Chapter 10

Signals and Fourier Analysis

Traveling waves with a definite frequency carry energy but no information. They are just
there, always have been and always will be. To send information, we must send a nonhar
monic signal.

Preview

In this chapter, we will see how this works in the context of a forced oscillation problem. In
the process, we will find a subtlety in the notion of the speed with which a traveling wave
moves. The phase velocity may not be the same as the velocity of signal propagation.

i. We begin by studying the propagation of a transverse pulse on a stretched string. We
solve the problem in two ways: with a trick that works in this special case; and with
the more powerful technique of Fourier transformation. We introduce the concept of
“group velocity,” the speed at which signals can actually be sent in a real system.

ii. We discuss, by example and then in general, the counterpoint between a function and
its Fourier transform. We make the connection to the physical concepts of bandwidth
and fidelity in signal transmission and to Heisenberg'’s uncertainty relation in quantum
mechanics.

iii. We work out in some detail an example of the scattering of a wave packet.

iv. We discuss the dispersion relation for electromagnetic waves in more detail and explore
the question of whether light actually travels at the speed of light!
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226 CHAPTER 10. SIGNALS AND FOURIER ANALYSIS

10.1 Signals in Forced Oscillation
10.1.1 A Pulse on a String

101

We begin with the following illustrative problem: the transverse oscillations of a semiinfinite
string stretched from = 0 to oo, driven atr = 0 with some arbitrary transverse sigifét),

and with a boundary condition at infinity that there are no incoming traveling waves. This
simple system is shown in figuié.1.

Figure 10.1: A semiinfinite string.

There is a slick way to get the answer to this problem that vemiligSfor a system with
the simple dispersion relation,
w2 =02k?. (10.1)

The trick is to note that the dispersion relati(i.1),implies that the system satisfies the

wave equation, (6.4), or
2

9 0’

It is a mathematical fact (we will discuss the physics of it below) that the general solution to
the one-dimensional wave equati¢b0.2),is a sum of right-moving and left-moving waves
with arbitrary shapes,

Y(z,t) = g(x — vt) + h(z + vt), (10.3)
whereg andh are arbitrary functions. You can check, using the chain rule(libat)satisfies
(10.2),

0? 0?
a5 (9(z —vt) + h(z +0t)) = UQ—Q(Q(:E —vt) + h(z + vt))
ot Ox (10.4)

=2 (¢ (x —vt) + B (z + vt)).

Given this mathematical fact, we can find the functigremd / that solve our particular
problem by imposing boundary conditions. The boundary condition at infinity implies

h=0, (10.5)
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because tha function describes a wave moving in the direction. The boundary condition
at z= 0 implies

g(—vt) = f(t), (10.6)
which gives

P(x,t) = f(t—x/v). (10.7)

This describes the signgl(t), propagating down the string at the phase velacitth no
change in shape.
For the simple function

1—1t| forjt| <1
f() = (10.8)
0 for [t| > 1

the shape of the string at a sequence of times is shown in/fi@wzrand animated in pro-
gram 10-1.

t="L/v
t=10/2v
t=
t=—4/2v
t=—l/v

0 ¢ 20 3¢ 40 B¢

Figure 10.2: A triangular pulse propagating on a stretched string.

10.1.2 Fourier integrals

Let us think about this problem in a more physical way. In the process, we will understand
the physics of the general solutiqi0.3). This may seem like a strange thing to say in
a section entitled, “Fourier integrals.” Nevertheless, we will see that the mathematics of
Fourier integrals has a direct and simple physical interpretation.

The idea is to use linearity in a clever way to solve this problem. We can(talapdrt
into its component angular frequencies. We already know how to solve the forced oscillation
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problem for each angular frequency. We can then take the individual solutions and add them
back up again to reconstruct the solution to the full problem. The advantage of this procedure
is that it works for any dispersion relation, not just for (10.1).

Because there may be a continuous distribution of frequencies in an arbitrary signal, we
cannot just writef (¢) as a sum over components, we need a Fourier integral,

1) = / T dw Cw) et (10.9)

—0o0

The physics of (10.9) is just linearity and time translation invariance. We know that we can
choose the normal modes of the free system to have irreducible exponential time dependence,
because of time translation invariance. Since the normal modes describe all the possible
motions of the system, we know that by taking a suitable linear combination of normal modes,
we can find a solution in which the motion of the end of the system is described by the
function, f(¢). The only subtlety in (10.9) is that we have assumed that the valuethaif
appear in the integral are all real. This is appropriate because a nonzero imaginary part for
w in e~™* describes a function that goes exponentially to infinity as +co. Physically,
we are never interested in such things. In fact, we are really interested in functions that go to
zero ag — *oo. These are well-described by the integral overwel0.9).

Note that iff(¢) is real in(10.9), then

£(t) = / O:o du C(w) e~

> R 00 10.10
— f(t) = Lw dw C(w)* 6t = [m o O ) e (10.10)

thus
C(—w)" =C(w). (10.11)
It is actually easier to work with the complex Fourier integral, (10.9), with the irreducible
complex exponential time dependence, than with real expansions in texmswofand
sinwt. But you may also see the real forms in other books. You can always translate from

(10.9)by using the Euler identity
¥ = cosf +isinf. (10.12)

82

For each value of, we can write down the solution to the forced oscillation problem,
incorporating the boundary conditioncat Each frequency component of the force produces
a wave traveling in the-z direction.

