
Chapter 10 

Signals and Fourier Analysis 

Traveling waves with a definite frequency carry energy but no information. They are just 
there, always have been and always will be. To send information, we must send a nonhar-
monic signal. 

Preview 

In this chapter, we will see how this works in the context of a forced oscillation problem. In 
the process, we will find a subtlety in the notion of the speed with which a traveling wave 
moves. The phase velocity may not be the same as the velocity of signal propagation. 

i. We begin by studying the propagation of a transverse pulse on a stretched string. We 
solve the problem in two ways: with a trick that works in this special case; and with 
the more powerful technique of Fourier transformation. We introduce the concept of 
“group velocity,” the speed at which signals can actually be sent in a real system. 

ii. We discuss, by example and then in general, the counterpoint between a function and 
its Fourier transform. We make the connection to the physical concepts of bandwidth 
and fidelity in signal transmission and to Heisenberg’s uncertainty relation in quantum 
mechanics. 

iii. We work out in some detail an example of the scattering of a wave packet. 

iv. We discuss the dispersion relation for electromagnetic waves in more detail and explore 
the question of whether light actually travels at the speed of light! 
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10.1 Signals in Forced Oscillation 

10.1.1 A Pulse on a String 

.............................
...............................................................................
........
................................................................................................................................................. ... .. 10-1 

We begin with the following illustrative problem: the transverse oscillations of a semiinfinite 
string stretched from x = 0 to ∞, driven at x = 0 with some arbitrary transverse signal f(t), 
and with a boundary condition at infinity that there are no incoming traveling waves. This 
simple system is shown in figure 10.1. 

-

6 · · · 
? 

Figure 10.1: A semiinfinite string. 

There is a slick way to get the answer to this problem that works only for a system with 
the simple dispersion relation, 

ω2 = v 2 k2 . (10.1) 

The trick is to note that the dispersion relation, (10.1), implies that the system satisfies the 
wave equation, (6.4), or 

∂2 ∂2 
2ψ(x, t) = v ψ(x, t) . (10.2)

∂t2 ∂x2 

It is a mathematical fact (we will discuss the physics of it below) that the general solution to 
the one-dimensional wave equation, (10.2), is a sum of right-moving and left-moving waves 
with arbitrary shapes, 

ψ(x, t) = g(x − vt) + h(x + vt) , (10.3) 

where g and h are arbitrary functions. You can check, using the chain rule, that (10.3) satisfies 
(10.2), 

∂2 ∂2 
2(g(x − vt) + h(x + vt)) = v (g(x − vt) + h(x + vt))

∂t2 ∂x2 
(10.4) 

= v 2 (g 00(x − vt) + h00(x + vt)) . 

Given this mathematical fact, we can find the functions g and h that solve our particular 
problem by imposing boundary conditions. The boundary condition at infinity implies 

h = 0 , (10.5) 
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because the h function describes a wave moving in the −x direction. The boundary condition 
at x = 0 implies 

g(−vt) = f(t) , (10.6) 

which gives 
ψ(x, t) = f(t − x/v) . (10.7) 

This describes the signal, f(t), propagating down the string at the phase velocity v with no 
change in shape. 

For the simple function 
⎧
⎪ 1 − |t| for |t| ≤ 1⎨

f(t) = (10.8) ⎪ 0 for |t| > 1⎩ 

the shape of the string at a sequence of times is shown in figure 10.2 and animated in pro-
gram 10-1. 
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Figure 10.2: A triangular pulse propagating on a stretched string. 

10.1.2 Fourier integrals 

Let us think about this problem in a more physical way. In the process, we will understand 
the physics of the general solution, (10.3). This may seem like a strange thing to say in 
a section entitled, “Fourier integrals.” Nevertheless, we will see that the mathematics of 
Fourier integrals has a direct and simple physical interpretation. 

The idea is to use linearity in a clever way to solve this problem. We can take f(t) apart 
into its component angular frequencies. We already know how to solve the forced oscillation 
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problem for each angular frequency. We can then take the individual solutions and add them 
back up again to reconstruct the solution to the full problem. The advantage of this procedure 
is that it works for any dispersion relation, not just for (10.1). 

Because there may be a continuous distribution of frequencies in an arbitrary signal, we 
cannot just write f(t) as a sum over components, we need a Fourier integral, 

Z ∞ −iωt f(t) = dω C(ω) e . (10.9) 
−∞ 

The physics of (10.9) is just linearity and time translation invariance. We know that we can 
choose the normal modes of the free system to have irreducible exponential time dependence, 
because of time translation invariance. Since the normal modes describe all the possible 
motions of the system, we know that by taking a suitable linear combination of normal modes, 
we can find a solution in which the motion of the end of the system is described by the 
function, f(t). The only subtlety in (10.9) is that we have assumed that the values of ω that 
appear in the integral are all real. This is appropriate because a nonzero imaginary part for 
ω in e−iωt describes a function that goes exponentially to infinity as t → ±∞. Physically, 
we are never interested in such things. In fact, we are really interested in functions that go to 
zero as t → ±∞. These are well-described by the integral over real ω, (10.9). 

Note that if f(t) is real in (10.9), then 
Z ∞ −iωt f(t) = dω C(ω) e 
−∞ (10.10)Z ∞ Z ∞ 

iωt −iωt = f(t)∗ = dω C(ω)∗ e = dω C(−ω)∗ e 
−∞ −∞ 

thus 
C(−ω)∗ = C(ω) . (10.11) 

It is actually easier to work with the complex Fourier integral, (10.9), with the irreducible 
complex exponential time dependence, than with real expansions in terms of cos ωt and 
sin ωt. But you may also see the real forms in other books. You can always translate from 
(10.9) by using the Euler identity 

iθ e = cos θ + i sin θ . (10.12) 

For each value of ω, we can write down the solution to the forced oscillation problem, 
incorporating the boundary condition at ∞. Each frequency component of the force produces 
a wave traveling in the +x direction. 

