8.03 Lecture 4

Coupled oscillators

In general, the motion of coupled systems can be extremely complicated. Editors note: watch the
video lectures to see examples of complicated coupled oscillators.
Let’s consider an example:

There are many kinds of motion in this system! If you stare at it long enough you an identify a
special kind of motion! The “normal mode:” every part of the system is oscillating at the same
phase and the same frequency. We will later realize the most general motion is a superposition of
the normal modes. We can understand the system systematically step-by-step.

In general, coupled oscillators are complicated but there are easier cases we can solve, being guided
by our physical intuition.

Can you guess the normal modes of this example?
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Where in Mode A we have wi = % and in Mode B we have w% = % =2k

m
Is there a Mode C? Yes!

Mode C

] Where there is no force, and wc = 0 because
oM m there is no oscillation. The whole system is simply
translating.
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To summarize:
Mode A:
Tr1 = 0

x9 = Acos(wat + ¢4)

x3 = —Acos (wat + ¢a)
Mode B:

x1 = Bcos (wpt + ¢p)

x9 = —Bcos (wpt + ¢p)

x3 = —Bcos (wpt + ¢p)
Mode C:

$1:x2:$320+’l}t

Therefore the general solution is:

x| = 0 + Becos(wpt+¢p) + c+ot
x9 = Acos(wat+ ¢a) — DBceos(wpt+o¢p) + c+out
xg= —Acos(wat+ ¢a) — Becos(wpt+op) + c+out

Where A, B, C, ¢4, ¢p and v are constants to be determined by the initial conditions. Here we have
3 second order differential equations with 6 unknown constants.
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2m 2mi, = k‘(ﬂ?g — CL’l) + k‘(xg — l’l)
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We can reorganize:

2mi1 = —2kx1 + kxo + kxs
mi'g = k‘l‘l — kxg + 0.%'3
mis = kx1 + 0Ozg — kxs

Now our job is to solve the equations. It is possible to solve this coupled set of differential equations
directly, but we can use a matrix as a tool to help us. We convert everything to matrices. Our

equation of motion is now

MX =-KX
where:
2m 0 0 T 2k -k -k
M=|0 m O X=|xzo| and K= |-k k 0
0 0 m T3 -k 0 k

We go to complex notation where X; = Re[Z;] and Z = @9 A and A is a column vector

(A1, Ag, A3)

Solving the equation of motion:

MZ=-KZ
Mw*Z =KZ
Mw?A=KA

wWw?A=MT1KA

= (M'K-w?’T)A=0

Where I is the identity matrix. To have a soluation we need to solve

det[M 'K —w?I] =0

k 2 —k —k
LA =K =k
1 9 m K & 2m 2m
(M'K —w?l)=| = £ _ 2 0
T " ko2
T O
2 —
Define wg = k/m
2 2
2 _ 2 —%o %o
%% w 3 2
det —wg wg —w? 0 =0
—wd 0 wi — w?
( 2 2)3 1 4( 2 2) 1 4( 2 2)_
Wy —w —2CUO Wy —w —2&)0 Wy —w =

0
(W2 — w?)(wy — 2w +wt —wg) =0
0

(wg — w2)w2(w2 — 2w3) =



w = wo, \/>(,U(),

B

We get the same result! To get the relative amplitude of a normal made: Plut in the normal
mode frequency you get in the equation (M 'K — w?I)A = 0. For example: take Mode B where
w=wp= 2k/m

0 = 2kA; + kAs + kA3

0 = kAT + kA + 0 = A =-A4y=—A3
0 = kA + 0 + kAj
In Mode B we had
x1 = Becos(wpt+ ¢B) 1 1
x9 = —Bcos(wpt+¢p) or X =|xz2| =B|—1]cos(wpt+ ¢B)
x3 = —DBcos(wpt+ ¢B) x3 -1

It turns out this is just the simple harmonic oscillator!

Take Mode A as an example where w = wyq = /k/m. Plug in this frequency (into the equa-
tion (M 1K — w?I)A = 0) to solve: A; =0 and Ay = — A3

xr1 = 0
x9 = Acos (wat + ¢a)
xrg3 = —Acos (wat + ¢a)

There is an alternative way we can solve for the normal modes. We can define the length of the
spring as ly and define a new origin:

x=6
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From the analysis of the force diagram we get:
2miy = k(xe — x1 — ly) + k(z3 — 21 — lp)

mio = k(xy — x2 + 1)

mis = k(xy — x3 + o)
Redefine the x5 and 3 coordinates:

x'zzxg—lo J:g:acg—lo
Now we have
2miy = k(xh — z1) + k(25 — 11)
mih = k(xy — xb)

mih = k(xy — o)

Reorganizing:
2mi; = —2kx; + kab + kaj
mihy = kxy — kab + 0z%
miy = kry 4+ Oz — kaj

Now use the definition of normal mode:

1 Ar)
2 | =Re || Ay | f@tH9)
ah As
—2mw2A1 = —2kA +kAs + kA3 0= (—2]’6 + 2mw2)A1 + kAo + kAg
—mw?Ay = kA; — kAy + 04, = 0=FkA; + (mw? — k)Ay + 043
—mw?Az = kA; + 04y — kA3 0=KA; + 04y + (mw?® — k) A3
Rewrite in matrix notation:
(2mw? — 2k) k k Aq
k (mw? — k) 0 Ay | =0
k 0 (mw? — k)] \As
To get a solution we need to solve the equation where the determinant of the left matrix is zero.
(2mw? — 2k) k k
det k (mw? — k) 0 =0
k 0 (mw? — k)

(2mw? — 2k)(mw? — k)% — 2k*(mw?® — k) =0
(mw? — k) {(2mw2 — 2k)(mw? — k) — 2]{:2} =0
0

(mw? — k)w?(2m2w? — 4km) =

12k |k
w={/—,/—,0
m m

Get the same result!
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