67iwt N efiwt+ikx7 (1013)

then we can use linearity to construct the solution by adding up the individual traveling waves
from (10.13) with the coefficientS(w) from (10.9). Thus

Y(x,t) = / - dw C(w) e~ wiTike, (10.14)

—00
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wherew andk are related by the dispersion relation.

Equation(10.14)is true quite generally for any one-dimensional systemany dis-
persion relation, but the result is particularly simple for a nondispersive system such as the
continuous string with a dispersion relation of the f¢tf.1). We can us€10.1)in (10.14)
by replacing

k—w/v. (10.15)

Note that whilek? is determined by the dispersion relation, the sigh,dbr a givenw, is
determined by the boundary condition at infinityandw must have the same sign, as in
(10.15), to describe a wave traveling in the direction. Putting/(10.15) intd (10.1djves

Y(x,t) = / T dw C(w) e~ Wttiwa/v — / - dw C(w) e~ wlt=2/v) (10.16)

Comparing this with (10.9) give40.7).

Let us try to understand what is happening in words. The Fourier int€dd&), ex-
presses the signal as a linear combination of harmonic traveling waves. The r@@tid),
which follows from the dispersion relatio(10.1),and the boundary condition at, implies
that each of the infinite harmonic traveling waves moves at the same phase velocity. There-
fore, the waves stay in exactly the same relationship to one another as they move, and the
signal is never distorted. It just moves with the waves.

The nonharmonic signal is called a “wave packet.” As we have seen, it can be taken apart
into harmonic waves, by means of the Fourier inte¢tal9).

10.2 Dispersive Media and Group Velocity

For any other dispersion relation, the signal changes shape as it propagates, because the
various harmonic components travel at different velocities. Eventually, the various pieces of
the signal get out of phase and the signal is dispersed. That is why such a medium is called
“dispersive.” This is the origin of the name “dispersion relation.”

10.2.1 Group Velocity

0] 10-2
If you are clever, you can send signals in a dispersive medium. The trick is to send the signal
not directly as the functiory,(¢), but as a modulation of a harmonic signal, of the form

f(t) = fs(t) coswot, (10.17)

where f4(t) is the signal. Very often, you want to do this anyway, because the important
frequencies in your signal may not match the frequencies of the waves with which you want
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to send the signal. An example is AM radio transmission, in which the signal is derived from
sound with a typical frequency of a few hundred cycles per second (Hz), but it is carried as
a modulation of the amplitude of an electromagnetic radio wave, with a frequency of a few
million cycles per secorid.

You can get a sense of what is going to happen in this case by considering the sum of two
traveling waves with different frequencies and wave numbers,

cos(kyx — wyt) + cos(k_x — w_t) (10.18)
where
ki = k[) + k?s N W+ = W + Ws (1019)
for
ks < ko, ws<wp. (10.20)

The sum can be written as a product of cosines, as
2 cos(ksx — wst) - cos(koxr — wot) . (10.21)

Because 0{10.20),the first factor varies slowly in andt compared to the second. The result
can be thought of as a harmonic wave with frequencwith a slowly varying amplitude
proportional to the first factor. The space dependen¢&0o2l)is shown in figurél0.3.

/

Figure 10.3: The function (10.2fgr ¢ = 0 andky/ks = 10.

You should think of the first factor if10.21)as the signal. The second factor is called the
“carrier wave.” Then (10.21describes a signal that moves with velocity
Wg Wy —wW—
Vg = — =

=+ 10.22
P (10.22)

while the smaller waves associated with the second factor move with velocity

wo

= —. 10.2
v =0 (10.23)

1See(10.71), below.
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These two velocities will not be the same, in general. If (10.20) is satisfied, then (as we will
show in more detail below), will be roughly the phase velocity. In the limit,/as — k_ =
2ks becomes very small, (10/22) becomes a derivative

Wi —Ww_ ow

e i il I 10.24
hy — k- Ok lpep (10.24)

Us

This is called the “group velocity.” It measures the speed at which the signal can actually be
sent.

The time dependence of (10.21) is animated in program 1Qe2e the way that the
carrier waves move through the signal. In this animation, the group velocity is smaller than
the phase velocity, so the carrier waves appear at the back of each pulse of the signal and
move through to the front.