−iωt → e −iωt+ikx e , (10.13) 

then we can use linearity to construct the solution by adding up the individual traveling waves 
from (10.13) with the coefficients C(ω) from (10.9). Thus 

Z ∞ −iωt+ikx ψ(x, t) = dω C(ω) e . (10.14) 
−∞ 
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where ω and k are related by the dispersion relation. 
Equation (10.14) is true quite generally for any one-dimensional system, for any dis-

persion relation, but the result is particularly simple for a nondispersive system such as the 
continuous string with a dispersion relation of the form (10.1). We can use (10.1) in (10.14) 
by replacing 

k → ω/v . (10.15) 

Note that while k2 is determined by the dispersion relation, the sign of k, for a given ω, is 
determined by the boundary condition at infinity. k and ω must have the same sign, as in 
(10.15), to describe a wave traveling in the +x direction. Putting (10.15) into (10.14) gives 

Z ∞ Z ∞ −iωt+iωx/v −iω(t−x/v)ψ(x, t) = dω C(ω) e = dω C(ω) e . (10.16) 
−∞ −∞ 

Comparing this with (10.9) gives (10.7). 
Let us try to understand what is happening in words. The Fourier integral, (10.9), ex-

presses the signal as a linear combination of harmonic traveling waves. The relation, (10.15), 
which follows from the dispersion relation, (10.1), and the boundary condition at ∞, implies 
that each of the infinite harmonic traveling waves moves at the same phase velocity. There-
fore, the waves stay in exactly the same relationship to one another as they move, and the 
signal is never distorted. It just moves with the waves. 

The nonharmonic signal is called a “wave packet.” As we have seen, it can be taken apart 
into harmonic waves, by means of the Fourier integral, (10.9). 

10.2 Dispersive Media and Group Velocity 

For any other dispersion relation, the signal changes shape as it propagates, because the 
various harmonic components travel at different velocities. Eventually, the various pieces of 
the signal get out of phase and the signal is dispersed. That is why such a medium is called 
“dispersive.” This is the origin of the name “dispersion relation.” 

10.2.1 Group Velocity 

.............................
...............................................................................
........
............................................................................................................................................ 10-2..... ... .. 

If you are clever, you can send signals in a dispersive medium. The trick is to send the signal 
not directly as the function, f(t), but as a modulation of a harmonic signal, of the form 

f(t) = fs(t) cos ω0t , (10.17) 

where fs(t) is the signal. Very often, you want to do this anyway, because the important 
frequencies in your signal may not match the frequencies of the waves with which you want 
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to send the signal. An example is AM radio transmission, in which the signal is derived from 
sound with a typical frequency of a few hundred cycles per second (Hz), but it is carried as 
a modulation of the amplitude of an electromagnetic radio wave, with a frequency of a few 
million cycles per second.1 

You can get a sense of what is going to happen in this case by considering the sum of two 
traveling waves with different frequencies and wave numbers, 

cos(k+x − ω+t) + cos(k−x − ω−t) (10.18) 

where 
k± = k0 ± ks , ω± = ω0 ± ωs , (10.19) 

for 
ks ¿ k0 , ωs ¿ ω0 . (10.20) 

The sum can be written as a product of cosines, as 

2 cos(ksx − ωst) · cos(k0x − ω0t) . (10.21) 

Because of (10.20), the first factor varies slowly in x and t compared to the second. The result 
can be thought of as a harmonic wave with frequency ω0 with a slowly varying amplitude 
proportional to the first factor. The space dependence of (10.21) is shown in figure 10.3. 
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Figure 10.3: The function (10.21) for t = 0 and k0/ks = 10. 

You should think of the first factor in (10.21) as the signal. The second factor is called the 
“carrier wave.” Then (10.21) describes a signal that moves with velocity 

ωs ω+ − ω− 
vs = = , (10.22)

ks k+ − k− 

while the smaller waves associated with the second factor move with velocity 

ω0 
v0 = . (10.23)

k0 

1See (10.71), below. 
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These two velocities will not be the same, in general. If (10.20) is satisfied, then (as we will 
show in more detail below) v0 will be roughly the phase velocity. In the limit, as k+ − k− = 
2ks becomes very small, (10.22) becomes a derivative 

ω+ − ω− ∂ω 
vs = → . (10.24)

k+ − k− ∂k 

¯̄
¯̄
k=k0 

This is called the “group velocity.” It measures the speed at which the signal can actually be 
sent. 

The time dependence of (10.21) is animated in program 10-2. Note the way that the 
carrier waves move through the signal. In this animation, the group velocity is smaller than 
the phase velocity, so the carrier waves appear at the back of each pulse of the signal and 
move through to the front. 

Let us see how this works in general for interesting signals, f(t). Suppose that for some 
range of frequencies near some frequency ω0, the dispersion relation is slowly varying. Then 
we can take it to be approximately linear by expanding ω(k) in a Taylor series about k0 and 
keeping only the first two terms. That is 

ω = ω(k) = ω0 + (k − k0) 
∂ω 

+ · · · , (10.25)
∂k 

¯̄
¯̄
k=k0 

ω0 ≡ ω(k0) , (10.26) 

and the higher order terms are negligible for a range of frequencies 

ω0 − ¢ω < ω < ω0 + ¢ω . (10.27) 

where ¢ω is a constant that depends on ω0 and the details on the higher order terms. Then 
you can send a signal of the form 

−iω0tf(t) · e (10.28) 

(a complex form of (10.17), above) where f(t) satisfies (10.9) with 

C(ω) ≈ 0 for |ω − ω0| > ¢ω . (10.29) 

This describes a signal that has a carrier wave with frequency ω0, modulated by the interesting 
−iω0tpart of the signal, f(t), that acts like a time-varying amplitude for the carrier wave, e . 

The strategy of sending a signal as a varying amplitude on a carrier wave is called amplitude 
modulation. 

