8.03 Lecture 15

Review: Fourier Transform and Narrow band signal transmission.

f(t) = fs(t) coswot
In the small bandwidth approximation we have
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Where the envelope is traveling at group velocity vy = ﬁ and the carrier is traveling at phase
wo
velocity v, = %
0
AM radio: typical wg: 0.3 —30M Hz and Aw : 5kHz. We have Aw < wy Makes sensel!
Example:
f() =€t
What will be the corresponding C(w)? From the previous lecture:
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If we plot C'(w) as a function of w
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Large T' gives narrow pulse (f(t) narrow) but one will get wide C'(w)

Small Gamma gives wide pulse (f(¢) wide) but will get narrow C(w)

In your pset, you will work on another function form: the Gaussian wave. We can demonstrate
this using a precie mathematical definition of the spread of the signal.

1. We define the intensity of the signal to be proportional to |f(t)|*

2. Average value of any function weighted with the signal’s intensity
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3. Spread of time:
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mean square deviation from the average time. Similarly spread of the frequency spectrum

At = ([t = (t)]*) =

Aw? = (jw - (W)]?)

We will prove
Aw- At >1/2

4. We also realize that

/ dw wC(w)e™ Wt :th/ dw C(w)e™ Wt
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Take home message:

5. We will use a trick which leads to Heisenberg Uncertainty principle in Quantum Mechanics:

Consider a function (t)
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Where « is a free parameter. Consider:
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Both the numerator and denominator are positive—> R > 0
(ks ) = (T — isQ) (1) - (T + inQ") f*
2 2 . * px *
= |Tf|" + |f|” +in[TfQ" f* = Qf T f"]

Take the last term and simplify:
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Now integrate over all time:
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Where in the second step we have assumed f is localized such that f(t = +o00) =0
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(3.) using the result from above
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We know = 0. R(k) minimize at kK = Kpin = A2
1
= R(ﬁmin) = At* — A2 >0
Rearranging, we get the Uncertainty principle!!!
1

AM station broadcast: Bandwidth:
Aw = 2tAv ~ 3 x 10%s7!

= At is a few x1075 seconds. This means we cannot tell signals apart when At < O(107%s)
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Quantum Mechanics:
We can rewrite Uncertainty as:

vAt - Aw/v > 1/2
= Az-Ak>1/2



In quantum mechanics, p = hk where Planck’s Constant i = h/27. h~ 6.6x1071% eV-s or 1 x 10734
J-s. We can rewrite our uncertainty principle as:

= AzAp > g

This is the mathematical statement of the fact that the position and momentum of a particle cannot
be specified simultaneously.

2D and 3D waves
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Let’s move to two and three dimensional waves. In this example, we have a beaded mesh. Index:
(Jz» Jy) where each one runs from 1 to 4. First we consider an infinite system by removing the wall
and use space translation symmetry:

X direction: Eigenstate of M1k is e?k=®

Y direction: Eigenstate of M~k is e’ ¥

U, y) = Achereihoy
— Aezk-F

Where k = k& + kyg and 7 = zd + yj
Time dependent displacement: .
¥(x,y,t) = Re [Aeik"?e_iwt}

4T k 4T k
w? = A sin? zaH + V. gin? yav
Mag 2 may 2
Where k; an k, are arbitrary for the moment. In general the two dimensional problem can be
infinitely hard!! (But in this special case it is solvable). Before introducing the boundary (infinitely

long system)
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1. Normal mode in 1D: always two normal modes:

e:l:zka:

2. But in 2D, in general, a fixed w gives an infinite number of solutions (if we lower k,, we can
always increase k, to compensate!)

Adding walls back in:
Boundary conditions give:

kx = LH LH = 5aH
Ty T
. (nemx . [nyTy
(T, Y )ngmy = Ang.n, Sin ( zH ) sin (zv)

General solution: linear combination of ¥, »,
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