Let us see how this works in general for interesting sigiiéd$, Suppose that for some
range of frequencies near some frequengythe dispersion relation is slowly varying. Then
we can take it to be approximately linear by expandifig in a Taylor series about and
keeping only the first two terms. That is

Ow

w:w(k):w()%—(k—ko)%kk—i----, (10.25)
=ko

wo = w(ko), (10.26)

and the higher order terms are negligible for a range of frequencies
wo —Aw < w < wp + Aw. (20.27)

whereAw is a constant that dependsw@nand the details on the higher order terms. Then
you can send a signal of the form A
f(t) - et (10.28)

(a complex form of (10.17), above) whefig) satisfies/(10.9) with
C(w) =0 for |w—wp|>Aw. (10.29)

This describes a signal that has a carrier wave with frequenoyodulated by the interesting
part of the signalf(t), that acts like a time-varying amplitude for the carrier wavé:°t.
The strategy of sending a signal as a varying amplitude on a carrier wave is called amplitude
modulation.
Usually, the higher order terms in (10.25) are negligible om\uif< wq. If we neglect
them, we can write (10.25) as

w=vk+a, k=w/v+b, (10.30)
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wherea and bare constants we can determine from (10.25),

a = wy — vk, b=ko—wo/v (10.312)
and vis the group velocity
v = g—z . (10.32)
For the signal (10.28)
¥(0,t) = /_ T dw C(w) e wtwo)t — /_ T dw Clw — wp) et (10.33)
Thus (10.14) becomes
P(x,t) = /fo dw C(w — wp) et etk (10.34)
but then(10.29) gives
P(x,t) = /jo dw C(w — wy) e~ WHHilw/vtb)z
_ /OO de C(w — wp) e~ @(t=/v)viba
oo (10.35)

= /00 dw C(w) e~ Hwtwo)(t—z/v)+ibx
= f(t — x/v) e—iwo(t—m/v)+ibx .

The modulatiory (¢) travels without change of shape at the group veledifyen by (10.32),
as long as we can ignore the higher order term in the dispersion relation. The phase velocity

w

v =1 (10.36)

has nothing to do with the transmission of information, but notice that because of the extra
e in (10.35), the carrier wave travels at the phase velocity.

You can see the difference between phase velocity and group velocity in your pool or
bathtub by making a wave packet consisting of several shorter waves.

10.3 Bandwidth, Fidelity, and Uncertainty

The relation'(10.9) can be inverted to givév) in terms off (¢) as follows

Clw) = % /_ O:O dt F(t) et (10.37)
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This is the “inverse Fourier transform.” It is very important because it allows us to go back
and forth between the signal and the distribution of frequencies that it contains. We will get
this result in two ways: first, with a fancy argument that we will use again and explain in
more detail in chapter 13; next, by going back to the Fourier series, discussed in chapter 6 for
waves on a finite string, and taking the limit as the length of the string goes to infinity.

The fancy argument goes like this. It is very reasonable that the integral in (10.37) is
proportional toC(w) because if we insert (10.9) and rearrange the order of integration, we
get

/ du' C(w / dt e'@—)t (10.38)

Thet integral averages to zero unless= w’. Thus theJ’ integral is simply proportional to
C(w) times a constant factor. The factorlg2z can be obtained by doing some integrals
explicitly. For example, if

f(t) =e T, (10.39)

for I > 0 then, as we will show explicitly in (10.49)-(10.56), (10.37) yields
210 (w) = 2T/ (T2 4 w?), (10.40)

which can, in turn, be put back in (10.9) to give (10.39).tFer0, the integral can be done
by the trigonometric substitutian — I" tan 6:

1=f(0)=¢e" —/ dw C(w) e ™0

L/~ dw——— W/Z dd =1
_;/700 F2+w2 _)W/TI'/Z o

To get the inverse Fourier transform, (10.37), as the limit of a Fourier series, it is con-
venient to use a slightly different boundary condition from those we discussed in chapter 6,
fixed ends and free ends. Instead, let us consider a string stretched-frem{ to x = n/,
in which we assume that the displacement of the string from equilibrium=atr¢ is the
same as the displacementrat —l)2

(10.41)

(=l t) = P(nl,t). (10.42)

The requirement/ (10.42), is called “periodic boundary conditions,” because it implies that
the functiomy that describes the displacement of the string is periodionith period27/.
The normal modes of the infinite system that satisfy (10.42) are

e/l (10.43)

2A example of a physical system with this kind of boundary condition would be a string stretched around
a frictionless cylinder with radiué and (therefore) circumferen@er¢. Then (10.42) would be true because
x = —m/ describes the same point on the string as 4.
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for integern, because changingby 27/ in (10.43) just changes the phase of the exponential
by 27r. Thus ify)(x) is an arbitrary function satisfying(—=¢) = ¢ (n¢), we should be able
to expand it in the normal modes of (10.43),

bz)= Y epe (10.44)
Likewise, for a functionf(t), satisfyingf(—=T) = f(«T) for some large tim&’, we
expect to be able to expand it as follows

foy= > epe™/T, (10.45)
where we have changed the sign in the exponential to agree with (10.9). We will show that
asT — oo, this becomes equivalent to (10.9).
Equation((10.44) is the analog of (6.8) for the boundary condition, (10.42). The sum runs
from —oo to oo rather than 0 teo because the modes in (10.43) are differentfand—n.
For this Fourier series, the inverse is

1 ﬂ imt /T
m = —— e f 104
c 5 /_7r dte (t) (10.46)
where we have used the identity

1 7T , , 1form=mn,
T / dt T e=int/T — (10.47)
Tt JenT 0 form #n.