Usually, the higher order terms in (10.25) are negligible only if ¢ω ¿ ω0. If we neglect 
them, we can write (10.25) as 

ω = vk + a , k = ω/v + b , (10.30) 
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where a and b are constants we can determine from (10.25), 

a = ω0 − vk0 , b = k0 − ω0/v (10.31) 

and v is the group velocity 
∂ω 

v = . (10.32)
∂k 

¯̄
¯̄
k=k0 

For the signal (10.28) 
Z ∞ Z ∞ −i(ω+ω0)t −iωt ψ(0, t) = dω C(ω) e = dω C(ω − ω0) e . (10.33) 
−∞ −∞ 

Thus (10.14) becomes 
Z ∞ −iωt ikx ψ(x, t) = dω C(ω − ω0) e e , (10.34) 
−∞ 

but then (10.29) gives 
Z ∞ −iωt+i(ω/v+b)xψ(x, t) = dω C(ω − ω0) e 
−∞Z ∞ −iω(t−x/v)+ibx= dω C(ω − ω0) e 

−∞ (10.35)Z ∞ −i(ω+ω0)(t−x/v)+ibx= dω C(ω) e 
−∞ 

−iω0(t−x/v)+ibx= f(t − x/v) e . 

The modulation f(t) travels without change of shape at the group velocity v given by (10.32), 
as long as we can ignore the higher order term in the dispersion relation. The phase velocity 

ω 
vφ = , (10.36)

k 

has nothing to do with the transmission of information, but notice that because of the extra 
eibx in (10.35), the carrier wave travels at the phase velocity. 

You can see the difference between phase velocity and group velocity in your pool or 
bathtub by making a wave packet consisting of several shorter waves. 

10.3 Bandwidth, Fidelity, and Uncertainty 

The relation (10.9) can be inverted to give C(ω) in terms of f(t) as follows 

1 
Z ∞ 

iωt C(ω) = dt f(t) e . (10.37)
2π −∞ 
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This is the “inverse Fourier transform.” It is very important because it allows us to go back 
and forth between the signal and the distribution of frequencies that it contains. We will get 
this result in two ways: first, with a fancy argument that we will use again and explain in 
more detail in chapter 13; next, by going back to the Fourier series, discussed in chapter 6 for 
waves on a finite string, and taking the limit as the length of the string goes to infinity. 

The fancy argument goes like this. It is very reasonable that the integral in (10.37) is 
proportional to C(ω) because if we insert (10.9) and rearrange the order of integration, we 
get 

1 
Z ∞ Z ∞ 

dω0 C(ω0) dt ei(ω−ω0)t . (10.38)
2π −∞ −∞ 

The t integral averages to zero unless ω = ω0. Thus the ω0 integral is simply proportional to 
C(ω) times a constant factor. The factor of 1/2π can be obtained by doing some integrals 
explicitly. For example, if 

−¡|t|f(t) = e , (10.39) 

for ¡ > 0 then, as we will show explicitly in (10.49)-(10.56), (10.37) yields 

2πC(ω) = 2¡/(¡2 + ω2) , (10.40) 

which can, in turn, be put back in (10.9) to give (10.39). For t = 0, the integral can be done 
by the trigonometric substitution ω → ¡ tan θ: 

Z ∞ −¡·0 −iω·01 = f(0) = e = dω C(ω) e 
−∞ Z π/2 (10.41)1 

Z ∞ ¡ 1 
= dω → dθ = 1 . 

¡2 + ω2π −∞ π −π/2 

To get the inverse Fourier transform, (10.37), as the limit of a Fourier series, it is con-
venient to use a slightly different boundary condition from those we discussed in chapter 6, 
fixed ends and free ends. Instead, let us consider a string stretched from x = −π` to x = π`, 
in which we assume that the displacement of the string from equilibrium at x = π` is the 
same as the displacement at x = −π`,2 

ψ(−π`, t) = ψ(π`, t) . (10.42) 

The requirement, (10.42), is called “periodic boundary conditions,” because it implies that 
the function ψ that describes the displacement of the string is periodic in x with period 2π`. 
The normal modes of the infinite system that satisfy (10.42) are 

inx/`e , (10.43) 

2A example of a physical system with this kind of boundary condition would be a string stretched around 
a frictionless cylinder with radius ` and (therefore) circumference 2π`. Then (10.42) would be true because 
x = −π` describes the same point on the string as x = π`. 
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for integer n, because changing x by 2π` in (10.43) just changes the phase of the exponential 
by 2π. Thus if ψ(x) is an arbitrary function satisfying ψ(−π`) = ψ(π`), we should be able 
to expand it in the normal modes of (10.43), 

∞X −inx/`ψ(x) = (10.44)cn e . 
n=−∞ 

Likewise, for a function f(t), satisfying f(−πT ) = f(πT ) for some large time T , we 
expect to be able to expand it as follows 

∞X −int/Tf(t) = (10.45)cn e , 
n=−∞ 

where we have changed the sign in the exponential to agree with (10.9). We will show that 
as T →∞, this becomes equivalent to (10.9). 

Equation (10.44) is the analog of (6.8) for the boundary condition, (10.42). The sum runs 
from −∞ to ∞ rather than 0 to ∞ because the modes in (10.43) are different for n and −n. 
For this Fourier series, the inverse is 

Z πT 1 
dt eimt/T f(t)cm = (10.46)

2πT −πT 

where we have used the identity 

dt eimt/T −int/Te = 

⎧
⎪

⎩
⎨
⎪

1 for m = n , 

0 for m 6= n . 
(10.47)

Z πT 1 
2πT −πT 

Now suppose that f(t) goes to 0 for large |t| (note that this is consistent with the periodic 
boundary condition (10.42)) fast enough so that the integral in (10.46) is well defined as 
T → ∞ for all m. Then because of the factor of 1/T in (10.47), the cn all go to zero like 
1/T . Thus we should multiply cn by T to get something finite in the limit. Comparing 
(10.45) with (10.9), we see that we should take ω to be n/T . 

