which the electric and

magnetic fields are proportional to
ei(E-F—wt)

for k2 andw related by some dispersion relation. In particular, consider propagationtia the
direction with the electric field in thedirection and the magnetic field in thelirections:

E. (7 t) = Bk B (7 t) = E,(7,t) =0

By(7,t) = Be'k>=«) ' B (7,t) = B,(F,t) = 0.

a. Show from the relevant Maxwell's equations,

9 o . 0B,
A e T

0 0 0E,
@Bz - %By = Hoco—p,~ + podz

t
that such a plane wave can exist if

k? = uoeouﬂ + ipgow .
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\i/
HQH
/T\

—

Figure 11.65: A spherical sound damper.

b. Assume thab is real and positive and that the real part &f positive. Find the sign
of the imaginary part of, and interpret your result physically. That is, explain why the sign
had to come out the way it did.

11.13 Consider a spherical sound wave coming in from far away and being completely
absorbed by a spherical sound damper at a radigs?, as shown in figure 11.65The
pressure in is this system is described by the real part of the complex traveling wave below,
depending only on the radius and time:

p(?“ t) —py = E e—i(kr-‘rwt)
’ r
where
W2 = JP0 2
p

with pg, the equilibrium pressure apdhe equilibrium mass density of the gas. The typical
displacement of the air from its equilibrium position in this wave is in the radial direction,

1 Op
/I;Z}T(Ta t) = W& .
a. Find the time-averaged power absorbed by the spherical damper/at

b. Explain (qualitatively) the factor df/r in the pressure.

Now suppose that there is a massless, flexible spherical boundary between two different
gases at radius = r,, shown as the dashed circle in the diagram in figure 11T6@.
equilibrium pressurey, is the same on both sides of the boundary. Also, assume ithat
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|
0 7/ Ty

Figure 11.66: A spherical sound damper with a reflecting boundary.

the same for both gases and that the only difference is the densities. Inside the density is
and outside the density 6 Now for/ < r < rp, the pressure is still given as above, but in
the region outside the dashed circle, there is a reflected wave as well as the incoming wave,

p(r,t) —po = é e~ ik r+wt) + E Gilk'r—wt)
r r
where 2
w? = % i
C. What are the boundary conditionsrat 7, and why?

d. Find B/A and ¢/Ain the limit,

1
koK > —
b

in which you can drop terms proportionallto, compared td: or £’

11.14 One of the problems with glass lenses is that the index of refraction of glass
depends on frequency. Thus, according to the lens maker’s formula, the focal length of a
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glass lens will depend of frequency, and that is not good, because if one color is focused
sharply, the others will be fuzzy. This is called “chromatic aberration.” Fortunately, different
kinds of glass have different behavior in this respect, and this makes it possible to eliminate
chromatic aberration. Suppose that you make a lens that looks like this by gluing together
lenses made of two different types of glass.

glass 1 glass 2
/ Q\
radiusr; radiusrs

Suppose that the indices of refraction of the two glasses are
n1(A) = nd + al, na(X) = nJ + az ). (11.178)

What relation must be satisfied if the compound lens is to have a focal length that is indepen-
dent ofA?

11.15 You can also make a telescope with one converging lens (the objective) and one
diverging lens (the eyepiece).

objective eyepiece

M
—

The focal length of the convex lensfisand the focal length of the concave lens 5.

a. If the ray tracing works as shown, that is that parallel rays entering the objective
are focused down to parallel rays leaving the eyepiece, find the distabetyeen the two
lenses.
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b. Compute the magnification by assuming that you are looking at a distance object
which subtends an angular si2e Then consider a ray at andglghat passes through the
center of the convex lens. By calculating where it passes through the concave lens, you should
be able to determine its angtg, when it reaches the observers eye. The magnification is
then €/6. What is it in terms of the focal lengths?

C. The image in this case is right-side-up. Draw a careful diagram to explain why.

11.16 The appearance of the rainbows depends dramatically on the index of refraction
of water. Describe in detail what the rainbows look like vfere decreased tiy03 for each
frequency of light? Discuss the first and second rainbows and Alexander’s dark band.



MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics lll: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