Now suppose that(¢) goes to O for largg| (note that this is consistent with the periodic
boundary condition (10.42)) fast enough so that the integral in (10.46) is well defined as
T — oo for all m. Then because of the factor IofT" in (10.47), the:, all go to zero like
1/T. Thus we should multiply,, by T to get something finite in the limit. Comparing
(10.45) with (10.9), we see that we should take be n/T

Thus the relation/ (10.45), is an analog of the Fourier integral, (10.9) where the corre-
spondence is

T — oo
n

oW (10.48)

el — Clw).
In the limit, 7" — oo, the sum becomes an integral over

Multiplying both sides of( (10.46) b¥’, and making the substitution of (10.48) gives
(10.37).
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10.3.1 A Solvable Example

For practice in dealing with integration of complex functions, we will do the integration that
leads t0/(10.40) in gory detail, with all the steps.

1 o0 -
Clw)=— / dt e VIt gt (10.49)
21 J_oo
First we get rid of the absolute value —
Lo Tt i I Tt iwt
:—/ dte~ tem+—/ dt et i (10.50)
21 Jo 21 J_so
and write the second integral as an integral fromd te-
Lo vt iwt , L[ It —iwt
:—/ dte " e —|——/ dte ‘e ™ (10.51)
21 Jo 21 Jo
1 o , .
:2—/ dt e 't ™t 4 complex conjugate, (10.52)
7 Jo

but we know how to differentiate even complex exponentials (see the discussion of (3.108)),
SO we can write

8 —I't dwt) __ . —I't iwt

5 (e e ) =(-T+iw)e """ (10.53)

Thus - . - 9
dt —I't dwt — / di — —I't iwt 10.54
/0 ©° T1iw o Yot (e e) (10.54)

or, using the fundamental theorem of integral calculus,

1 —Tt iwt) > 1

- v = . 10.55
T+ iw (e ¢ )t:O T —iw (10.55)

This function ofw is called a “pole.” While the function is perfectly well behaved foragal
it blows up forw = —iI", which is called the position of the pole in the complex plane. Now
we just have to add the complex conjugate to get

Clw) = % (F—liw + F—iiw)

1 (T+iw D—iw\ 1 2r (10.56)

T on <F2—|—w2 +I‘2+w2 T o 2 + W2
which is (10.40). We already checked, in (10.41), that the factof2af makes sense.

The pair(10.39)-(10.40) illustrates a very general fact about signals and their associated

frequency spectra. In figure 10.4 we pfdt) for I' = 0.5 andI" = 2 and in figure 10.5,
we plotC'(w) for the same values d@f. Notice that ad” increases, the signal becomes
more sharply peaked nefar= 0 but the frequency spectrum spreads out. And conversely if
I is small so tha€’(w) is sharply peaked near = 0, thenf(¢) is spread out in time. This
complementary behavior is general. To resolve short times, you need a broad spectrum of
frequencies.
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Figure 10.4:f(t) = e Tl for I = 0.5 andI" = 2.

0.5 7

I'=2.5

Figure 10.5:C'(w) for the same values of.

10.3.2 Broad Generalities

We can state this fact very generally using a precise mathematical definition of the spread of
the signal in time and the spread of the spectrum in frequency.

We will define the intensity of the signal to be proportionalft@)|?>. Then, we can
define the average value of any functign) weighted with the signal’s intensity as follows

{9(t)) =

Joo dtg(t) [f(1)?
[, dt|f(t)]2 (10.57)

This weightsy(¢) most when the signal is most intense.

/\

Q) erf;w; tht
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For examplet) is the average time
most intense. Then @

hat is the time value around which the signal is

(10.58)

measures the mean-square devi e average time, so it is a measure of the spread
of the signal.

We can define the average value of a functiow of an analogous way by integrating
over the intensity of the frequency spectrum. But here is the trick. Because of (10.9) and
(10.37), we can go back and forth betwgén) and C'(w) at will. They carry the same
information. We ought to be able to calculate averages of functiandyfising an integral

overt. And sure enough, we can. Consider the integral
—twt __ —wt _
/ﬂo dwwC(w)e =iy /ﬂo dwC(w)e 5 f(t). (10.59)

This shows that multiplying'(w) by w is equivalent to differentiating the correspondjiig)
and multiplying byi.
Thus we can calculatev) as

25 dtf()*if f(t)

w) = — , 10.60

O 0L (1060
and )
2 | (i — @) 1)

Aw? = ([w — (W)]?) = —= 10.61

o = (o= IF) I, IO (1061

Aw is a measure of the spread of the frequency spectrum, or the “bandwidth.”
Now we can state and prove the following result:
(10.62)

Ve | -

V5

One important consequence of tht 1S that for a given bandvidtithe spread in
time of the signal cannot be arbitrarily small, but is bounded by

1
> —
At_2Aw

The smaller the minimum possible value/sf you can send, the higher the “fidelity” you
can achieve. Smallekt means that you can send signals with sharper details._But/(10.63)
means that the smaller the bandwidth, the larger the minitayyrand the lower the fidelity.