Thus the relation, (10.45), is an analog of the Fourier integral, (10.9) where the corre-
spondence is 

T → ∞ 

n → ω (10.48) 
T 

cnT → C(ω) . 

In the limit, T →∞, the sum becomes an integral over ω. 
Multiplying both sides of (10.46) by T , and making the substitution of (10.48) gives 

(10.37). 
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10.3.1 A Solvable Example 

For practice in dealing with integration of complex functions, we will do the integration that 
leads to (10.40) in gory detail, with all the steps. 

1 
Z ∞ 

iωt C(ω) = dt e−¡|t| e . (10.49)
2π −∞ 

First we get rid of the absolute value — 

1 
Z ∞ 

iωt +
1 

Z 0 
iωt = dt e−¡t e dt e¡t e (10.50)

2π 0 2π −∞ 

and write the second integral as an integral from 0 to ∞ — 

1 
Z ∞ 

iωt +
1 

Z ∞ −iωt = dt e−¡t e dt e−¡t e (10.51)
2π 0 2π 0 

1 
Z ∞ 

= dt e−¡t e iωt + complex conjugate, (10.52)
2π 0 

but we know how to differentiate even complex exponentials (see the discussion of (3.108)), 
so we can write 

∂ −¡t −¡t iωt 
³ 
e e iωt ́

 
= (−¡ + iω) e e . (10.53)

∂t 
Thus Z ∞ Z ∞ ∂iωt 1 −¡t iωt ́

 
dt e−¡t e = dt 

³ 
e e (10.54) 

0 −¡ + iω 0 ∂t 
or, using the fundamental theorem of integral calculus, 

1 ∞ 1 
= 

³ 
e −¡t e iωt ́

¯̄
¯ = . (10.55)−¡ + iω t=0 ¡ − iω 

This function of ω is called a “pole.” While the function is perfectly well behaved for real ω, 
it blows up for ω = −i¡, which is called the position of the pole in the complex plane. Now 
we just have to add the complex conjugate to get 

1 
µ 

1 1 
¶

C(ω) = +
2π ¡ − iω ¡ + iω (10.56)1 

µ 
¡ + iω ¡ − iω 

¶ 
1 2¡

= + = 
2π ¡2 + ω2 ¡2 + ω2 2π ¡2 + ω2 

which is (10.40). We already checked, in (10.41), that the factor of 1/2π makes sense. 
The pair (10.39)-(10.40) illustrates a very general fact about signals and their associated 

frequency spectra. In figure 10.4 we plot f(t) for ¡ = 0.5 and ¡ = 2 and in figure 10.5, 
we plot C(ω) for the same values of ¡. Notice that as ¡ increases, the signal becomes 
more sharply peaked near t = 0 but the frequency spectrum spreads out. And conversely if 
¡ is small so that C(ω) is sharply peaked near ω = 0, then f(t) is spread out in time. This 
complementary behavior is general. To resolve short times, you need a broad spectrum of 
frequencies. 



236 CHAPTER 10. SIGNALS AND FOURIER ANALYSIS 

−2 −1 0 1 2 
0 

1 

¡ = 2 

¡ = .5 

.................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................ 

................................................................................................................................................................................................................................................................................................................................................................................................................ 

Figure 10.4: f(t) = e−|¡t| for ¡ = 0.5 and ¡ = 2. 
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Figure 10.5: C(ω) for the same values of ¡. 

10.3.2 Broad Generalities 

We can state this fact very generally using a precise mathematical definition of the spread of 
the signal in time and the spread of the spectrum in frequency. 

We will define the intensity of the signal to be proportional to |f(t)|2 . Then, we can 
define the average value of any function g(t) weighted with the signal’s intensity as follows 

R ∞ dt g(t) |f(t)|2 
−∞hg(t)i = . (10.57)R ∞ dt |f(t)|2 −∞ 

This weights g(t) most when the signal is most intense. 
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For example, hti is the average time, that is the time value around which the signal is 
most intense. Then 

2
D
[t − hti]2

E 
≡ ¢t (10.58) 

measures the mean-square deviation from the average time, so it is a measure of the spread 
of the signal. 

We can define the average value of a function of ω in an analogous way by integrating 
over the intensity of the frequency spectrum. But here is the trick. Because of (10.9) and 
(10.37), we can go back and forth between f(t) and C(ω) at will. They carry the same 
information. We ought to be able to calculate averages of functions of ω by using an integral 
over t. And sure enough, we can. Consider the integral 

Z ∞ ∂ 
Z ∞ ∂−iωt −iωt dω ω C(ω) e = i dω C(ω) e = i f(t) . (10.59) 

−∞ ∂t −∞ ∂t 

This shows that multiplying C(ω) by ω is equivalent to differentiating the corresponding f(t) 
and multiplying by i. 

Thus we can calculate hωi as 
R ∞ dt f(t)∗ i ∂ f(t)−∞ ∂t hωi = , (10.60)R ∞ dt |f(t)|2 −∞ 

and 
2R ∞ dt 

³ 
i ∂ − hωi 

´ 
f(t) 

¯̄
¯−∞ 

¯̄
¯ ∂t ¢ω2 ≡ 

D
[ω − hωi]2

E 
= . (10.61)R ∞ dt |f(t)|2 −∞ 

¢ω is a measure of the spread of the frequency spectrum, or the “bandwidth.” 
Now we can state and prove the following result: 

1 
¢t · ¢ω ≥ . (10.62)

2 
One important consequence of this theorem is that for a given bandwidth, ¢ω, the spread in 
time of the signal cannot be arbitrarily small, but is bounded by 

1 
¢t ≥ . (10.63)

2¢ω 
The smaller the minimum possible value of ¢t you can send, the higher the “fidelity” you 
can achieve. Smaller ¢t means that you can send signals with sharper details. But (10.63) 
means that the smaller the bandwidth, the larger the minimum ¢t, and the lower the fidelity. 

