
8.03 Lecture 14

In many media: v = v(x). For instance: light in glass.
*Speed of wave propagation depends on wavelength λ (or ω or k).
In a non-dispersive medium, waves keep their shape:

In a dispersive medium, waves spread out:

This spreading out occurs because the square wave on the left is made of many different modes,
and they all travel at different speeds so the wave “disperse”
Recall our definitions of phase and group velocity:

vp = ω

k
vg = dω

dk

In a non-dispersive medium: ω = vk and we have:

vp = v vg = dω

dk
= v = vp

In a non-dispersive medium the phase and group velocity is the same.
Example: EM wave passing through an ionic crystal. The dispersion curve looks like:



(1.) What is the group velocity and phase velocity as a function of k?

(2.) What about velocity versus ω

(3.) What will happen to the radiation striking such a crystal if the frequency is ω < ωb? There is
no propagation or loss in this crystal ⇒ totally reflected!

If we have a very long string:

We shake one end ⇒ produce a progressing wave!

ψ(x, t) = f

(
t− x

v

)
for non-dispersive medium. How about dispersive medium:
Waves with different frequency (or wave length) are traveling at different speeds! We need to
decompose f(t) into waves with fixed frequency. Then attack one by one!!!
Use the Fourier transform!

f(t) =
∫ ∞
−∞

dω C(ω)︸ ︷︷ ︸
Amplitude

osc. at ω︷ ︸︸ ︷
e−iωt
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After we decompose f(t) into many harmonic oscillations with different frequency and use the
dispersion relation ω = ω(k) we have:

ψ(x, t) =
∫ ∞
−∞

dωC(ω)e−iωt+ik(ω)x

With a given ω we can solve k which is a function of ω. In the special case of the non-dispersive
system:

k(ω) = ω

v

ψ(x, t) =
∫ ∞
−∞

dωC(ω)e−i(ωt−xω/v)

=
∫ ∞
−∞

dωC(ω)e−iω(t−x/v)

= f(t− x/v)

Which makes sense!
How do we determine C(ω)? Orthogonality:

1
2

∫ ∞
−∞

ei(ω−ω′)tdt = δ(ω − ω′)

The Dirac delta function!
δ(x) =

{
∞ x = 0
0 x 6= 0

Some useful formulas: ∫ ∞
−∞

δ(x)dx = 1∫ ∞
−∞

δ(x− α)f(α) = f(x)

Now if I calculate this quantity:

1
2π

∫ ∞
−∞

dtf(t)eiωt

= 1
2π

∫ ∞
−∞

dt

(∫ ∞
−∞

C(ω′)e−iω′tdω′
)
eiωt

= 1
2π

∫ ∞
−∞

C(ω′)dω′
∫ ∞
−∞

dtei(ω−ω′)t

= 1
2π

∫ ∞
−∞

C(ω′)δ(ω − ω′)dω′

= C(ω)
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Now we have a problem:

Recall from above, when we have a dispersive medium our wavepacket spreads out. How do we
overcome this difficulty? A smart idea: AM radio.
Consider fs(t) is the signal we want to transmit. For instance: music around 1 KHz
Our carrier is cosω0t or eiω0t. The frequency of AM radio is around 0.1 to 30 MHz
Instead of transmitting fs(t) directly (we know this does not work) we transmit

f(t) = fs(t) cosω0t

Since fs(t) is slow (≈ 1 KHz) compared to cosω0t (≈ 0.1 - 30 MHz) the resulting ω range with
non-zero C(ω) is “narrow”. This is because:

cosωst cosω0t = 1
2[cos(ω0 + ωs)t+ cos(ω0 − ωs)t]

Where ωs is the “typical frequency” of the signal and ω0 is the carrier frequency. Therefore, the
range of ω with non-zero C(ω) is ≈ ω0 − ωs to ω0 + ωs where ωs << ω0

Suppose ω(k) is slowly varying around ω0

ω = ω(k) = ω0 + (k − k0)

vg︷︸︸︷
∂ω

∂k

∣∣∣∣
k=k0

+ · · ·
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⇒ ω ≈ ω0 + (k − k0)vg

Where ω0 ≡ ω(k0). Also note when k ≈ k0, ω ≈ ω0
Higher order terms are negligible in the range

ω0 −∆ω < ω < ω0 + ∆ω

If my f(t) satisfies C(ω) ≈ 0 for |ω − ω0| > ∆ω
I.e. we are looking at f(t) with the corresponding C(ω) like:

fs(t) must be slowly varying compared to the carrier wave e−iω0t

f(t) = Re[ fs(t)︸ ︷︷ ︸
envelope

e−iω0t︸ ︷︷ ︸
carrier

]

This is actually “Amplitude Modulation” or AM radio!

If ∆ω << ω0 (a small window with C(ω) 6= 0) then higher order terms in ω(k) are negligible

ω = vgk + a a = ω0 − vgk0

k = ω

vg
+ b b = k0 − ω0/vg

Where a and b are constants. Now we want to show:

ψ(x, t) = Re
[
fs(t− x/vg)e−i(ω0t−k0x)

]
Fourier transform: we can rewrite fs(t) as:

fs(t) =
∫ ∞
−∞

dωC(ω)e−iωt

Make AM radio: multiply by e−iω0t:

fs(t)e−iω0t = f(t) =
∫ ∞
−∞

dωC(ω)e−i(ω+ω0)t

=
∫ ∞
−∞

dωC(ω − ω0)e−iωt
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Propagate to all x:
ψ(x, t) = Re

[∫ ∞
−∞

dωC(ω − ω0)e−iωteikx
]

Recall C(ω) is only non-zero around ω0

≈
∫ ∞
−∞

dωC(ω − ω0)e−iωtei(ω/vg+b)x

=
∫ ∞
−∞

dωC(ω − ω0)e−iω(t−x/vg)eibx

=
∫ ∞
−∞

dωC(ω)e−i(ω+ω0)(t−x/vg)eibx

=
∫ ∞
−∞

dωC(ω) e−iω(t−x/vg)︸ ︷︷ ︸
fs(t−x/vg)

e−iω0t ei(ω/vg+b)x︸ ︷︷ ︸
eik0x

Therefore:
ψ(x, t) = Re

[
fs(t− x/vg)e−i(ω0t−k0x)

]
Where the left term (fs(· · · )) is the envelope traveling at vg and the right term e−i(··· ) is the carrier
traveling at vp What is the typical carrier frequency?
Medium frequency: 300 KHz ↔ 3 MHz −→ Skywave
High frequency: 3 MHz ↔ 30 MHz
The envelope shape does not change!! (No dispersion)
Enables us to send voice, music to places which are thousands of miles away!!!
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