To prove [(10.62) consider the functfon —

([t )] — ix [igt - @D Ft) = (1), (10.64)

(10.63)

3This is a trick borrowed from a similar analysis that leads to the Heisenberg uncertainty principle in quantum
mechanics. Don’t worry if it is not obvious to you where it comes from. The important thing is the result.
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which depends on the entirely free parametedow look at the ratio

J5 dtlr @)
J2 dtlf (B

This ratio is obviously positive, because the integrands of both the numerator and the denom-
inator are positive. What we will do is choaseleverly, so that the fact that the ratio is
positive tells us something interesting.

First, we will simplify (10.65). In the terms in (10!65) that involve derivativeg(of,
we can integrate by parts (and throw away the boundary terms because wefdgsgoes
to zero at infinity) so that the derivatives actfgn). Then(10.65) becomes

% dt F()* (15 = 5t) (1)

(10.65)

A2 + k2 Aw? + & = atf P (10.66)
All other terms cancel. But
Qs = 1)+t 2 10). (10.67)
ot ot
Thus the last term in (10.66) is just «, and (10.65) becomes
A2 + K2 Aw? — k. (10.68)

(10.68)is clearly greater than or equal to zero for any valug, dfecause it is a ratio of
positive integrals. To get the most information from the fact that it is positive, we should
choosex so that/(10.65) (=(10.68)) is as small as possible. In other words, we should find the
value ofx that minimizes|(10.68). If we differentiate (10.68) and set the result to zero, we
find
1

Kmin = IAL2
We can now plug this back into (10.68) to find the minimum, which is still greater than or
equal to zero. Itis

(10.69)

1
T EL (10.70)

At?

which immediately yields (10.62).
Equation (10.62) appears in many places in physics. A simple example is bandwidth in
AM radio transmissions. A typical commercial AM station broadcasts in a band of frequency

about 5000 cycles/s (5 kc) on either side of the carrier wave frequency. Thus
Aw = 2rAv ~ 3 x 10*s7 !, (10.71)

and they cannot send signals that separate times less thana(feiseconds apart. This
is good enough for talk and acceptable for some music.
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A famous example of10.62)comes from quantum mechanics. There is a completely
analogous relation between the spatial spread of a wave packegnd the spread df
values required to produce i k:

Az Ak > % (10.72)

In quantum mechanics, the momentum of a particle is related tovédae:of the wave that
describes it by

—)  p=hk, (10.73)
whereh is Planck’s constarit divided by2x. Thus[(10.72)mplies
h
Az - Ap > o (10.74)

This is the mathematical statement of the fact tha osition and momentum of a particle
cannot be specified simultaneously. This is Heisenberg’s uncertainty rel ion.

10.4 Scattering of Wave Packets

In a real scattering experiment, we are interested not in an incoming harmonic wave that has
always existed and will always exist. Instead we are interested in an incamiagpacket
that is limited in time. In this section, we discuss two examples of scattering of wave packets.

10.4.1 Scattering from a Boundary

0] 10-3

We begin with the easier of the two examples. Consider the scattering of a wave packet
from the boundary between two semi-infinite dispersionless strings both with t&haiah
different densitiesp; and g, as shown in figur@.1. The dispersion relations are:

vIk? = T in region]
w? = L (10.75)
vk = —k* inregionl]
PII

wherev; and y; are the phase velocities in the two regions.
Specifically, we assume that the boundary conditionaatis that there is an incoming
wave,
flx —ot) (10.76)

in regioni, but no incoming wave in regialf, and we wish to find the outgoing waves, the
reflected wave in regiohand the transmitted wave in regidh
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We can solve this problem without decomposing the wave packet into its harmonic com-
ponents with a trick that is analogous to that used at the beginning of this chapter to solve the
forced oscillation problem, figure 10.1. The most general solution to the boundary conditions
at +oois

f(t —x/vr) +g(t+x/vr) inregionl

W(z,t) = (10.77)
h(t —x/vir) in regionII

whereg andh are arbitrary functions. To actually determine the reflected and transmitted
waves, we must impose the boundary conditions-a), that the displacement is continuous
(because the string doesn’t break) and iderivative is continuous (because the knot joining
the two strings is massless):

f(@)+g(t) =h(t), (10.78)
and 5 5
5 (= afor) + gt + @ /oDll,eg = 5= bt = a/vrr) - (10.79)

Using the chain rule in_(10.79), we can relate the partial derivatives with respeto to
deriviatives of the functions,

1)11 [—ft—x/vr)+ gt +x/v1)]],_o = —v; W(t—z/vir)|,_p » (10.80)
or v
— () +dt) = _vTII W(t). (10.81)
Differentiating (10.78), we get
Fi(t)+4(t) =), (10.82)

Now for every value of, (10.81) and (10.82) form a pair of simultaneous linear equations
that can be solved faf(¢) and?/(t) in terms off’(¢):

1 —wvr/vrg 't 2

"(t) = B(t)=—F f(t). 10.83
9O =T oo O AL (10.83)
Undoing the derivatives, we can write
1 —wvr/vrr 2
t)=———f(t)+ ki, h(t)= —F f(t) + ko, 10.84
90 = Ty oy O H R ) = e [0 + R (10.84)

wherek; and ks, are constants, independenttofin fact, though, we must have = k-
to satisfy (10.78), and adding the same constant in both regions is irrelevant, because it just
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corresponds to our freedom to move the whole string up or down in the transverse direction.
Thus we conclude that