To prove (10.62) consider the function3 

µ
[t − hti] − iκ 

· 

i
∂ − hωi

¸¶ 

f(t) = r(t) , (10.64)
∂t 

3This is a trick borrowed from a similar analysis that leads to the Heisenberg uncertainty principle in quantum 
mechanics. Don’t worry if it is not obvious to you where it comes from. The important thing is the result. 
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which depends on the entirely free parameter κ. Now look at the ratio 
R ∞ dt |r(t)|2 
−∞ . (10.65)R ∞ dt |f(t)|2 −∞ 

This ratio is obviously positive, because the integrands of both the numerator and the denom-
inator are positive. What we will do is choose κ cleverly, so that the fact that the ratio is 
positive tells us something interesting. 

First, we will simplify (10.65). In the terms in (10.65) that involve derivatives of f(t)∗ , 
we can integrate by parts (and throw away the boundary terms because we assume f(t) goes 
to zero at infinity) so that the derivatives act on f(t). Then (10.65) becomes 

¢t2 + κ2 ¢ω2 + κ 

R ∞ 
−∞ dt f(t)∗ 

³ 
t ∂ 
∂t − ∂ 

∂t t 
´ 

f(t) 
R ∞ 
−∞ dt |f(t)|2 . (10.66) 

All other terms cancel. But 

∂ 
∂t 

[t f(t)] = f(t) + t 
∂ 
∂t 

f(t) . (10.67) 

Thus the last term in (10.66) is just κ, and (10.65) becomes 

¢t2 + κ2 ¢ω2 − κ . (10.68) 

(10.68) is clearly greater than or equal to zero for any value of κ, because it is a ratio of 
positive integrals. To get the most information from the fact that it is positive, we should 
choose κ so that (10.65) (=(10.68)) is as small as possible. In other words, we should find the 
value of κ that minimizes (10.68). If we differentiate (10.68) and set the result to zero, we 
find 

1 
κmin = . (10.69)

2¢ω2 

We can now plug this back into (10.68) to find the minimum, which is still greater than or 
equal to zero. It is 

1 
¢t2 − ≥ 0 (10.70)

4¢ω2 

which immediately yields (10.62). 
Equation (10.62) appears in many places in physics. A simple example is bandwidth in 

AM radio transmissions. A typical commercial AM station broadcasts in a band of frequency 
about 5000 cycles/s (5 kc) on either side of the carrier wave frequency. Thus 

−1¢ω = 2π¢ν ≈ 3 × 104 s , (10.71) 

and they cannot send signals that separate times less than a few ×10−5 seconds apart. This 
is good enough for talk and acceptable for some music. 
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A famous example of (10.62) comes from quantum mechanics. There is a completely 
analogous relation between the spatial spread of a wave packet, ¢x, and the spread of k 
values required to produce it, ¢k: 

1 
¢x · ¢k ≥ . (10.72)

2 

In quantum mechanics, the momentum of a particle is related to the k value of the wave that 
describes it by 

p = h̄k , (10.73) 

where ̄h is Planck’s constant h divided by 2π. Thus (10.72) implies 

h̄ 
¢x · ¢p ≥ . (10.74)

2 

This is the mathematical statement of the fact that the position and momentum of a particle 
cannot be specified simultaneously. This is Heisenberg’s uncertainty relation. 

10.4 Scattering of Wave Packets 

In a real scattering experiment, we are interested not in an incoming harmonic wave that has 
always existed and will always exist. Instead we are interested in an incoming wave packet 
that is limited in time. In this section, we discuss two examples of scattering of wave packets. 

10.4.1 Scattering from a Boundary 

.............................
................................................................................................................................................................
........
........
........................................................ ... .. 10-3 

We begin with the easier of the two examples. Consider the scattering of a wave packet 
from the boundary between two semi-infinite dispersionless strings both with tension T and 
different densities, ρI and ρII , as shown in figure 9.1. The dispersion relations are: 

⎧
2 vI k

2 = 
T

k2 = in region I⎪⎪
ρIω2 = 

⎨ 

T (10.75) 
2 k2⎪⎪ vII k

2 = in region II⎩ 
ρII 

where vI and vII are the phase velocities in the two regions. 
Specifically, we assume that the boundary condition at −∞ is that there is an incoming 

wave, 
f(x − vt) (10.76) 

in region I, but no incoming wave in region II, and we wish to find the outgoing waves, the 
reflected wave in region I and the transmitted wave in region II. 
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We can solve this problem without decomposing the wave packet into its harmonic com-
ponents with a trick that is analogous to that used at the beginning of this chapter to solve the 
forced oscillation problem, figure 10.1. The most general solution to the boundary conditions 
at ±∞ is ⎧

⎪
f(t − x/vI ) + g(t + x/vI ) in region I⎨

ψ(x, t) = (10.77) 
h(t − x/vII ) in region II ⎪⎩ 

where g and h are arbitrary functions. To actually determine the reflected and transmitted 
waves, we must impose the boundary conditions at x = 0, that the displacement is continuous 
(because the string doesn’t break) and its x derivative is continuous (because the knot joining 
the two strings is massless): 

f(t) + g(t) = h(t) , (10.78) 

and 
∂ ∂

[f(t − x/vI ) + g(t + x/vI )]| = h(t − x/vII )| . (10.79)x=0 x=0∂x ∂x 
Using the chain rule in (10.79), we can relate the partial derivatives with respect to x to 
deriviatives of the functions, 

1 1£−f 0(t − x/vI ) + g 0(t + x/vI )
¤¯̄

 
x=0 = − h0(t − x/vII )

¯̄
 
x=0 , (10.80) 

vI vII 

or 
vI− f 0(t) + g 0(t) = − h0(t) . (10.81) 
vII 

Differentiating (10.78), we get 

f 0(t) + g 0(t) = h0(t) , (10.82) 

Now for every value of t, (10.81) and (10.82) form a pair of simultaneous linear equations 
that can be solved for g0(t) and h0(t) in terms of f 0(t): 

