8.03 Lecture 16

We have discussed this system in lecture 8:

m m m m
W
. a ] -

Mass can only move up and down in the ¢ direction. We have solved it by “space translation
symmetry.” We obtained the dispersion relation:
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Where T is string tension, m is mass, a is the distance between masses at equilibrium. Eigenvectors
(where j is the label of the mass):
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Today we are doing 2D and 3D system!! In general, we don’t know how to solve those systems!

:( But we know how to solve highly symmetric systems!! If we consider an intinitely long array of
masses:
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Where m is the mass, Ty, T are the tensions, and we have ideal strings. Particles can only move
in the 2 direction. Good news: space translation symmetry! Eigenvectors:
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Where z = jyag and y = jyay and (jg, j,) are indices.
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We can use the expression above to get the dispersion relation:
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This is a dispersive medium because ? is not a constant.

At fixed w: If we consider a 1D bead-string system:
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There are two solutions (or eigenvectors of S matrix) which gives angular frequency w

ezkx and e—zkm

This is cos(kx) and sin(kz)!!
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cos(kx) = 5(6““0 + e~ the)

l(eikx _ e—ikx)

sin(kx) = 5

We know from the discussion above, the eigenvector of M~k matrix is sin or cos. Back to the
two-dimensional case: If we fix the angular frequency to be w. There are multiple values of k, and
k, which can give the same w (actually infinite number of choices). This is because k, and k, are
continuous: can be any value before we introduce boundary conditions. If we lower k, a bit we can

increase k, to compensate! Example: if I have dispersion relation of this form:
w? = 5sin’ ky + 5sin? ky

There are many possible pairs of k, and k, which gives the same w!!!
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Now we add the wall back in:
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In this example: Ly = bay and Ly = 4ay
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There are now only four modes of the finite system with the same w
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and n, runs from 1 to 4 while n, runs from 1 to 3. Linear combinations of
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)

gives Asin k,x sin kyy which satisfy the boundary conditions.
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Discrete case general solution:
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Continuous case (assuming Ty =Ty =T) ag = ay — 0
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Define the surface mass density, p = m/a?, and the surface tension, Ty = T'/a
w? = (kQ +hy) == yky
Ps
Similar to one dimensional case. Continuous limit gives:
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Y x Asin(kzx) sin(kyy) sin(wt + ¢)
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Where v = \/Ts/rhos. Similarly in the 3D case:
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Continuous case: 3D sound wave. Example: sound wave in a box
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Guess B
Y o sin(kzx) sin(kyy) sin(kyz) sin(wt + ¢)

Plug into wave equation:

w2 = v2(ki + k:; + k‘z)
= () (%) (%)
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Where ng,n,, and n, are integers.

2 and 3D progressive wave:
Simple example: “plane waves”
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This can be used to describe EM waves, sound waves, or waves on membranes. If there is no other

medium, this wave will continue forever.
Let’s continue a 2D membrane stretched in the z = 0 plane with surface mass density ps and surface

tension T
w? =% (k2 + ki)
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and waves will travel at speed v = /| —. To add some excitement:
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We place a second membrane on the other side, and our wave approaches this membrane. What
will happen? One would usually expect an incident wave to produce a reflected and transmitted

wave.
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Where >, and 35 sum over all possible ko and Elg which give angular frequency w
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To calculate R, and Ty as well as Ea and Eﬂ we need boundary conditions!
At x = z = 0 the membrane cannot break so we need ¥, = g
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Where the equality is established with the boundary condition. This can only be true when k., =
kgy = ky. Only when

kow = —yJw?/v? — k; = —k, and kg, = /w?/v? — k%

We can satisfy the boundary condition.
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We have |k|sin 6 = || sin ¢/

n="5="5
voow
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Snell’s Law! We have just proved the two MOST IMPORTANT LAWS of geometrical optics!!!

(1.) Reflection: 6; = 05

(3.) It works for water, glass, sound, and light waves!
(4.) If we continue to increase #; then
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There is no transmission!



MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics lll: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