1-— 7}[/11[[ 2
)= —F— h(t) = —— f(¢ 10.85
910 = T oo 0= 1070 TO) (10.85)
and the solution| (10.77), becomes
1 —wr/vrr . .
f(t —z/vf) + ——— f(t+x/v;) inregionI,
Wz, t) = ) L+vr/vrr (10.86)
— f(t — i ionlI.
TRy flt —x/vrr) in region

The same result emerges if we take the incoming wave packet apart into its harmonic
components. For each harmonic component, the reflection and transmission components are
the same (from (9.16)):

22 2
21+ 7 14+vr/ v’
A e o)
C Zi+Zir l+ovrfurr

When we now put the harmonic components back together to get the scatter and transmitted
wave packets, the coefficientsandr appear just as overall constants in front of the original
pulse, as in (10.86).

This scattering process is animated in program 10-3. Here you can input different values
of vrr /vy to see how the reflection and transmission is affected. Notice that; very
small corresponds to a large impedance ratjo/Z;, which means that the string in region
1T does not move very much. Then we get a reflected pulse that is just the incoming pulse
flipped over below the string. In the extreme limjt; /v; — oo, the boundary at = 0 acts
like a fixed endv;; /vy very large corresponds to a small impedance rdtip,Z;, in which
case the string in regiahhardly notices the string in regidd. In the limitv;; /vy — 0, the
boundary at: = 0 acts like a free end.

10.4.2 A Mass on a String

b 10-4

A more interesting example of the scattering of wave packets that can be worked out using
the mathematics we have already done is the scattering of an incoming wave packet with
the shape of10.39)encountering a mass on a string. Here the dispersion relation is trivial,
so the wave packet propagates without change of shape until it “hits” the mass. But then
interesting things happen. This time, when we decompose the wave packet into its harmonic
components, the reflection and transmission coefficients depend fhen we add them
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[ ]

Figure 10.6: A mass on a string.

back up again to get the reflected and transmitted wave packets, we will find that the shape
has changed. We will work this out in detail. The familiar setup is shown in figure 10.6.
For an incoming harmonic wave of amplitudethe displacement looks like

Y(x,t) = Ae™ .7 L R Ae™hT . ol for 1 < 0 (10.88)

Y(x,t) =7 A . e for z > 0 (10.89)

The solution forkR andr was worked out in the last chapter in (9.39)-(9.45). However, the
parametet of (9.38) depends an. In order to disentangle the frequency dependence of the
scattered wave packets, we wilteandr as

20 W
T —iw’ R_QQ—iw’ (10.90)
where
o= L _vrT (10.91)
muv m

is independent o — it depends just on the fixed parameters of the string and the mass.
Note that in the notation of (9.38),
0="2. (10.92)

€
Suppose that we have not a harmonic incoming wave, but an incoming pulse:

Yin(z — vt) = AeTlt=2/v] (10.93)
Now the situation is more interesting. We expect a solution of the form
Y(x,t) = Yin(x — vt) + Yr(x +vt) forz <0 (10.94)

W(x,t) = (x —vt) forz >0 (10.95)

wherey - (x 4 vt) is the transmitted wave, traveling in the direction, and)r(z + vt) is
the reflected wave, traveling in ther direction. To get the reflected and transmitted waves,
we will use superposition and take, apart into harmonic components. We can then use
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(10.90)to determine the scattering of each of the components, and then can put the pieces
back together to get the solution. Thus we start by Fourier transfotinping

VYin(z,t) = / dw e E=2/Y) Oy (W) (10.96)

We know from our discussion of signals that

Cin(w) = % / dtei:t ’l/<}in(0£ t) , > (10.97)
- .

1 0 ,
= dt Ae®te Tt + he.= —
2 /0 € e + 2 —w + I'+ 1w

Now to get the reflected and transmitted pulses, we multiply the componemnishyf the
reflection and transmission amplitudesnd rfor unit i,

1 1 1 20

Cr(w) _A% (F—iw F+iw> 20 —dw (10.98)
1 1 1 iw

Crlw) = A5 <r—¢w + F+iw) 20— iw (10.99)

Now we have to reverse the process and find the Fourier transforms of these to get the
reflected and transmitted pulses. This is straightforward, because we can rrewrite (10.98) and
(10.99) in terms of single polesdn

CT(W):Al 20 <1 1')

1 %6 QQ—F 1 F—’Lw 1 QQ—ZW (10100)
+27T2Q+r'<r+m+29—iw :
1 1 T 20
Ch(w) = A— ( LS )
) %ﬂ' 20 —-T FP—zw QQQQ—M (10.101)

Torsa 4T (_F—H'w "0
Now we can work backwards in (10.100) and (10.101) to get the Fourier transforms. We
know from (10.55) that each term is the Fourier transform of an exponential. It is straight-

forward, but tedious, to put them back together. The result is reproduced below (note that we
have combined the two terms in each expression proportioha(28 — iw)).

e (x,t) = 200 O(t — x/v) Ae Vt=2/v)
20— T (10.102)

e o —2Q(t—zx/v) o I'(t—x/v)
——0(t —x/v) Ae +QQ+I‘9( t+ xz/v) Ae
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and
Gr(5,8) = s Ot + w/0) Ae~T /)
20 -T 10.103
401 Co0(t4asy 2T . (10.103)
where
1fort >0,
0(t) = (10.104)
Ofort<O0.
A -
0

—4-3-2-101 2 3 4
Figure 10.7: A wave packet on a stretched string=at-2.