1 − vI /vII 2 
g 0(t) = f 0(t) , h0(t) = f 0(t) . (10.83)

1 + vI /vII 1 + vI /vII 

Undoing the derivatives, we can write 

1 − vI /vII 2 
g(t) = f(t) + k1 , h(t) = f(t) + k2 , (10.84)

1 + vI /vII 1 + vI /vII 

where k1 and k2 are constants, independent of t. In fact, though, we must have k1 = k2 

to satisfy (10.78), and adding the same constant in both regions is irrelevant, because it just 



241 10.4. SCATTERING OF WAVE PACKETS 

corresponds to our freedom to move the whole string up or down in the transverse direction. 
Thus we conclude that 

1 − vI /vII 2 
g(t) = f(t) , h(t) = f(t) , (10.85)

1 + vI /vII 1 + vI /vII 

and the solution, (10.77), becomes 
⎧

1 − vI /vII
f(t − x/vI ) + f(t + x/vI ) in region I,⎪⎪

1 + vI /vII
⎨

ψ(x, t) = (10.86)2 
f(t − x/vII ) in region II.⎪⎪

1 + vI /vII
⎩ 

The same result emerges if we take the incoming wave packet apart into its harmonic 
components. For each harmonic component, the reflection and transmission components are 
the same (from (9.16)): 

2ZI 2 
τ = = ,

ZI + ZII 1 + vI /vII (10.87)ZI − ZII 1 − vI /vII
R = = . 

ZI + ZII 1 + vI /vII 

When we now put the harmonic components back together to get the scatter and transmitted 
wave packets, the coefficients, ρ and τ appear just as overall constants in front of the original 
pulse, as in (10.86). 

This scattering process is animated in program 10-3. Here you can input different values 
of vII /vI to see how the reflection and transmission is affected. Notice that vII /vI very 
small corresponds to a large impedance ratio, ZII /ZI , which means that the string in region 
II does not move very much. Then we get a reflected pulse that is just the incoming pulse 
flipped over below the string. In the extreme limit, vII /vI →∞, the boundary at x = 0 acts 
like a fixed end. vII /vI very large corresponds to a small impedance ratio, ZII /ZI , in which 
case the string in region I hardly notices the string in region II. In the limit vII /vI → 0, the 
boundary at x = 0 acts like a free end. 

10.4.2 A Mass on a String 

..................................
........
.............................................................................................................................................

.............................
................................................. ... .. 10-4 

A more interesting example of the scattering of wave packets that can be worked out using 
the mathematics we have already done is the scattering of an incoming wave packet with 
the shape of (10.39) encountering a mass on a string. Here the dispersion relation is trivial, 
so the wave packet propagates without change of shape until it “hits” the mass. But then 
interesting things happen. This time, when we decompose the wave packet into its harmonic 
components, the reflection and transmission coefficients depend on ω. When we add them 
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x = 0 

t 

Figure 10.6: A mass on a string. 

back up again to get the reflected and transmitted wave packets, we will find that the shape 
has changed. We will work this out in detail. The familiar setup is shown in figure 10.6. 

For an incoming harmonic wave of amplitude A, the displacement looks like 

ψ(x, t) = Aeikx · e −iωt + R Ae−ikx · e −iωt for x ≤ 0 (10.88) 

ψ(x, t) = τ Aeikx · e −iωt for x ≥ 0 (10.89) 

The solution for R and τ was worked out in the last chapter in (9.39)-(9.45). However, the 
parameter ² of (9.38) depends on ω. In order to disentangle the frequency dependence of the 
scattered wave packets, we write R and τ as 

τ = 
2� 

2� − iω 
, R = 

iω 
2� − iω 

, (10.90) 

where √ 

� ≡ 
T 

= 
ρ T 

, (10.91) 
m v m 

is independent of ω — it depends just on the fixed parameters of the string and the mass. 
Note that in the notation of (9.38), 

ω
� = . (10.92)

² 
Suppose that we have not a harmonic incoming wave, but an incoming pulse: 

ψin(x − vt) = Ae−¡|t−x/v| . (10.93) 

Now the situation is more interesting. We expect a solution of the form 

ψ(x, t) = ψin(x − vt) + ψR(x + vt) for x ≤ 0 (10.94) 

ψ(x, t) = ψτ (x − vt) for x ≥ 0 (10.95) 

where ψτ (x + vt) is the transmitted wave, traveling in the +x direction, and ψR(x + vt) is 
the reflected wave, traveling in the −x direction. To get the reflected and transmitted waves, 
we will use superposition and take ψin apart into harmonic components. We can then use 
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(10.90) to determine the scattering of each of the components, and then can put the pieces 
back together to get the solution. Thus we start by Fourier transforming ψin: 

Z
ψin(x, t) = dω e−iω(t−x/v) Cin(ω) . (10.96) 

We know from our discussion of signals that 

1 
Z

Cin(ω) = dt eiωt ψin(0, t)2π (10.97)1 
Z ∞ 1 

µ 
1 1 

¶
= dt Aeiωt e −¡t + h.c. = + .

2π 0 2π ¡ − iω ¡ + iω 

Now to get the reflected and transmitted pulses, we multiply the components of ψin by the 
reflection and transmission amplitudes R and τ for unit ψin 

1 
µ 

1 1 
¶ 

2� 
Cτ (ω) = A + (10.98)

2π ¡ − iω ¡ + iω 2� − iω 

1 
µ 

1 1 
¶ 

iω 
CR(ω) = A + (10.99)

2π ¡ − iω ¡ + iω 2� − iω 

Now we have to reverse the process and find the Fourier transforms of these to get the 
reflected and transmitted pulses. This is straightforward, because we can rewrite (10.98) and 
(10.99) in terms of single poles in ω: 

1 2� 
µ 

1 1 
¶

Cτ (ω) = A · −
2π 2� − ¡ ¡ − iω 2� − iω (10.100)1 2� 

µ 
1 1 

¶
+ · + ;

2π 2� + ¡ ¡ + iω 2� − iω 

1 1 
µ 

¡ 2� 
¶

CR(ω) = A · −
2π 2� − ¡ ¡ − iω 2� − iω (10.101)1 1 

µ
¡ 2� 

¶
+ · − + .

2π 2� + ¡ ¡ + iω 2� − iω 

Now we can work backwards in (10.100) and (10.101) to get the Fourier transforms. We 
know from (10.55) that each term is the Fourier transform of an exponential. It is straight-
forward, but tedious, to put them back together. The result is reproduced below (note that we 
have combined the two terms in each expression proportional to 1/(2� − iω)). 

2� 
ψτ (x, t) = θ(t − x/v) Ae−¡(t−x/v) 

2� − ¡ (10.102)4�¡ 2� 
θ(t − x/v) Ae−2�(t−x/v) +− θ(−t + x/v) Ae¡(t−x/v) 

4�2 − ¡2 2� + ¡
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and 

2¡
ψr(x, t) = θ(t + x/v) Ae−¡(t+x/v) 

2� − ¡ (10.103)4�¡ 2¡
θ(t + x/v) Ae−2�(t+x/v) − θ(−t − x/v) Ae¡(t+x/v)−

4�2 − ¡2 2� + ¡

where ⎧
⎪ 1 for t ≥ 0 , 

θ(t) = 
⎨ 

(10.104) 
0 for t < 0 .⎪⎩ 
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Figure 10.7: A wave packet on a stretched string, at t = −2. 
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−4−3−2−1 0 1 2 3 4 

Figure 10.8: t = −1. 

These formulas are not very transparent or informative, but we can put them into a com-
puter and look at the result. We will plot the result in the limit 2� → ¡. The results, (10.102) 
and (10.103) look singular in this limit, but actually, the limit exists and is perfectly smooth.4 

In figures 10.7-10.12, we show ψ(x, t) for ¡ = v = 1 in arbitrary units, for t values from −2 

4The apparent singularity is similar to one that occurs in the approach to critical damping, discussed in (2.12). 
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A 

0 

Figure 10.9: t = 0. 

A 

0 

Figure 10.10: t = 1. 

A 

0 

Figure 10.11: t = 2. 

to 3. At t = −2, you see the pulse approaching the mass for negative t. At t = −1, you can 
begin to see the effect of the mass on the string. By t = 0, the string to the left of x = 0 is 
moving rapidly downwards. At t = 1, downward motion of the string for x < 0 has contin-
ued, and has begun to form the reflected pulse. For t = 2, you can see the transmitted and 
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A 

0 

Figure 10.12: t = 3. 

reflected waves beginning to separate. For t = 3, you can see the reflected and transmitted 
pulses have separated almost completely and the mass has returned nearly to its equilibrium 
position. For large positive t, the pulse is split into a reflected and transmitted wave. 

The really interesting stuff is going on between t = 0 and t = 1, so we will look at this 
on a finer time scale in figures 10.13-10.16. To really appreciate this, you should see it in 
motion. It is animated in program 10-4. 

A 

0 

Figure 10.13: This is t = .2. 

10.5 Is c the Speed of Light? 

We have seen that an electromagnetic wave in the z direction satisfying Maxwell’s equations 
in free space has the dispersion relation (8.47), so that light, at least in vacuum, travels at the 
speed of light. But is the theory right? How do we test the dispersion relation? In fact, the 
most sensitive tests of Maxwell’s equations do not involve traveling waves. They come from 
observations of magnetic fields that extend over astrophysical distances (like the galaxy!). 
However, there is an interesting, if not very sensitive, way of looking for corrections to (8.47) 
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A 

0 

Figure 10.14: This is t = .4. 
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Figure 10.15: This is t = .6. 

A 

0 

Figure 10.16: This is t = .8. 

that involves the speed of light directly. Before discussing this, let us digress briefly to talk 
in more detail about photons, the particles of light that we described briefly in chapter 8. 

Light is a wave phenomenon, as we have seen. Indeed, the wave properties of light are 
obvious in our everyday experience. It is less obvious from our everyday experience, but 
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equally true, that light also consists of photons. This becomes obvious when you work with 
light at very low intensities and/or very high energies. That both of these statements can be 
true simultaneously is one of the (many) miracles of quantum mechanics. 

Quantum mechanics tells us that all particles have wave properties. A particle with mo-
mentum p and energy E has an associated angular frequency and angular wave number re-
lated by 

E = h̄ ω , p = h̄ k , (10.105) 

where ̄h is Planck’s constant divided by 2π. This combination appears so ubiquitously in 
quantum mechanics that it has its own symbol, and we physicists almost always use h̄ rather 
than h. The reason is just that h is related to the frequency ν, rather than the angular fre-
quency, ω, and we have seen that ω is the more convenient measure for most purposes. In 
addition, the energy and momentum of the particle are related as follows: 

2 2 4E2 = p c 2 + m c , v = c 
p c 

(10.106)
E 

where m is the rest mass and v is the classical velocity. 
If we put (10.105) into (10.106), we get a dispersion relation for the quantum mechanical 

wave associated with the particle 

2mc
ω2 = c 2k2 + ω0

2 , ω0 = . (10.107)
h̄ 

The classical velocity is the group velocity of the quantum mechanical wave! 

∂ω 2 k p c 
v = = c = c (10.108)

∂k ω E 

In fact, particles, in a quantum mechanical picture, correspond to wave packets that move 
with the group velocity. 

The quantum mechanical dispersion relation, (10.107), agrees with (8.47) only if m = 0. 
Thus we can restate the question of whether (8.47) is correct by asking “Is the photon mass 
really zero?” 