A T

—4-3-2-101 2 3 4
Figure 10.8¢ = —1.
These formulas are not very transparent or informative, but we can put them into a com-
puter and look at the result. We will plot the result in the Rftit— I'. The results(10.102)

and(10.103)look singular in this limit, but actually, the limit exists and is perfectly smdoth.
In figures10.7-10.12we showy(x, t) for I' = v = 1 in arbitrary units, fot values from-—2

“The apparent singularity is similar to one that occurs in the approach to critical damping, disc{Z&4$&jl in



10.4. SCATTERING OF WAVE PACKETS 245

O*’A

—4-3-2-101 2 3 4

Figure 10.9¢ = 0.

~4-3-2-10 1 2 3 4

Figure 10.10f = 1.

4-3-2-10 1 2 3 4
Figure 10.11¢ = 2.

to 3. Att = —2, you see the pulse approaching the mass for negauet = —1, you can
begin to see the effect of the mass on the stringt By, the string to the left of = 0 is
moving rapidly downwards. At= 1, downward motion of the string far < 0 has contin-
ued, and has begun to form the reflected pulset EoR, you can see the transmitted and
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—4-3-2-10 1 2 3 4
Figure 10.12¢ = 3.

reflected waves beginning to separate. #~er 3, you can see the reflected and transmitted
pulses have separated almost completely and the mass has returned nearly to its equilibrium
position. For large positive the pulse is split into a reflected and transmitted wave.

The really interesting stuff is going on betweena 0 andt = 1, so we will look at this
on a finer time scale in figurd$.13-10.15 To really appreciate this, you should see it in
motion. It is animated in program 10-4.

A -
0 —/K

—4-3-2-101 2 3 4

Figure 10.13: Thisis .2.

10.5 Is cthe Speed of Light?

We have seen that an electromagnetic wave in thieection satisfying Maxwell’s equations

in free space has the dispersion relation (8<t¥jhat light, at least in vacuum, travels at the
speed of light. But is the theory right? How do we test the dispersion relation? In fact, the
most sensitive tests of Maxwell’s equations do not involve traveling waves. They come/from
observations of magnetic fields that extend over astrophysical distances (like the gafaxy!).
However, there is an interesting, if not very sensitive, way of looking for correcti(®4 1)
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A.,

—4-3-2-10 1 2 3 4
Figure 10.14: This is + .4.
A -

O T

4321012 3 4
Figure 10.15: This is + .6.
A -

4-32-10 123 4
Figure 10.16: This is+ .8.

that involves the speed of light directly. Before discussing this, let us digress briefly to talk

in more detail about photons, the particles of light that we described briefly in chapter 8.
Light is a wave phenomenon, as we have seen. Indeed, the wave properties of light are

obvious in our everyday experience. It is less obvious from our everyday experience, but
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equally true, that light also consists of photons. This becomes obvious when you work with
light at very low intensities and/or very high energies. That both of these statements can be
true Simultaneously is one of the (many) miracles of quantum mechanics.

Quantum mechanics tells us that all particles have wave properties. A particle with mo-
mentump and energyF has an associated angular frequency and angular wave number re-
lated by

E=hw, p=hk, (10.105)

whereh is Planck’s constant divided Bs. This combination appears so ubiquitously in
guantum mechanics that it has its own symbol, and we physicists almost alwayrs e
thanh. The reason is just thatis related to the frequenay, rather than the angular fre-
guency,w, and we have seen thatis the more convenient measure for most purposes. In
addition, the energy and momentum of the particle are related as follows:

E?2=p?> +m?c, ’u:c% (10.106)
wherem is the rest mass ands the classical velocity.
If we put (10.105) inta (10.106), we get a dispersion relation for the quantum mechanical
wave associated with the particle

m62

w? = 2k% + w% , Wo = (10.107)

The classical velocity is thgroup velocity of the quantum mechanical wave!

0w ok pc
“ok “w “F
In fact, particles, in a quantum mechanical picture, correspond to wave packets that move
with the group velocity.

The quantum mechanical dispersion relation, (10.107), agrees with (8.47)xandy f.
Thus we can restate the question of whether (8.47) is correct by asking “Is the photon n}ais
really zero?”
— Tt would seem that we ought to be able to test this idea by looking at two photons withO
different frequencies emitted at the same time from a far away object and checking whether
they arrive at the same time. There is an obvious flaw in this scheme. If the object is so far
away that we cannot get there, how do we know that the two photons were emitted at the same
time? In fact, astrophysics has provided us with a way around this difficulty. We can look
at pulsars. Pulsars are (presumably) rotating neutron star remnants of supernova explosions
that emit light toward the earth at regular intervals. For example, pulsar 1937+21 is so regular
that the departure time of photons can be determined to within a few microsecs)dk (

v (10.108)

See G. Barbiellini and G. Coccoilature329 (1987) 21.
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is also about 16,000 light years away, so the photons with the higher frequency (the faster

ongs) have plenty of time to get aheagl. When this experiment is done, one finds a honzero

wo, of aboutl.7 x 1075, corresponding to a mass of abau6 x 10~4°g. That seems

like a rather small mass, but in fact, it is ridiculously large for a photon. From studies of the

galactic magnetic field, we suspect that it is less than0~%g!® Thus something else is

going on.
The problem with this measurement as a test of the dispersion relation is that there are

electrons lying around out there — free electrons in interstellar spaiceto 10~2cm™3).