It would seem that we ought to be able to test this idea by looking at two photons with 
different frequencies emitted at the same time from a far away object and checking whether 
they arrive at the same time. There is an obvious flaw in this scheme. If the object is so far 
away that we cannot get there, how do we know that the two photons were emitted at the same 
time? In fact, astrophysics has provided us with a way around this difficulty. We can look 
at pulsars. Pulsars are (presumably) rotating neutron star remnants of supernova explosions 
that emit light toward the earth at regular intervals. For example, pulsar 1937+21 is so regular 
that the departure time of photons can be determined to within a few microseconds (µs).5 It 

5See G. Barbiellini and G. Cocconi, Nature 329 (1987) 21. 



249 10.5. IS c THE SPEED OF LIGHT? 

is also about 16,000 light years away, so the photons with the higher frequency (the faster 
ones) have plenty of time to get ahead. When this experiment is done, one finds a nonzero 
ω0, of about 1.7 × 104s−1, corresponding to a mass of about 1.26 × 10−49g. That seems 
like a rather small mass, but in fact, it is ridiculously large for a photon. From studies of the 
galactic magnetic field, we suspect that it is less than 4 × 10−65g!6 Thus something else is 
going on. 

The problem with this measurement as a test of the dispersion relation is that there are 
electrons lying around out there — free electrons in interstellar space (10−1 to 10−2cm−3). 
These electrons in space will wiggle in the E field — this will produce a current density that 
will affect Maxwell’s equations, and that, in turn, will affect the dispersion relation. Let us 
analyze the effect of this dilute plasma assuming that the electron density is constant. Then 
(at least for the long wavelength radio waves of interest in these experiments) we can still 
use translation invariance to understand what is happening. Consider a plane wave in the z 
direction and suppose that the electric field of the plane wave is in the x direction. Then it is 
still true that at a given ω 

i(kz−ωt) i(kz−ωt)Ex(~r, t) = E0 e , By(~r, t) = B0 e , (10.109) 

for some k. To find k, we must look at the effect of the electric fields on the electrons, 
and then go back to Maxwell’s equations. The fields are very small, and for small fields 
the induced electron velocities, v are small. Thus we can neglect B. Then the force on an 
electron at the point (~r, t) is 

i(kz−ωt)Fx(~r, t) = eEx(~r, t) = eE0 e = max(~r, t) (10.110) 

The displacement of the electron has the same form: 

i(kz−ωt)dx(~r, t) = d0 e (10.111) 

which implies 
i(kz−ωt)ax(~r, t) = −ω2 d0 e (10.112) 

comparing (10.110) and (10.112) gives 

eE0
d0 = − . (10.113)

mω2 

Thus the electrons are displaced 180◦ out of phase with the electric field and in the same 
direction. Then the electron velocity is 

i eE0 i(kz−ωt)vx = e . (10.114)
mω 

6Chibisov, Soviet Physics -Uspekhi, 19 (1986) 624. 
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The movement of the electrons gives rise to a current density: 7 

i e2N E0 i(kz−ωt)Jx = e (10.115)
mω 

where N is the electron number density. 
Putting this into the relevant Maxwell’s equations, we find 

e2N E0
k E0 = ω B0 , −k B0 = −ωµ0²0 E0 + µ0 , (10.116)

mω 

or using c = 1/ 
√ 

µ0²0, (8.47), 

k k2 ω e2N 
B0 = E0 , − = − + , (10.117)

2ω ω c c2 m ²0 ω 

or solving for ω2 

e2N 
ω2 = c 2 k2 + ω0

2 , with ω0
2 = 

²0m
. (10.118) 

The constant ω0 in (10.118) is called the “plasma frequency.” The amazing thing is that it 
looks just like a photon mass. For N ≈ 10−2cm−3, this is consistent with the observation 
from the pulsar. 

Chapter Checklist 

You should now be able to: 

i. Solve a forced oscillation problem for a stretched string with arbitrary time dependent 
displacement at the end; 

ii. Decompose an arbitrary signal into harmonic components using the Fourier transfor-
mation; 

iii. Compute the group velocity of a dispersive system; 

iv. Understand the relations between a function and its Fourier transform that lead to the 
relation between bandwidth and fidelity; 

v. Be able to describe the scattering of a wave packet; 

vi. Understand the effect of free charges on the dispersion relation of electromagnetic 
waves. 

7Notice that the result is inversely proportional to the electron mass. This why we are concentrating on 
electrons rather than protons. The protons don’t move as fast! 
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Problems 

10.1. Is it possible for a medium that supports electromagnetic waves to have the dis-
persion relation ω2 = c2 k2 − ω2 for real ω0?0 

Why or why not? 

10.2. A beaded string has neighboring beads separated by a. If the maximum possible 
group velocity for waves on the string is v, find T/m. 

10.3. In the next chapter, we will derive the dispersion relation for waves in water (or at 
least an idealized picture of water). If the water is deep, the dispersion relation is 

Tk3 

ω2 = gk + 
ρ 

where g is the acceleration of gravity, 980 in cgs units, T is the surface tension, 72, and ρ is 
density, 1.0. Find the group velocity and phase velocity as a function of wavelength. When 
are they equal? 

10.4. Consider the longitudinal oscillations of the system of blocks and massless springs 
shown below: 
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q q qi .......... .......... .......... .......... 

Each block has mass m. Each spring has spring constant K. The equilibrium separation 
between the blocks is a. The ring on the left is moved back and forth with displacement 
B cos ωt. This produces a traveling wave in the system moving to the right for ω < 2

p
K/m. 

There is no traveling wave moving to the left. 
The dispersion relation for the system is 

ω2 =
4K 

sin2 ka 
. 

m 2 

a. Suppose that ω = 
p

K/m. Find the phase velocity of traveling waves at this fre-
quency. 

b. For ω = 
p

K/m, find the displacement of the first block at time t = π/2ω. Express 
the answer as B times a pure number. 
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c. Find the group velocity in the limit ω → 2
p

K/m. 

d. Find the time average of the power supplied by the force on the ring in the limit 
ω → 2

p
K/m. 

e. Explain the relation between the answers to parts c and d. You may be able to do 
this part even if you have gotten confused in the algebra. Think about the physics and try to 
understand what must be going on. 
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