These electrons in space will wiggle in thdield — this will produce a current density that

will affect Maxwell's equations, and that, in turn, will affect the dispersion relation. Let us

analyze the effect of this dilute plasma assuming that the electron density is constant. Then

(at least for the long wavelength radio waves of interest in these experiments) we can still

use translation invariance to understand what is happening. Consider a plane wave in the

direction and suppose that the electric field of the plane wave is indinection. Then it is

still true that at a givew

E;I:(Fy t) = EO €i(kZ7Wt) ) By(ﬁ t) = BO ei(szwt) ’ (10109)

for somek. To find k&, we must look at the effect of the electric fields on the electrons,
and then go back to Maxwell's equations. The fields are very small, and for small fields
the induced electron velocities,are small. Thus we can negldg8t Then the force on an
electron at the poirit”, t) is

Fo(7,t) = e By (F,t) = e By e F*79Y = m a, (7, t) (10.110)
The displacement of the electron has the same form:
dy(7,t) = do "7 (10.111)

which implies ‘
ap (7, 1) = —w? d k>t (10.112)

comparing/(10.110) and (10.112) gives

E
dy = ——2. (10.113)
m w

Thus the electrons are displacs)® out of phase with the electric field and in the same
direction. Then the electron velocity is

vy = LEEO ilhz—un) (10.114)
mw

SChibisov, Soviet PhysicsUspekhj 19 (1986) 624.
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The movement of the electrons gives rise to a current defisity:

’i62NE0 ei(k:szt)

Tz = (10.115)
mw
whereN is the electron number density.
Putting this into the relevant Maxwell’s equations, we find
’NE
kEy=wBy, —kBy=—wuoeoFo+ o —2, (10.116)
mw
or usinge = 1/./uo€o, (8.47),
k k2 N
By="~Ey, -——=-24 %2 (10.117)
w w C c“m egw
or solving forw?
2 272 2 ; o €N
w'=c"k* 4wy, with wj=—. (10.118)
€eom

The constanty in (10.118) is called thplasma frequency.” The amazing thing is that it
looks just like a photon mass. Far ~ 10~2cm ™3, this is consistent with the observation
from the pulsar.

Chapter Checklist

You should now be able to:

i. Solve a forced oscillation problem for a stretched string with arbitrary time dependent

displacement at the end,;

ii. Decompose an arbitrary signal into harmonic components using the Fourier transfor

mation;

iii. Compute the group velocity of a dispersive system;

iv. Understand the relations between a function and its Fourier transform that lead to the

relation between bandwidth and fidelity;

v. Be able to describe the scattering of a wave packet;

vi. Understand the effect of free charges on the dispersion relation of electromagnetic

waves.

"Notice that the result is inversely proportional to the electron mass. This why we are concentrating on

electrons rather than protons. The protons don’t move as fast!
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Problems

10.1. Is it possible for a medium that supports electromagnetic waves to have the dis-
persion relation,? = ¢2 k% — w3 for real w?
Why or why not?

10.2. A beaded string has neighboring beads separated lffhe maximum possible
group velocity for waves on the stringuisfind 7'/m.

10.3. In the next chapter, we will derive the dispersion relation for waves in water (or at
least an idealized picture of water). If the water is deep, the dispersion relation is
Tk?
w? = gk + ——
p

whereg is the acceleration of gravity, 980 in cgs urifids the surface tension, 72, andis
density, 1.0. Find the group velocity and phase velocity as a function of wavelength. When
are they equal?

10.4. Consider the longitudinal oscillations of the system of blocksraass$lessprings
shown below:

<

O QQQI QQQI QO Q.-

Each block has masa. Each spring has spring constdfit The equilibrium separation
between the blocks is. The ring on the left is moved back and forth with displacement
B coswt. This produces a traveling wave in the system moving to the rightfo2/ K /m.
There is no traveling wave moving to the left.

The dispersion relation for the system is

w? = g sin? @ .
m 2
a. Suppose that = /K /m. Find the phase velocity of traveling waves at this fre-

quency.

b. Forw = \/K/m, find the displacement of the first block at time 7 /2w. Express
the answer a® times a pure number.
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C. Find the group velocity in the limit — 2,/ K/m.

d. Find the time average of the power supplied by the force on the ring in the limit
w— 2/ K/m.
e. Explain the relation between the answers to pagsdd. You may be able to do

this part even if you have gotten confused in the algebra. Think about the physics and try to
understand what must be going on.
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